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Variational formulas on arbitrary Riemann
surfaces under pinching deformation

By

Masahiko TANIGUCHI

Introduction.

The method of orthogonal decomposition plays a crucial role in the theory of
abelian differentials on Riemann surfaces. Actually, we have found its new applica-
tion in deriving variational formulas on Riemann surfaces under quasiconformal
deformation (cf. [1] and [3]). The argument consists of two steps. Namely, we
show first certain continuity (or distortion) with respect to Dirichlet norm of the
given family of differentials, by using inner orthogonality of the family, and
secondly we derive variational formulas by using another orthogonality of the family
to the linear operator considered in each formula.

The first step was generalized to the case of deformation by pinching a finite
number of loops (cf. [5, § 3], where certain continuity of square integrable harmonic
differentials was treated. See also [7, Theorem 1]). The purpose of this paper is
to generalize the second step to the case of pinching deformation and to give as-
sociated variational formulas for basic differentials such as period reproducers and
Green's functions.

For this purpose, we give in § 1 the definition of pinching deformation and a
general fundamental variational formula (Theorem 1). (This formula reduces to a
trivial one in case of quasiconformal deformation, but has some applications, cf. [8]
which also contains a refinement of it.) By applications of Theorem 1, we have in
§2 certain variational formulas for basic differentials (Theorems 2, 3 and 4). The
proofs are given in §§4 and 5. The decisive parts of the proofs are Lemmas 5, 8 and
9, which can be considered as fruits of the method of orthogonal decomposition,
though the proofs need certain investigation on differentials associated with pinching
loops. We give in §3 the order estimate and metrical continuity of such differentials
(Theorems 5 and 6, respectively). We note that Theorem 6 can be considered as a
corollary of the proof of [5, Theorem 3] after applying the inverse operation of the
so-called variation by reopening nodes of Schiffer-Spencer's type, and that using this
operation we can also characterize the conformal topology. Appendix includes one
of such characterization (cf. [7, Theorem 3]).
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§ 1 .  A general variational formula.

Let R , be an arbitrary Riemann surface with a finite number of nodes lp ; )-1=1

(cf. [5, §1, 1 0 )]. Recall, in particular, that the universal covering surface of any
component o f  R6 =  R,— U {p1} is  conformally equivalent to the unit d isk ). ForJ=1
every j ,  we fix a neighbourhood U1 of p ;  on R , such that each component, say I/1 , k
(k =1, 2), of U1 — {p.1} is conformally equivalent to D,—  {0 < I z  J <1)- by a conformal
mapping, say z i . h ( p ) .  Also we suppose that {r/1} 1 a re  mutually disjoint.

For every t > 0 , let j ;  be a quasiconformal mapping of R6 onto another union
R ; of Riemann surfaces with the complex dilatation it,. Further we assume that

a) the support of ,at is contained in R0 —U, where U =  U  U1 , and
b) there is a bounded (-1, 1)-form it on R6 such that

=  0 ,

where II is the L - -norm on R 6 . For t=0, we denote by'', the identical mapping
of Rf) onto itself.

Next for every fixed t > 0  and s;  with 0<s1 <1/2 (j=1, •••, n), let R t . , (with 5—
(s1 , s „ ) )  be the Riemann surface obtained from R by deleting two punctured
disks z ; ,,, t

- '(40< z  I <s ; ) - )  (k =1 , 2 )  a n d  identifying t h e  borders B i . k ,,.s =
Zj,k ({ IZ I= S 1 } )  by the mapping

z1,7,t - 1 (721•4/zi,i,t(P))

for every j ,  where z1..k ,, —Z1 ,h ofT 1 (which maps Uh k ,, = f t (U; ,k) conformally onto D0)
and n; is a constant with I 77 I = 1 .  We denote by C1 , the loop on R,., correspond-
ing to {B;, 1 and equipped with the same orientation as that of 131 .1 ,4 2 . The
parameter s=(s i , •-•, s„) can be considered as pinching parameters for these loops
{C1 , , 2} 1, and we can construct a canonical pinching mappings J  R t . ,  to R , as

follows. Let J th e  natural embedding of R ,,,—  U C1  s  into 12, V i . k =
2 „

Zi , k- 1 ( { 0 < I Z I ‹  1/2} ) , V 1= U k , V =  U  V1 , and Zi,k,t,s =Z j ,k , t ° Jg . ,  toh=1 j= 1

J i,s — i(U j ,k , t ) ,  and we set

f s ,s
- 1 (p )  = J1 . , - 1 0 f ,(p )  o n  R— V, a n d

=  Zi . k, t , s
- 1 ((1 - 2 s i ) - z ik ( p ) d - s f • ( z i .

o n  V i , k  ( i  =  1 ,  • • • , n ;  k 1, 2) .

And finally we set f, .3(C J , ) =p 1 fo r  every j. Then note that A s maps 12',, and
V i , k. t . 5 =.1 ,. s

- 1 ( f 0(17 ; , k )) homeomorphically onto R ; and V i , k, respectively, for every j
and k .  These mappings { ft ,s } a r e  defined in  a  special manner o n  V .  But the
variational formula stated below does not depend on such special choice of A s  on
V, but only on s, f , a n d  U .  Also note that we have obtained the following com-
mutative diagram of mappings (, where i means the natural embedding).

Uj,k ,t,s =

k(P)/ I z i,k(p )I
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ft ,

R  s •<- -  k t : t + — U 0 ,
s

Here in case that some s;  = 0, we regard that C1 ,,  collapses to a node Ph t . , of
R t ,, corresponding to p i . H ence, in particular, k t :o k t, ft ,0 is coincident with f 1

on Rif , and J o , is the identical mapping of

Remark. From the construction, R 1,s converges to /20 in the finitely augmented
Teichmilller space î ' ( R * )  as (t, s) tends to (0, 0), where we set R* with fixed
positive t*  and s7 (j=1, • -•, n ), or more percisely, {f t ,,} is an admissible family
of marking-preserving deformations of R,,, to R , (cf. [5, §1, 1 °)]).

Now suppose that a given meromorphic abelian differential yot ,, on R ,,, varies
continuously with respect to (t, s) and remains bounded in norm near pinching loops.
Then, if the periods of ip,,, along pinching loops vanish constantly, we have certain
variational formula for ço,,s by essentially the same argument as in  the case of
quasiconformal deformation (cf. [1], [3]). More precisely, we can show the following

Theorem 1. For ev ery  t>0  and s ;  in  [0, 1/2) (j=1, ••-, n), let wt . , be  a mer-
omorphic abelian differential on R,,, (with R0 ,0 = R o ) such that

1) co converges to ço  metrically on KU (Un Rô— V), which means that

limict.01+oiiTt,t°ft,s -1  To,oliKutunR,s-v) 0

where (and in the sequel) I(t, s) i= t+  E s »  o f  i s  the pull-back of  ço by f, II•iiE
.1=1

the Dirichlet norm on a Borel set E, and K is a closed subset of R o —U such that /2 1 =-
0 outside K for every t,

2) çot s = 0 f or every j and (t, s), andci ,t o '
3 )  there is a positive constant M such that

M for every j and (1, s)

where U, 1,, = U ; ,,, t ,, U C; ,,,, U (with U; ,0,0 — U; ) for every  j and (t, s), and in
general, N(R) is the set of all nodes of a Riemann surface R with nodes.

Next let 1,1" be a meromorphic abelian differential on R o such that
A) IIfr1Ixu unRp is finite, and
B) the (1, 1)-forms tp,,,A11., and co,,,

•••, n) are absolutely integrable on R.
(t 0, s 1 {0, 1/2); j=1,



(1-16r 4) • S._< E -o

+ E ; .....2  I b 2ni 
2n-2

= (1/27r)•
(2.2<1.1

which implies the assertion.

On the other:hand, since 2r2<1/2, we have

in+a n2 [( 2 ) 2n

[(2r2)2 - 2 " — (-1) 2

I f(z)1 2dxdy
<1/21

-1-2 p r 2)2n -1-1

–2n

< A 2/27r ,

q.e.d.

510 Masahiko Taniguchi

Then it holds that

Si 4 c1).,s =  I t s00,0-,u A *1fr. 0 ( 1 (t, )1)

as  1(t, s)1 tends to O.

Here and in the sequel, a differential on a surface R with nodes means one on
R —N(R).

To prove Theorem 1, we begin with the following

Lemma 1 . Given r w ith 0<r< 1/4, and let f (z ) be a  holontorphic function on
W = { r2 < 1 z 1 <1} such that

f(z)dz = 0, i.e. f(z)dz is exact, and
1z1=r

ii) I f(z)1 2 dxdy A 2,

where z= x±iy and A  is a positive constant independent of r.
Then it holds that

f (z )  < 3 A •

Pro o f . Set f (z )= -o anzn -PE;:=1 bn z - n o n  W, then  i) implies that b1= 0.
Hence it holds that

(max (1.1---.) If(z)

(E=o i •rn d- E7-21bni •r - n)2

S • ( 0 (2 n + 2 )• 4.(20 2"-PEZ. 2(2n- 2)• 4.(20 2"1

= S•16-(1—(20 2) - 2 < 30S ,

where we set

S E.
c o

=0 
 1  a

"
121   ) 2 '1 + 2

- F E ,7 = , 
 1 b

n

 I 
2  

 (2r2

)
2 - 2 "

 .
2n+2  2 2n-2

Next fix j  and k  arbitrarily and set 55,
0 ,0 0z1 .k

- 1 (z) = a 0 (z)dz and



Variational formulas on Riemann surfaces 511

at ,,(z)dz for every t and s. Recall that a 3(z) and a 0(z) are holomorphic on Ds =
GIz i< 1} and Do , respectively. Denote the mapping z i ,,a ,3 0A,

3
- 1 0z1

,
3

- 1  by Fi ,s(z),
i.e.

F,,3(z) = (1 —2s J )• on D 0 .

Then we have the following

Lemma 2. i) a t ,s (F s(z )) are  uniformly bounded on E1 = {0.< I z l < 1/2} for
every (t, s) with a sufficiently small I(t, s)I .

ii) ai ,s(Ft ,s(z)) converges to a0(z) locally uniformly on Do as I(t, s)I tends to O.

Pro o f . First, when si  >0, can be extended to a conformal mapping of
onto -(s.l< Iz IG 1)- , and we may regard that a, 3(z) is a holomorphic function

on -(s3< j z I < 1 1 . Then by the assumptions 2) and 3) in Theorem 1 and by Lemma
1, we see that supoz l _s j ) I a,,,(z)1 < 3-M 112 for every (t, s) with 0<s1 <1/4.

On the other hand, by 1) in Theorem 1, we can see that a, 3(z) converges to a0(z)
uniformly on, say { I z I =3/41 as I (t, s) I tends to O . Hence the assertion i) follows
from the maximal principle.

Next by the above assertion i) and the assumption 1) in Theorem 1, it holds that
a1 5 (z) converges to a0(z) locally uniformly on Do a s  I (t, s) I tends to O . Since F,,,
converges to the identical mapping locally uniformly on Do , we can show the asser-
tion ii) by using i) and Cauchy's integral formula. q . e . d .

Proof of Theorem 1. For every (t, s), write

a s (w)dw+ ait :s (w)dfv-

with a generic local parameter w on R 6. Then since ço,,, is a meromorphic differ-
ential on R,,,, it  h o ld s  th a t c4, s(w)•,u,, 3(w) d t .'s (w), where 11,,3(w)dwIdw is  the
complex dilatation offt .3

- 1 . Hence it holds that

wt,s = j4 , dr:s(w)dif' A *1G,

= K U V 
a't s(w)./1,,,(w)diTvA*1fr. .

Since ,u,,s(w)do/dw=,u, on K, it holds that

55K t  , s • I I A** — 5LIP. 0,0* At I A * 1k

ell 1114  IC* ilP 1,sCf t ,s - 1 —  970,01IK

Here 
i l g t 1 1 . - 0 ( t )  by the assumption b) on {A i}, is finite by A), and I Iço,,s oft ,s - 1

—RAI, converges to 0 as I (t, s) I tends to 0 by 1). Hence we conclude that

„  •  t „  )  A** =  1 P 0 , 0 .  t  A** +  °Mt 'OD •
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And by B) and b) (on ta j), we have

(*) 0;,s •its,s cliT A * * t• L  Po,o • tz A * * + 0 ( (t, s )  ) •

Next by a simple computation, we can see that

(Ft , )i(z ) 1,992 Ft,s(z)) (1zz 1 ) 2 .
z
l

hence j(Ft ,,)i I s3/(2 I z 1) on z i ,k(V i . ,) — Do. So by Lemma 2-i) we have

c4.s(z )•itt,s(z ) =  dt:s(z)

at ,s (F, , s(z))• s • 11-1 • I z

on every z 1 ,k (V1 ,k) with a suitable constant ./(;/ for every (t, s) with a sufficiently small
I (t, s)j. Hence by Lemma 2-ii) and Lebesgue's convergence theorem, we have

a't,s • Att,s c12 A * lb. ao(z)b(z)
v;v ;

 

dz Ad2 ,
2Iz I

where **— b(z )dz , fo r  I b(z) I  is bounded on every Vi .k , as is seen by A ) .  Since
both a 0(z ) and b(z) have removable singularities at the origin, the integral on the
right hand side is equal to 0 by Cauchy's theorem, i.e. we conclude that

a ,  • pt ,, diT' A * 1fr = 0 (  (t, s )  ) •

Thus the assertion follows from (*) and (**). q.e.d.

Remark. From the above proof, we can see that B) in  Theorem 1 may be
replaced by the following weaker condition

B ' )  51):0 Alb' and every cot  are absolutely integrable on /20 — U.

§ 2 .  Variational formulas for basic differentials.

A simple closed curve d on an arbitrary Riemann surface S is called essentially
trivial if d is dividing and a component of S —d is a parabolic part (i.e. a subregion of
type S O „)  of S .  Two essentially non-trivial curves d, and cl, are called equivalent
if  either d,—  +4, or they are disjoint and bound a parabolic part (, i.e. there is a
parabolic part G such that the interior o f  is G and the relative boundary of G is

d
1
 as a points set in S ) .  A set {c/i )-7_1(K > 0 ) of mutually disjoint simple closed

1=1

curves is called free if no subset of {c/1}1f., 1 bounds a  parabolic part, and is called
essentially f ree if  there is a free subset {d1,}1,1,=1 o f  {c/1}f= 1 such that every cli  is
either essentially trivial or equivalent to one of {d1 } 1 .

Next we recall definitions of basic differentials on a Riemann surface R  with (a
finite number of) nodes.
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i) Period reproducers (cf. [5, §1, 2')]): For every 1-cycle d on R '  R —N(R),
we denote by a(d, R) the period reproducer for d on R .  And we set 0(d, R)=
a(d, R) + i • * a (d, R).

ii) Green's functions (cf. [7, §1]). When a point or a puncture q is given on
a component S of R' which admits Green's functions (i.e. SEE os ), then Green's func-
tion g(p; q) on R with the pole q is, by definition, equal to usual Green's function on
S U {q} with the pole q and vanishes identically on R'- S .  When two points or punc-
tures q, and q2 are given on a component S of R' belonging to OG, then (indefinite)
Green's function g(p; q 1 ,  q2)  on R  with the ordered pair of poles q, and q2 is, by
definition, equal to a  harmonic function g(p; q„ q2)  on S— {q„ q2} defined in
[5, §1, V )] and vanishes identically on R ' —S .  Recall that such a  function
g(p; q„ q2) on S is determined only up to additive constants.

In both cases, we set

R) = dg(• ; q)+ i•*dg(• ; q) , and

0(q1 , q2 ; R) = dg(.; q„ q2) + i•*dg(• ; q„ q2) , respectively.

Now returning to the situation in §1, we say that R, is essentially free if so is
the set {C i a *,3*}7=1 on R s *  for some (, hence every) positive t* and s (j=1, •••, n).
And in this section, we always assume that R, is essentially f ree. (A reason for this
restriction will be found in §3, Example.) Also, for every j ,  we denote by C. the
simple closed curve — 8 V.; ,, on R,, and say that C is essentially trivial if so is
(which is freely homotopic to f;*,,*'(C ; )). Similarly, we say that two curves Ch  and
Ch  are equivalent if so are C 1a ., 0  and and that a  subset of {C; }7=1 is free
if so is the corresponding subset of {Ci 8.}7_1. Recall that the assumption on R,
implies the existence of a maximal free subset of {C; }7=1 (i.e. a free subset such that
every Ci is either essentially trivial or equivalent to one of elements).

In the sequel of this paper, we assume that every Ci  with l <  j< m  is essentially
non-trivial, while every Ci  w ith m 4 -1 <  jn  is essentially  trivial, and that {C.4 7=1
( H m )  is a maximal free subset of  {C } 7-1.

To state variational formulas, we should define differentials associated to some
of pinching loops. For every j  with 1 < j< m ,  a differential 0(C f , R0)  is defined as
follows. First let {Sk} ;Term) be a set of components of R(3 uniquely determined by
the conditions; (i) S h_ i and Sh are connected by a single node, say P h , of R, for every
k with 1 :<k<N , (ii) ■Sh OG for every k with 1 k < N - 1, and (iii) {Pk} r,=1 cor-
responds to the set of all Ch equivalent to C f . Then since C. is essentially non-
trivial, we can see either that So S N , or that So * S N  and none of S, and S ,  belongs
to O .  We denote by qk ,1 and qk . , the punctures of Sh corresponding to pk  and pk ,„
respectively, for every k except for g0 1  and qp,,, which are undefined. Here we may
assume that the puncture of R6 bounded by —Cj  is one of {qk ,11'kv= 1 . Now when
none of So and SN  belongs to OG, then we set

0(C»  R 0) —  2
1

i  • (0(qNa, R 0 ) — ( q 0 2 ,  Ro)) o n  S o  U 5 N •
ir
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If not, then SO= S , and we set

1 
O(C j ,  R 0 )  - • (6 (9N ,l , 90,2; R O )  o n  So  = S  N27ri

On every other Sk (k=1, N -1 ), we set

0(Ci , Rol  =  1 •  sh(9k,1, qk,2; Ro ) o n  Sk •27ri
29-

Finally, setting 0(Cp R0) 0  on R6 — U Sk ,  w e have a holomorphic differential
k=0

qS(Ci , Ro) on R0 .
W e call th is 0(C 1 , R 0)  the  associated differential f o r  Ci  o n  120 . Note that

0(CJ , R0)=1 for every j  and that, if Ch  and Ch  are equivalent, then ch(Ci i , Ro) -

c 5
0(C 12 , R o) or ==._ —0(C12 , R 0).

Now we will state several variational formulas for basic differentials, where
and in the sequel, we use the same notation for a 1-cycle on /26 and the correspond-
ing one on any R t. ,. A lso , denoting by {C; ( k ) } i1(_-"I N ( 1 ) ) the set of all C h equivalent
to  Cp  we set

S( j )  =- H S-1(k)k

and regard that log (1/s(j)) =  0 0  and 1/log(l/s( j ) )  = 0 when s ( j )  = O. (R ecall that

{C1}7_1 = 1.111 {Cm)} iv.W.)3=1

Theorem 2 . L et d and d' be 1-cycles on R , then it holds that

a (d , R „ )—  a (d , R 0)

= t•Re 0(d, R o )•,a A *0(d', R0)

H

I  l o g  ( 1 / s ( j ) )
• (C  R 0 )  •  

a '
sb(C ROH - s ) I I )

as  I (t, s)I  tends to 0, where and in the sequel, we set
H

, =  I ( t  S )I E 13=1 log (1/s(D)

Remark. W rite 0 = a(w)dw, tz = ,u(w)do I d w  and 0' = b(w)dw with a  generic
local parameter w = u+ iv on R6, and we have

R e  4 8 • A * 01 -= 2 5 Re [a(w)• ,a(w)•b(w)] dudv, ,

which is sometimes written as 2. Re 
.14
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Recalling that a(d, R)= lIc(d, R)II1, is equal to the extrema! length 2(d, R) of
d

the homology class of d on R ' by Accola's theorem, we have by Theorem 2 the fol-
lowing

Corollary 1. For every 1-cycle d on R ,  it holds that

2(d, R t , ) — 2(d, R 0)

= t • Re 0(d, R o ) • it A* 0 (d, R0)
RP

7r  [
.i=1 log (11R(D)

(C» R0)12 0 (11(t, s)ii)
d

as I(t, s)I tends to O.

Next fix a point q on a component S  of R6, and assume that Si$ 0 G and that
q S — U . For every (t, s), we set g t ,s (p)= g(p, q t , ), where qt ,s =f ,,, - 1 (q)(. hence
go o =  q ) .  Then it is seen that gi . j $  0 for every t and s. Also for every j  with 1
j  II, we set

G1(p) = g(p, q0,2) on S ,

where qi„.1 and qo a  are the same as in the definition of 0 (C , R 0) (, hence G. may
vanish identically on S ) .  Then we have the following

Theorem 3. Let d be a 1-cycle on _126— {q} , and suppose that there is a neigh-
bourhood (10 of  q on R(,„ such that to 0  on U0 for every  t. Then it holds that

*dge ,s —  *dg,,,
d d

t • Re — i •  (q, Ro) • iz A*0 (d, Ro)Rp

7t • G j(q) • ( C  R  ±  0  (I (t S)II)
.i=1 log (11s( j))

as l(t, s)I tends to O.

Finally, fix two distinct points q  and q ' on a component S  of And we
also assume t h a t  S  °G and that q, q' ES —  U. Then we have the following

Theorem 4. Suppose that there are neighbourhoods U0 and LI0 , ,  respectively, of
q and q ' in S such that p t $ 0  on (10 1_1 L10 . for every  t. Then it holds that

g a f t , s _1
( q

 I)) g o  ,o(q 1)

= —(t/27r)• Re i• (q, R0)• ,u A • /5 ( q ' Bo)RP

1 G j (q)- G;(0 + 0(11(t, s)11)
2-log (1/s(j))
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as l(t, s)I tends to O.

The proofs of Theorems will be given in §5 and 6.

Remark. When q = q' in Theorem 4, the right hand side of the formula gives
that for so-called Robin's constants.

In all Theorems, if we set s = 0, then all formulas reduce to well-known ones
under quasiconformal deformation (cf. [1] and [3]).

The case that t = 0 and n =1  can be considered as a natural generalization of
Schiffer-Spencer's variation, and choosing a  suitable U, we can derive a  sharper
formulas (see [7] and [8, §2]).

§ 3 .  Properties of associated differentials.

We can define the associated differential 0 ( C  R )  on every R t ,, for every es-
sentially non-trivial C., (i.e. j=1, •••, m) as follows; when a(Cli , Rt .,) $ 0, then we set

0(C1 , R t , ) = Ila(C p  .12,, )11;;.. , • O(Ci , R 1 ) .

When a(C.t , R t , ) -==. 0, then since C is essentially non-trivial, C;  should be equivalent
to some other loop, say Cy , on with sr = O. And we set 95(C5 , Rt „)--

or= —0(C 1 , R t , ) so that R 3)= 1, where 0(Cy, R t ,,) is defined in the samet, 
manner as in the definitioncoi f §6(C5 , Re) in § 2 .  First we show the following

Theorem 5. There is a constant C  depending only on U and R , such that it
holds that

2 •log (1 / s (j))+ 110(C3, Re,5)111 l• lo g  (11S(D)
7C

for every j  and (t, s) with a sufficiently small 1(t, s)II.
Hence in particular, it holds that

R  )112
t .s

7C

— O(11(t SAI) l o g  (1/s(j))

as I(t, s)I tends to O.

Proo f . Fix j  and (t, s), and assume that a(Cp  R e,,) 0, for otherwise the as-
sertion clearly holds.

Let -[S0)- i
k
s i=0 and {q 0 5 } 0 0 3 1  be as in the definition of 15(Ci , R 0). Let S k i . ,  be

the component of R . (CO= R , — V i( h ) t . corresponding to Sk, where
h=i

Vi(h),1,t,s U Ci(h),t,s U V; (0,2 ,,,,, and ak t ,, be the reproducing differential on Sk t .  for a
loop dk  freely homotopic to the border of Sk , t, k  which corresponds to a

for every k .  We define a  holomorphic differential a R ( C )  by setting a t . s =
(a k,t ,s+ i * a k )1110 4,s,sirs

Rt, )

on every Ska , , except for the case (E) that S0,
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with SN , t , ,  and admits Green's functions; in that case, we set I = I ao,t.t+i * ao,t,sI I

liaci,t,sirso,,„+  I city.t,s+ i * ciN,t,siiiicbt.t.sirso.,,s o n  .3,,,,,,,—SN . , ,  so that

and iat,si - 1-a,-
Next letting

fi (z) 1/(2r • z )  o n  -(0 GIzIG 1/2} , and

((1/27r)+(l/log 2))/z o n  {1/2 z I <1 }

we denote by fi e. ,  the pull-back of the differential 13(z)dz onto all components of

Ut . ,(C j) . =  U  j ( h )  , t , s •  Finally set

Pt,s = = Icet,s1 +  I 19  t,sI
 o n  R t . „

where we regard that a fi e . , are equal to 0 on R,. — R (C )  and R t ,s —Ut ,s (C; ),
respectively.

Then paw )I dw  I is an admissible density for the homology class of C. on
In fact, let a 1-cycle c' on R .  homologous to C., be g iven . If c ' contains an arc I
connecting a point of R , 3 —R t ,,(C; )  and one of R t , s — U t , t ( C ) ,  then it holds that

L 2

dr
P t s> (1/log 2) >  1 . And if not, c ' is  a union of curves contained in

' 1/ r —
R t ,s (Ci ) and ones in Ue ,e (Ci ). If the latter contains a non-trivial curve cf on Ue,e(C ; ),

then it holds that P t s > fi t s I > 1 . If not, the 1-cycle c =  n Rt .s (c,) is ho-
c"  — '

mologous to Ci  on R .  And then we can find a  component, say of R t ,s (C5)

such thatl c> I a, ,s 1 > 1. Thus we conclude that pe,e is admissible.• t,s

Hence by Accola's theorem, we have

Ila(Cp , )111. 14 pt s (w)2 dudv, ,

where w  u-Fiv, and a simple computation gives that

p1,5 (w)2 dudv I lat,111,, +  I Ifit,s111,,,—R,, s (c; )R; . s

2 (11a t,8112R1 5(c 1)nu t , 5 (0)±11fi1,51I 2R, , 5 (0 ) nut ,s(ci ))

< —2 •log (1/(2N •s(j)))+ 167r N • (  1 1  )2 • log 2 + 31 !OE: sH2R (c .Y •7C 27c log 2

Here note that J 1 a ,5 j1 , is equal to 2/Ilak. ,,,Irsk, ,„  except for the above case (E ); in
tha t case, liat,sirso.„, 40160, s. Since

Skt , ,  converges to  the corresponding component Sk , 0, 0  of R o (C; ) =Rô— U(Vli(h).1o=i
U V1h),2) for every k  in the sense of the conformal topology, ak ,t ,, converges to ak,0,0
(which does not vanish identically on Sk ,,,,o)  strongly metrically ([5, proposition 4]).
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And since metrical convergence implies convergence of periods (cf. Remark in §5),
we can see that Ilat ,,Irs k , ,„ are bounded near (0, 0) for every k .  (The case (E) can
be treated by the same argument.) Hence we can conclude that Ilat ,s111,. ( c ; ) , are
bounded near (0, 0).

Thus we can find a constant C  depending only on R , and U  such that, for
every (t, s) with a sufficiently small (t, s), it holds that

110 (C i , Rt,3)111 ,,, s
2 .log (1/s(j))+ C .

Finally, considering 10(C1, Ri, ) 1  o n  Ut ,s (C ; ) ,  w e can  see  tha t (1/2)•110(Cp
Rt, )111:,, is not less than the sum (1/27r)• 2.1og (1 / s(j)) of the moduli of U; ( 0 . ,.,(h=1,
•••, N). q.e.d.

Next we can show the following

Theorem 6 .  For every  j, 0(C 1 , R t , )  converges to 0(C»  R 0) strongly metrically
(with respect t o  f f , I )  as 1(t, s)I tends to 0, i.e. for every neighborhood W  of N(R 0),
it holds that

limi(t, )1.÷o Rt, )of,,,-1-95(Cp Ro)11R 0 -w  = 0 .

Corollary 2. For every j and 1-cycle d on R6, it holds that

limict.01-ALO(Ci, R 1 ,3)  = I d sb(C» RD) •

Example. Without freeness of R0 ,  the associated differentials do not neces-
sarily converge. Here we give a simple example.

Let R a , b, ,  be the triply connected region {z C : a<lz l<1 1 c , lz - 3! >b }  for
every sufficiently small non-negative a, b and c. Set C , { I z I —11, C, {1 z-3 I =
1} and C3 = {1 z  =  . Then we can regard that R a , b, c  converges to some R, with
three nodes in the sense of the conformal topology as a+b--Pc tends to  O . Note
that one of component of R0 —N(R 0) is conformally equivalent to S0 = C — {0, 31.

Now consider 0(C3 , R a ,0 . 6 ) - 11a(C3 , e (C 3 , 
R a , b , c ) .

 W h e n  a tends to
0 first and then b and c tend to  0, 0(C3, converges to  ((C 2 , R 0) which corre-

sponds to  (1/27d 
d z

)•  on S,. On the other hand, when b  tends to  0 first and
z-3

then a and c  tend to  0, q5(C3 , R b ,c)  converges to  çh(Ci , R 0)  which corresponds to

(1/27d)—d z  on  S,.

Proof of Theorem 6 is essentially the same as that of [7, proposition 3], but for
the sake of convenience we give an outline of it.

Fix j  in the sequel of this section. W e may assume tha t {C; (k) } i r
k

s ( N )  b e  the
set of all Ch equivalent to C. such that s1,> 0 . Then for every (t, s) and k  (<1(,),
we can consider the characteristic ring domain W; (0,,,, of 0(C1 , R 1 .3 ) (which is equal
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to Ø(Ci ( k ) , R„) or —0(C; ( , ) , R1,3)) for C J ( , ) on R,,, (cf. [4, §2]). Let C(j(k), t, s) be
the center trajectory o f  Wick ) , , , ,  for every k .  Then we can construct another

Riemann surface R11,3 with nodes from 121,3 as follows; first cut R „ along U  C(j(k),
k=1

t ,  s )  and patch a once punctured disk along each border so that çb(C R„) restricted

on R „ — U  C(j(k), t, s) can be extended to a holomorphic differential, say 0, on
k=1

the resulting surface(s). Next fill two punctures corresponding to the same C(j(k),
t, s) by a single point, we obtain a Riemann surface R ,  with nodes (which is
homeomorphic to R1 , ,  with s' obtained from s by replacing every si c . ) (k=1, •••, Ks)
by 0). Then we can see that §5 should be coincident with the associated differential
95(C1, 4 3 ) for C.; on R , ,  which is defined again in the same manner as çb(C R 0 ).

Now fix a neighbourhood W of N(R o ) arbitrarily. Here for every (t, s) with a
sufficiently small (t, s) j, it holds that W; ( 0, t ,, contains Ci a ),,,„ that is, f , , ,( w .,( , ) ,,, )
contains p i c k ) (k=1, •••, K,), where p i ( k )  is  the node of R, corresponding to C. (k)'
(The assertion can be shown by the same argument as in the proof of [7, Theorem
311,  i.e. by applying [6, Proposition 2] to a  height function u such that du
0(C , R„) on zs g o .,,,,,,A f e <  z I <1/21) (h= 1, 2) with a sufficiently small positive e.)
Since we can regard Wi (k ) , , , ,  a s  a  neighbourhood of C(j(k), t, s) also in R ,
(k=1, • •• , K,), we may regard that A 3

- 1 (R6) is a  subsurface of RL, such that each
component of R , —A s - '(R6) is conformally equivalent to a once punctured disk.
Hence similarly as in the proof of [7, Proposition 21, we can construct an admissible
family {(hf ,,; R!,„ R 0))- t(1 „) 1.< ,  of deformations of RI,, (with the natural markings)
to Ro, where 77 is sufficiently small, such that, for every (t, s), it holds that

1) j ,, h „  o n  f „ ' ( R o — W ) ,  and
2) h„ - ' is conformal on V—N(R o ) with a suitably fixed neighbourhood V of

{Pia)} f=1.
Hence we conclude by [7, Theorem 1] (which remains valid for any admissible

family with a vector valued parameter) and the following Proposition that

110(C, RI,  )ok s- 1 -0(C i , R O IIR 0 -w  =-- 0

which implies that

1195(C , Rt .sW t ,s- 1 - 0 (Ci , Ro)l iRo - w = 0 .

And since W is arbitrary, we have the assertion of Theorem 6.

Proposition. L et { (f .; R ., R,)}. be an admissible fam ily  of  marking-preserving
deformations with a vector valued parameter u, and two punctures q, and q, be given
on a component S of  R,—N(R o ). Suppose that S and the component of  R 3 —N(R3 )
containing f 3

- 1 (S) belong to 0 ,  and that there is a  neighbourhood V o f  {q1 , (A- on
R0 —N(Ro ) such that f . "  is conformal on V for every u.

Then 0 (f3 "(q ,), f3
- 1 (q2 ); R .) converges to  0(q„ q2 ; R0)  strongly metrically with

respect to  U . ) -  as the norm of u tends to O.
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Proof of this Proposition is given by the same argument as in that of [5,
Theorem 3], if we know that

limsuP 1.1 +01195( f L-1(q2); f _ 1 (v )<  + o ,

which, in turn, can be seen as in the proof of [7, Lemma 2] by using the following
Lemma 3 instead of [7, Lemma 1].

Lemma 3 . Let R and I? be Riemann surfaces belonging to O .  F ix  tw o points

q, and q, on R  and a real number E  so large that each component of the open set

DE= {p E R :Ig (p ) I> E } is simply connected and relatively compact in RU {q 1 , q2} ,
where g(p)= g(p; q„, q,) is (an indefinite) Green's function on R (cf. § 2). Then there

is an absolute constant A, such that for every K-quasiconformal mapping f  from DE

into k ,  it holds that

R -1 (D E )
sup

ADD)
g — inf g 27r/I Ic4d, S)11.1

X- 

where g(p)= g(p;f(q,), f(q 2 )) is (an indefinite) Green's function on i, S==E
R; Ig(p)I >_E-FKA,}) and d is the dividing cycle on SI  corresponding to the relative

boundary component f(fg  =  E + K A 0} )  of Son

P roo f. First, by [6, Proposition 2], we can show (cf. the proof of [7, Lemma
1]) that there is an absolute constant A, such that

sup
pe

-
R
-
 - f (D e )  

g
 ""' " i n foef(f g E+KA0 1) g  = 9 and

i n f
oER-f(DE) 

g  s u p
pefu g s-(E+KA0))) =  a2  •

for every K-quasiconformal mapping f  from DE into R.
On the other hand, since k E  0 ,, we can see that the modulus o f  is equal to

1/IIa(d, ,§)Il . A n d  since :1)--{p f?;a 2 <g<a,) - is contained in g, this modulus is
not less than the modulus (a1 —a2 )127r of 15, which implies the assertion. q.e.d.

Remark. We can see by [6, Theorem 1] that the modulus of W; ( 0 ,,, s tends to
+ 0 0  as I (t, s )I tends to 0 for every k .  Also existence of a family {(111,5 ; Rts, R 0 )}
implies convergence of R ,  to R, in the sense of the conformal topology.

Moreover, we can show that, in general, two conditions such as above implies
convergence of R 1,, to R, in the sense of the conformal topology (cf. [7, Theorem 3]).
We will give such a kind of characterization of the conformal topology in Appendix.

§4. Proof of Theorem 2.

Let Xt ,, = (xi,;: t , )  be the H x H  matrix with the (i, j ) - th  component xi,;:t.s
0(C  R 1 3 ) and (y;;,,,) be the H-dimensional vector with the j-th component

ci '
YFt,s = c(d, R1 ,3) for every (t, s). By Corollary 2, converges to xi,;:o,o =

o(C i , R0) for every i and j  as I (t, s) I tends to O. And since every Ci  corresponds
Ci
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to  a  node of 1?0 , = 8 i ;  (Kronecker's delta). Hence x i ,J ,,,s = Si i + o(1) as
(t, s) I tends to  O . In particular, Xt ,, is non-singular for every (t, s) with a  suffi-

ciently small I (t, s)I , hence there is a unique solution A s = (a i ,,,  ) of the equation
= X 3 •21 „ namely,

a(d, R 1 3 )a k : t  s • 0(C, R 1,3) ( j 1, • • • , H) ,
C j k=1 JC 5

for every such (t, s). In the sequel, we consider only such (t, s). Also we note the
following

Lemma 4 .  For every j ,  it holds that

1) a1;i.3 = 0(11a(C R 1, )1114. )  ,  and

2) apt,, 110 (Ci, Rt,D11 • sb(Ci, Ro ) d-  o(I1(t, s)11)

= s)11)

as I(t, s)I tends to O.
H

Proo f . First note that a i ; ,,, — yi ,,,, -F o( E 1 y p t ,3 1) as I (t, s) I tends to  O . And
k i

since
=

s = a(Ci, R1,3) = 11 0 (C p R 1 ,0 1 1 2 R ; R 1 3 ) ,• d r- d

which is 0(1 (t, s)II) as I (t, s) I tends to 0 by Corollary 2 and Theorem 5, we con-
clude the assertion 2) again by Corollary 2.

Next to show 1), fix an integer j e, in [1, H ].  When ct(Ci o , R1,3) 0 ,  then xfo ,;:t r ,
=  Si o ;  and =  0 , hence  by  C ram er's  ru le , w e  see  tha t a10; ,,s = 0 .  When
a(C J o ,  1?1 ,3) 0 , then  a  rough estimation gives that I xi,; (0, 8 I
lia(C J o , for every i. And the above *) implies that y1 ; 1 3  0 (1 1 a(C 1 , R t .  )Ilet , )

for every i. Hence again by Cramer's rule, we can show tha t cti o u ,s  = 0(1 la(Ci o ,
ROI q.e.d.

Now for every (t, s) as above, we set

ço,.3 = 0(d, R 1 ,3) — E a p 2 . 3 •15(Ci , R 1 3 ) .

Then from the definition, we can see that wi s 0  for every j ,  i.e. fp t , ).

satisfies the condition 2) in  Theorem 1. Since 0(d, Rt . ,) and E ap t  3 •0(C1 , .1?1 ,3)
1 = 1

converges to 0(d, R0) and 0, respectively, strongly metrically (with respect to {f t .  )-)
by [5, Proposition 4] and by Lemma 4 and Theorem 6, ço  converges to ço  = 0(d, R0)
strongly metrically as  I (t, s) I  tends t o  O .  In particular, {p1 .3 } satisfies also the
condition 1) in Theorem 1. And since 11a(d, R,,  )I 11% s converges to I la(d, R0)111,0

47)
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H
(which can be shown as before by [5, Proposition 4] and Remark in §5) and E I a»  t,s I
• 110(c

1, 0(1) by Lemma 4-1), ii r t , s i i R ; , s = 0 ( 1 )  a s  (t, s) I tends to 0, which
implies that {çot ,s}  satisfies the condition 3) in Theorem 1.

Next we set =  e(d', R0), then it is clear that hki < +  co and 500,0 /W  is
absolutely integrable on N .  And as in the proof of Theorem 1, we can see that

Icot . s ozi ,k -
1 111dz Adzi <L• 's i ll lz I o n  zi . k (V i ,k) =  {O< I z I <1/2}

for every j, k and (t, s) with a sufficiently small I (t, s)I , where L  is a suitable con-
stant and co,,, =50,, soft ,s - l A *V r. In particular, cot ,, is absolutely integrable on V.
Since co,,, is clearly absolutely integrable on R—  V , we conclude the absolute
integrability of a  the whole N. Thus we have shown that k satisfies the
conditions A) and B) in Theorem 1 (cf. Remark in §1).

Now apply Theorem 1 to these { s} and a n d  we have

R, =  t  • R , 0(d, Ro )• ,12 A* 0(c1', Ro ) -F o(I(t, s)I)

as I (t, s) I tends to O. Also we can show that

it) Pt s
d

o  = co1,3
' RP

for every (t, s). Hence we conclude by Lemma 4-2) and Corollary 2 that

a(d,
d  

a(d, R0)
d' '

= sb(Cp Rt ,,) +  t • Re O(d, Ro)• ,u A *0(d', Ro ) +  0 (1(t, s)I)j=1 RP

= ROO t,, d?' • Ro). 0(C  Rt, )J=1 d l

t • Re 0(d, R0)• A*B(d ', R 0) - F 0 (11(t, s)I1)
RP

as I (t, s) I tends to O. Thus the desired formula follows by Theorem 5 and Corol-
lary 2.

Finally, the equation if) follows from the following

Lemma 5. For every (t, s), it holds that

1) d• 
Re F t = Re çot ,s of;,»A *a (d i, R 0) , and

2) Tin (Sot.s°1t,s- 1 - 5N,o)Aa(cr, R0)  = 0

In fact, by this lemma, we have
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a' P '
t Soo.o

= Re Sot,s°A,» A * cr(d' , R0) — Re ço0 0 A *a(d', R 0)
126

= SRe (Sor,s°ft,s- i — b,o)AIm (W t,sc l,tf . s - 1 - 9 9 0 ,0 )  A Re yr
Rij R,6

=  Re (pi s oft  s
- 1 —(p0,0) A*VP = Re5 4 çot ,s oft ,3

- 1 A * * .
126

Proof of Lemma 5. For every positive ( <1/2), define a Dirichlet function
e s (p ) on R by setting

e , ( p ) =  1  o n  R(3— V , a n d

=  max -(1—(log 2. I z1 ,k (p) I )/log 26, o n  VLk

for every j  and k .  Then

Fa(Pt, )  =  ea • Pt,s°.ft,s-i +1-1,,s 0 f des

is a square integrable closed differential on Ri; for every ( t ,  s ) ,  where H s( p )  is a

holomorphic function on U (U . ' s
— C • 

' s

) such that cille,s =•Vt,s (cf . [5 ,§ 2 , 3 ° )D.

Moreover, since Tm FAço t , ) —lif t , s (* a (d ',R ))  belongs to r eo (R o)  (cf. [5, §1, 2 ° )l)
from the definition, and since *a(d', R 0) = I 1 (* c ( cr , R t , )) by [5, Lemmas 4 and 7
-i)], where If  defined in [5, §2, 3 °)], it holds that Im Fo (p t , ) — *a(d',R o) r „ (R 0).
Hence we have

2') (Fa(Pe, )—Po,o), * c(d, Ro))R,s =

Also since Re (p , and *a(c1', R 1 ,3)  belong to r h (R,, s , Ro)  which is orthogonal to
*rN (Rt ,„ R0), we have by [5, Lemma 7-ii)]

L Re sor, )R
t.sDiet,s(—(Re ço,, s ,

=  (H h , s (I f t , s (Re ip t ,3)) ,  —*(Hf , (I f t , s (*a(d ',

Hence by [5, Lemma 5] we have

1')
d  

Re w  =  ( i f t,s (Re T e , ) ,  —*If ,,s (*a(cr, R1,5)))4

=  (i f t ,  JRe Sot, ), a(cr, R0))56 =  (F8(Re P1,5), a(d', R0))56 •

On the other hand, by Lemma 2, we can shoose IH 1,31  so that H1,3 0j;, 3 '  are
uniformly bounded on every r / L k .  Hence as before, letting becom e 0, we can
show the assertions 1) and 2) from 1') and 2'), respectively, by Lebesque's con-
vergence theorem. q.e.d.
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§5. Proofs of Theorems 3 and 4.

First fix an integer j  in [1, H ], and let and N o } be as in the proof of
Theorem 6. Then since SEt OG , the component St o  o f M — N (R I,  )  containing
h1,s - 1 (S) also admits Green's functions for every (t, s) (for which ht o  can be defined).
Hence when q5 (C1 , R o) = (1/20  •  (0(qi , S )— (q 2, S )) on S  with suitable punctures
g, and g, on R ( J ( ,  but not necessarily on s), 15(c1, M,  )  should be equal to (1/2ri)

St, )— (ht,s - l (q2), S e ,)) on S .  W e set Ght,s(P)=g(P, hi,3 - 1 (9)) — g(P,
ht ,s - 1 (g2)) on S e „ .  Then Gm o oht ,»  converges to G. locally uniformly on S  ([7,
Corollary 1]). Also we can show the following generalization of [7, §4 (13)].

Lemma 6 . For every (t, s) such as above, it holds that

*dg, —116, (C1 , .12,, )111% ., •Gi , h (a)t,s° •

Pro o f . If a (C  R t , ) .= 0  on the component Tt ,, of R f,, containing f ,,, - '(S),
then we can see that both sides are equal to O.

Suppose that a (C  R t , ) *  0 on T ,3, and take suitable compact regular trajectory
C(j, t, s) of sb(C1, R e ,) freely homotopic to C. on T t . s — ft . , - 1 (g). (For example,
take one of { C(j(k ), t, S )} kAj i  appeared in the proof of Theorem 6.) Since *a (C1,
R e ,) is exact on T ,,— C(j, t, s), there is a harmonic function ui ,t o  on T,,,— C(j, t, s)
such that du ( C  R 1 0 ) and u ,, coincides with a Dirichlet potential on Ti,,
outside some compact neighbourhood of C ( j, t ,  s ) .  Note that uf ,,,, is a constant
on each border of T1,5 — C (j, t , s ) . Denote these two borders by d, and d , so that
d, has the same orientation as C1 and let um . , M k  on dk (k =1, 2). Then we can
see that .A4-

1 —M2 — —1.
Now apply [7, Lemma 4] to u,. ., and *dg t ,, on each component of Te o — {gt o

> U C (j, t, s) with a sufficiently large M , and we have

ci *dg,,,± 2r •uf.t,s°.ft,» (q )

=  ( * c(C» R1,3), dg1, )T I . (M)

where T o (M )= T 1,3 — {gt ,s > . Next apply the same lemma to g t ,, and —a (C"
R t o ) on Tt ,s (M ), and we have

(*a  (C1 , R,,,), =  O.

Since u ; J o  coinsides with (-1/270•11a(C1, R t , )jk s •Gi ,,,, on the component of

R,,,—  UC(j(k), t, s) — C(j, t, s) containing f t . , - - 1 (q) (= h t ,s
- i (g)), we have the asser-

tion. q . e . d .

As in §4, there is a unique solution B t ,s = (b i ,„,  ) of the equation Z t ,s =  X  Bf,s•

where Z t .s is  the H-dimensional vector with the j- th  component z i ,t* d g t , s ,
'namely,
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* dgr,s = E  bk:t4 (ch, Rt, )  ( j  = 1, H)ci k 1 C . 1

for every (t, s) with a  sufficiently small I (t, s)IJ. A n d  similarly as in the proof of
Lemma 4, we can show the following

Lemma 7 .  For every], it holds that

1) b = 0(11a(C i , Rt, )IIR,,. ) • and

2) bi;i,s = — 11(4C Rt, )Irs', •Gi(q)+ ofli(t, s)ID = 0 (JKt • s)II)

as il(t, s)I tends to O.

Now for every (t, s) with a sufficiently small I (t, s)I , we set

Ef
50i,s — — i•g5(f,, s ' (q ) ,  Re s ) — E  b .. ,  • 0(C., R, ). J ts

then we can see from the definition that -(yot j  satisfies the condition 2) in Theorem
1. A lso  w e know  that, under the assumption as in Theorem 3, g5(A s

- 1 (q), 121 . )
converges to gq, R 0) (= 90 0) strongly metrically with respect to  f f t ,j- ([7, Theorem

1]). Since E b» , 
' s

• O (C  R ,) converges to  0  by L em m a 7 and Theorem 6, yo,,,i=1 
satisfies also the condition 1) in  Theorem I. A n d  w e know  tha t 110(f, - 1 (q),
Rt, )i are uniformly bounded for every j  ([7, Lemma 2]). Hence as in §4, we
can see by Lemma 7-1) that {T} satisfies the condition 3) in Theorem 1.

Proof of Theorem 3. Set Ifr =  0(d, R0), then by the same argument as in §4, we
can  show that lk satisfies the conditions A) and B ) in  Theorem 1. Applying
Theorem 1 to the above 

{ p }
 and * ,  we have

i) cot,s t • 0(q, RO) • P A  *0(d, R0) ±0(I(t•  s) J)

as I (t, s)I tends to O. Also we can show the equation

Re
d  

Re ço0 ,0R e co
t , s

d 

from Lemma 8 below. Hence we conclude the desired formula similarly as in §4,
by using Lemma 7-2), Corollary 2, and Theorem 5 q.e.d.

Lemma 8. For every (t, s), it holds that

1) f  Re ço, — Re 50 0 0  ---- Re@or,5°.ft.s-1—ç0,0 A * *4  R o),
J d d

and

2) 550

 Im Gor,s°.ft.3 - 1 —  90,0 A Gr(d, R0) =  O.
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P ro o f  Let e8 (p ) and F s b e  as in the proof of Lemma 5. Then from the
definition, Im(Fs (pt , ) -500 ,0) e reo(R.)• Hence 2') in the proof of Lemma 5 (with d'
=  d) is valid.

Next recall that there is a (smooth) closed differential a on ./26 such that *a(d, R0)
— a r e o (R o ) and the support of a is compact in :fio = Rô—UU V-,  (cf. the proof of
[5, Lemma 4]). Then we can see that

* G (d, reo(.?t, )

where A ,,= ft,s - V (0 .  Since Re sot ,, r h (  k t ,  ) ,  we have

Re p — (Re Sot  * (a
°
f t, ))T2

d

—(Re *a)po — ( F s(Re *a )4 .

Hence we have

Re pt „ — Re woo)
d d

= —  (Re (F8(We, ) — S°00:1),  * a)4

=  (Re (F6(W1, ) — P0,0) ,  a(cl, Ro))4 •

Thus the assertions follows by the same argument as in the proof of Lemma 5.
q.e.d.

Remark. By using a as in the proof of Lemma 8, we can show rather directly
the fact that metrical convergence implies convergence of periods (cf. [4, Corollary
3]).

Proof of Theorem 4. Set lb, = —i•O(q' , R0) ,  then similarly as before, we can
see that -tp, satisfies the conditions A) and B) in Theorem 1. Hence applying Theo-
rem 1 to the above {p 1,s}  and this * ,  we have

R , C0t, 3  = t •  R 6 — i• R0)• A*(—i• y5(ql  , Ro)) + o(I(t, s)l)

as I (t, s) I tends to O. Next since G i , t , s ° h t , s - 1 ( e )  converges to G i (g') ([7, Corollary
11), we conclude by Lemma 7-2) and Lemma 9 below that

Re cot., =  27r(g0 ,0 (g')—g 1,3( f t ,s - '(q ')))
RP

— R1, )111;..,•G;(q)•G1,1,soht,s-1(q')H- o(jj(t, s)11)
J=1

as I (t, s) I tends to O. Hence the desired formula follows by Theorem 5. q.e.d.

Lemma 9. For every t, it holds that
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1) Re(9,, s o f i — T 0,0) A dg(• , V )= 0  , and

2) Tm (50t ,s oft ,s
- 1  — T0 ,0 A *dg (., q')

II
2n(g-0 ,0(q1)—g-1 o ( f t ,3 - 1 (V )))+ E bi ,t ,s •Gf ,t ,s 0ht ,s - '(V ) .

P r o o f .  Let e8(p) and F8 be as in § 4 .  Then since nt ,, Re (F(9 . )—ç'0 .0 ) be-
longs to T e (R0) and is harmonic on Ue , we can apply [7, Lemma 4] (which remains
valid for any pair of h and co satisfying all conditions in the lemma except that they
need to be smooth not everywhere but only on a neighbourhood of a D) to h(p)—
g(p, q') and co = nt o n  S(M)—  S—  {g(p, V).>._ M I with a sufficiently large M , and

obtain that 77t s A dg(• , q')=. M • 7 7 t , s =  O. Since g(p, q') 0 on R0 —
sou)• m(tt)

S, letting M  become +00, we have

11 ) R, Re (Fa(Tt. ) —  To,o) A dg( • , q') = O.

Next note that for any fixed 8>0, we can take such an admissible family fht ,j-
that L s '  l i t ,»  on the support of e8 (p) for every (t, s) with a  sufficiently small

(t, s)I (, by choosing W so that es (p)._=-- 0 on W in the proof of Theorem 6). And
set

1  I I
= g 0 —e8 •(g e ,s 0f,, s

-  —  27rk • Gi a ,s o s - 1) .

Then clearly vt ,, is a  continuous Dirichlet potential on Rif, and harmonic on Ue.
Since dG5 ,,,3 0140

- 1  — 2r •Im  0 (C 1 , R t , )oh 3
- 1  on the support of es (p), we have

dv,,, — Im(Fa(Sot, ) - - To,o) =  Et ,s •de8

with a suitable constant E t ,s  for every (t, s) as above. Hence wt ,s (p)= E,,,•(1—
e8 (p)) is a  continuous Dirichlet potential on R6 such that wt ,, 0  on U0 ,  and
Im(F8(çot , ) —T0,0) -- dv t ,s +dw t ,s . Apply [7, Lemma 4] (generalized as above) to h =
vi ,s +w t ,s and co --- * d g ( . ,  q ')  on S(M ) with a sufficiently large M , and we have

R o o  Im (FATto) —  9 00, A * dg(• , q') as(m) h•*dg(• , q') r2  vt ,s (V) .

Hence letting M  become +00, we have

2') Ris Im (F8(500 —  To.0) A *dg ( .,  q')

= 27r(go (V)— g, ,s oft ,, - 1 (q ')) + b i,,,s .G ,,,,sch t,s (v )•

Thus the assertions 1) and 2) follows from 1') and 2') similarly as before. q.e.d.

Appendix. A characterization of the conformal topology.
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Let a Riemann surface R* (with no nodes) be given, and consider the finitely
augmented Teichmiiller space t(R *) o f  R * (cf. [5, § 1, 1 °)]). Fix a  poin t R , in
t(R *) —T(R*) once for all, and denote by D(R o)  the deformation space of R o  in
î'(R*), namely, the subset of t(R *) consisting of all points R  such that there is a
marking-preserving deformation of R to Ro . Next fix a  marking-preserving defor-
mation (f*; R *, R 0) of R * (with the  identical mapping a s  th e  marking) to Ro .
A nd, letting N(R o) = fp f l /lb we set C t  (f*) - i(p i ) with suitable orientation for
every j. Recall that {M t ,  i s  a  homotopically independent system of simple
closed curves on R*.

Now we choose a  finite set {k }k 1  of auxiliary points on R *  U  CI' so that
i=1

each component of R *  U C .1 is either a  non-parabolic p a rt o r  a  parabolic part
j= 1

containing (exactly) one point of {q} . A n d  we consider the finitely augmented

Teichmiiller space t(R **) of R** = R* — U , and the deformation space D(Ro .)
k =i

o f Re = R o — U {f *(qh)}. Then there is a  natural projection, say 7 C , called the
k=1

forgetful mapping from D(Ro .)  onto D(R,), and R„G t(R * ) converges to R , (as n
tends to +00) if and only if R D(R0) for every sufficiently large n  and a  suitable
lift R !' of R„ (i.e. 7c(n )—  R n ) converges to Re  in  î '( R * * ) .  M o r e  precisely, if R„
converges to 120, then there is an admissible sequence «fa ; R„, R0)}.:1 of deforma-

27
tions of R . to Ro , and la = R „— U {f„-

1(f*(q k)))- considered as a point in l'(R**)
k=1

converges to Re ; the converse clearly holds.
So we will give a  characterization of sequences in î '( R * * )  converging to Ro ..

For this purpose, fix R D(R0 ) and CI' arbitrarily. Here we may assume that C1'
corresponds to none of nodes of R .  Then by the  assumption on auxiliary points,
we can define a holomorphic differential on R, which is again called the associated
differential for CI considered as a loop on R, as follows; when c(Cp, R )$ 0, then
we set

0 (C , MCI% R)11i 2 • e(C1' , R) .

When a(CP, 0, then CI' is a dividing curve on a component of R' = R —N(R).

Let W, and W, be the components of R' — UC 4
.;, whose boundary contains CI and

f=1
—Cr, respectively. Here {C 4 }1P:1 is the set of all Cr (considered as loops on R)
corresponding to none of nodes of R (hence contains C 7 ). If  both o f W, a n d  W,
contain auxiliary points, say q, and q2, respectively, then we set

(C7, R ) = 2
1

1
 • gqi, q 2 ;

If only one of W1 and  W, contains an  auxiliary point, say q W,, then we can see
that 0(q, R )$ 0, and we set



Variational formulas on Riemann surfaces 529

(C  , R )  = 2
1
 i • 0(q; R) .

Then we can consider, on the component of R ' containing CP, the characteristic
ring domain Kcp, R ) of 0 ( C , R )  for C;`, and we denote by m (C)Ï, R ) and
C(C7, R) the modulus and the center trajectory, respectively, of Kcp, R), where
m(Cst, R )= 0 in case that W (C P, R )= 0 . Also setting m(CP, R )= +0 0  for every
CI not contained in -(C 4; ,}_v

iv-'1 ,  we can define m(C1' , R) for every j  (and every
R ED(R e )). Here we note the following

L em m a A l. Let 1 be as abov e. I f  m (C , R )>2  f o r every j', then
{ C (C , R ) }71, 1 are mutually disjoint.

Pro o f . Suppose that there are two curves c, and c, in -[C(C;,, R))- such that
cl (1 c2 *0. Then there is a  component D , of W(c,, R) —c , such that, for every
curve r in D , freely homotopic to c, (in W(c,, R)), c2 (1 r consists of at least two
points. Also it is clear that r does not contained in W (c,, R) for every r such as
above.

Now consider 0 = 0(e2, R) on W(c,, R), then 1101,1, (c 2 ,, ) -2 . m(c2 , R), and it holds

that j 0 I > m(c,, R) for every r as above. Hence, recalling the definition of
y n w(c2 , R)

the extremal length, we have

21 > —  2(c1 , D1) 
m ( c , ,  R ) 2  

—  
m ( c , ,  R )

 >1
Ileacc,,R)m(c„, R) 2

which is a contradiction. q.e.d.

In particular, when m (C1,, R )> 2 for every j ',  then we can construct a marked

Riemann surface le with nodes from R , by cutting R along U C(Ci», R), attaching
N,

a once punctured disk to each border of R — U R), and fill two punctures
j'=1

corresponding to the same by a single point for every j '.  Such an Rs does not
determined uniquely, but will be fixed arbitrarily for every R D ( R e ). Then we
have the following

Theorem A 2 .  In D(R e ), R„ converges to R e  if  and only if
i) m (C  R s ) = c o for every j, and
ii) (R,i)1 (which is defined for every sufficiently large n) converges to R e  in the

sense of the Teichmiiller topology.

P ro o f  First suppose that i) and ii) holds. In particular, there is a sequence
of quasiconformal mapping L  from (12„)1 — N((R„)$) onto R 0 —N(R 0 )  for every n
such that the maximal dilatation of jen  converges to 0 as n tends to + co. Then we
can show similarly as in the proof of [2, Lemma 1] that for every neighbourhood

1 7 '
W of N(R ,), there is an N , such that f „'(W )  contains (R„)1 —(R„— U C(C4;,,
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for every n> No. Hence we can construct an admissible sequence of deformations
of R Re  by reforming {f,j- .

Conversely, suppose that R„ converges to Re  in  D(Re ). Then by the same
argument as in the proof of the 'only if' part of [7, Theorem 3], we can show that
i) and ii) holds. q.e.d.
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