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§ 1 .  Introduction.

L e t  {M }% 0 b e  a  sequence o f  p o s it iv e  n um b ers. W e s e t  e {M„} =

{  f(x)e C- (R 1) ; vK: compact in R', 3 C, R > 0 ,  V a  Z ' ,, sup 1(— ) 6
.f I

u e K  ax
W e call this the ultradifferentiable space of class {M f i } ( = th e  ul.d. space o f class
{ M } ) . A  typical ul.d. class is a  Gevrey class, i.e., M = n !   ( v . :1 ) .  When v=1,
it is the real analytic class.

In the study of the spaces of the admissible data in the Cauchy problems, we
were led to introduce some ul.d. classes wider than any Gevrey c la ss . (See W.
Matsumoto [29], [30] and [32].) In a systematic treatment of the problems in a ul.d.
class, a theory of pseudo-differential operators (=ps.d.op's) of ul.d. class is required.
However, it is not yet well investigated except the case of the Gevrey classes.

The theory of ps.d.op's of C-  class has been well studied. (See J.J. Kohn and
L. Nirenberg [20], L. Heirmander [14], H. Kumano-go [26] and [27], etc.) Since their
formulations are slightly different each other, we mean, in this paper, Kumano-go's
theory [27] by the theory of ps.s.op's of C -  class. Hereafter, we shall try to con-
struct a theory of ps.d.op's of general ul.d. class corresponding to that of C -  class.
We are mainly interested in the ul.d. classes wider than any Gevrey class because
that of Gevrey classes has been well investigated. (SeeL. Boutet de Monvel and
P. Krée [7], L. Boutet de Monvel [6], L.R. Volevid [41], L. flôrmander [15], F. Treves
[40], S. Hashimoto, T . Matsuzawa and Y. Morimoto [13], M.D. Bronstein [8], K.
Taniguchi [37], [38] and [39], G. Métivier [33], M.S. Baouendi and C . Goulaouic
[4], M.S. Baouendi, C. Goulaouic and G. Métivier [5], C. Iwasaki [16], K . Kataoka
[17] and [18], T . Aoki [1], [2] a n d  [3], L. Zanghirati [42], L. Cattabrige and  L.
Zanghirati [43], L. Rodino and L. Zanghirati [44], etc.)

A typical difference between the Gevrey classes and the ul.d. classes wider than
any Gevrey class is characterized by the separativity condition :

(S) 3H >  1 , V n E Z ÷  ( M 2 . ) 112" 1-1(M ) l i n  •
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Every Gevrey class satisfies Condition (S) but any ul.d. class wider than all Gevrey
classes does n o t . (See W. Matsumoto [31] and Paragraph 2 .4 .)  L.R. Volevie [41 ]
tried to widen the Gevrey classes to the general class {M .„} assuming Condition (S).

By saying that E p i (x, e) is a formal symbol, we mean that this is a  formal=0
sum of asymptotic expansion of symbol. We denote temporarily the space of PS.
d .op 's of class [M s ] w ith  the indices p  and ô  in  Heirmander's sense by S[M n ]
(= S p ,[M,J), the space of those symbols by SULU (=Sp 8 [M„]), and the space of
formal symbols of the same class by S[M „1 (=S„[M „]). The more precise nota-
tion and the definitions of them will be given in Paragraphs 3.2 and 4.1. Under
Condition (S), we can construct a true symbol from a formal symbol in the sense of
class [M a]. B y  v irtue  of th , s, in case of the ul.d. class with (S), the relation of
asymptotic expansion gives a onto-homomorphism of star algebra from S 5 [M ] to
S [ M ]  modulo symbols of strong regularizers of class [M n / ( _, )]. (Here, we say
that an operator A is a  strong regularizer of class [M n ] when A is continuous from
e' -(M j to e {M ,} .) Therefore, the investigation of the operations in S [M ] is
reduced to that in S[M n ]. In S [M ], the elementary operations, for example the
operator product and the formal adjoint, they consist of the arithmetical opera-
tions and the derivation, which have the local property and then which are rather
easily handled.

On the other hand, without Condition (S), it seems impossible to construct a
true symbol from a formal symbol in the sense of class [M s ]. Namely, we cannot
reduce the investigation of the operations in S [M ] to that in S[M n]. We must
consider them directly in S [M ] (namely in S [M ,]). As in the case of C -  class, we
shall start from the following formula. (See, for example, H. Kumano-go [27]
Theorem 1.7.)

ct(P 0Q) = Os— e-- v - 1 1 'np(x, e+n)q (x+y , e) dy £17.

(p0Q is the operator product of P and Q, cl(A) is the symbol of the ps.d.op. A and
tin is  (270 - 1 c/n.) Our consideration will become fairly complicated because the
integration has not the local property. In case of the theory of ps.d.op's of ul.d.
class, we cannot still expect that a(P0Q) itself belongs to S[M „]. Namely, we
should consider some modulo class. (See Paragraph 5 .2 .)  Therefore, we must
divide the above integral into the main part which belongs to S[M ] and the rest part
which does to the modulo class. Here,this division depends on e. Thus, we need
a cut-off function which depends on e. On the other hand, it  is  indispensable to
assume the analyticity in e on the symbols, if we expect a theory which allows the
asymptotic expansions of symbols o f  arbitrary length. (See th e  begining of
Paragraph 4.1 and Paragraph 3 .2 .)  After all, we might use a cut-off function of
analytic class! Relaxing the analyticity in OE to the pseudo-analyticity, we can barely
construct a theory of ps.d.op's of general ul.d. class except the two points: Construc-
tion o f parametrices of elliptic operators in S 1 [ M ]  and Construction of true
symbols in S[M ] from formal symbols in SUlf,21. This theory, on taking [M n ] for
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the  Gevrey classes, gives some better results than those known until now. (See
Paragraphs 5.3 and 5.6 and K. Taniguchi [39].)

In this paper, we shall make much of the consideration on the reasonableness
of the definitions and on not only affirmative results but also negative ones on the
expected properties.

T he auther deeply thanks Professor K . Taniguchi. Their discussions con-
tributed to the framing of the ps.d. op's of ul.d. classes and to the reseach for the
best possible results in §5.

§ 2 .  Notation, definitions and propositions of ultradifferentiable spaces.

2 .1 .  Notation and definitions.

In the proofs in the following sections, we shall use the letters C and R  for
constants depending only on the symbols of ps.d.op's and the dimension I of x-space
and they may not be the same at each line. We set 10=[1/2]+1 and /,=[//2(1 — S)] +

a< 1).
" K  c  S P means that K is a compact subset of D and a K n 012=0. "K—

means that D is the union of the increasing sequence of the compact sets {K}.
Let Z ,  be -(0, 1, 2, 3, •••}, and R + =  {a ER ; 0}. We denote the integral part

of k E R  b y  [k ] and  max {k, 0} b y  k .  W e  set log+ x=max{logx, I} (x>0).
F o r  a =  (al, • • • , a'), a' =  (a'', • • • , & ')  a n d  f i  in  Z.;_, w e s e t  I al = ai+ • • • ± a' ,

a  ±  a , =  (a l +  ap, ay ), a! --= a'! • • • a'!, (-a— r  ( -8• • •  6 D', =
8xa x , 8x,

(— , P n x , Ddx(  a
e
 Yxx, e), fi.,., )(x, y) - - -  D :D y'e f ( x ,  y )  and

ax a 
g ( 0 .13')(e, 72)— (Y ( y'g (, 72). We always use a for the order o f derivation on

\  e / \an
x  and fl for that o n  e  in  order to emphasize the regularity o f derivatives on x,
which is much more important than that o n  e  in  th e  theory o f ps.d.op's o f ul.d.
class. (However, this use  is  reverse against other papers.) We denote a l  a l  '

(1" by For (1  < j< k ), we se t (
a  

= a; ( a1 = a),
cri =

a n d  fo r  m  Z.+ a n d  a E a =m!/al ( l ai = m ). 
k

 Especially, we denote
(b

(ac ( a a  j ) 2 , m m( a ') and  Lic 14 a 1(2) (m , k  Z  4., a -=(k, m—k)).

W e s e t  j(e) -=- gui(e) = 5 e- f (x )d x  (F o u rie r  im ag e  o f  f ( x ) )  and

Ifl(x)= Aode [x • e = x,e 1+ • • • + x , and .ek = (2xrde], then it holds

that g - I g = g g '= Id e n t i ty  on A R ') [or, more generally, on ..012(R I)]. For f  in

j is defined by <,/, ço> =<f, [ço . 6 ( R ' ) ] .  We denote ( e)h/2 by le
i=1and (1+ IC 12)1/2 by <C>.
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Lemma 2 .0 .1 . For it ER, <e>'' (le I' , resp.) is extended analytically in a conic
neighbourhood o f th e  real ax es -(C e+v —177; e, , I n  <<e>161 ( <le( 161,
resp.))- and it satisfies

I

 

1 ( l e l ) w )  I 
_.< 2 1mi12(6 ir l i e  (

-101 9 resp.).

We shall often use this lemma without notice.
When a(x, e)EaR21) satisfies

3m ER, O S38< 1, V a, fiE Z !„ 3 C(a, fl) >0 ,

14,0, e>1 . C<e>.+ 8 161 <xy .f o r  (x, e)ER.i ,

we define the oscillatory integral of a(x, e) as follows;

(2.1) Os_55e ) d x d e

e÷o e-
v x(ex)x(ee)a(x, e)dxde ,

where z belongs to s3(R 1)  and  satisfies z ( 0 ) = 1 .  This is well-defined. On the
detailed properties of the oscillatory integrals, see H. Kumano-go [27], Chap. I.

For a sequence of positive numbers {M, }, a positive constant R  and a  subset
D  of , we s e t  g  {M,},(2) = ff(x)E C - (D); there exists a positive constant C
depending on f(x) such that

fico(x)I __CR Ia111111 in D for Va E Z.14 .
and

▪ ,20  R = If(x)Eg)12(10 ;

11f112(m„),R------ E  Ilfi.)1112/(R161 4.1) 2<c).}•
a e z i+

_B{M„} R (S2) is a Banach space with the norm of the infimum of C in the definition
a n d  2 L 2fMn I R  is  a Hilbert space with the natural inner p ro d u c t. We define the
ultradifferentiable spaces (=the ul.d. spaces) of class {M, } a s  follows;

. {M}(Q)m irid liM gfm nIR (2),
R -)0 .

e (S2)[=--C {M}(Q)]m proj lim ind lim { M ,,}  R (K) ,
-*QR - > c o

g {Ma (D) ind lim ind lim LV  {M }  R (K) n g (K )
.1Z-)12

g L2  {IV j  ind lim 011)—  L 2 f s ,  R •

Obviously, it holds that 2 IMJ- (D) g {A l n )- (..(2) e -(MJ -  (s2). Especially, for
M = n !   (v>0), they are  called the Gevrey class o f  order v. W hen S2=R1, we
write simply g {M n )- , 6{M,j -  and 2 {M ,,I. We denote the strong dual space of a
topological vector space X by X '.  The dual space of the ul.d. space of class {MJ
is called the  space of ultradistributions of class IM J .  On the  topologies o f
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-(M„} (I?), { M  (S2) and those dual spaces, see H. Komatsu [22]. As g L 2 f
is hilbertian, so is g L 2 '  { A  j  R .  Applying H. Komatsu [21], we have g) ,L 2{m} =
proj lim g i 2 {M.}R, which is a  Fréchet space. We shall characterize  2 L 2 {MnI

and 2 2{M } later on by the Fourier images.
Let D be a subset of Wi x R 12. We shall also use

{M„, NJ- R (12)—  { f(x) C ° (D) ; 3  C > 0 , V a i  Z _ 1
Fi (1=1, 2) ,

LiCa1 .d2) CR I' l l-F ic 2̀1Mk i iNia2 t in 12},
and

glM„, N„)-(S2)—  ind Ern { M  N n h(S2) .
R÷0.

All propositions mentioned on _ J(2 )  in  Paragraph 2.2 rest valid also on
g{ M „,N } (S 2) under corresponding assumptions on {M } and { N} .

2 .2 . Fundamental properties of  ultradifferential spaces' )  and  Assumption.
By Kolmogoroff's theorem, we can rearrange {M} to a logarithmicly convex

one for _BIMJ- and _O{M } . On e{M } , we can also replace {M„} by a logari-
thmicly convex one when lim inf (W W I"  >0, which is satisfied if e{ M „}  is

analytic o r rather non-quasianalytic. (See S . Mandelbrojt [28] Chap. VI and
W. Rudin [36].)

In case of g L S { M f l } ,  owing to the Schwarz inequality we can replace {M} by a
logarithmicly convex one.

Throughout this paper, we always assume the following;

Assumption. {M.} satisfies

(A) lim inf (M„In!) 11">0  .

(By virtue of (A), we can assume that {M} is logarithmicly convex. Moreover,
as a replacement of finite elements of {M} does not change the ul.d. class, we can
also assume that {M} is non-decreasing. Hereafter, under Assumption, we
always assume that { M }  is logarithmicly convex and non-decreasing.)

R em ark . Under Assumption, ev o -J  includes the real analytic functions.

Sometimes, we shall introduce supplementarily the following;

(B) 31d> 0  ,  v n  » 1  ,  log (M.+1M.-1/AI)- vIn •

Under (B), it holds that

(B)1 vR> 1 , 3dE Z ,\101 , V n  1 , M  / T M  /dn+1 M, d n >  - M t i  •

On the other hand, (A) and (B) imply

I) S. Mandelbrojt [28] systematically investigated the fundamental properties of the ul.d. classes
from the point of view of the theory of real functions.
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(B)23 n 0 > 0 ,  Vn , ( M /M ) — (M / M . )  1  .

We have the following under Assumption.

Proposition 2.1. (Algebra, division, composition, etc.)
i) _B{M„} an d  e{M„} are  algebras over C and products of  the elements in

E (M„)- by the ones in 2  { M }  (of  the elements in _59 {M,)- by  the ones in g,2 -04-J ,
resp.) belong to 2 { M }  (to .0,2 {M„}, resp.).

ii) I f  {M„}  satisfies the condition.

(R) H  1  ,  n »  1 , (M.ImplIn'SH(M k In!)'in , (1 5V m 5n)

E {M„} resp.] is closed under the derivation by non-vanishing elements (by
uniformly non-vanishing elements, respl.

iii) I f  {M„}  satisfies the condition

(K) 3 H  1 , V n » 1  ,  ( M 0 1m!) 1 1 ( m- 1 ) 5H (M k In!) 1 1 (n- 1 )
 , ,

{M .}  and .B  M }  a re  closed under the composition, solving ordinary differential
equations and the implicit function theorem.

i )  is easily  seen . i i )  was shown in  W . Rudin [36] a n d  iii) was done in
H. Komatsu [23], [24] and [25]. On the composition, we need a little more precise
form, which is implied in the proof of the above iii) by H. Komatsu [23].

Lemma 2.0.2. L et {M k }  and { N }  are  logarithmicly conv ex . We assume that
{ N }  satisf ies Condition (L), introduced below and  Ro =lim sup (Nn /M,t) l in< 00 and

that g(y)eCN(2 1) and f i (x)eCN(12 2) satisfy

I gm(Y)1 (C / - I ri -1V, D ,C R m )
IA(x)J .5 C RI 6 1 N10 1( l 5  l a i  5 N ,  1Si_m, 12,cfet) .

If the range of ( f i ), i , k, is included in S2„, we have the following estimate.

1 M 101( 1 la I N)
(a =0) ,

(2.2) i(g°»(0)1 C' (2R' R) 1

where C'=mC,R,M I CRo IR' and R'=HRod- n1CRi.
We introduce the following conditions for k Z.,_;

(L) k3 C > 0  ,  3 H  1  ,  V n> 1 ,

(m.i+kl.»)(M.-JA-kl(n — A!)5_.CH"Mn-FkIn! ,( 1  5_ n ) ,
(A.I), 3H>_1 , vn>1 ,

(Mm+kim ,

(A.C) , v n »1  ,
(1 SV m _<n)
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(A.10,, means that A„=(M„ ±k In!) 11n is almost increasing. In fact, if H=1, {A, }
is increasing. (A.C) means that A = M / n ! is almost logarithmicly convex. In
fact, if H=1, {A, } is logarithmicly convex. (R) and (K) are equivalent to (A.I),
and (A.I),, respectively. (A.I) k implies (L)k and  (A.C) with H = 1  (i.e. IM„In!)-
is logarithmicly convex) implies (L)k for every k  in Z .  We shall assume (L)k i n
Theorem 5.3 and Corollary 5.4 for suitable k  depending on the dimension 1 of x.

Throughout this paper, we use often cut-off functions. Therefore, we need
introduce the non-quasianalyticity condition:

(N.Q.A) m n/m .+1 ‹ 00  •

If and only if {Ma satisfies Condition (N.Q.A), Ewa, g im j  and .0 {111 } are
not quasianalytic and g M I contains non-zero elements.

R em ark . Assumption follows from Condition (N .Q .A ). (See W. Rudin [36].)

In the theory of ps.d.op's of ul.d. class, we wish a cut-off function of analytic
class. Of course, it cannot ex ist. Therefore, we use a sequence of cut-off functions.

Lemma 2.0.3. W e take a  logarithmicly convex sequence of positive numbers
{L,J- which satisfies Non-quasianalytic Condition (N .Q .A ). There exist a sequence
of cut-off functions { h ( t ) }  a n d  two positive constants C and R  independent of k
and j, such that, f o r arbitrary k in Z +

CRiki (0 S j .k ) ,
D ix*k(t)i

(2.3)
I

C R  L i ( j  E Z ) ,

Vrk(t)  =  0 (t _.< 0 ) ,  = 1  ( t _ 1 )  a n d  0_11,k(t)._1 .

P ro o f  Let us take a  non-negative function 0  in  .0 {L} which satisfies

suppy5C It!a n d  '0(t) dt= 1 and the characteristic function x  of ft l/2}.

W e set * k (t) =  z(t)*0(404, 75(4kt)* • •• *0(4kt). Since DAkk ( t )  is expressed by
- -

(4k)i x(t)*çb(4t)*I5'(4kt)* • • • *0'(4kt)*0(4kt)*••• *0(4kt)  for ]  k  and by 41x(t)*0 ( . 0 (4t)
k—j

*0(4kt)*•••*0(4kt) for general ], the above properties are easily seen. Q.E.D.

R em ark . The following inequality holds for k and j in Z.,. ;  ki Sek j!.

2.3. A ssociated function and Fourier images of elem ents in  2 ,2  {M }  and  in
.2  L2' 1M  •

Under Assumption, fM,J- satisfies lim(11/, )'1 0.0 and it can be assumed

that {M} is logarithmicly convex. Therefore, setting an = log M„, {(n, ak)} forms
a convex polygon with infinite sides. This is called the Newton polygon of {ak }.
Moreover, the following functions are well defined:
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(2.4) iT(r) =  sup rn/M„ (r> 0 ),

H (t) =  sup {tit —an )- .

The former is called the associated function o f {M, } and the latter is done the
trace function of {a}. H ( t )  is increasing, convex and piecewise linear, so it has
the right derivatives. We set

h (t) =  ( c
d
1A H ( t ) :  the right derivative of H(t) .

h(t) is an increasing and diverging Z + -valued step function. The following rela-
tions hold;

T(r) =  exp H(log r), r (dd
 r ) , T(r))- IT(r) =  h(log r) .

T(r) and H(t) are given as the maximums at n=h(log r) and at n=h(t), respectively.
Then, the following equality holds;

(2.5) H(t) = t h(t) —a„(1 )( t  ER ) .

These facts above rest also valid if we replace h(t) by the left derivative of H(t).
We remark that T(r) diverges more rapidly than any polynomial.

By virtue of Assumption, the following relations also hold;

(2.6)M =  sup rn IT(r) , a  =  sup {nt—H(t)}.
, >0

Two supremums are given as the maximums at r  in M.+1/M.1 and a t t
in kin —an _1, a + 1 —a], respectively. Then, the following holds;

(2.7) Mn=n(an+i—a„)—H(an+i—an) .

If we set a;=a n + i —an  for n 1 and allow multivalues at n in  Z +  and  if we
allow multivalues at the points of discontinuity for H(t), n=h(t) is  the inverse
function of t=a/x .

We say that {M .} ( t (r ) ,  resp.) is equivalent to { M .}  (T (r ), resp) when there
exists positive constants 121 , R2, C, and Cy such that C1 R1Mn S I 1 „ S C 2 M M „(C 1 T(R 1r)

t (r )S C 2 T(R 2r), resp.) If we change finite elements of {Mn} (T (r ) on a bounded
set, re sp .) , it is equivalent to the original one. Therefore, in the conditions on
{M }  (on T(r), resp.), we may always remove the restriction n » 1  (r » 1, resp.).
We shall often use this fact without notice.

L e t  u s  s e t  g [ X ]  {AC); f  e X }  and Lqw(e)] = {  g ( ) : measurable and
g ( e )w ( e ) L2 (k )  } .  The following proposition is easily obtained.

Proposition 2.2.

j) {-111 =  in d  urn L2[T Ke > I RA •
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ii) gig) L 2' fyin l] L2[T(0)1R)-1 .

R em ark . As T (r) diverges more rapidly than arbitrary polynomials, g L 2{11
is strictly smaller than .012(k) and g,2'{ M n }  is strictly larger than g

2 .4 .  Differentiability and separativity.

The ul.d. spaces are classified the differentiability and the separativity. We
denote an =0(g(n)) or a„=0(g(n)) according as lim sup an Ig(n)<00 or lim an Ig(n)=0.

'1+ w n ÷ 0 0

Differentiability Condition will play an essential role when we shall consider in
Paragraph 4.3 whether P(x, D) in S - 1M n ] is a regularizer. It will also often appear
in order to make the statements of theorems simple.

Proposition 2 .3 .  (Differentiability.)
The following statements are equivalent.

( D .0 )  _B{M, } is differentiable, that is,
f ( x )  g  { M } V  Z ,  f (w ) (x )E  {Mn} .

(D.1) 3H > 1, v n  1 ,  M + 1  H M ..

(D.2) 3 H > 1 , Vn » 1 , (M .+ 1) 1 1 (n + "  .11(111.)11n

(D.3) log Mn =  0(n 2) .
(D.4) log (M n + 1 /,',1„) = 0(n) .
(D.5) 3 x > 0 ,  V r  1, T (r)_r" l c'gr

(D.5') lim inf H(t)/t 2 >0 .

(D.6) lim inf h(t)It>0 .t+-
( D .7 )  V m Z + , 3 H  H (m )>1 , V r> 1, T (r)>r m T(r1H).

R em ark . The following condition;

(D) 3

 3 1-1> 1, Vn > 1 ,  M,z+ ,M„_ 1/ A 4  H

implies (D.1), but the converse is not always true.

We shall use the notation (D ) on behalf of (D. j), O  j  7 .  The above pro-
position was shown in S. Mandelbrojt [28], Chap. VI except the equivalence between
(D.1) and (D .2). This equivalence and the assertion in the above remark are easily
seen.

Proposition 2 .4 .  (Weak separativity.)
The following statements are equivalent.

(W .S.0) g  {M.} (1e1±'2) is weakly separative, that is,
3  {N } (N „ > 0 ) ,  _B (1e1+'2)g__ { M „, N J (R'i x RIO

(W .S.1) 3 H >  1 , 3  {N,,i(N„>0), v i i ,  m » 1 , M „ + „,S  11'1' M„N„, .
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(W .S .2 ) V m > 0 , lim  (M „,./M .) 1/3  =  1 .
n-

(W.S.3) log M n  = 0 (n 2 ) .
(W.S.4) log (M„+ ,/M „) =  0(n).

(W .S .5 )  Vic > 0 ,  3 r0 > 0 ,  V r>_ro , T ( r ) >  r i c  l o g  r .

(W.S.5') lirn H(t)/t 2  =  co .

(W .S .6 ) 3 H > l ,  V m >0 , V r >1 ,  T ( r) _ r m T(r1H) .

R em ark . The following condition:

(W .S), lim  M n + ,M „_,/M ! = 1
n+

implies (W.S.1) but the converse is not always tru e . (This is easily seen.)

We shall denote (W .S .j) , 0  j  S 6 , by (W.S).

Separativity Condition introduced below play an essential role when we shall
consider in Paragraph 4.3 whether P(x , D) in S - - [M n ]  is  a  strong regularizer. It
will also have an essential role when we shall consider the construction of true
symbols from formal symbols in sense of [M n ] in §6.

Proposition 2.5. (Separativity.)
The following statements are equivalent.

(S.0) .99 {Mn } (R 11+12) is separative, that is,
{M (R 11+ '2) = g ma (R 11+12) .

(S.1) 3 H >l, v n , m >1, M n , , n _.‹..H 3 + "'M n M,n .

(S.2) 3 H> 1, v n » 1 , (M,n)112n H(M n )un .

(S.3) H> 1, V n» 1, M2.+11 HM.+11 M . •
(S.4) 3 H> 1, ''n» 1, Mn+ilMnI<H(Mn)11" .

(S.5) 3 H> 1, V n ,m >l, Ilk+ m (M k+ IIM k)k .

(S.6) 3 H> 1, V r>l, T(r)>T(r1H)2 .

We shall denote (S.j), OS/ 6 , by (S).

Proposition 2.6. Under S eparativ ity  Condition (S ), the following equivalent
conditions are satisfied. H ow ev er, the converse is not always true.

(S.7) 3 v > 0 ,  V n> 1, M n _.<n!' .

(S.8) 3 v > 0 ,  V n >  1 , M n + ,/M „  n .

( S .9 )  3 , r  > 0 ,  v r  1 ,  T(r) exp rg.

R em ark . By (S.7), each separative class is a subspace of a Gevrey class or a
Gevrey class itself.

Condition (S i) is called "stability under ultradifferential operators" in  H.
Komatsu [22], etc. On the other hand, L.R. VoleviC said that {M }  is "admissible"
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in [41] when it satisfies (S .1 ) . The proofs of Propositions 2.4, 2.5 and 2.6 were given
in W. Matsumoto [31] except the equivalence between (S.2), (S.3), (S.4) and (S.5).
The equivalence not yet proved will be shown in Appendix B. In the propositions
in this paragraph, .B -(M ,j- can be replaced by e { M }  under Assumption. It can
be also replaced by .g)-(M } under (N.Q.A).

Now, we announce a proposition on inclusion.

Proposition 2.7.

i) 2 M }  c { m }  c  { M  }  and {Mn} Cg L 2 {M.}

The inclusion maps are  all continuous. Under Condition (N.Q.A), .0 { M }  is dense
in 2 L2{M,,)- and in e  { M , }

ii) Under the differentiability condition (D) the following holds;

g L 2 {M a C a {M„} c  {M }.
The inclusion maps are all continuous.

2.5. Carleson's theorem.
The following proposition will be applied in Paragraph 3.2. It was also applied.

in L. Botet de Monvel and P. Krée [7] and L. Boutet de Monvel [6] when they con-
structed true symbols from formal symbols in sense of Gevrey classes.

Proposition 2.8. (L. Carleson [10])
Suppose Conditions (N.Q.A), (D) and the following

(C ) 3R 0 1 ,  3 C 0 0, V r »1  ,

(2/7r) log T(rs)I(1+s 2) ds log T(R or)+ C o .

Take an arbitrary sequence (c)7--0 which satisfies

jc„ i C R " M „ (n O) ,

for some C>0 and R > 0 .  Then, we can find a function g ( t )  in {M „} (R) such that

( d
d—t ) ng(0) = c , ( n  13) .

Remark 1. Even i f  {M, } does not satisfy Condition (D) we can obtain the
same result replacing Condition (C) by

There exists a function p (r) equivalent to T(r) such that 3 R0 1, 3 C0 0,
3 e>0 ,

(C') (2/7r) r log l'(rs)1(1d-s 2) ds {(1+ e)/2). log log r log T(Ro r)+ C o ,
(r»1 )  ,

and  log  -T(et)± t12-1- {(1+ )12} log t is convex for t» 1  .
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Remark 2. The integral in Conditions (C) and (C') converges if and only if
{M, } satisfies Non-quasianalyticity condition (N.Q.A).

2 .6 . Extension of {M }  on R .

As we consider Sp, on g-(M n)-, it is convenient to use non-integral numbers as
the index n, for example, n =k 1 (1 -8 ) (k  Z + , 8< 1). Although we can develop
a  theory of ps.d.op's using [k/(1-8)]: the integral part of k /(1 - 6 ), IM[k/(1-8)]} is
no longer logarithmicly convex, in general. In  order to make clear the statements
of theorems, we extend -(M J to a logarithmicly convex positive continuous func-
tion M x  (x R + ). Of course, extension is not u n iq u e . Therefore, we chose an
extension at the begining and we regard {M j- as the restriction of M x  on  Z + .

A  typical extension is the logarithmicly linear interpolation:

M x  ( M „) 5(M 1)i- s (x  =  [x ]+s  a n d  n <x <n +1 ).

The graph of (x, log M x )  coincides with the N ew ton polygon o f  -flog M a .  We

set az  lo g  M .  ( d )  a  coincides with a; introduced in Paragraph 2.3. Choos-

ing this, the properties mentioned up to now on {M n} rest valide replacing n by x.
Here, we must pay attension to the  following; L et us take 2 > 0  and  se t Tx (r)=
sup rn M x i x ( r>0 ) .  Only the following relation holds good

Tx (r).ST(rx).

However, as the Newton polygon of -( log MN/ x i+ , )- stay in the upper side of that
of -(log /17/„A )-, we have the relation:

Tx (r)._ r - xT(rx) .

If  -(M J satisfies Differentiability Condition (D), it holds that

Tx (r) T(rx1H) (3H>1) .

O n the other hand, in many cases, there is another natural extension. For
example, M x =(x/e)" (x 1) gives a natural extension of (n/e)", which is equivalent
to {nr)- (the Gevrey class of order p). If we adopt an extension which is not the
logarithmicly linear interpolation,

= sup rxlM x  ( r > 0 )  a n d  17(t) = sup {xt—ax }=a-0

do not coincide with T(r) and H(t), respectively (ax =log M x ). Nevertheless, under
Differentiability Condition (D), T (r) and 0 ( 0  are  equivalent to T(r) and H(t),
respectively. Under a natural extension, sometimes it becomes very easy to obtain
T O  and 0 ( t ) .  After an extension, the relation between az  and H(t) is completely
symmetric.

I n  this paper, we adopt always the logarithmicly linear interpolation. If
Condition (D) is satisfied, we can replace it by another arbitrary extension.
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We have the following lemma of the fractional derivatives.

Lemma 2 .0 .4 .  ( 1 )  I f  sup I f ( a ) (x) I c iv I., f o r Ia =n  an d  = n + 1 ,  the
follow ing holds for 0.,tz .-1;

sup I fio)(x+Y) — ii0)(x)1/1YI v". .2'="CRIa' I'Mlar+A(1 al= n )  .
x,y

(2 ) If Ilf(d)(x)111.2 CR In''1U101 for la i= n  an d  = n + 1 ,  the following holds for

11<e>n"f(e)I1L. c{(l+ 1)R} n+PM,i „  .

We shall often use this lemma without notice.

2 .7 .  Examples of {M , , }.
In order to make clear the meaning of the conditions, we give some typical

examples.

Example 1 .  M i ) (1), ,u)= fe(log n)m1 ", (n»1 , v >0 , 1.4 G R ).
If A=0, this gives the Gevrey class of order v.

Example 2 .  11/P,,'(x, a, v)----n!vexp (ad), (n>l, tc>l, a>0, v  G R ).
e{111V ) (x, a, 0)1 appeared in W. Matsumoto [29] and [30] and e -M 2)(2, a, 1)1

did in W. Matsumoto [32].

Example 3 .  .111;i
3 ) (a, b, v)= n!' exp exp (an)} , (n 1  ,  a, b >0,R )

All of them satisfy Conditions (B), (A.I)k ( k E Z + , then, of course, (R) and (K))
and (A .C ). Here, we can take H =1 . { M ; i

1 ) } (1. 1) and all of -(M 2 )1 and IM n.
satisfy Assumption. On the other conditions, we show when they are satisfied in the
tables below.

Table 1.

(N.Q.A) (D)
(D),

( WS)
( W S). (S) 

M 1 ) ( ,  kt)
v >1 or
v=1 and ,u >1 all all all

M 2 ) (K, a, v) all K52 x <2 nothing

IV15,3 ) (a, b, v) all nothing nothing nothing

Table 2.

.t( r)  ( r »1 ) (C) or (C') (C*)

No)(,), i) frl P(log r) - 1 4 1n u>1 v >312

M5,2 ) (x, a, 0) exp (a*(log rr) all all

b, 0) /" '{ log log r—log (abe)) all all

((l/i +1 /x*)=1, (ax)'/ ,' x (a * *)1/ K * = 1, Condition (C*) will be introduced in § 6.)
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Remark. D ( r )  is an equivalent function to T (r ) .  O n -[A f;» (s, a, 0))- for s>3
and on all IMP ) (a, b, 0)1, T.(0  satisfies only T (r ) .  T(r) and sup r n It (r ) —  1 n .

We give an available lemma to show the non-equivalence of classes.

Lemma 2.0.5. L e t  {A n } a n d  {13„)- are  tw o sequences of  positive numbers.
S uppose that { A n } i s  logarithmicly conv ex  a n d  t h a t  lim(A n ) l in = 00 and

fim inf (13„1,4011n = 0 . Then, there exists a periodic function in g {A , } (R ) which does

not belong to g {B n } (R) .
This lemma was given, for example, in S. Mandelbrojt [28] Chap. VI.

2.8. Definition of pseudo - differential operators of class C - .
We can consider the  theory of ps.d .op.'s on  a  m anifold . However, in  this

paper, in order to make clear our assertion, we consider it in R ' and stand on that
of class 2 developed by H. Kumano-go [27]. We denote the space of the symbols
p(x, e) of the ps.d.op's of class o f order m  (G R) and  with 0_-<(7-..p_.-.<1 and
a <1 in Hiirmander's sense by St:, that is,

(2.8)
def

p(x, e) E SA' <=> Va, fi e 3 C(ce, fi)>0 ,

114 (x ,  01 - c<e>.-- , 101+81.1 in R 21 .

We set S p g  =  U
meR

We shall use the semi-norms IP I (./72—  s u p PTAx, 0 I <e>.-pig1+8,.,.

laishigi5k

R em ark . On we need only the following estimate

(2.9) V N > 0 , v a , ,8 E 3 C(N, a, 19)>0, 1.14(x,

The ps.d.op. P(x, D) with the symbol p(x, 0  is defined by

(2.10) P(x, D)u = Os— ev=1 (1 - 3 ) 'ep(x, e)u(y)dyde , (u e 2 (R 1)) .

For u E g l.(R i), it is represented by

(2.10') P(x, D )u  = es 'ix*p (x, 06(e)fte

When P  is continuous on g12, we define Pu for u in D IL2  by the fllowing;

<Pu, 95> = <u, P*95> (95 ,

where the symbol of P is the complex conjugate of that of P .  We denote the space
of ps.d.op's of order m by SA and set Sp 8 =  U  S .  Sometimes, we express the
symbol of P(x, D) by a(P(x, D)). 

meR

We also denote the set of the formal sums e) with th e  order descent
i=0
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10 —a by SA, that is,

def
pi(x, e)ESZ <#. V i  Z ,

Va, 19e Z 1
+ , 3 r 0(i, a, M > 0 , 3 C(i, a, /9)>0 ,

C) I ' C<C>m- (P- 8 ) i- Pit31+81* 1

i n  le x -(<e> r .
We set Spa=  U

. e R

In Sp8 , we define "the operator product" and "the formal adjoint" as follows.

(2.12) (E Pi).(E qi) = E rkk=0
rk (x, e) E (7- 0- 1 p(i

7 )(x, e)q ; ( ) (x, ,
i+j+171=k

0 0

(2.13) (E  Pi)*E ,
k =0

pr(x, =  E  (7 -  D - 1 PiPx,
1+171=k

We give the operator product as the  product and  the  formal adjoint as the star
operation to the C-module S .

We say that the  symbol p(x, e) of order m2 ) h as a n  asymptotic expansion
0 0

E p i (x, e) when the following is satisfied;
i=0

v N e Z + , v a , 3r0(N, a, M > 0 , 3C(N, a , fl) >0 ,
N - 1

(2 .1 4 ) I (p(x, OE)— E eC I sc<e>- - (p- oN- pigi+aw
i=0

i n  RI x f<e>

We write the above relation by p(x, e), and call p(x, e) the true symbol
and E p i (x, e) a formal symbol.

§ 3 .  Expected properties on pseudo-differential operators and properties on formal
symbols of ultradifferentiable class (Property VI).

3 .1 .  Expected properties.

In  order to make simple the consideration of the  possibility o f  a  theory of
ps.d.op's of ul.d. class, we restrict ourselves to an  easily handled case . O n the
ul.d. spaces, some operators of infinite order are admited. In  spite of this, the
class of ps.d.op.'s of finite order is a star algebra so far as so is a wider one. Then,
we consider only the class of finite order.

We settle our expectation in  the  following eight slogans. O f course, in ap-
plications, we use several of them depending on the problems and sometimes we

i = 0
(2.11)

2) On the symbols, it seems better to say "of degree m " than "o f order m". However, we use
"order" not only on the operators but also on the symbols identifying both of them for simplicity.
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wish other properties. However, we can say that the  following eight are basic.
We use the temporary notation introduced in  § 1 .  We also temporarily denote the
relation of asymptotic expansion of class [M n ] by p(x, e) E p i (x, e).[..]
I. S[M n ], S[M n ] and S [M n ] are  subsets o f  S ", S p 8  and S o , respectiv ely . The
relation p --- Ep i implies p-- p 1.

[Jfn]
II. S[M n ] contains all of the differential operators with coefficients in
III. Each ps.d.op. in S [M n ] is bounded on .0,2{ N „)- and on g{ A r n }  f or suitable
{ N } .
IV. Each ps.d.op. in S - - [M n ] is continuous f rom  g2{ A T }  to gglA r n )- and from
E' {N }  to  6 { N }  f or a suitable {N n } . (A n operator which has the above property is
called "a strong regularizer of class -(Arn } ".)
( or IV '. Each ps.d.op. in S - 1111„1 is continuous from aYi , 2 to ..0,2-(NJ- and from 6"

to  8{ N }  f o r a su itab le  { N J. (A n operator which has the above property is
called "a regularizer of class -(Arn )-".)

V. S [M ] is a star algebra over C (with o r without modulo class S - - [Nn ]) f or a
suitable { N} .

VI. S[M ] is a star algebra over C with respect to the operator product.
VII. Every elliptic operator in S[M n ] has a parametrix  in the same class.
VIII. For each E A  in S [M n ], there exists a  true symbol in S[M n ] which satisfies
P

ii f n]

The ps.d.op's of C '' class satisfies all of the above properties removing [M n ],
{M } , a n d  { N J.

First, we seek fo r  a  reasonable definitions o f  S [ if n ] (that is, of SUM]) and
S[M n ]. There are some possibilities and we want to choose a simple one.

3 .2 .  Definition of formal symbols and necessity of analytic estimate in C.
We want to construct a theory which allows asymptotic expansions of symbols

of arbitrary length. Then, we consider first the formal symbols.
L e t { in }„=, be a  non-decreasing sequence of positive numbers a n d  {L} be a

positive and logarithmicly convex sequence with Non-quasianalytic Condition
(N.Q.A).

Definition 3 . 1 .  We take real numbers O ô p l , 3<1  and m.
E p i (x, e) e  SZ[M n ]=S A [M n , L n ]
def

(3.1) <=> 3 C > 0 ,  3 R > 0 ,  3 r0 >0, V a ,

A ux,
f o r  ( x ,  o G R I  x

(3.2) 3 C > 0 ,  3 R > 0 ,  3 d > 0 ,  V a ,  f ie Z ! ,  ,

I Pin x , cRi+1.+01
i+ 1 . 1L ,,,,,< e> m - P - 8)i - P161+81.1

f o r  (x , e)E.R 1 x
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Remark. pi (x, 0  is a formal sum.

As far as we consider only the formal symbols, we can take {c1„)- arbitrarily
because we use only the operations with the local p ro p e rty . On the other hand,
in case of true symbols, the choice of fd ,J- becomes very important. Linked with
the true symbols, we shall take dn —D 4 3 = ( M , 1IM,) 11° and denote such space by
8 , 80[M„] (0< 0  1  or 0 = 0 0 ). When 0=00 , we mean that dn =d avn ). In this case,
pg . ) is holomolphically extended in a conic neighbourhood of the real axes: {CEC';
I Im CI e l  Re C I and I CI __ro clo ). (3e > 0  independent of i) and it satisfies there

(3.3) iPi(06)(x, _ CRi+lalitii+1,,i<e>m-(P-8)i+81031 (Re C =

We set S p o [M„]= U SA[M„].
m E R

Now, we give a comment on the analytic estimate on C. I f  1=1  and p i (x, e)
is positively homogeneous in e, the analytic estimate on e of p i (x, e) is evident.
In case of 1> 1, the requirement of the analytic estimate of the derivatives in e seems
too strong. However, when {M } satisfies Condition (C ) and when { 4 } satisfies
(N.Q.A) and lim inf (n!IL„) 1/"---0, it is in general impossible to  replace fl! in (3.1)

by L 101 as long as we expect that S pd/1/„1 is closed under the operator product or
under the star opera tion . In fact, in case of p = 1  and 8=0, we have the following
counter-example.

First, we assume the closedness under the operator product. By Condition
(C), there is a function q(x2) in . {M  }(R ) such that q ( n ) (0 )=M n .  (See Proposition
2.8.) Setting Nr,„= n!L n  a n d  N 2 1 = (N 2n A 2n+2) 112

 
(n 0), lim  inf (N n /Ln )vn = 0

h o ld s . Then, applying Lemma 2 .0 .5 , there exists a  periodic function p (t ) in
. L )-(R ) which does not belong to  . { N } (R ) .  We may assume th a t the period
of p(t) is one. Let z(t) in g {4 )- (R )  be

{ 1
z(t) =

0 t : < 1  or
We set

po(e) 1)(( ek)lei)1( (4/e) 1/2),
k=2 k=2

q0 (x) = q(x2), Pi(x, qi(x, e) = 0 (i. 1) •

Obviously, po (x, e) and q 0(x, e) are homogeneous of order 0  and satisfy (3.1) with
cl =1(Vn 2",) replacing fl! by L l s , by virtue of Lemmas 2.0.1 and 2.0.2, because
-(n!)- satifies Condition (K).

L et (E  p i ). (E  q i )  b e  Er ; (x, OE). W e  ta k e  x  0 , e  =  (p , p t, 0, •••, 0),
a=(0, m, 0, •••, 0) and fi —(0, n, 0, • • •, 0), (p > 1, 2 t 3). r i M is given by

(3.4) r 0,3 (i!) - 1 p ( i + n) (t)q(".„, ) (0)p - i- n
= p-i-nyo-imi÷tnpu+n)(t)
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As E r i (x, e) satisfies (3.1) for some C>0 and R>0 replacing fi! by L 1 ,  we have
the following;

Ip(i+n)(t)I C(RIVi+nIeni!Ln .

Taking m=0 and i=n, this implies

(3.5) suplen)(t) I C(R/V - 5 )2"N2n •

Then, p(t) belongs to g  {N} by virtue of Kolmogoroff's theorem. Thus, we arrive
at a contradiction. When we assume the closedness under the star operation,
r0(x, e)=q0(x)p0(e) and ri (x, e)=0 1) brings the same contradiction.

R em ark . If we assume only (3.2), (3, 8[Mn] becomes a star algebra. However,
such class of formal symbols does not seem available in applications.

3 .3 .  Algebra of formal symbols (Property VI).
We notice that (.5 [M n] furnishes the operator product as the product. We

can show the following theorem by the same way as L . Boutet de Monvel and P.
Krée [7].

Theorem 3.1.
1) S 0[M ] is a star algebra over C, that is, when E p i and E q 1 belong to S :N W
and to  S',"82 [M n ] ,  respectively, (E p i)0(E q1)  and ( E  p.)*  d o  to  (9,781 +  M 2 [Mn ]  and
S ,T[Mn ], respectively. (See (2.12) and (2.13).)
2) If  a square matrix of formal symbol E p i in SA[Mn ] is elliptic, that is,

I det -rpo (x, oxen- C, i n  II x ; <e> ,

f or some positive constants C, and R, and for an open set D and an open conic set l' in
IV, there exists the inverse in S m [M ] on D x r  <e>.

The structure of S 5[M ]  is rather simpler than that of Spa e [M„] because all
operations in 8 , 8[Mn]  have the local property. On the formal symbols of class
[M e], more profound results have been obtained. A remarkable one is "the perfect
decomposition of formal symbol". T. Nishitani [35] proved it in the Gevrey classes.
His proof holds good in the general class [M s] under Condition (L), with H=1.

§4. Definition, continuity (Properties HI and IV ) and pseudo-local property of
pseudo-differential operators of ultradifferentiable class.

4 .1 .  Definitions of  symbols of pseudo-differential operators and of  asymptotic ex-
pansions of them in class [Me].

We regard po (e) and q 0(x) in Paragraph 3.2 as true symbols and assume the
asymptotic expansion (4.3) introduced below replacing fi! by L 101 . If IM,1 satisfies
Condition (D), (4.3) for N and N+1 implies (3.1) for N .  Thus, if we want a theory
of ps.d.op's of ul.d. class which allows the asymptotic expansions of symbols of
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arbitrary length and the star algebraic structure, the analytic estimate in e  is in-
dispensable also on true symbols. (See also (5.20) and (5.21) in  Theorem 5.2.).
On the other hand, as explained in §1, we cannot adopt the process through the
formal symbols in order to see the structure of the space of ps.d.op's in  a  ul.d.
class without Condition (S).

We start from the formula (*) in § 1 .  However, the derivatives of the integral
on 72 near e+77—,0 have not the estimates of S p 8  sense. (See Paragraph 5 .2 .)  In
order to treat this part separately, we wish a cut-off function depending on C. T o
make this cut-off consistent with the analytic estimate in  C, we introduce the
"pseudo-analytic" estimate.

Let us take d„ in  Definition 3.1 for (D, )'10 ,  w h ere  0 < 0 l o r  0 = 0 0  and
= M n+iiM n • We introduce supplementarily a positive and logarithmicly convex

sequence {L} with Non-quasianalytic Condition (N.Q.A).

Definition 4 .1 .  We take 05aSp._1, 13<1,0 1. or 0=00 and mER.
def

(i) p (x , C )E S U M  (=  S,780[M„, L ap <=> 3 C, R>0, Va, 9 E Z ,

(4.1) pM(x, e)1<cR1 A/f KO'n - I+84÷6 for (x, e)E.Ri x {<e>0.-RD,„„). ,' — PIP 101

(4.2) I A2(x, C) I < CRI"'+PIM ia i L lo i <c>m- Pig1+8101

(ii) Sp o o [M ,] =  U  SUM .] .
.ER

(iii) S 0 [ M . ]  =  IP (x , D )E S "; c ( P ) E S P a o [M n ] }  a n d  Spse[Mni = U .36[M] .maR

Remark 1. In case of 0=00, we mean that (4.1) holds for < e>  3 R 0, where Ro

is independent of /9. Hence, p (o ) is holomorphicly extended in  a conic neighbour-
hood of the real axes: {CEC'; I Tm C l <s. I Re C l P, C ( 3 e > 0 )  and satisfies
there

(4.1') Ip(o,)(x, 0 I CRIIM I„Ke>m÷81° I ,  (Re C =  C).

On the other hand, when 0=0, we do not expect (4.1). For 0< 051, we say that
p(x, e) is pseudo-analytic in C.

Remark 2. In Definition 4.1, the estimate (4.2) on /3 is of use when we consider
the kernel of P(x, D) in  Spoo[M „ ] . However, the regularity of the estimate of the
derivatives in e  in (4.2) is not essential in the other properties and we can replace
CRIPILipi by Co  which depends on the index /9 and the symbol p(x, e).

Remark 3. S r 8 0 [M n ] s t,n,,,,,[M n ] if  an d  only if  p  p ' ,  a  8', 0 ' and

Remark 4. In case of .111„—n!, G. Métivier [33] relaxed the regularity on x
when 8> 0 ; He replaced a!<Via'l by (a!'1 0 - 8 ) -pa Ke>8101). It is immediately gene-
ralized for general -(M a)- replacing Mial<e> 81 ' 1 by (4.1/(7-8)+M i.KeY ial ). This
has already been adopted by C. Iwasaki [16] and K. Taniguchi [39] in case of

fo r  (x, e) E R I x .R1 .
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Gevrey classes. This generalization however can be understood as the replacement
of Sp5o[M.] by spo,[mna(e)], 01/(1-8), Mi. i< e > " }  .  Our considera-
tion rests valid for Sp09[M,z

8 (e)]. (In Métivier's sense, Sp o o [M ,(C)] should be denoted,
for example, by S,,,<M i ( i _o >.)

Definition 4 .2 .  Let p(x , 0 belong to S 9[A4„] and E p i (x, 0 do to S'Ae[M„].

defPSOm
p(x, —  p i (x , e) 3C, R >0 , v N  E Z + , Va,

[3s>,]
(4.3) I (p —  E  pin  I  CRN

+10H-P1
MN+10s1/9 Ke> m — (P - 8 )N — P io i+ 8 1 .1

, < . / v  
fo r  (x, 0 E  x .

Remark 1. Taking a = f i= 0 , the righthand side of (4.3) becomes the smallest
when N  satisfies the relation <ey - 8=RDN .  Therefore, if and only if 0 p--ô ,w e
can benefit by the best possible estimate.

Remark 2. L. Boutet de Monvel and P. Krée [7] adopted 0=- 00 in case of
M = n r  p = 1  and a = 0 .  F. Treves [40] did 0=1  in case of M =n ! , p =1
and a=o. S. Hashimoto, T. Matsuzawa and Y. Morimoto [13] did 0=p— a in case
of M n = n r  1) and 0:<.a<p_-< 1.

Under Definitions 3.1, 4.1 and 4.2, Properties I and II are satisfied.
In the case of 0=0, that is, the case where the estimate (4.1) is not required, we

cannot use the assymptotic expansions of symbols of arbitrary length. In such case,
a theory of ps.d.op's of Gevrey class was constructed by K. Taniguchi [37]. On
the other hand, S. Hashimoto, T. Matsuzawa and Y . Morimoto [13] constructed
another theory standing on the calculus of formal symbols taking 0=p— a in Gevrey
class. A s  we are interested in a theory which allows the asymptotic expansions of
arbitrary length, the case of 0 . p— a becomes important. On the other hand, we
shall see in Paragraphs 5.1 and 5.3 that the theory becomes clear if

4.2. Continuity (Property III), kernel and pseudo-local property.

We note that S 'pna o [M n ]g .S U M „]. As introduced in Paragraph 2.6, w e use
the logarithmicly linear interpolation M x of 1/14. } . We set M x =M o for x < 0 .  Now,
we give a  theorem on Property III, w hich  stands on Calderón-Vaillancourt's
theorem [9] and others.

Theorem 4 . 1 .  Let us take v l  and 0....<.aS p (a<l). W e set 10 =[112]+1,
11 = [1/2(1 — a)]+1, and M V  = max IM.., M.M.snl. (If 1/(1 — ô), it holds that
ML") = 111...)
1 )  ( a )  P(x, D) in S Z 0 [ M . - 2 1 1 ]  is continuous from gL 2 {11/1 .(.-.)}  to  1 . 2 { M r}  . I f
{Ma satisfies Differentiability Condition (D), P(x, D) in S p s 0 [ M ]  is continuous from
21.2 {-111 .n}  to -02 {IC I .

(b) W e  d e f in e  P(x , D )u  f o r u  i n  gyL .IM N  b y  <Pu, ço> =<u, P*0
(V ipeg,2-(Mg9} ) , where a(P) i s  th e  com plex  conjugate of  p(x , P(x, D ) in
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Splo[M _, /i] is continuous from .0 L 2Imn to gyi Am. ( n _. )} .  I f  {M,J- satisfies (D),
P(x, D) in S 0 [M ] is continuous from g ,,,2041,71- to gyg {m,,n }.

2 )  ( a )  P(x, D) in SA ,IM ] is continuous from g{ M „ ( ,,, _ , , o _i ) }  to .0{111r )} .  I f
{M, }  satisfies (D), it is continuous from to g  { M r}  .

(b) Similarly defining P(x, D ) f or u in  g ' -(M n - as f or u  in  gi2{ M r ))- ,
P(x, D) in S 0 [M ] is continuous from g' {1111,9 }  to  g' { 1„ ( „_„,_2 1 ° _, ) } . I f  {M,1
satisfies (D), it is continuous from g' -[M r)- to B ' { M }

(c) P(x, D) in 43 0 [M n _v i l is continuous from glivi,c ( n _n ) l  to gvw,K2,a)-.

Remark 1. In 1), in case of p=1, the gap 2/, in S[M„_ 2 4 ] may be replaced by
1. (See T. Muramatsu and  M . Nagase [34].) However, it might not be O. This
is suggested by C.H. Ching's example [11 ]. I n  general case, we may at least replace
21, by 24+1. (See H.O. Cordes [12] and T. Kato [19].)

Remark 2. If c 11(1 — a), M V  coincides with M K „ by the relation M„M„,.
M „ , . .  I f  -(M n )- satisfies Separativity Condition (S), is equivalent to
{Mn + ,,8„)- a n d  mr=m,,,, implies 1/(1--(7). However, when {M } does not
satisfy (S), ic 1/(l—a) rests only a sufficient condition for M r=M gc „. For example,
in case of M n =exp(an') (u> 1, a>0), M = M  if and only if {1/(1—e)} vv.

Remark 3. In order to obtain Theorem 4.1, we need not (pseudo-) analytic
estimate in e.

Next, we consider the regularity of the kernel K(x, y )  o f  P(x, D ) in  S p s o [M n i
on l ex x R i

y \d, 4  being the diagonal set, i.e. d= {(x, y ) ; x = y } . In the case of finite
0, the results are not sufficiently c le a r . We apply them to the pseudo-local pro-
p erty . In order to make the  announcement simple, we restrict ourselves to the
case of {Mn)- with condition (N.Q.A) in the following theorem.

Theorem 4.2. L et us tak e x 1 and an arbitrary  open set D  in  R ' .  We set
M V =max M.Man}
1) [Case of 0= co.]

We set M,',=max {I/ !'f'111„, n!'1 } , = max {MV, nrIP} and M r" =m ax  { M ,

(i) The kernel K(x, y ) of P(x, D) in S p 8 4M„] belongs to g{ M ,'„nr1P} (R Ix  R A J).
(ii) If  P(x, D) belongs to S 'pn8 .0 [M,z] and if u in g' {11/1 }  satisfies

(U ) ) e  f g e f ts - (m +2 1 0 +1 ))1  (12 )

P(x, D)ul D  belongs to e{ llf r"} (D).
W hen {M n }  satisfies (D), we can remove (m+21,+1) in the above.

2 )  [Case where {L}  satisfies (S).]
W e set max {111„4,1 0 „, L 1 },=  max -(M V ,  L ) -  an d  W )D

max -PC ) ,
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(i) The kernel K(x, y ) o f P(x, D) in S pse[M n] belongs to _0 {M;, L.1,} (lex x R IA4).
(ii) I f P(x, D) belongs to S 9[M ] and  if u  in  2 ' {Mr}  satisfies (co), P(x, D)uI D

belongs to E (a).
When {M,,} satisfies (D), we can remove (m+210+ 1) in Condition (co).
3 )  [Case where 61 satisfies O<OS p and {M„} does (S).]

W e s e t  M ;= max M (1 ( / 9 )) , MnIel , max {Mr, Alwe} a n d  M r" =.-
max {Mr, .
(i) The kernel of P(x, D) in &JA I.] belongs to g{111, M n18 } (.1Cx.IVAd).
(ii) If  P(x, D) belongs to Sp89[M„] and if u in 2 ' {M r'} satisfies

(co') uloe efm.,}(D),
P(x, D)uI D belongs to e {Air}  (D).

Remark 1. On 1), first we give a remark for M = n !  ( J)  1). If 1C- 11P11, it
follows that .111;;̀ ) /  = MV " = M

Next, we consider the case where {M,} satisfies lim (log M „I (n log n))= co . In
this case, automatically M ;=n! 8IPM „ and M ' = M r" = m r, changing finite
elements of {M.} if necessary.

Remark 2. When we consider problems on differential operators, we can often
take {L,} a n  arbitrary sequence with (N .Q .A ). For example, if we take I,„=
n!(log n)2", we have the same in Remark 1 for 2) replacing 1/pv by x>1Ipv.

Remark 3. In 3), if A I/O, it holds that M r'=M r" =M r.

Remark 4. See Remark 2 of Theorem 4.1 on {W } .

Proo f . W e assume th at 
j x—y j d > 0 .  To see the regularity o f kernel

K(x, y ) ,  we use the following;

(4.4) D:D!,1K(x, y )  = E  (
a
ce ) lirn ev=v-- , ).excee)e---'443 ,) (x, e)de

=  E  ( ad) fir-p irl,

(4.5)
= lim 

L > D  
, i ( x - y ) . t , ( 60 e6—e-H3p(0„ ) ( x ,  o de,

(xe _6 and z (0) = 1)
Obviously, we obtain

(4.6) I rie  I CR'"'''/11 1,,,, ,D(81.' 1+16- di+ 1131+.)++ ,

where a+ =max {a, O}.
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On the other hand, PI' is expressed by

N-1
(4.7) I ' I x—y I - 2 ( j+ 1 )— d --)e - '- i ( s - Y ) *E1 {( 4 0 l (e - 6 ' ÷t3Pw)(x, e))1 dS

j O <0•---Dt(dr

+ -(e6-(e413pc.,)(x5 e)}<t> D  

(dS is the surface element of {C; <e> = D}) .

Hence, we have

N- 1
0 .8 ) I I 'CI I I X - y  I -2i-1CRIO1'1+2iM1ce1L 0814'1±1a-a.'1+1131-2P:1+M+1-1

j=0

+ I x  y l  - 2 N

CR
1d 1 + 2 4 \ r

M103'11 1N(MaX {
D

P 
1 1) 8 1 ° 3 '1 + 1 ° ' - d 1 + 1 1 3 1 - 2 P N - F m + 1 .

Let us take N =[(a I a' a — a' I ±  La + in+ 012p]±1.
In case of 1) (i), we can take i n —n! and D—R o . Then, we obtain

(4.9) I /6(  I ±  J g' C(d)R(d)l a +PIM WP(a —a ')! 1/Pli!l/P .

In case of 2) (i), we can takeL=L„ and D = 0 . We obtain

(4.9')I r2e C(d)R(d) Im + P I MidiLcamidiL103-03, 1/pLIp lip •

In case of 3) (i), we can take -4 ,--n !  and D— RH(M N )11°N. ( R(DN )'1°  by (S.4)).
Thus, we obtain

(4.9") +  I Il" C(d)R(d, " 31111 10/1Mwe)103, 1Mkt-a/ve"rglio •

When {N }  and {n }  are logarithmicly convex, it holds that max {N N ( ,_, ) „,}
O rsirs

=max-C./10/ g , N * .  Hence, we obtain 1) (i), 2) (i) and 3) (i).
The pseudo-local property follows from the regularity of the kernel of P(x, D)

on fez  x R A 4 and Theorem 4.1. Q.E.D.

4 .3 .  Definition of pseudo-dif ferential operators of—co order and regularizing property
(Properties IV  and IV ').

We shall see in Paragraph 5.2 that some modulo class is in general indispensable
in order that S 80 [M ]  is an  algebra. Take account of this, we expect that the
modulo class is included in the space of pseudo-differential operators of —0 0  order.
Hence, we do not set S - 1 M n ] a s  fl S A O [

M
n]*

"'ER

Let us take a positive and logarithmicly convex sequence { L }  with (N.Q.A).
Let M x  be the logarithmicly linear interpolation of

Definition 4 .3 .  i) p (x ,C ) E (= Ln])
def

p(x, C) E  {M n , (R i
x x RD and 3 C, R >0, vN E R + , Va, fi E Z 1

+ ,

(4.10) PD x , e) ,

fo r  (x, E  x {<e> ) N } .
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ii) We s e t  S - - [M„] { P(x, D) ; a(P) E S - 1M .] .

Remark 1. For <e>.R.D 10,1, (4.10) is equivalent to

(4.10') 14 ( x ,  e) 1 _<cRIPILI,Ke>1.1{MeN R } -1

where T(r) is the associated function of -(M }.
If  {M, } satisfies Separativity Condition (S), (4.10) is equivalent to

frKe>1/0)- - ' •(4.10") 'p (x, e) .-<cRia+Pi

Remark 2. We can replace CRIPIL I g i b y  Cg which depends on the index fi
and on the symbol p(x,

Now, we give three theorems on the regularizing power on P(x, D) in S — [M

Theorem 4 .3 .  P(x, D) in S ° [M ]  is continuous from goo, 2 t o  g g -cm j- and
from g  to g {M } .

When we consider the propagation of singularities, we often limit solutions to
the elements in g ' .  Thus, it is important to consider the necessary and sufficient
condition in order that P(x, D) in S [ M ]  is continuous from C' to a ul.d. class
and from .0,2 to a ul.d. class in sense of L2 .

Theorem 4 .4 .  I f  an d  only  i f  p i a  satisfies Differentiability  Condition (D),
P(x, D) in S [M ]  is continuous from gyL 2 to g L 2-(m j- and from  C ' to
that is, P(x, D) is a regularizer of class {M, } .

Every element in  S —  is continuous from g i
L 2 to .0112 and  from 6- to C .  In

case of S - 1 M ], we also expect the continuity from a  space of ultradistributions
to a ul.d. space of the same class.

Theorem 4 .5 .  If  an d  only  i f  {M .}  satisf ies Separativity Condition (S), every
P(x, D) in S [ M ]  is continuous from gyg o l a  t o  g L 2{M„} and f rom  e' {M
to g{M,,)- , that is, P(x, D) is a strong regularizer of  class { M } .

R em ark . In order to obtain Theorems 4.3, 4.4 and 4.5, it is sufficient to assume

(4.10) fo r Igi 5_24.

We can show Theorems 4.3 and 4.4 by the similar way as the proof of Theorem
4 .5 .  Since the proof of Theorem 4.5 is a little long, we shall give it in Appendix A.

§ 5 .  Structure of star algebra of S 9[M ] and of S - - [M„] (Property V) and Para-

metrices of elliptic operators in S 0 [ M ]  (Property VII).

5 .1 .  Star algebra of S - "[M ].

As the structure of S - °[M ] is comparatively simple, we first consider it.
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Theorem 5.1. Let us tak e 2_1—a and let M z  be the logarithmicly linear inter-
polation of  { M } .
1) For P(x, D ) and Q(x, D ) in  S - - [M n , Ln], P0Q(x, D ) and P*(x, D ) belong to
S - [1kf+1+15 L.+210]•
2) For P(x, D ) in  S - - [M n A , Ln ]  and  Q(x, D ) in  SZ o[M n , Ln], P0Q(x, D ) and
QoP(x, D) belong to S -  rm°° . - (n-F[tn-0+1+1)/X , L.+210 l•
3 ) I f  fillà and {L.}  satisfy Differentiability Condition (D), S - - [M„, L n]  is  a star
algebra over C and a bimodule with operator domain S 80[M-

(1 _8 ) ., L.].

P ro o f  a(P0Q) and a(P*) are the left simplified symbols of the double symbols
p(x, e)q(x', e') and p(x ', e ). Essentially, we show that the left simplified symbol of
a double symbol in sense of p, a, O and of class [M n ] belongs to Sp 8 0 [M„]. (The double
symbols in sense of p, a, 0 and class [M x ] is defined by the same way as Definitions
4.1, 4.3 in this paper and Definition 2.1 in Chap. II §2 of H . Kumano-go [27].)
Therefore, we consider only the product. Since 3) is obvious by 1) and 2) and since
1) is similarly provable as 2), we give a proof only on 2). Further, in case of QoP,
our proof is rather easy than that in case of P 0 Q .  Hence, we consider only a(p0Q).

We start from the formula on the symbol of operator product;

(5.1) r(x, e) = a(1)0Q)(x, e) = O s—  e p(x, e+77)q(x+y, e)dyft77
r4?(x, e) is given as follows;

(5.1') i-M(x, e) E  ( a
 'V Os—fl e' L A r ( x ,  e-07)0g=f(x+y, e)dyd77 .a  #

Let us take a function 0(t) in .BILJ, such that

(5.2) 0(t) 1 f o r  t 5 1/4, = 0  f o r  t 1/2 a n d  0 5 0 (t)1  .

We set

(5.3) x0(71, = 0(177I KO) and x ( 7 2 , = 1— 4(77, .

o

x o(72, e) and x('7 , e) satisfy the following properties.

I '1 (1 / 2 )< e>  a n d  (1/2)<e> <CH-77>:,5-(3/2)<e> o n  supp x
(5.4) 1771 (1/4)<C> a n d  <e+77> 5177I o n  supp x,

3 C, R>0, I x 1( 3 1. (32)(77, I ciz1P11FP2IL,,1 + 2 , 177 1 -is
1
1<e›-IP2 1

o n  supp x i ( i 0,1) .

We define D i  inductively;

= fnEsuPP x i ;  17711

---- 177 suPP 2'1\( jUl
2 1);l 17./i/N/ } (2Sj._-</).



478 Waichiro Matsumoto

It holds that su p p z 1 = 6 t 2 . W e  devide the integral in (5.1') as follows;

(5 .5 )  O s — H  e— V — I Y 'R ,( x ,  6 +n)q4=1;?(x+y, OE)dy 9514

E Os — e -v -71)-72<y>-210(1 — )10[77 .-w-1-H-1)n N-1-1+1
j=0 R ip(f7 i

x  -(z i (n, e)pM(x, e H--72)4:P(x+Y, e)) - idYdn = E ,i=0 -
(120 — R, an d  x1(77, e)=x1(72, e), j=1, •..,

We consider first I and secondarily j.. /).

(1) Using (5.4), for arbitrary N in Z + , we arrive at

(5.6)1 1 0 1 C R N ± I ' 4131 McNi-lo, , DA+1,6-diLipi+2/ 0<e> —N+81os—a/I+m+1

Replacing N by N+ Sia — a '  +m+1, we obtain

(5.6')1 1 0 1   C R N + 1 °'± P I M(N+tcd+0,+DALIpi+210<e> - N  •

(2) Taking account of l l 1 721 /V i.-?•_ -< e > /4 \rf , we have

(5.7) II I S C R N + 1 a ± f 3 r Mlos'IAMN-Flas-a111-1-1-1L1/311-210<e>
- ( 1 - 8 ) N + 8 1 6 - a / l + m- F 8 ( 1 + 1 )

Here, since N+ I a — a' I +1+1 rests an integer, we can regard N  as non-negative
real number. Replacing N by -(N +  la — a' I +in+ ay+ 1)}/2, we arrive at

(5.7').I / i I S  CR N ± I t ' + f i l M(N+101+,n+i+i)n,LII31+210< e ) - N  •

( 1 )  and (2) imply that PoQ belongs to ,S--,.[M(n+,0+1+1)A, L+210 ].

5.2. Necessity of modulo class in order that S 8Ø [M ] is a star algebra.
The symbol of the operator product of P(x, D) and Q(x, D) in S p & is given by

(5.8) a(P 0Q) = Os— Se- v= 0 p(x, e+72)q(x+y, e)dydn ,

and this also belongs to Sp8. However, for P and Q in  S „ e [M„], a(P0Q) itself no
longer belongs to S 0 0 [M ]  if Condition (B) is satisfied. W e  note that p(e)=<e>'
belongs to ST0

2..,[M n ]  for arbitrary {M } . We can find a function q(x) in g  {M }
such that a(P0Q) does not belong to Si-02

1 [M „ ]. (This means also a(R*) does not
belong to Si-

0
2
1 [M n ]  for r(x, e) — q(x )p(e).) If we take M .-- MV )(x, a, v ) .-  nr'ean'

(x>1, a>0, vER) or M n = M43)(a, b, ( a > 0 ,  b > 0 ,  v  R ) ,  it does not
belong to U ST020[M . 1 .  In the rest part of this paragraph, we show this. W e

0,0
remark that p(e) has the homogeneous expansion E  ( —  I e  - (2.+2), which con-

,,=0
verges for I e  >1.

First, we study the properties of its derivatives. Let be ( 1 +  E  ) 1 / 2 .
j= 2
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Lemma 5.0.1. Let us set a„=(n, 0, •••, 0).

(5.9) ( -1 )" e .) (e )> 0 for I e >(n12)<e) and lei! (11n)<e'> •
ÇA

(5.10) Jo po'n ) (e )d e 1 >(2A/3)n!<e) - ( n+2 ) ,

479

( n»  1 , nE 4Z , and 0 < A (1 1 n )< e ) ) .

Proof. From the following equality, these follow imediately:
W O ( _I_ p k , >2key -2k( e ?+<OEy.+1 , 5(5.11) p ( e ) (-1 )n n ! E n  ' o

'k = 0  2k +  1
[0; - 1)I 2] n(5.12)

o  

p (6 0 (e )d e 1 =  (-1 )n - 1 (n -1 ) ! 51
0 [2k + 1 j •

•A n -2k-1( 1)k<e , yk(A2+<OE, >2) -  n Q.E.D.

Next, we define g x .„t[q(x)]= 4(e). As {M} and{ R"M„} (R: a positive con-
stant) give the same space, by Assumption, we may assume

(5.13) 111. 12" (n 1) and M 0 = 1 .

Setting a„— log M., we have
a„,,— a a I n  log n.

Thus, r(n) which satisfies 111„—r(n) I T(r(n)), has the minoration:

(5.14) exp (a ,—  an ) (See Paragraph 2.3.)

By virtue of (5.14), we can take a subsequence {n(k))- such that

(  1 ) n (0 ) 4  a n d  r(n(0)) 2 ,
(5.15) 2 )  n(k)E 4 Z ,  a n d  n(k)> n(k — 1) (k1) ,

I, 3 )  r(n(k))— r(n(k — 1)) vn(k) (k 1), (3/4< v< 1) .

Let us set e i o =r(n(k))=Mna)+1/Mn(k) (=Dn(k)) and Ik=f— eik) , —0 ) +11401
(k.. 1). The following is satisfied;

(5.16) dist (/k , /k- i ) ( 3 / 4 ) n (k ) (k 3k0) •

We take /'= {e'E R 1 - 1
 ;  e  s 1} and set

T[r(n(k))1 - ' r(n(k))' (-=- o n  /k  x  / ' (k ko) ,(5.17) 4(e) otherwise.

Since I 4(e)1 5_ A l e 1)-11 e 2 q(X) = - 9--1 [4] belongs to
Now, we are in a position to estimate a(P(D)0Q(x)) r(x, C)). It is represent-

ed by

(5.8') r (x ,  e )  =  e v --- 4 z'vp(e + 77)4(77)d77 •

Then, for n(k) and s in 4 Z , satisfying s »  1, we have
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r,( a ' ) , ( x ,  e )  =  e v x*"777( k ) - se s ) (e+72)4(72)dn
AnCk)—s/

Especially at (x, e)— (o, e(k)), e(k)=(eik), 0, •••, 0), it becomes

(5.18) r(a„ )
(ce,) E  e l n ? ( 9 ) - s e s ) ( e c k ) + , i ) d n

(k)-s

where -(ci l 7=1 is given in (5 .1 7 ). Since (5.9) brings

77ro - se Y (0 )+7 2 )>0  on x /' ,

applying (5.10), we can minorize r ) ) (O, as follows:

1.((ace:c)k )c k (f(k))9(k)-se s )(0 )+ 0 d 7 2
ikx

c02- il2 {3n(k)} - 1 s! r(n(k)) - 2 - s -1110(k)
( (27r)ic, is the volume of the unit ball of dimension 1 -1 .).

Therefore, for n(k)> 1, we have

(5.18') <e(k)\.)2+5 
r(ce
(as)

\  (0
'
 e n c 2 - n(k)12 s! Mn(k) •nco-,, , 

L e t u s  take s = [n (k )Ilog, log+ n (k ) ] .  A s n(k)—  s>n(k )1\rf f o r  n(k)> 1
and as (5.16) holds, we arrive at

(5 .1 8 " ) <e (k)>2+0 I. 
(C e

( a  s)
(0  e (0 ) >  c  2 -0 ).M n (k )_ , s ! n ( k )

(11(k)llog + log +  n (k ))-1
n(k)—si

C  3- n ) M  n (k) ,  s! -(exp (log n(k)/log+ log,n(k)))- " 0 0  .

On the other hand, by virtue of Condition (B), we have

D„(k) /Ds  e x p v/j} ( (1/2) log., log+ n (k ))'
; —+I

It means that

(5.19) D (k )  RD , ,

for arbitrary positive R and sufficiently large n(k).

(5.18") and (5.19) imply that r(x, e) does not belong to ST021[M 0 ].
If M = M ; ( ,  a, 1)) ... n!' ean' (x>1, a>0, v E R), taking s=n 1I"' (l<  ' < i ) ,  and

if M „= M ;z
3 ) (a, b, v)-- n!'e be"5 (a > 0 , b > 0 , E R ),  taking s= nI2, we can see that

r(x, e) does not belong to U ST020{/1191.
9 > 0

5.3. Star algebraic structure of S p ,e [M„] (Property V).

A s we have shown in  Paragraph 5.2 , th e  integral near ed-n--•0 in  (5.8'):

e p(e+77)4(n)dn has not the estimate (4.1). On the other hand, we can
bixr,
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show that the integral on 1771 (d>0) has the estimate (4.10) replacing {M„}
b y  {M„/ (1 _8 ) }.  Thus, w e can expect that S p 8 0 [M „] i s  a  s ta r  algebra modulo
S - 1M./(1-8)] (assuming g 1). W e note tha t lo =[11 2]+ 1, 11=U/2(1 - 6)]+1 and
D.= M.+11 M n.

Theorem 5.2. L e t  P(x, D ) an d  Q (x, D ) b e lo n g  to  S,Zo [M ., L . ]  a n d  to
SZAM„,L,J, respectively. W e  set a(P0Q)=r(x, e") and a(P*)=p*(x, e).

I] W e  assume one of the following three conditions;
a) 0=0,
b) 0.- _ p < 1  and 0 <OS1,
c )  p=1, 0 < 0 l  a n d

(N.D) s 36 o > 0  , v  n »  I, D .  (log n)' o..
We set n  = 0 in  c as e  o f  (a) and (b) an d  i-n=min{ ñ Z ;  n >  61/50(1 — )  }  in
case of (c).
1) r(x, e) is div ided as  r(x, C)= r o(x, e)d r-(x, 0, w here r ,  and  1.00 belong to
SAV[M . + 2 1 1 + , L. + 2 101 and to S- L . + 2 1 0], respectively.1M(.1-[/n41-Fte+1+2)/(1 - 8) ,

Further, if  0>0, r, satisfies

(5.20) I (r,—
 E

 r  1)MISCRN+1`"-131-MN+icd+vi+zfi!<e>m+-'-
( P - 8 ) N - P I P  I + 8 1 a 1

i< N

f o r  <e>e RDN+i g i +2/0 5

r i (x, E  r ! - V)(1 ) (x, e)q ( 7 ) (x, e) Z+) .
171=1

In  c ase  o f  b ), i f  {M .}  satisf ies (D ),  a n d  {L„)- d o e s  (D), M ,, +211+ ,-n+211-FTn, Dn-1-210 ,

M (n-11,n+]-1-m'+1-F2)/(1- 8) and 4 + 2 10 can be replaced by M ., D., M./ (1 _8 ) and L., respecti-
vely.
2) p*(x, e) is divided as p*(x, e)=Aqx, e)H-p,t(x, 0, where pg` and

 p
 b e long  to

SZe[Mn+211+ ., 4 +2101 and to  s - - rLM (n+ [n4 .]+ 1+ 2)/ (1  - 8 ) 4+ 21 0 1 , respectively. Fu rth e r, if
0>0, pg" satisfies

(5.21) I (pt —E plV s cRN-Fla+13 1m-
N + 1 . 1 + 2 4 + 0Ke>m-0-8)N-Pigi+81.1

f o r  <e>9 RDN+101+2(o,
A U , = E  7- 1- 1 PM(x, C),

171= i

where p is the complex conjugate of p.
I n  c a s e  o f  b ),  if  { M .}  satis f ie s  (D ),  a n d  {La }  does (D ), M. + 211+ „ D . 4 .210 ,
M ( .+ E ,.+ 1 , 1 + 2 )1 ( " ) and L. +210 can be replaced by M„, D ., M.1(1 _0 ) and L., respectively.
II] We assume that p =1, 0 < 0< — ô and the followings;

(B) v > 0 ,  n > l ,  log(M„,„M n _i /M )v I n  ,
( D ) ,  3 R l , vn> 1, VmSn, (==. M.+11 1 1.-11 •

1 )  r(x, e) is div ided as  r(x, r o(x, C) r _ ( x ,  0, where r ,  and re. belong to
Sin0em 1M., L.+210] an d  t o  s- -r m n/(1- 8) , L

n +2 1 0 1 1  respectively. F u rt h e r ,  r ,  satisfies
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(5.20) with p = 1 .  If {L„} satisfies (D), L v o  can be replaced by L .
2 )  p*(x, 0  is divided as p*(x, e)=p■i(x, e)d-p!(x, 0 . where p t  and p t  belong to
STSO[Mn, L.+210] and to S-1Mnt(1-8)1, respectively . Further, p'ô satisfies (5.21) with
p=1.
If  { L a satisf ies (D), 4-1-210 can be replaced by L.

Remark 1. (D ) , is slightly stronger than (D) and (N.D), is  a  little stronger
than the negation of (D ). M 0 )(x, a, I.)) in Paragraph 2.7 satisfies (D), if and only if

2 and does (N.D), if and only if x>2.

Remark 2. We set I Pi (
i mlo = sup I pM(x , 01 i<e>m-PIPI-4-81(0, where (x, C) runs

over Ri x -C E R 1 ; <e>° RAO and (a, fi) runs over { aG Z 1+;lai - j } x { f le Z 1-;
l fi l .  In Case I, the following holds;

(5.22) 3CO3 R0 >0, Vj,

I ro I (t7k+, r )C o RÔ+ k  m a x  PI (j7 ,)e+21 0 ,01 q l (1'n ;+21,4 ,k" ,t) 9
j / = j

+ k" = k

I Pg̀ Co Ri+ k  P i (j+21 i +; .k+ 21 0 ,0 •

However, in Case II, it is difficult to show (5.22). We can only show

(5.23) 3 CO3 R 0 >0, V i, k  Z+

sup I r0 l(
57 , r ) 1(Ro RYM,

....‹C o le0 k max  k (sup I pl (7), .+210 ,011VM,)(supiqi (sm ,011VMs) ,

SUP I p8e I (372,01(RoR) 3 M ,  Co RigsuP I PI (sm,k+ 21,,OiR sM s) •

5 .4 .  Proof of Theorem 5.2.— Cut- off function—
In order to prove the above theorem, we stand on the formula (5.8) (—(*) in

§ 1) and the following (5.24).

(5.8) o(P0Q) p(x, C - 0 2 ) ( 1 ( x + y ,  e)dy 4177 ,

(5.24) a(P* )= Os—  e- v - »'"p(x +y , e+n)dy dn

Both of them are the left simplified symbols of the double symbols p(x, e)q(x', e')
and p(x ', e ). We essentially estimate the semi-norms of the left simplified symbol
by those of the double symbol. (On the double symbols, see, for example,
H. Kumano-go [27] Chap II §  2 .)  Therefore, we consider only o(p0Q).

We want to divide the integral domain on 77 in (5.8) to

1771-_<d1<e> a n d  1771 c/2<e> (0<d2 < d11 /2 ) .

Hence, we want a cut-off function z(n, 0  which satisfies
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(5.25) x(72, e) { 0
1

and OS x(77, e)._1.

d<e> (0< 3 d<112),
1,71 _(1/2)<e> ,

If 0=0 (Condition a) in Case I), such function is obtained by setting x(72, 0—
%1)(17711<e» where ;A t) belongs to {L„} and satisfies

(5.25') At) =  1 for t _1/4, =  0  for t 1/2 and .

This x(77, e) is adopted for the estimate (4.2) on cr(P0Q).
In case of p<1  (Condition b) in Case 1), we take {N} as follows;

(5.26) Ar„ = min {  L ,  n!(log,n)an } (a>1) ,

which satisfies (N .Q .A ). We take x°( t )  in 2-(N„)- which satisfies (5.25') and set
x(72, e)= Z(17211<e>). Because supp {1/45 t forj>0, we have

( 1 7 ) - " 2<n>5 I I -  <77> o n  supp x(13v132)i f  Ifi1l- i92 I >0.

Then, x(77, satifies (5.25) and

(5.27) 3C, R>0 , Vfi1,fi2EZ,

I x'w2 ) (77, 0 1  CR 1
 
131-0 2IN i o i + 0 2 K 0 - 113,x 0 - it321

As {N} satisfies (D), restricting Ato I fl, 5 2/0 , it holds that

3R' > 0, N1t31+021- R'11321N1p215(lR')It321132!(log÷ I A 1).11321
Further, if <e>13 D„, it holds that

3 R", R">0 .
<e> - ( 1 - on<D ; [(1 — P )1 0 In R " , -  ( o - P)19)n 5 RI  " n  (10g+n) — a n( n _ 1 ) .

Here, the second inequality holds good because -(N„)- satisfies (N .Q .A). (See
Remark at Condition (N.Q.A).) Therefore, x(77, e) satisfies also

(5.27') 3c, R>o, I 1,(11."32)(77, CRifi21/5,2K0-113,1<e›-Pif321

f o r  <OE>o RD II321 and  Ifi1I 210.

Thus, this is adopted to obtain the estimates (4.1) and (4.2) on a(P0Q).

In case of 0 =1 and 0>0, if  (N .D ), is satisfied (Condition c) in Case I), we
adopt x(77, 0 in case of p< 1 taking a=e 0 (1---8),T1/0>1 in (5.26). In this case, we
use the estimate (5.27) and the relation

(5.28) <e>-(1-oinN„<n! f o r  <ex D .

(5.28) follows from

<0-
 (1—  8)in- D ; (1—  ° W i l e  ( lo g +  n) a f o r  <e>° D„ .



484 Waichiro Matsumoto

In the last case: p=1, 0<051—.3 and {M „} satisfies (D ),, it is difficult to
find a cut-off function satisfying (5.25) and (5.27') even if we replace < 0 - 1f3ii by
<77>-11011. Then, we construct a  cut-off function which satisfies (5.25) and a
weakened estimate from (5.27').

Lemma 5.0.2. We assume (B) and (D ), .  There exists a function z(n, e) with a
parameter R1 ( 1) which satisfies (5.25) and the following;

(5.29) 3C, R>0; independent of R1,
(1 119 21 - nd-21o)enCRI°71,82 KO-

( 1 -  0 1 0  ii <e>-Ig 21 ,
{I x" 2 ) (77, 01.5_ c R 11321Lio2 1<n>- (1 -6 )1 1 3 1 1 <e› - I P 2 r  , (Vft2 E Z+)

f or eR1D„5<e>6 . eR
1
D„

+1
, n ER` and 119 11

Pro o f . We can suppose that

(5.30) 1)0 2.

We set

(5.30') M . =  Mo f o r  —n0
-._ n < 0  . (n o is that in (4 . )

i) [Partition of unity in 77-space.]
Let us take A t )  in C ° (R ) which satisfies

(5.31) z0(t) = 1 for t — 1 , =0 for t _- 0 and 0_.. z° (t) - _ 1 .

Let Ro (>_ 1) be a constant decided later o n . We set

(5.32) I  zn( j) — x°( I 72 I ° -120/)„)-2'°( Inle—RoD.--i)

l x0(2) = Al 27 I' — R °DO •

Obviously, it holds that E  %,( 7)m 1 and..0

(5.33) X7(77)=--- z°0  e — RoDO ==- 1 o n  {1771° R0D.— 1 } and
Jr.°
R0D,, 1 -11< 17210:‹R

0
D„ on supp x ( 77) (n >1) .

m which satisfies R0 D„>R 0D„,-1 is smaller than n+n o because of (B) 2 and R0 _ 1.
Thus, we see that

(5.33') {n; xn(72)* 01 n of o r  V77 R ' ..

Since it holds that 771  on supp z r  for arbitrary n and ,8*0, Lemmas 2.0.1 and
2.0.2 imply

(5.34) 3 C>0 , I 4 0 )(01 s c < 0 - 0-9)1Pi f o r  77 e R I  and 179 1 2 I .

ii) [Cut-off function in e-space.]
Let R, 1) be a param eter. Using {*„(t))- in Lemma 2.0.3, we set

(n 1),
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(5.35) on(e) = *.+210(0  log <5>—log (R,D)) •

By virtue of Lemmas 2.0.1 and 2.0.2, it satisfies

{ en CKI'Ice!<e> - I'l
(5.36) (:)(e) cyci LI.1<e>Hal

(I 5_ la I_5 n+24)
(v c re z_ ) ,

on(e) 1  fo r <e>o eR,D„ a n d  = 0 for <e>0 R,D n

We set

(5.37) k (n) = max {j; o< (e)< 1 for some e such that
<e>0 E [eRi D„, eRiDn-Fill •

It holds that

(5.38) Dk( n ) < epn +I< eFiDn f

by virtue of (D)s . (Under Condition (B),, it holds that k(n)< 3 ,r0 n.)
We want the following property:

(5.39) V nE Z +, ad E Z ± \10, 11, supp
1 1 )

{ 77; 1771 <e>/2} and
J=0

supp(l— xi)--ç- {77; 1771 _d<e>1 f o r  <e>°E[eR,D„, eRipii •
J .0

Now, we decide R , depending on R , and d independent of R 1 ;

(5.40) R, = (2°11- ) 'R 1 a n d  d =  (1/2)(eH.04-7) - 0 7

where H is that in (D)s . This choice brings (5.39) by virtue of (5.30), (5.30'), (5.38),
(D), and (B)2.

Let us set

-
(5.41) x(77, e) = E x.(77)on(e)..=0

As n  is arbitrary in  (5.39), (5.25) holds good. Further, 2, ( 7, e) satisfies (5.29) by
(5.34), (5.36) and (5.38). Q.E.D.

We notice th a t  x(77,e) in  Lemma 5.0.2 satisfies

(5.42) supp x(77, e)-g= {(77, e); 1771 5<e>1/21 and

(1/2)<e>5_<e+ 77> (3 /2 )<e> o n  supp x(72, 5).

(5.42') supp {(7, 5); d<e> .1721s<e>/2} and

<e+05__(1+d - 1 )1771 on supp1 . P 2 ) , i f  I lei  +  I /6 2 I > 0 .

(5.42") supp ( 1 - 4 g  {(7 , e); 1771 -?„.d<Œ>} and

0+77>_'5_(1+d - 1 )1 72 I o n  supp (1—x).
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5 .5 . Proof of Theorem 5.2. — Continued--
W e can prove the theorem both in Cases I and II by the same idea. Since the

proof is rather simple in Case I, we consider only Case II. As the estimate (4.2) on
a(P0Q) is easily obtained, we show only (5.20), which coincides the estimate (4.1)
on a (P 0 Q) when N=0.

We devide (5.8) into the following manner;

(5.43) a(P0Q)(x, ro(x, e)-Fre.,(x,

Os— x(72, e)p(x, e+72)q (x+y , e)dy

0s1- 1 {1 — z(77, e)}p(x, e+ 72).7(x+y, e)dydn

It is seen that r.(x, 0 belongs to S  rm(n+[m+]-Fte+1+2)/(1- 8) ,  Ln+2101 by the same way
as in Case (2) of the proof of Theorem 5.1.

On ro , we apply Taylor's formula on p(x, e+77) a t  e and devide i t  in the
following manner;

(5.44) ro(x, r !- 1 13( 1 ) (x, e) os— e ' - 'r 'q ( 7 ) (x+y, e)dyin
ryi<N

— E  r !- 1 1)( 1 ) (x, os— {1—x(72, e)}q(7 ) (x+y , e)dydn
111<ff

E r! - 1 N Osl e - w i r;e(77, e)q ( 7 ) (x+y, 5)dy x
rYI =117.

1
x  (1 -1 )N - l p ( 1 ) (x, ed-8n)d0

JO

E n - E  IT+ E
iyi<N IVIGN = ff

As O s —  e- v - 1 ) f(x+y)dyin=f(x) holds for f(x) in 2(R`), we see that

(5.45) =  r! - I po ) (x, e) .

It is rather easy to see that I E  0 2 1  is majorized by the right-hand side of
III<N

(5.20) because both of the second arguments of p ( 7 ) and q( 7 ) are C. Then, we only
show th a t  I  E  M I is majorized by the right-hand side of (5.20).

171=N

In order to make clear the dependence of every constant, we specify the meaning
of the constants C and R in this paragraph. We denote the maximum of R's in
(4.1) and (4.2) for a(P) and a(Q) and in (5.29) by R again. W e may assume R 1 .
We also denote the maximum of C's in (4.1) and (4.2) for a(P) (for a(Q), resp.) by
Co (by C 4 ,  resp.). Further, we use C only for that in (5.29). We have the following
representation:
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(5.46) 01:3 r! - 1 N 2(fl j ) 30s — xo.P3)(7  , Œ)x

x g (T+2), )(x+y , e)dy thi 1)(x, e+  0 )d0
o

r N E (: 1)2 (1103/,(ai ,
Let us set R2 = e R , and restrict <e> t o  R2 D„S<e>0 R,D„ + ,  and N+  I fi I  to
N+ I fi I Sn, where R, is that in Lemma 5.0.2.

In (4.1), we may replace D 1p1 by D1/31_210 due to Condition (D)s .
In case of /93= 0, following the proof of Lemma 2.4 in H. Kumano-go [27], we

obtain

(5.47)I  1 1(a ft .)1 S N - 1 7!Ci C p Cg (2P3R2)N + IN+1.51-Ev1i(3 !x

where C, is independent of N, a and /1.
We estimate I Ma i , fi i ) I  in case of /33 * 0 .

i) (Case of N+ I a2 1 +211 n)
Ma i , f i t )  is expressed as follows;

(5.48) Mai, 19 s ) = dn<y>-210(1-4,)10[ I n x

{xo, P3)(77, e)gg.f)„0 (x+y, e) (1— 0)N - WV 1) (x, f + On)c10}] .
0

Then, by virtue of (5.42), (5.42'), N +  1a2 1 +211 _ n and Lemma 2.0.1, we have

(5.48') I Ma i , fij ) I N - 1 7-!C C s,Cq (2P3eR2) +r, +Plx

x M NI-1.3421,P Ke>m±m'
(P -  8 )N  -P 1 0 1 + 8 1 0 3 1

where CI is independent of N, a and fl.
ii) (Case of N + lad +211<n)

In  (5 .48), w e  replace I 77 1 -211(___ jy)1„  by  I  ,7 1 -2[(n-N-1 21)/2](__ jy)[(n-N-1020/23.

Then, we obtain the following instead of (5.48');

(5.49) I Ma i , fi s )I SN-17-!cocpcgenf2sd-A. 2 (Un -- N - 1 20/2 ] - 1 i) X

x  ( 2
p3R2)N1-10+1311W. m i .1 i fi Ke>.+./-(P-8)N-pipli-1ial -2 (1- 1 ) ( [( t t  N  1 0321)12] - 1 1)

where we used (5.42), (5.42') and Lemma 2.0.1.
As <Cy is restricted to [R,D„, R2D„+ 1 ] and 0 is not greater than 1 —3, we have

(5.50) M  < e › -  2 (1 -  8 )([(n -  N - 16210 l -  1 1)

M  n ( R 2 D  . ) -
2[(1-8)18)(Un - N  -  I ot2 1)/2]- 1 1 )

5 ( e R 1 ) -
2[(n-N- 10321)121+211

m- N+ 1021 +211+1 •

Let us choose R1 =max{2 8 d 2P3eR2H 2111-, where H is that in Condition (D.1).
We arrive at
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(5.49')I  / R a i ,  ft) I A  T - 1 2-!Cf' CI,Q 2 P3eler l' ÷ P I M w+imi ! x
x  <e>m+W-0-8)N-pir3i+alai

+21,+1,

where CI' is independent of N , a and /9.
Applying (D.1) 24+1 times, by virtue of (5.47), (5.48') and (5.49'), we obtain the
following;

(5.51) I 0/6
3, I S C,CI,C n + 1 ' + P I MN+raifi Ke>m ÷ m '

f o r  <e>e R2DNI-tpi
where C, is independent of N , a and ft. Q.E.D.

We give a remark in Case I  c). When /3'3 *  0, we obtain in the first place the
following estimate by the  same way a s  in  i )  in the above proof replacing 24 by
2/,-ON;

(5.52) I IT (a f t )I N C p C g k iv +la+1 3 1 M N +211+ iriN N+1131+210X

X <e> m + m ' - ( P - 8 ) N - P IP1+ 8 1 0 ) 1 - ( 1 - 8 ) i n .

By virtue of (5.28), we arrive at

(5.52') I Ma i, 19 ! C '  C  p C g Rf N -Fic h +Pi
N - 1 - 1 0 ,1 +2 1 1 + 1

9
!  X

<e>m+W-(P-8)N-PIPI-F8Isi for > R DN +1131+211+i; •

5 .6 .  M ultiproducts o f  pseudo-differential  operators and param etrices of  elliptic
operators in S 8 0 [M ] (Property V II).

If  we can construct a  true symbol in S 0 0 [M ] from every formal symbol in
S p 8 0 [M„], Theorem 3.1 2) brings immediately the existence of a parametrix of elliptic
operator in  S p o [M „]. However, unfortunately, the construction of true symbols
seems impossible if {M „}  does not satisfy Separativity Condition ( S ) .  In  this
paragraph, we shall try to construct a symbol of a parametrix of elliptic operator
through a N eum ann series. I n  o rder to  show  the convergence of this series,
w e need a  sharp estimate o n  th e  symbol o f  th e  multiproduct o f  ps.d.op's in
Sp0e[M„1. Such estimate was obtained in the case of Gevrey classes by K. Taniguchi
[39] and by C. Iwasaki [16]. Their proofs are available in case of general { M } .

Theorem 5.3. We suppose (L)21 1 on { M n } , (L)2 10 on { 4}  and one of  a), b) and
c) in Theorem 5.2, Case I. W e  assume the following estimates;

3 C1 >0, 3 R>0, va,

(5.53) Pin(x, Ciiti(4+131 M10,11aKe›-P1131+81,61 ,

f o r ( x , R I x -(e;
(5.54)I  p i M(x, e) I S P I + 810  I

f o r ( x ,  e ) E l t i( 1  j  S m )

Then, w e can dev ide a(P1 0 ••• 0P„,)(x , e) to rA x , e)- r:(x , e) w hich satisfy  the
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3 CO3 R 0>0, Va, igeZ 1
+ ,

(5.55)

(5.56)

and

Ir',"M(x, Œ)I

I r '0"2x, Œ)

c on ( C AR, 12) 1 6 + ° ' A I la! +24+0 Ke› - P I P 1 + 8 1 a l

for (x, x <e>0 R0 RD + 2 1 0 1,
C "(j jj C AR,R) 16" 1 M imi+210- is 1+2100 ) - P1131÷81°1

for (x, OE) E x Ri ,

(5.57)
m (13

I r e)I —(N+11+2ri),ci-s)Lipi+2/0<e>-
P IP I + 8 1 0 1

A i l  C AR,R) 1' +(31 Air
J=1

for (x ,C ) E R ' XR 1 ,

where C, and R, are independent of m, a, f i and the symbols {0 .  In case of b), if
{Ain}  satisf ies (D ), an d  {L„} does (D ), /V—161+211 -H7i, Di 131+210 ,  M (N+ cd1+211)/(1-8) and
L i p i + 2 ,0 are replaced by M 1. 1, D 1131 , M ( N + I n i ) , ( " ) and 4 31 , respectively.

Theorem 5.3 implies the following.

Corollary 5.4. W e assume p>a, (L), i i + , on {M } , (L) 4 1 0 _1 on  {L„} and one of
a), b) and c ) in  Theorem 5 .2  Case I. L et a square m atrix  P(x, D) with elements in
S 0 [M ] be elliptic, that is,

(5.58) 3 Co, R0 >0 , I  det {p(x, Œ)1<e>"1 I C 0f o r  <OE>.R„.

T hen, there ex ists Q(x, D )  in  S p
-

37,1[M„ + „ i + ,72 + 1 , L n + 61 0 + 1 ] ,  such that P0Q—I and
Q0P—I belong to S  r- c %M(n+611-1- m I +1)/(1-S) ,  L n + 6 1 0 + 1 1 •  In  case of b), if  {M.}  satisfies
(D ), and {L„} does (D), M- n-1-611-1-m+1 ,  M (n + 611-F im 1+ 1)/ (1 -8 ) and 4 + 61 0 + 1 are  replaced by
M n , M n / ( 1 _0 ) and L„, respectively.

Remark 1. The assumption of the ellipticity o f  P(x, D) can be weakened to
(HD and (H ,) in  S . Hashimoto, T . Matsuzawa and Y . M orim oto  [13 ]. (See K.
taniguchi [39].)

Remark 2. If  {M n }  satisfies Condition (S), we can obtain the same result in
case of 1 replacing modulo class by S - - [M i ( p _8 ) ]. (See Corollary 6.4.)

§  6 .  Construction of true symbol in S pse[M „] (Property VIII) and parametrices
of elliptic operators in S pse [M ,]  (Property VII).

In  the  previous paragraph, we constructed a  parametrix of elliptic operator
in S 3 9 [M ]  through a Neumann series except the case of 0= 1 and  0 > 0 .  In order
to clear this exceptional case, we return to the idea developed by L. Boutet de Monvel
and P. Kree [7] and F. Treves [40] : construction of true symbol from formal symbol.
However, in case without Condition (S), the results are not satisfactory.
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Theorem 6.1. We suppose that 0 < 0  p —S.
1) W e take arbitrary k in Z .  F o r  each formal symbol E Pi(x, e) in  Sple[M,:_k- i t
there exists a true symbol p(x, C ;  k) which satisfies (2.8) limitting IaISk and I fi I Sk
and also does

3 R > 0 ,  v N e Z + ,  a , fi e Z .  (1(0,1/91a C > 0  ,
K e>m-(p-oa-piPi+stafri(6.1) IP(x, e) — EPA, CA- g  CedRN +IPIM  N i9

i<N

f o r  (x, e) f<e>0 RDA-.

If  {M,J- satisfies (D),, we can replace M n _n _, by  M .
2) W e assume Condition ( W.S), on { M } .  For each formal symbol E p i (x, e) in
SAJM n ], there exists a true symbol p(x, e) in SA  which satisfies (6.1) f or arbitrary a
and #.

On the other hand, there ex ist a positive sequence { La and another true symbol
p(x, e) in SA0 [M „, L ] which satisfies.

p(x, p (x, C).

3) W e assume Condition (S ) on  {M a . For each form al sym bol E pi (x, e) in
86 [M ., L n ] ,  there exists a  sequence of positive numbers {La (.1 .-L n ) and a true
symbol p(x, e) in SA0 [M„, LL] which satisfies

gem
p(x, e) pi(x, C).

R em ark . In  2) a n d  3), i f  IQ  satisfies Condition (B ),  { L }  is taken as
{L ( d + i ) „)-, where d is that in (B) 1 for TZ e H , H is that in (5.3).

Theorem 6.2. We assume (D), (C) and the following:
(C*) 3R1, R, such that R F,<R ,<R , and

T(R 1r)T(rIR 2)IT(r) 2 is bounded,

where T(r) is the associated function of {M„)- and R, is that in Condition (C ) .  Then,
the results 2) and 3) in Theorem 6.1 hold replacing 0 by  00 and relaxing (D), by (D)
and ( W.S), by ( W.S).

R em ark . In case of 0= 00, we also obtain the result corresponding to 1) in
Theorem 6.1. As it is complicated, we omit it.

The following is brought by Theorems 6.1 and 6.2 and the proof of Theorem 4.5.

Corollary 6.3. We assume Condition (S) and take 0 = p -8  or 0 = 0 0 . We also
assume the conditions in Theorem 6.2 when 0 =  oo . Then, the relation of asymptotic

P tom
expansion p(x, e) E p i (x, e) gives a  onto-homomorphism of  star algebra from

[Ai.]
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Spa [M n ]  to S [ M ]  modulo symbols o f  {M.1 0 _8 4 strong regularizers.

W e can show Theorem 6.1 following F. Treves [40] and S. Hashimoto, T.
Matsuzawa and Y . Morimoto [13]. On the other hand, w e can show Theorem
6.2 following L. Boutet de Monvel and P. K ite  [7] and L. Boutet de Monvel [6].
In order to make clear the role of Condition (S), we present the proof of Theorem
6.1 Case 3).

Proof of Theorem 6.1 Case 3). Under Assumption, we can assume
Using {1b,

k (t))- in Lemma 2.0.3, we set

(6.2) zk(e) = *AO log 0)—log (R i DO)

where R1 =H 2 .1? and H is that in (S.3). xk (e) satisfies

c e kv ifiK o -ig i
(6.3) I x (C) t.CRIPIL IfiKe> - 0 1

Let us set

(05 Ifil
E(fi Z.).

(6.4) P(x, e) c s pi(x, e)xi(e) •

On each compact set in lee, the right-hand side of (6.4) is a finite sum and then it
converges and belongs to emi x

For arbitrary n in  Z A P » , w e  lim it  e  to  G.= leR,D..<.<e> 0 .<eRi D,z+ ,
Since supp x i is included in { <e>°>_Ri D i  I , if supp z  [1 G .*0, it holds that

(6.5)

W e set d(n)—max{i; supp x i n G .* 0 1  Since, by virtue of (S.3) and (6.5), we
have

(6.6) D  1, i H D ,„ a x ( n . i )  e H 2.1). , (1,915__n,i5d(n)),

we can apply the estimate (3.1) to p e (x , e) on G. for 1fi 1a n d  i Sd(n).
Paying attention to  xi(e)-_-7,1 on G .if i n, we see that p(x, C)— E p i (x, e)=

E  p i (x, e)z i(e) on G. for N Applying (S.1), we obtain i < N

N d c.)

(6.7) I { p — E  p i } g2 . C(HR)N -i- la-i-Plm i. IF K e > . - (p- s)N - pol+ 81 .'l x
i < N

X( H R ) i - N M il ( e R ,D .) i - N  E 1.
N i d ( )

As it ho lds tha t M i l(e H D .)".< M N  (iSd (n )) by virtue of (6.5) and
V S  fil 52 1131+1 -1 , we arrive at
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(6.7') I .(p — E I -5 C R " I * 4 -P I M N M I. l igt.<e>m- (P- 8)N-PIPI÷8101,1
i<ZT

on Gn  fo r  i fi l Sn

On the other hand, on G„ and for 1,81>n, we have

(6.8) I PMI <C(HR) 1 6 ± P I MI.ILe.)+IpKe> m - P I P I + 8 1 ° 1  X
x  E  (HR)i Md(eR,D,i )i E 1

<C 'R ' l °'+131 -AlidiLdopi)+1,31<e>m -P IP 1 + 8 1 * 1 Q.E.D.

W e remark that (6.6) holds if and only i f  { M }  satisfies Condition (S). (See
(S.3).) Further, in order to obtain (6.7), we need

3R >0, N _SViSd(N), VkS_ N, R i+ k M N _ F A D N Y  N

This is (S.5) itself.
On the other hand, in the proof of Theorem 6.2, we use the following;

For some positive R independent of k, the norm of {M.-f-k};7.0 in
/2 {R"M„} is bounded by RkM k , where /2 { N , }  {{c„)-;_ a ; {c , i )- 112 = (c„IN) 2< 0 0  }

This is equivalent to Condition (S.1). = 0

Thus, as long as w e adopt the  method by F. Treves or L. Boutet de Monvel and
P. Krée, the construction of true sym bol in S 8 9 [M ] from  form al sym bol in
Sp8 0 [M n ] goes well if and only if  -(Mn I satisfies (S).

By Theorems 6.1 and 6.2, we immediately obtain the following;

Corollary 6.4. W e restrict 0 to O < O S p -8  o r 0= 0 0  .  W e assume the same
conditions in Theorem 6.2 when 0 = 0 0 . We assume also that a  m atrix  P(x, D) with
elements in S U M , i)  is elliptic, that is,

(6.9) 3 C0 > 0 , 3 r0 > 0 , det I {/3 (x, e)/0>m}C 0 f o r  (x, e) R ix f<e>?_-rol

1) W e take arbitrary  k in Z + . There exists a ps.d.op Q(X, D; k) which is conti-
nuous from .0,2 - m±2 to  .0.0 i j Sk —211). Further, it satisfies

3 R > 0 , V N E Z ± ,  a, fi E Z .f  ( la i ,  f i 3 C > 0  ,
(6.10) I  a (P 0Q—M k  ic(Q op— i) l cRN -F ig imN+k+IfiKe>m - ( P-- "N- P

11314-81.1

f o r  (x, e)E.IV x {< e> ° RD N )- .

If  {M }  satisfies (D) s , we can replace M N + k+ i  by  M N .
2) W e assume Condition ( W.S), when 0S.,o-8 and ( W.S) when 8 = 0 0 .  There
ex ists a  ps.d.op Q(x, D ) in ,S- 'n which satisfies (6.10) f o r arbitrary  a an d  f i. O n
the other hand, there ex ist a positive sequence {L } and  another ps.d.op -Q'(x, D) in
S7[M„, LL], where Po and "Q0P—I belong to
3) W e assume Condition (S). There exists a sequence of positive numbers {L }
(L L ) and a ps.d.op Q(x, D) in S [M „ ,  L ' ] such that P0Q— I and QoP—I belong
to S - 1M„ l e d, O' =m in -(0, p—S)-.
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Appendix A .  Proof of Theorem 4.5.

A.1. Proof of Theorem 4.5, sufficiency.

Under Separativity Condition, w e show  only the  continuity o f  P(x, D ) in
S - - [M„] from O L2{ M .)- to  a l L2{M„} because th e  continuity from e ' {M } to
g y f j  follows immediately from this by virtue of Sobolev's lem m a. W e use a
"regularized associated function" D O .  Using a  non-negative function p (r ) in

gxR) with its support in [-1, 1] and i1P 1 lL1 =1 , we set D(r)=p(r —  s)T(s)ds (r E R)

where T(s) (s<0) is defined by T( — s). Then, we easily see that T O  belongs to
e(R) and satisfies

(A.1) T(rI2)S -D O  T(2r) (r 2) ,

(A.2) f Di1.7'0 1  C ; T(2r) (r E R , j EZ,.) .

Owing to (A.1), we can use T(r) instead of the associated function T(r).
By virtue of (S.6) in Proposition 2.5 and (4.10"), we have

(A.3) 3r0> 0 , 3 C , R > 0 , V a e Z ,f , # E Z +  Oft i -52l),
e) CRI'IMi a K e r  TKe>lror •

O n the other hand, let B be a bounded set in  g2{ni n } . Applying Proposi-
tion 2.2, we have the representation of the Fourier image of u in B:

V ro >0, 3v(x) = v(x, r0) EL2(R`), f i ( e )  =  R<e>lr0) .0(e) •

Then, D:(P(x, D)u) is expressed as follows:

(A.4) (Pu)w= E (a ,) em e)dea

E  (a )  <x—y> -2 1 0es -1 )') v(y)dy xa

X ( 1 - 4 e ) 10-(e. 1 - dp(d )(x, e)i'(<e>lro))- de .

The above (1 - 4 0 10 { •)-  is  majorized by CRI(41M i„ ii'(<e>/r0) - 1  i n  virtue of (2.6)
and  (S .1 ). Applying Schwarz' inequality, it is majorized as follows;

(Pu)(0)1 2 (C'R' 1 111 1.1)2 < x — Y>-
210 1v(.012dy

11Pullfm,d,2R, <  co and this show that the image of B by P(x, D) isThus, we obtain
bounded in ..g) fm -j- Q.E.D.

A.2. Proof of Theorem 4.5, necessity. — Preliminary—
Assuming that Separativity Condition (S) is not satisfied, we show that there

exists a  symbol p (e )  in S - - [M„] and an ultradistribution u in L" {M} such that
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P(D)u does not belong to e {M
Having regard to Theorem 4.4, we may assume Differentiability Condition (D)

on {M n } . Preliminarily, we consider the trace function of { log M n  }. We use
the notation in Paragraph 2.3. By virtue of Proposition 2.5, if  { M .}  does not
satisfy Separativity Condition (S), there exists a sequence {r; }  such that

(A.5) lim r • = c o  a n d  v k > 1 ,  9 / 0 1 ,  v j  j o,  T(r I /R0) 2/T(r1) >1 .

Setting ti =log r;  and 3r =log 1?0 , (5.5) means

(A.5') lim t;  0 0  a n d  Vr >0, v j 2H(t1-3r)—H(t1)>0 .
i+00

We set r ; = t 1- 2 r .  ( A .5 ')  brings

(A.5") 2H(r1—r)—H(r1)>2rh(r1).

Thus, it follows that

(A.6) 2H(t—r)—H(t)>rh(t) o n  [r1 —r, r i ] .

In fact, as h(t) is non-decreasing, we have

(A.7) [2H(r1—r)—H(1-1)]—[2H(t—r)—H(t)]
▪ {2h(r1— r) — h(t )1(r J — t)
▪ h(r — r)(r —  t) rh (r i ) f o r  r .— r<t <I" •1 '

Combining (A.5") and (A.7), we obtain (A.6).
Standing on the inequality (A.6), we have a lemma.

Lemma A.1. There is a function G(t) which satisfies

(A.8) V k  Z + , 3  s(k)>O, G(t) -_< H(t —k)—k f o r  t s(k) ,

(A.9) V k eZ + , 3  r(k)>O, 2G(t)—H(t) 0 o n  [r(k)—k, v(k)J.
and r(k)>s(k)+k>r(k-1)--kk

Pro o f . Let us set

Hk (t) =  H(t —k)—k (t—k)h(t— k) —ak (t _k)—k .

We define inductively s(k) and r(k) and construct G(t) which satisfies

G(t) = H k (t) f o r  s(k)._.<.t _<.r(k) .

Step 1. We set s(0)=0, r(0)=1 and G (t)=H 0 (t ) on [0, 1].
Step 2. Let k  be a natural number. Suppose that s(k —1), « k - 1 )  ( s (k -1 )+
k -1 < r (k -1 ) )  and G(t) for t _.< r (k -1 ) are already defined and that G(t) satisfies

(A.10) G (t) =  H _1(t ) f o r  s(k-1)._-< _t r (k - 1) .

Let us set
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(A.11) Fk _i (t) =  {t— (k-1)}h(r(k - 1 ) — (k - 1 ))— ahwk-i)-0,--1» — (k - 1 )

and

(A.12) s(k) = min -(t; t > r (k -1 ) and Fk _1 (t) 14(01.

Since Hk ( t )> F k _,(t) for sufficiently large t and

Hk (t) I t-,0,-1)+1 = Fk_i (r(k —0)— 1

s(k) is well-defined and larger than r(k - 1)+ l. We define

(A.13) G (t) =  F k _,(t) o n  [ r(k-1), s(k)] .

Then, it follows that

(A.14) ir(Hk(t
\d t ) )  t=s(k) =  h(s(k)—k)

h (r (k -1 )— k + 1 ) (dd  t)leftG(t )1 t o=sc •

Let us take r= k  in (A.6) and take one of the element of -fri } (./ j0) such that

(A.15) r J — k> s(k ) a n d  h ( t )  2 f o r  t r ; —k .

We set

(A.16) r (k ) =  r  ; a n d  G(t) = H k (t) o n  [s(k), r(k)] -

Thus, s(k ), r(k ) (k  Z .+ ) and G(t) (t 0) are defined. They also satisfy (A.9)
by virtue of (A.6) and (A.15). Q.E.D.

R em ark . A function is a trace function of some {an }  when it is increasing,
convex and piecewise linear with integer valued slopes. G(t) defined in the above
lemma is a trace function.

A .3 . Proof of Theorem 4.5, necessity. —Continued—
Let us set

S(r) =  exp G(log r )  a n d  /sin  s u p  rnIS(r) .

Obviously, S(r) is the associated function of { N } . (A.8) implies

(A.17) V R >0, N„ Rn-"M„ (n »  1)

Moreover, (A.8) and (A.9) mean

(A.18) V k  Z + , S (r)Se 'T (rlek )

and

(A.19) Vk E S(r)21T(r) 1 o n  [rS,' ) , ri»],
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where r = e '  and ri 2 ) =Coo.

(z)=Z zi 1(2i M j ) is an entire function and satisfiesJ=0

(A.20) v d  > 1 ,  3 C(d)>0 , T(r12) -T(r).5C(d)T(dr12) (r O ) ,
VnEZ+ , I D ( z ) l (z e C ),

because of M n /M„_ i n (n 1). [See (5.14)] We set

(A.21) p(e) 
By virtue of Proposition 2.1 ii), this is real analytic in RI and satisfies

(A.22) 3C, R > 0 ,  I pa3 ) (e)I SCRIt'l !1"(<e>) - 1  ,

because n! satisfies the condition (R) with H = 1 . (See also the proof of Theorem
A in W. Rudin [36].) This means that p(e) belongs to S - [M„].

Now, we show that the image of e' {m} b y  P(D) is not included in 6{M}.
First, we assume Weak Separativity Condition ( W.S) on {W .  Under this restric-
tion, we can take

(A.23) G(t) t2 .

In fact, as Fk _1 <14(0 and t2 < H k (t) (t » 1), §(k)=min ft; t>r(k —1) and -Fk _,(t)=
Hk (t )}  is w ell defined. Here, r k (t) is defined by max{Fk (t), t 2}. If  we use P(t)
and ,i(k) instead of Fk (t) and s(k), G(t) satisfies (A.23).
(A.23) means {Nk } satisfies Differentiability Condition (D ) .  We set

(A.24) u = E  H i y.H 218(4 ,0 ,. . . ,0 ) / N v  9
;=.

where H  is  th a t in Condition (D.1) on {N„} a n d u  belongs to
ax

E '{M „} by virtue of (A.17) and P(D)u belongs to E  due to  T h e o re m  4 .4 . If
P(D)u further belongs to e {M } ,  Ku, P(D)u>j must be bounded. However, we
have

(A.25) 3 R>0, V d>l, 3 C(d)>O, el 1 ) 6(e)5 C(d)S(dH I e, 1 )(I e, I >1) ,

because of Differentiability Condition on {N}. Then, it is seen that

(A.26) < (-1 ).1H 2i 8(2./.0.—,0)/N 2 i, P(D)U>
= 0

= e 02' I N,; } t(<e>)- '{i 0e  ) 2k AT,k}

cfS ( 1  e 11)2 T ( I ei 1 ) - 1 de, de' ---> (n—> 00)
h ( lo g t1 ) 2 0

[C'( e 2 , el) ]  ,
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by (A.19), (A.20) with d=.\/ 2  and (A.25). This implies that P(D)u does not
belong to e {M„}

In case that {M }  satisfies only Differentiability Condition, modifying p(e) to

13 (e) = i'Ke>r i sb(e

and u to

we arrive at the same conclusion, where

(A.27)
{o._-<_0(ei )_1, ge i )Eg{L.}(R) ,

{ 1
v5(e0 = o el s 1 . Q.E.D.

Appendix B .  Equivalence between (S.2), (S.3), (S.4) and (S.5).

We rewrite (S. j) (1 5/55) using a„=log M„ and a= a i —an .
(1) 3 7' >0, Vn, m> l, a„+,„5a„--ka„,+(n+m)r,
(2) 3 r> 0 ,vn » 1 , a21(2n)5(a„In)+r,
(3) 3 7- > 0, Vn>1, 4,5aL+r,
(4) 3r>0, Vn>1, a (ahln)+r,
(5) 3 7- > 0, vn, m»1, k5n, ak + „,5ka',+a„,+(k+m)r.

P ro o f  i) The equivalence between (2) and (4) follows from

(B.1)
2n-1

na', E a; = 5  n a .

ii) Note tha t (1) and (2) are equivalent. (5) is derived from (1) and the relations
akIk5 a', and k n .
iii) (5) ( 3 ) .  In (5), we take m=sn (sEZ,\{0)-) and k = n . Then, it holds that
a(5 + ,)„5„naL+a3 „+ (s+ 1)nr. Therefore, we have

na"„ a c s + D n — a s n  n a + ( s + i ) n r .

If we set s=2, the above inequality implies (3).
i v )  (3) (2). For 3, by virtue of (3), it holds that

(B.2) 4, 5 aL+r (4„/2]4.1 ±2r (4,-14-27 •

Then, we have
4n-1 2n

=  E a; 
2 a 1  2  E  (a;--i+ 2 r)

j =2n j=n+1 j=n+1

2(a2 „—a„)+4nr, ,
that is,
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(B.3) (a4/4n) — (3/2)(a2d2n) + (1 /2 )(an/n).- r .

We set b n = n - R a 2 / 2 n ) — ( a n I n ) } .  T h e n ,  (B.3) means that

(B.3') b2„— b.52rn .

T his  implies

a2.+1-2a2.5r2n+2+2(b4-8r) r'2" (3r'>0) .

Thus, fo r  2"-1 5k52", we obtain

a2k - 2 a ka e +1-2a2 ” r'2" s (2r')k ,

because a2 „- 2 a n is increasing o n  n. Q.E.D.
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