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Let p be a prime. A representation z{™ of the symplectic group Sp(m) over
the finite field Z/pZ is realized in the space of Siegel modular forms of genus
m, of level p, and of weight .. When m=1, Hecke discovered that the differ-
ence of multiplicities of two specific irreducible representations in x{™ is equal
to the class number of Q(+/—p), if p=3 mod4, p>3, £=2; he also found a
beautiful explanation of this fact by the special modular forms, called
“eingliedrig forms”, which correspond to L-functions with Grossencharacters
of Q(~/—p) by the Mellin transformation. The basic philosophy suggested by
this classical work is, in its raw form, that the existence of special (or “lifted ”)
modular forms would produce a difference of multiplicities of certain represen-
tations in m{™.

This paper, in essence, is a document on experiments which are made to
examine this picture in the case of Siegel modular forms of genus 2 and of level
p. Main results obtained through the course of investigations are Theorems 2.6,
2.8 and 3.2, and examples in §4.

We shall explain the contents of each section. In §1, Hecke’s work quoted
above shall be briefly reviewed. In §2, we shall first generalize Hecke’s notion
“eingliedrig ” and “zweigliedrig” to Siegel modular forms of genus 2; for
certain representations 6, and 8,, of Sp(2) over Z/pZ, we shall introduce the
notion of 6, and @,,-eingliedrig forms. Then we shall prove the relation
between the difference of multiplicities of 6, and ,, in #*> and the existence
of eingliedrig forms (Theorem 2.8). We shall define the Hecke operator T'(p)
for the level p of modular forms and determine the absolute value of its eigen-
values (Theorem 2.6); the eigenvalues of T(p) are not real in general and the
real eigenvalues correspond exactly to eingliedrig forms. This phenomenon is
similar to Hecke’s “ Nebentypus” case, although the corresponding statement
for the classical case does not seem to be rigorously proved.

In §3, we shall prove that Siegel modular forms constructed from a pair of
elliptic modular forms in our previous paper [15] are #,,-eingliedrig in the case
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of prime level. In §4, we shall decompose S,.(I"{?(p)) (see §0, for the notation)
into eigen spaces of Hecke operators for p=3, k=2, 4,6,8, p=11, k=4, and
p=7, k=6. Though the theta series studied in §3 are “special ”, we can con-
struct a major part of S,(I"§®(p)) by taking products of them of lower weights;
and the theory developed in § 2 can be applied efficiently to the explicit decom-
position. We have calculated eigenvalues of T(p) in these cases, which may
have interesting arithmetical meanings as in the classical case.

In §5, we shall formulate Conjectures about eingliedrig forms suggested by
these examples. The #,,-eingliedrig forms would be precisely those constructed
in §3 (Conjecture 5.1). For f,-eingliedrig forms, however, some complication
shall arise. To clarify the points, we shall classify irreducible representations
of a certain Hecke algebra in Appendix, and formulate a plausible Conjecture
also for @,-eingliedrig forms (Conjecture 5.2). Roughly speaking, these Conjec-
tures predict that the global nature of automorphic representations is strongly
controlled if their local properties at a place, say p, are of special type.

Notation

Let R be a commutative ring. By M(n, R), we denote the associative
algebra of all nXn matrices with entries in R. For A€M(n, R), a(a) denotes

the trace of A. Put w=(_" {")eM@n, R) and

GSp(m, R)y={geGL(?2m, R)|‘gwg=m(g)w with m(g)e R*}.

If G is an algebraic group defined over a global field k2, G, denotes the adeli-
zation of G, and G, denotes the group of all K-rational points of G for an
extension K of k. For zeC, we set e(x)=exp(2r+/—1z) and Z denotes the
complex conjugate of z.

Let G be a group (or an associative algebra) and m be a representation of
G on a vector space V. Let veV and V, be the smallest invariant subspace
of V which contains v. The representation of G on V, is called the represen-
tation of G generated by v. If G is a locally compact group, G denotes the
character group of G, and S(G) denotes the space of all Schwartz-Bruhat
functions on G.

§0. Preliminaries

For a positive integer m, let §, denote the Siegel upper half space of
genus m. Set

GSp*(m, R)={geGSp(m, R)|m(g)>0},
GSpt(m, Q)=GSp(m, QNGSp*(m, R);
GSp*(m, R) acts on 9, in the usual manner. Let 2 be an integer. For a

function f on 9, and T=([é Z)eGSp*(m, R), we set
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(fIlr]e)@)=m(r)™* " f(yz)det(cz+d)*, FAST UM

Let I" be a congruence subgroup of Sp(m, Z). By G.([") (resp. Si(I")), we
denote the space of all holomorphic modular (resp. cusp) forms of weight &
with respect to I'. For feG,(I") and geS,(I"), we set

— _71_ ol ) k
0.1 U+ 8= iy ) g, [ BN ) do(2),
where z=x++/—1y with x, yeM(m, R) and duv(z) denotes the invariant volume

element on 9, given by duv(z)=(dety) ™ 'dxdy. Put §,,=¥JS,,(I’) where I’

extends over all congruence subgroups. Then, for f, g&5,, we can define
(f, g) by (0.1) since it does not depend on the choice of I'; (,) is a positive
hermitian inner product on S,.

Lemma 0.1. [f f, g€S, and y€GSp*(m, Q), then (f |[y1s, &8)=(f, g|[7 *1s).

This Lemma claims that the operator f—f|[y]; is unitary, which is trivial
in adelized definition of cusp forms. The direct proof is also easy, so it is
omitted.

Let N be a positive integer. We set

F‘""(N):{T:(i Z)ESp(m, 2)| a=d=1n, b=c=0, modN},

Fé’"’(N):{rz(i Z)e Sp(m, Z) | ¢=0,, mod N} .

As (—3\/‘ (1))€GSI’+("” Q) normalizes I'{™(N), we can decompose S,(I"§™(N))
(and G (I"§™(N)):

0.2) S §™(N)=SET ™ (N)DSE(I"§™(N)),
where SH(I"s(N)={£eS, T | f|[ Gy 8] =71 1t 7 is a Dirichler
character modulo N, we set

S §™(N), X)

ab

={resarwm | filrl=tdeta)f for any y=(% 7 )=}
Since ['™(N) is normal in Sp(m, Z), we get a representation n{™(N) of
Spim, Z/INZ)=Sp(m, Z)/"'“™(N) on S,(I"“™(N)) defined by

Uri™ Ny mod N)1f=fIlr]e, fES™(N)), ySpim, Z).

Let G be a finite group and B be a subgroup of G, and let 4(G, B) denote
the Hecke algebra of G with respect to B over C. Let C, (resp. C;) denote
the category of the equivalence classes of all finite dimensional representations
of #(G, B) over C (resp. G over C with non-trivial vectors fixed under B).
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The following Lemma is well known (cf. N. Iwahori [7], Cor. 1.5, W. Casselman
[3], Lemma 3.9).

Lemma 0.2. The functor, (n, V)— the representation of (G, B) on VB, is
the equivalence of categories C, and C,, where (x, V)EC, and VB denotes the
subspace of all B-fixed vectors of V.

We shall also use the following Lemma.

Lemma 0.3. Let G and B be as above. Let © be a representation of G on
a finite dimensional vector space V over a field k. Let W be a subspace of V
which is invariant under B, and let o be the representation of B realized on W.
If V is generated by W as a G-space, then & is a quotient representation of Ind§e.

Proof. The map ¢: k[GIQimW—V defined by
p(ZgQui=Zr(gIw;, 8:€G, weW,

is a homomorphism of 2[G]-modules. By the assumption, ¢ is surjective; hence
the assertion follows.

§1. A review of a theory of Hecke

Let p be an odd prime. We set

acF;, beF,), v={( Y|uek,}.

c=ste Fp, B={’ ") -

0a!

Let X, be the quadratic residue character of F;. We define X&B by X(((‘)Z ab_,»

=Xa). Let ¢ be a non-trivial additive character of F,. For acF,, define

g[)an by gba(((l) li))=¢v(au). We see easily that

(1.1) Ind§X=Cp11/0PC%41/2,

where €,y and 6%.,, denote irreducible representations of G of degree
(p+1)/2, which are not equivalent to each other and satisfy

(1.2) Cpirsz | UEQI’OGB( D Sba)

ae(li‘;;)2

(1.3) Chanrz | Uz=gu( ¢a)

acF,—~(Fp)?
We normalize ¢ by
(1.4) ¢(x mod p)=e(x/p), xeZ.

Then the representation €,4,/, (resp. €3.1/2) given by (1.2) (resp. (1.3)) is called
Rest (resp. Nicht Rest) in Hecke’s terminology.
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The representation z{(p) of G is realized on S,(I"(p)). For an irreducible
representation p of G, let m,(p) denote the multiplicity of p in z{”(p). Hecke
obtained the formula

h(Q(~/—p)) if k>2 is odd, and p=3 mod4,
(1.5) mk(@p+l/2)_"lk((‘glp+l/2)={ 0

if £ is even, or p=1 mod4,
by the Riemann-Roch theorem, where A(Q(~/— p)) denotes the class number of
Q(~/—p) and p>3 is assumed. Hereafter in this section, we shall abbreviate
T&(p) to To(p). Let f(#0)eS,(Iu(p), (5)) and p, be the representation of
G generated by f. By Lemma 0.3, p, is a subrepresentation of Ind§X. The
key points of Hecke’s theory are the following Proposition and Theorem.
Proposition 1.1. Assume f&S,.(«(p), <$>) iS a nom-zero common eigen-
function of all Hecke operators T(n) for pXn. Then p;=Cpiss 0r Cpi1/oPC€h41s0.
This Proposition states that p;=@%.,, cannot occur. For the proof see
Satz 26, [6], p. 842.

Hecke called a normalized eigen cusp form f eingliedrig (resp. zweigliedrig)
if 0;=Cpui1ss (resp. Cpu1/sPCh41/2) ([6], p. 841).

Theorem 1.2. mu(Cpyy/o)—mi(€pyiy/2) i equal to the number of eingliedrig

forms in S.(I'(p), (—5))

For the proof, see [6], p. 841~843.
We can censtruct eingliedrig forms from a Grossencharacter X of Q(~/— p).
In fact, if X is a Grossencharacter of K=@Q(+/— p) of conductor 1 such that

X(a)=a*"', acsK*, k>1,
and if p=3 mod4, then
@)= D H@eN@AES TP, ()

is an eingliedrig form, where a extends over all integral ideals of K and N(a)
denotes the norm of a (cf. [6], p. 893, G. Shimura [11], [12]); we obtain
h(Q(~/— D)) eingliedrig forms in this way if 2>1, 3<p=3 mod4. This “explains”
the formula (1.5) (and characterizes eingliedrig forms). Hecke further showed

that all the eigenvalues of T(p) on S.(I"o(p), (z)) are of absolute value p¢*-b/2,

We shall obtain a generalization of this theorem to Siegel modular forms of
genus 2.
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§2. Representations of finite groups in the space of Siegel modular forms

of genus 2
We set G=Sp(2, F,) and define subgroups B, P, P’ of G as follows.
x 0 *x % [x x * % * 0 *x *
¥ x k% % ok ok ok s ok ok
B_OO**'PZOO**'P_*O**
0 0 0 = 0 0 = = 00 0 =x

B is a Borel subgroup of G; P and P’ are all proper parabolic subgroups which
contain B, We have

Lemma 2.1. [Ind§(15)=1:8260,F56,,P0,:Db,s, Indg(15)=1:H6,PB6,,, Indé (1)
=1s00,50,,. Here 1y denotes the trivial representation of H for a subgroup H
of G; 8y, 0y, 0,5, and 0,, denote mutually non-equivalent irreducible representa-
tions of G which are labelled according to B. Srinivasan [13] when p+2.

The structure of the Hecke ring 4 (G, B) is given as follows (cf. [7]). Put

0100 0010 0 010
@D w= 1000 Wy 0100 e 0 001

000 1) —-10 0 0Of -1 00 0f

0010 0001 0-100

S,=Bw,B, S;=Bw,B. Then S, and S, satisfy the relations
{ Si=(—DS:+p, =1, 2,
(S:1S:0=(S,S,)".

(2.2)

We have 4(G, B)=C[S,, S.], the associative algebra generated by S, and S,
over C with relations (2.2). The (one dimensional) representations of %(G, B)
which correspond to 1g, 8,,, 6,, and #,; by Lemma 0.2 are given as follows.

]-G 011 012 013
(2.3) Si|plp|—-1]-1

S, p'j—l p -1

1

Corresponding to #,, we obtain the two dimensional representation Sla(? g)

Sz—>(€ _(1)), where we may set

_p=log L _ 264D 5 p(p—D)

2.4) o1 P T prr p+1

Similarly the representations which occur in Indg(1p) are classified as follows:
4(G, P) is generated by three Hecke operators P, PwP, Pw,P. The eigen-
values of these Hecke operators which correspond to 1z 6, and 8,, are given
in the following table.
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] w | e | 6.
P ] 1 1ol
(2.5) |
PuP | p | —p | p
PwP | p4+p | p—1 |—p—1]

Let ¢:Sp(2, Z)—G be the canonical homomorphism. For a subgroup H of
G, set I'y=¢ " '(H). Thus we have I'p)=1I"{®(p). For an irreducible represen-
tation p of G, let m.(p) denote the multiplicity with which p occurs in 7 (p).
T. Yamazaki, R. Tsushima and K. Hashimoto [5] have obtained the following
formula:

(2.6) m (o) +m4(010)—mx(6,)—mp(012)
1/4 if p=1,5
=(—D**h(Q(V =) X{ 4 if p=3 mod 8,
1 if p=7

for k=4, p=5. In (2.6), a unipotent cuspidal representation #,, of G appears
which is of completely different nature from @, 6,, and 6,, representation
theoretically ; thus (2.6) may not be “explained” as in Hecke’s theory. How-
ever, if we consider m,(8,)—m(8,,), we can develop analogous theory to Hecke’s.

For FeS,(I'p), let pr denote the representation of G generated by F.
Three Hecke operators I'p, W=1I"pwl p, Wo=I"pw,I"p act on S,(I"p), Where w,
w,=Sp(2, Z) are given by (2.1).

Lemma 2.2. Let FES,(["p), F#0. Then

(1) pr is a subrepresentation of Ind¥(1p)=1,PD0,PH6,,.

(2) pr=lgeF|\W=p'F, FIW,=(p*+p)FoF|W=pF.
pr=0,F|\W=—pF, FIW,=(p—1)FeF|W=—)F.
or=0,0F|W=pF, FIW,=(—p—1)FeF|W=pF.

Proof. (1) follows from Lemma 0.3, and (2) follows from the table (2.5).

Put H:(_%{lz (l):)k

Lemma 2.3. With respect to the Petersson inner product (,), H W and W,
are self-adjoint operators acting on S, p).

Proof. Let F, GeS,(I's). By Lemma 0.1, we have

1

(FIH, G)=(F| (_01, o) =G|} )

))

=, G|(2, o))=(F cim,
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(FIW, G)=(TF| [wjk((l) M ©

=F|twl,, £6]( ))=F| el 6,

where X} denotes the summation over the equivalence classes modulo p of
u

ueM@, Z), ‘u=u. Similarly we get
(F, GIW)=p*(F, G| [wl=p"(F| [wl, G).

Hence H and W are self-adjoint. We omit the proof for W, which is similar to
the above.

Lemma 2.4. Let V be a finite dimensional vector space over C and (,) be a
positive hermitian inner product on V. Let A and B be endomorphisms of V which
satisfy

A?’=¢g -1y, Bl=egt-ly, A*=e, A, B*=ezB.

Here e,—=+1, eg==+1, 1, is the identical automorphism of V, t is a positive real
number and A* (resp. B*) denotes the adjoint of A (resp. B) with respect to (,).
Then

(1) AB is semi-simple and all eigenvalues of AB have absolute value 1'%,

(2) V is a direct sum of irreducible invariant subspaces under the actions of A
and B.

(3) Assume that V is irreducible. Then dimV <2, Let 2 be an eigenvalue of
AB. Then, Zf Eg=Epg,

dimV=1o21cR, dimV=2e1&R.

Proof. By the assumptions, we see immediately that A and B/+/t are
unitary ; hence AB/+/t is unitary and (1) follows. If V, is an invariant sub-
space of V, then the orthogonal complement V, of V, is an invariant subspace
and V=V ,+V, holds. Hence we get (2).

Now we assume that V is irreducible. Let v, (#0) be an eigenvector of
AB. Put ABv,=2Av,, 2€C, v,=Av,, W=Cv,+Cv,. Then we find 2#0. Obvi-
ously W is invariant under A. Since

Bv,=e Av, and Buv,=(e ept/A)v,,

W is invariant under B. Hence V=W and dimV <£2. To prove the latter half
of (3), it suffices to show that dimV =1 if AeR. Put e=e¢,=¢p and take p=C
so that p#*=¢. We find

A+ po)=ep,+pvs),  Bui+pv)=pd(v+pv,),
if A=2. This proves (3).
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Let .£ denote the commutative algebra generated over C by the Hecke
operators T(1, 1, [, ) and T(1, (, !, [?) for all primes [#p (cf. Andrianov [1]).
The action of .£ on S.(I'p) is semi-simple; we can take common eigenfunctions
of .£ as a basis of S.(I'p).

Lemma 2.5. The operators W, W, and H commute with operators in L.

Since the proof is easy (trivial in adelized definition of automorphic forms),
we omit it.

Let SiI'p) denote the smallest invariant subspace under the actions of H,
W and W, which contains S,(Sp(2, Z)) (the space of “old forms”). Let SYI'p)
denote the orthogonal complement of Si(I'p) in S.(I'p) (the space of “new
forms”). Of course, SYI"p)=S,(I"p) if S(SP2, Z))={0}.

Theorem 2.6. SYI'p) is an invariant subspace under the action of L, H and
W. Put T(p)=HW. Then we have
(1) As a basis of SYI'p), we can take common eigenfunctions of operators in L
and T(p).
(2) All eigenvalues of T(p) have absolute value p.

Proof. The invariance under .£ follows from Lemma 2.5 and the fact that
the operators in .£ are hermitian. The invariance for H and W follows from

Lemma 2.3. Take f&SYIp). By Lemma 2.2, we have f|W?—p2feS,(Sp2, Z)).

Hence W2=2p? on S¥I'p). Obviously we have H*=1, Now, by Lemma 2.1, (1)
and Lemma 2.5, the operators in .£ and T(p) are mutually commutative and
semi-simple. Hence we obtain (1); (2) follows from Lemma 2.3 and Lemma
2.4, (1).

Remark. (1) The eigenvalues of T(p) can be both real and non-real. The
examples shall be given in §4.
(2) We can prove Hecke’s original theorem by the same method.

Let FESYp) and let F (z)z? A(N)e(a(Nz)) be its Fourier expansion. Then,

by a direct computation, we have

@7 (FIT(N)=p"* 3 A(p~ N)e(a(N2).

Now we are going to look the space SY/'p) more closely. The representa-
tion of .£ on SYI'p) decomposes into a direct sum of one dimensional repre-
sentations. For a one dimensional representation 4 of £, let SY/ p); denote
the A-isotypic component of SY/'p). By Lemma 2.5, S¥/'p); is a C[H, W]-
module. Since H and W are hermitian with respect to the Petersson inner
product and H*=1, W?*=p? on SY/['p), we have, by Lemma 2.4,

(2.8) Sg(FP)]=®Viy
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where V; is an irreducible C[H, W]-module such that dim¢V,;<2. If dimeV,=2,
the eigenvalues of T(p) on V, are not real and mutually complex conjugate by
Lemma 2.4, (3). Thus the action of T(p) on V, is semi-simple. This consider-
ation proves (1) of Theorem 2.6 again and also justifies the following definition.

Definition 2.7. Let F(#0)eS%¥[ p) be a common eigenfunction of operators
in .£ and of T(p). We call F zweigliedlig (resp. eingliedrig) if F generates a
two (resp. one) dimensional irreducible C[H, W]-module. Assume that F is
eingliedrig. If pp=0, (resp. 6,,), F is called @, (resp. 0,,)-eingliedrig.

Remark. Let F be as above. Then pr=0,P0, or 8, or 6,; F is ein-
gliedrig if and only ppé 8, or 0,,; F is zweigliedrig if and only if pr=0,P0,,.
Put F|T(p)=pF, pC, |pl=p. Then F is eingliedrig (resp. zweigliedrig) if
and only if py=+p (resp. p&R).

Theorem 2.8. Assume S,(Sp2, Z))={0}. Then m,(0,)—mu(0,1)=dimc{f-
eingliedrig formsd)—dime{8,-eingliedrig forms).

Proof. By the assumption and Lemma 2.2, we have W?=p»* on S,(I'p) and
mp(@,) (resp. m,(@,,)) is the multiplicity of the eigenvalue —p (resp. p) of W.
We consider the decomposition (2.8). If dimV;=2, the set of eigenvalues of W
on V;is {p, —p}, since otherwise W acts as a scalar on V,; and V; cannot be
irreducible.. Thus a two dimensional component V; gives no contribution to
my(0y)—my(8,,). Assume dimV,=1 and V, is spanned by F;€S,(I's). Then
we have F;|W=—pF; (resp. pF;) if and only if F; is a 8, (resp. 0,,)-eingliedrig
form. We see, by the Jordan-Horder theorem, that the number of such V,’s
does not depend on the particular choice of the decomposition (2.8). This com-
pletes the proof.

Remark. We can obtain analogous results for S,(/"p) and m(8,)—m4(8,,).

We are going to study arithmetic properties of Fourier coefficients of
eingliedrig forms. Let U be the subgroup of G defined by

v={ (1) ‘1’) |beme, Fy), 5=1}.

Hereafter in this section, we assume p#2. For a symmetric matrix Se M(2, F,),
define 750 by 9s((§ 3))=¢(a(Sb)), where ¢ is given by (L.4); we see easily

that all characters of U are of this form. For symmetric matrices

Sy, S:€M(2, F,p), let us write S,~S, if there exists TeGL(2, F,) such that
tTS,T=S,. We have

(2.9) 0:1U=( @ 75)( B 75)B( @ 75)B0+Dls,
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(2.10) 0,1U=( @ 75)8( B 75)®( B, 75)Dlo.

where S,=({ _9), $:=(( _J), S:=(§ ). S.=(§ §) with weF;—F;r.

These formulas are similar to (1.2) and (1.3). We need the following

Lemma 2.9. Let v, (resp. v;) be a non-zero P-fixed vector in a representation
space of 6,, (resp. 8,). Then

eraTnret(o DT Pz

if 7=7s with —detSEF;—(F3),

1 N
uesM (2, Fp) ty=u ( )( 0))’7(") 1,1/2750 |
if n=ns with —detSe(F;). o

Since the proof is easy, it is omitted.

Proposition 2.10. Let FeSYI'p), F+0 and F(z) EA(N)e(a(Nz)) be the

Fourier expansion of F, where N extends over positive definite half integral
symmetric matrices. We assume that F is an ezgenfunctzon of H and of operators
in L and p+2. Then

(1) Fis Oseingliedrig if and only if A(N)=0 whenever (:—d%;i]!)=—1.
(2) F is 0,,-eingliedrig if -and only if A(N)=0 whenever (ﬂ)zl.

Proof. Since F|H=cF with ¢*=1, we get
e F|wlae=F|(_5 o),y )@= 3 ANeaWz/p).

For p=ns, put

F,=

F [ka((l) ?)kvi(u)f',

where # denotes a symmetric matrix in M(2, Z) such that # mod p=u. Then
we have

ueM 2, Fp), tu=u

2.12) F, ‘((1) "), =0 mod pIF,, uEM, 2), ‘u=u.
By a direct computation using (2.11), we obtain

(2.13) F,(@)=cp** 2 AWN)e(a(Nz/p).
N mod p=S§

Now assume F is 6,;-eingliedrig, i.e. pr=6,. By (2:10) and (2.12), we
see that F,=0 if —detSe(F;)’. Therefore, by (2.13), we obtain A(N)=0 if
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(7_&;}21\[ ):1. Conversely assume A(N)=0 if (;de;ﬂ>=l. Assume
er=0,586,, or 6, By Lemma 2.9, we get F,#0 for some (actually any) yp=ys

—det2N )

)/
=1 by (2.13). This is a contradiction. Therefore we must have pr=8,,. This

proves (2). The assertion (1) can be proved in a similar way.

with —detSe(F;)®. Hence we get A(N)#0 for some N such that (

§3. A construction of 4,,-eingliedrig forms

In this section, we shall show that some of Siegel’s modular forms con-
structed in our previous paper [15] are 6,,-eingliedrig. First we shall recall
this construction briefly. Let p be a prime and D be the quaternion algebra
over @ which ramify only at p and at the archimedean prime co (called (p, oo)-
quaternion algebra); * denotes the main involution of D. Let D} denote the
adelization of D*. We take a maximal order R of D and set D;=DR,Q,,
R,=R®zZ, for a prime [, K:ILI RixH*. Here H=DQgqoR is (isomorphic to)
the Hamilton quaternion algebra. For 0<neZ, let ¢;, denote the symmetric
tensor representation of degree n of GL(2, C) on V=C*"*'. Fixing a splitting
HRRC=M(2, C), we consider g;, as a representation of H* and put o¢.,(g)=
g (g)N(g)™ We set S(R, 2n)={¢p| ¢ is a V-valued function of D} which
satisfies p(rhk)=¢(h)o::(k) for any yeDg, heDj, k€K}.

For any prime [#p, we can define Hecke operator 7T’(/) which acts on
S(R, 2n) (cf. [15], p.210). If ¢ is a common eigenfunction of T’(/) and
T'(Dp=24,¢, We put

L(s, ¢)= ll;[p(l—l,l"+l“2’)" .

Let w, be a prime element of D,. As @, normalizes R;, we have

S(R, 2n)=S*(R, 2n)®DS (R, 2n),

where S*(R, 2n)={peS(R, 2n)|p(hw)=+¢(h) for any heDj}. We consider
D as a quadratic space over Q by the reduced norm N. Set

X=D@®D, G=5p2), H={(a, b)ye D* X D* | N(@)=N(b)=1];

G and H are considered as algebraic groups over Q. We let D*XD* act on X
on the right by

o(a, b)(xy, x:)=(a"'x:b, a'x,b), x,, x,€D, a, beD".

Take an additive character ¢ of Q, so that ¢=1II ¢,
v

d(x)=e(x), xER=Q., ¢ (x)=e(—Fr(x)), x€Q,,

where Fr(x) denotes the fractional part of x. Then ¢ is trivial on Q. Let =
denote the Weil representation of G, realized on &S(X,) associated with D and
¢. Take p,=S(R, 0), ¢.€S(R, 2n) and let V, be the representation space of
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0:®0.,. Let (,> be a hermitian inner product on V, such that ¢,&a., is
unitary with respect to {,». For feS8(X,)QV,, set

3.1) o=, , <J @b, ow>dh,  gECy,

where p=¢,®¢, is the V,-valued function on D3iXDj.
We choose f more explicitly in the following form: le;lflew; f1ES(X)

is the characteristic function of R/®DR,; f-ES(X)QV, is of the form fu(x,, x;)
=7(x,, x2)exp(—2x(N(x,)+N(x2), (%1, x2)EX-=H@®H. Here 7 is a V,-valued
polynomial function on X. such that %(x,, x;)=P(x¥x,) for x,, x,€H with a
V,-valued homogeneous harmonic polynomial P of degree n of three variables
depending on the pure quaternion part of x¥x,. We assume

3.2) 7(p(a, b)x)=(0y(a)Qa:(b))n(x)  for a, be H',

where H'={acs H | N(a)=1}.

For geG.., define g€G, by f.=g, §,=1 (l is a finite prime). Let K. be
the stabilizer of ~/—11,9,. In general, if @, is a function on G, which
satisfies

3.3 Dy(ghs)=D(g)det(a+bv—1)%, ko= _‘II) I;)EKw,
then a function F, on 9, can be defined by
(3.4 Fi(g(W—1 1,))=04(8)det(cv/ —1+d)*

for g=(? g)EG@. We set Fo,=¥(D,).

Put F=¥'(®,). By the choice of f as above, we have FEG,..(I"®());
and FES,+.(I"#(p)) if n>0. We can easily prove the following

Lemma 3.1. Let y=Sp2, Z). Then we have F|[1],=¥(D,), where
f'eS(VIQV, is given by f’=vgfv><7rp(r“‘)f,,. Here 7, denotes the local Weil

representation of qu on S(XQP).
The explicit form of F is given as follows. Let D3= QDéyiK be a double
i=
coset decomposition with
(3.5) Ny)=1€Qi, (¥:i)-=1.

Define a lattice on D by L;;=DeNy,II R,y;'. Then L,; is a maximal order
of D; put e;=|L}|. Up to a constant multiple, we have
h

3.6) Fo=3 3¢ 3 Patxnea(@x)),

=1 j=1 =(xy, T2)€L;;®Ljj
01(¥)Qpu(y ) eied, z€D,,

where Q(")=(Trf\;(,§1;2) /2 T"%(‘;Zf))/ 2) and Tr denotes the reduced trace. We
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denote this F by F(pi, ¢.). If ¢,€S5*(R,0), ©,=S*(R, 2n), then we have
F(¢,, ¢2)=0. Now we shall prove that F(¢,, ¢,) are 6,,-eingliedrig forms.

Theorem 3.2. Let p,=S*(R, 0), p.=S*(R, 2n) and put F=F(¢p,, ¢.), k=n-+2.
We set e=1 (resp. —1) if ¢,€S*(R, 0) (resp. S*(R,0). Then we have
(1) F|\W=pF.
(2) F|H=¢F.
(3) If F+0, then prp=6,,.
4) FeSY¥I'p) if F is a cusp form.

Assume ¢, and ¢, are common eigenfunctions of Hecke operators T'(l) for all
primes l#p. Let L(s, F) denote the Euler product attached to F as in [1], [15],
§6. Then F is a common eigenfunction of all operators in L and we have

(6) L(s, F)=L(s—n, p.)L(s—n, ¢o),
up to Euler p-factors.

Proof. First we shall prove (1). Let w=(_? 6) as in (2,1). Since

F|\W= F

ueM(2,2),u=tu,umod »

twl(y ),

it suffices to show

1 u
@7 ueM(2,Z),§=‘u.umod pﬂp((O 1>w)fp=pfp,

by Lemma 3.1. We get, by the definition of the Weil representation z, (cf.
[14], p.403 and Remark 1), ny(w)f,=f% where f} denotes the Fourier trans-
formation of f, with respect to the self dual measure. Set R,=w3;'R,=R,w}"
(the dual lattice of R,). We have f%=p~?Xthe characteristic function of R,®R,,
since VOI(R,®DR,)=[R,DR,: R,DR,1*=p"% As

wl(y DIHR=gulo xS NI HE)

and u—¢y(o(u‘xSx)) defines the trivial character of {ueM(, Z,) | ‘u=u} if
and only if xeR,®R, for x€ R,MDR,, we obtain (3.7). This prove (1).

Now we shall prove (2). We have F|[w],=¥ (D) with f’=D£Ipf,,><f;‘.
From this, we get by a little computation that

h h

< = jP(x?‘xz)e(o(Q(x)Z)),

’

1 j=1 z=(z), 22)EL};®LY

(3.8) (F|[wl)@)=p"?;

§01(J’i)®90z(yj)/eiej> s

where L§j=DQﬂyi(L];I Rle?,,)y;l. For each i, 1<i<h, let y, w3 '=7:y:ks With
p
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1<s=<h, y;€Dy, k=K. Then we find N(y;)=p' and Lj;=y;L,;; so the map
L,j>x—>y;xsLi; is a bijection. As (FIH)2)=p *(F|[w]:)pz), we get

h

FH@=p""Z 25 Petrtneee@a),

J=1 z=(Z1, 2)ELs;®Lg

013, p)Q0a(;)/ ese5) .

We have P(x¥r¥rix.)=P(p'x}¥x)=p "P(x¥x,). Hence we get F|H=¢F, which
is (2).

By Lemma 2.2 and (1), we have pp=§,, if Fs0; hence we get (3). To
prove (4), it suffices to show (f, F)=0 for any f&S,(Sp2, Z)). But this is
clear since f|W=p%f, FIW=pF and W is hermitian. The assertion (5), except
for Euler 2-factors, is proved in [15]; the results of [16] show that this holds
also for Euler 2-factors. This completes the proof of Theorem 3.2.

The restrictions (3.2) and (3.5) made on the choices of y; and P are some-
times inconvenient for numerical computations. Drop the assumption (3.5) and
define the lattice L;; by the same formula; also assume simply that P is a
(scalar valued) homogeneous harmonic polynomial of degree n on H of three
variables depending on the pure quaternion part. Put

0f= = P(x¥x,)e(a(Q(x)2)),

(z), 22)ELy;®Lyj

where Q(x)= 'N(—;j(Tr&?;z) 13 T7SE/2) with the norm (L) of the lat-

tice L;;. Then we have

Proposition 3.3. Let O be the space spanned by 0% for 1=<i, j<h and all
P as above. Then OCG,4:(I'p) (Snsell'p) if n>0), and is invariant under .L.
As a basis of ©, we can take functions of the form F(p,, ¢.), where ¢; (i=1, 2)
may be assumed to be a common eigenfunction of all T'(l), l+p.

This is an easy consequence of Theorem 3.2, (5); we omit the proof.

Remark. Let f,eG,(I"(P)), f2€ CGan+o(I"#(p)) be the modular forms which
correspond to ¢, and ¢, respectively ([15], Prop. 7.1). We have L(s, fi)=
L(S, 901)1 L(S, fz)_—’L(S—n, ¢2);

(3.9) L(s, F)=L(s—n, fi)L(s, f2)

except for Euler p-factors. We also get

/i ’(_2, é)zz—sfl' fa

(L o=t
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§4. Numerical examples

Let H denote the Hamilton quaternion algebra and 1, 7, j, # be the standard
quaternion basis. We shall use the following harmonic polynomials P, of
degree n:

P(x)=1, Py(x)=c’—d*, Py(x)=c'—6c"d*+d*,
P®(x)=c—15¢'d?+15c*d —d®, P& (x)=b"—15b*c*+15b%*—ct,

where x=a+bi+cj+dks H. The data concerning the dimension of S,.(I"§(p))
are taken from K. Hashimoto [4]. Some of the formulas in this section are
conjectural ; we shall mark them by the subscript ¢. The equality of Euler
products means the identity up to the Euler p-factor, where p is the level of
modular forms.

(I) The case of level 3

The (3, oo)-quaternion algebra D is given explicitly by D=Q+Q:'+Q;’+QF’
with 2=—1, j*=-3, i/j'=—j'"’=Fk’. A maximal order R of D is given by
R=Zw,+Zw,+Zw,+Zw,, where o,=(147")/2, 0.=G"+k")/2, w,=]", w,=F.
We have h=1; so S(R, 0) consists of constant functions. Put

1=4%1, Xo, X3, Xa), Y="(Y1, Yo, Vs, YIEZ*,

E=%,0,F X0+ X305+ X0y, =101+ Yoo+ Y03+ Y0, .

We define a symmetric matrix S by N(%)=‘xSx; we have

/10 3/2 0

{0 1 0 3/2 _/*xSx 'xSy

S=l3/2 0 3 o | St y)—<‘x5y ‘xSy>'
0 32 0 3

Put X=%*j and let
b=2xthe coefficient of i/ in X,
c=2Xthe coefficient of ;/ in X,
d=2Xthe coefficient of %2’ in X.
The explicit forms are
b=(x231— Y2 x:)+3(X2Ys— Yo XsF Xs Y1 — YaX1)F6(X4 Y5 — V4Xs),
c=(x1Y3— Y1 %)+ (XeYa— YaX4),
d=(x1Y4— y1%)+(YeXs— X2 Ys) F(X1Y2— 1 X2).
We define five theta series by
02(Z)=(§)e(0(0(x, ¥)z)),
04(Z)=(H)(cz—d2)e(a(0(x, ¥)z)),

os(z)z(E)(c4—6czd2+d‘)e(a(0(x, ¥)2)),
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03‘"(2)=( by )(c“—15c‘d2+15c2d4—d“)e(a(Q(x, ¥)z)),
.y

0P (z)= X (b°—45b'c*+135b%c*—27c%)e(a(Q(x, ¥)2)),
¢

z, ¥

where z€$, and (x, y) extends over Z‘@PZ*. By the results stated in §3, we
see 0.€G,(I'$?(3)), 0.€S.(I"P(3)), 0,€S('#(3), 65, 0P S(I'(3)). We
have

4.1 L(s, 0)=5(s)¢(s—1)?,
4.2) L(s, 0)=8(s—2)(s—3)L(s, fo),
4.3) L(s, 0)=C(s—4)(s—5)L(s, fi),

where f(#£0)eS,("P@)=S;I"§(3)) (one dimensional), fr(#0)&Sn §(3))
(one dimensional); (4.1) and (4.2) are given in [15], §8; (4.3) follows from
Proposition 3.3 since dim S*(R, 8)=dim S;,(/"§(3))=1 and 6,+0.

First we are going to decompose S¢(I"{*(3)) into eigen spaces. We have
dim S(I"#(3)=2; 6; is a 0,,-eingliedrig form which satisfies 6,|H=46,,
6,|W=36,. Take a non-zero cusp form ¢, from the orthogonal complement of
{f¢>c. Since the operators in .£, H and W are hermitian, ¢, must be an
eingliedrig form. We find that the N-th Fourier coefficient of 8,X60.,=S,(I"{*(3))

for N= 10 is 576. Therefore ¢, must be 6,-eingliedrig by Proposition 2.10;
0 2

we can take ¢, of the form ¢,=60,Xx8,—c8h,. The Fourier coefficients of 6,x 8,
and 6, for ((1) (1)) are both 48. Hence we get ¢=1 by Proposition 2.10. We
have shown

$e=0:.X0,—0,, ¢lH=¢s, ¢s|W=—3¢;.
Let gbe(z):%} A(N)e(6(Nz)), z€ 9., f}‘o(z)zn%a(n)e(nz), a(l)=1, z=9, be Fourier

expansions, where f}ESH(I"§(3)) (one dimensioral). In tables (1) and (II),
we can observe the relation
Ls—aX(s—5)L(s, p)=Cacwnr(s—4) "Zi}l(A(n(é g))/48)n“s..
which suggests
(4.4). L(s, p)=C(s—4(s—5)L(s, f1).

It is almost certain that (4.4), can be proven by the method of H. Maass [10]
and D. Zagier. The eigenvalues of T'(3) on Sy(/"»(3)) are 3 and —3. Incidentally
we get S(I'§(3)=StI"#(3)).

Now we are going to decompose Sg(I"{®(3)) into eigenspaces. We have
dim Sg(I"®(3))=5. Put

02@)=2 B(N)e(o(N2)), 6:°(2)=2 C(N)e(a(N2)),

be the Fourier expansions. Put V=<8, 6»)c. By the table (II), we see
that dimV,=2. Therefore, by Proposition 3.3, V, is stable under .£. Set
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(657 T(Z))(2)=§,1 By(N)e(a(Nz)), (6 T(2))(2)=§ Cx(N)e(a(Nz)).
By tables (II) and (1), we find

4.5) 05" l T(2)=—12246§"—500,

4.6) 0

T(2)=38232604" 415540 .

Put
P =(2535—33+/d)05>+(87—+/d)6,
P=(2535+33+/d )0+ 87+ )P,
where d=11X179. Then we have

@ | T)=(165+3V d ), ¢ | T(2)=(165—3v d ) .

Let fi(2)= é b(n)e(nz)e S1,(I"§*(3)) be normalized so that b(1)=1, b(2)=—27
+34/d. By Proposition 3.3, we have
@.7 L(s, ¢§”)=C(s—6){(s—T)L(s, 7).

Comparing tables (1) and (II), we can observe the relation
. _ °° 1 0\, _
Us—6X(s— DL, fro=Cowmnls—6) Z Dn(, |,

which is a consequence of (4.7), where we put

§(2)/(48%336)= g D(N )e(q(Nz)) .

By Theorem 3.2, ¢ and ¢4 are 6,,-eingliedrig forms and we have ¢ | H=¢{®,
P IW =3¢, i=1, 2.
Next we consider 6%, 0,X6,€S,(I"*(3)). Put

03(2)“—‘§E(N)€(0(N2)), (0z><0o)(z)=§F(N)e(0(Nz)),

CH T(2))(z)=§ E,(N)e(a(Nz)), ((0:%8,)] T(Z))(2)=%J Fy(N)e(o(Nz)).
Some of these values are given in tables (IV) and (V). Put V=
¢, 08, 0%, 0,X0s>c. As the Fourier coefficients of 6§ and of & vanish
for n ((1) 3) (cf. Prop. 2.10), we have dimV=4. We see VCS:("®3)) by (2)

of Theorem 3.2. Let E,€G.(Sp(2, Z)) be the Eisenstein series and put p{¥=
0. X(E,—E,|H). Obviously 7{®#0 and 7{’eS;("#@3)). Therefore we have
StPEN=V, SsI"#3)=<(n"¢. In particular, V is invariant under .£ and
7 is a common eigenfunction of all operators in..£ (cf. Lemma 2.5). Using
the tables (IV) and (V) for n-N,, we find
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31T (2)=—720%+246,0, modV,,
(0:0,)| T(2)=7560%410860,60; mod V.
Then by tables (V) for n-N, and (II), we obtain

(4.8) 0% T(2)=—T260%+240,0,+2160{"+86 ,
4.9) (6,0,)| T(2)=75603%+1080,0,+7560> 42663 .
Put

PP =305+6,0,46{", ¥ =—21054+20,0,+96{"+(65>/3).
By (4.5), (4.6), (4.8) and (4.9), we have
2| T(2)=180¢§>, 9§ |TQ2)=—1449{.

On the other hand, by table (IV), we have 9{"|T(2)=—144%{". Therefore ¢
must be an eingliedrig form by Theorem 2.6, (1). By table (IV), the Fourier

coefficient of ¢§* for ((1) (2) is 576. Hence ¢§ must be 6,-eingliedrig. We
have

PO IH=0>, @ |W=—34.
For f{“,,(z)=nf:,lc(n)e(nz)eS;“4 I'{"(3)) (one dimensional), ¢(1)=1, we observe the

relation (cf. table (1) and (IV))
(4.10), L(s, i)=C(s—6)L(s—=T)L(s, f1p.

Now we turn to the most interesting part of Se(/"{®(3)). Let V, denote the
subspace {n{", 7§®>c. As an orthogonal complement of {¢§", ¢, ¢§¥>¢, V, is
a two dimensional C[H, W]-module. We shall show that V, is irreducible. For
this purpose, it is sufficient to prove that the eigenvalues of T'(3) on V, are not
real, by Lemma 2.4, (3). Let

75°(2)=21 GO (N)e(a(Nz)),  15(2)=31 GP(N)e(a(Nz)),

be the Fourier expansions. By table (IV) and (2.7), we find
(4.11) NI T@) == +(d/5),
(4.12) 9P| T(3)=—409P — 9.

Hence the characteristic roots of T(3) are —1+2+/—2. Therefore V, is irredu-

cible. Put ¢®=209P—v/ =27, pP=209P++/—27®. By (4.11) and (4.12),
we see

(4.13) G I T@)=(—14+2v=2)ps".

Thus ¢§¥ and ¢§¥ are zweigliedrig forms. This completes the decomposition of
S«(I"®@3)). The eigenvalues of T(3) on this space are 3, 3, —3 and —1+2+/—2.
Incidentally we can prove
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Proposition 4.1. dim S,(I"®(3))=0 and dim S(I" P (3))=1.

Proof. Considering the injection
SI'@@N2f —> [X0,€SU'PQ3)),
we see dimS,(I"®@B)<2. Asscme dimS,(I"®3))=2. As we have shown

SI&EN=SyI"®@3)) and 6,|H=6,, we must have S,I"®@)=Si{"&3).
Now consider another injection

S(PE)>f —> fX(E,\—E,| H)eSg(['{"(3)).

Since dim S;(I"®(3))=1 as we have shown, we get a contradiction. We obtain
dim S,(I"®(3))=1 since it contains 6, If f(#0)eS,(I"#(3)), then f* and f x4,
are linearly independent cusp forms in S,(/"¢®(3)). This is a contradiction. Hence
we obtain dim S,(I"{®(3))=0.

(II) The case of level 11

The (11, «)-quaternion algebra D is given by D=@Q+@Q:'+Q;'+QFk with
i?=—1, j*=—11,7j'=—j'"’=Fk’. We have h=2 and S(R, 0)=S*(R, 0). We
are going to construct theta series from lattices L;(1=7, 7<2).

We use the following notation. The lattice L;; is written as L;;=Zw,+
Zwy,+Zws+ Zw,, and N(L;;) denotes the norm of L;;; an explicit form is due
to A. Pizer. We put

x:t(xly X, X3y x4)) y:t(yly Ve, y3y y4)€Z4;

and set ¥= é xXiw;, = é yw;. Define S;;eM4, @), 'S;;=S:; by N(X)/N(L;)
i=1 i=1
_ _(*xSix xSy .
=txS;;x and set Qj(x, y)—(txsijy txsiﬁy). Put X;;=%*7 and let
b=the coefficient of " in X,
c=the coefficient of j’ in X,
d=the coefficient of %2’ in X;;.

Thus b, ¢ and d are polynomials of x and y which may depend on Lj;.
First we consider L,;. We have o,=(1+4;")/2, 0,=G"+7")/2, ws=j', w,=Fk’
and N(L;;))=1. We set

02‘”(Z)=(g)e(0(0u(x, ¥)z)),
0= 5 5 ('~ 1ceo(@ulx, 12,
x, ¥
0P@= 1 3 (= d9elo(@ulx, 3)2)),
«x, ¥
where (x, y) extends over Z‘@PZ* and z€9,.

We consider L,,, We have w,=(1+3;")/2, w,=@"+165"4-3%")/6, w,=3;’,
w,=k’ and N(L,,)=1. We set
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02‘”(2)=(§)e(0(022(x, »z),

19@=2 3 (= de(o(Qulx, 12D

We consider L,,., We have w,=143;'+4k")/12, w,=(G"+45'4+3k")/12, ;=
772, w,=k’/2, N(L,;)=1/12. We set

02‘”(2)=(§)e(0(0n(x, ¥)2)),
04“"(Z)=IS(E)(bz—llﬁ)e(o(Qn(x, )2)),
0§5’(2)=9(§)(62—dz)e(a(le(x, ¥)2)).

We consider L,;. We have w,=14+3;'+2k/, w,=1"+4'+3F, 0,=6]', 0,=
6k’, N(L,)=12. We set

6= 51 3 (= dVe(a(Qulx, 1)

We have 052 G,(I"PADY1<i<3), 6P eS,(IMPADYILiL6); dim G, 11)=
dim S(R, 0)=dim G;(I" #(11))=dim S*(R, 0)=2, dim S5(I"{’(11))=dim S*(R, 4)=3,
dim S $(11))=dimS-(R, 4)=1. Let E, and f, denote the Eisenstein series
and the normalized cusp forms in G3(I"{"(11)) respectively.
As is shown in [15], §8, we have
L(s, 052 +0—205)=L(s, f.)°,
L(s, 305> =205 —05)=L(s){(s—1)L(s, fo)=L(s, E;)L(s, f3),
L(s, 9050440 +1260)=C(s)’C(s—1)*=L(s, E,),
and 36050 —20— 60 S,(I"#®(11)) ; these are modular forms which correspond
to the pairing G3(I" A1) X G3(I"{P(11)).
Now let us consider the pairing G3(I"&(11)XS;(I"{P(11)). Corresponding
to the six pairs, we can obtain six linearly independent cusp forms in Si(I"{®(11))
by linear combinations of 6{’(1</<6). These are given explicitly as follows.

Let fs(2)= g‘,lane(nz) be any normalized eigen cusp form of all Hecke operators

in®Sz(I"¢{(11)). First determine a,, a., a,, @; and a5 successively by

1
a= 264 {50+8(a.+4)+9a;—as},
11 7
a=55a— - —as— 3 (atd),

a;=4a,— %((12+4) ,

120’3=45+6a2+48a4_’12&6—(az+8\)2+802+32 ,
27a;=2758—116a,+252a3+4266a,+908«,
—4(a;+27)as+36)+108a,+972,



364 Hiroyuki Yoshida
and set F=0{"+ izilzai(?.‘“. Then we have F+0 and

(4.13) L(s, F)=C(s—=2){(s=3)L(s, fe)=L(s—2, E;)L(s, f5).

Next determine fS,, ﬁz, Bs, Bs and Bs successively by

,34 264 {50+4-8(a,— 16)+9((13—45)—(L15——125)},

B.=558,— —45)— —(a2—16),

1
‘86=4‘B4_ ?(02—16) ,
123,=454-68,4488,—128,—(a.—12)(a,—8)+8a,+64,

27Bs=2758—1168,+252,+4266 8,908 8,—4(a, —9)?
—36a,+2268.

and set G=0{"+ 3} f:0{°. Then we have G0 and

“4.14) L(s, G)=L(s—2, fL(s, f3).

According to Hashimoto [4], it is very plausible that dim S,(I"&(11))=7.
Hereafter in this example, we shall assume this value of the dimension. As
we have constructed six 6,,-eingliedrig forms, a form ¢,(#0) in the orthogonal
complement of (0{’|1<;<6)c must be an eingliedrig form. Put

7. =(305°—20—05°) (965> +40°+126)eS(I"(11).

The Fourier coefficient of 7, for (1}2 1é2> is —1440. Hence ¢, must be 6,

eingliedrig. As the Fourier coefficients of ¢, for n((l) ?) must vanish, we
obtain

25 1 282 @) (3) 632 [€D] ) 6)
po=nit {200+ 2200110000+ 52 00488800+ 20 09}

up to a constant multiple. Thus S,(I"&(11)=SHI"&(11)) and this space is
spanned by six 6,,-eingliedrig forms and by one #,-eingliedrig form. By com-
puting more Fourier coefficients of ¢,, we can observe the relation

(4.15)c L(s, g)=8(s—2)%(s—3)L(s, f?),

where fi is the normalized cusp form in SF(/7§>(11)). Here the following
observation seems very interesting: There is no form whose Euler product cor-
responds to the pair (fs, f§); i.e. no form HES,(I & (11)) such that L(s, H)=
L(s—2, f)L(s, ft). We shall take into account of this fact when we shall
formulate Conjecture 5.2.

(IIl) The case of level 7

The (7, «o)-quaternion algebra D is given explicitly by D=Q-+Q:"+Q;’+QFk’
with ?=—1, j*=—7,7j7/=—j/""=k’. A maximal order R of D is given by
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R=Zw,+Zw,+ Zw;+ Zw,, where o,=(1+7")/2, w,=G"+k")/2, w;=j', w,=Fk’. We
have h=1. Put

=%, %o, X3, X0), Y="(Y1, Yo, Y3, VIEZ*,

4
=2 %0, = 2 y;w;. Define a symmetric matrix S by N(¥)='xSx. Set
i=1 i=1

t t
Q(x, y)=(,§§; :;g;) X=%*j and let

b=2Xthe coefficient of 7 in X,
c=2Xthe coefficient of j* in X,
d=2Xthe coefficient of %2’ in X.

We define six theta series by
O:(2)= 2 e(a(Qx, y)2)),
0P@)= T (b*—Tc*)e(a(Qx, y)2)),
6= 2 (c*—d*e(a(Q(x, y)2)),
0i(a)= 2 (b'—42b%c"+49cVe(o(Qlx, )2)),
0(@)= T (b'—42b'd"+49d9e(a(Q(x, )2)),
0&*’(2)=(§y)(6‘—662d2+d‘)e(o(Q(x, ¥)z)).

We have 0,€G(I'®(T), 00 €SI PMSiS2), 0 eSIPMNISII). Put
$P=00+E—VENIP, $P=0+E+VEDIP .

Let fs(2)= c"21a,,e(nz)ES;(I".§"(7))(two dimensional) be the normalized eigen cusp
form such that a,=1, a,=(9++/57)/2. Then we have ¢{"+0 and
(4.16) L(s, ¢i)=C(s—2)L(s—3)L(s, f5).

Now we are going to consider the decomposition of Sy(I"§®(7)). We have
dim S¢(I"{?(7))=11. First the modular forms which correspond to the pairing

SHR, 0)XS*(R, 8)=G1(I" ()X Sto(L"§(7))
can be constructed as follows. Put V=<6, &, 6{>c; we find dimV,=3,
dim S("§(7)=3. Let f,‘o(z)zélb,,e(nz)eSMF&”(?)) be a normalized eigen
cusp form ; b, satisfies the irreducible equation X*—21X2—1326X+19080=0. Put

GO= 500 +b A 150

1 .
+ §§2‘[(14b2+b3+208)(0‘$”_ 0P —3296087).
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Then ¢+#0 and we can prove

(4.17) L(s, ¢§2)=C0(s—4L(s—5)L(s, 1),
by Proposition 3.3. Put

1O=0.0, P=0,0, 7P =7|TQ), 7P=1 1),

O =92 | TG), Vi=®, 12, 7, 76, 7e,

V2=Vo+V1 .

By computing Fourier coefficients of n{ for n- 1172 , we find dimV,=5,
K 1/2 1

dimV,=8. Applying T(7) and computing Fourier coefficients using (2.7), we

get Si(I” 0‘2’(7))=V2+V21T(7). More precisely, by computing the Fourier coeffi-

1 1/2

cients for n~<1/2 1 ), we can see that V, and ‘_2310779’ T(7) generate a 8-

dimensional space. Then, by the theory in §2, we can conclude that S,(I" (7))
contains at least 3-pairs of independent zweigliedrig forms. As V,CS( & (7)),
dim S5(I"{(7))<3, it must contain exactly 3-pairs of independent zweigliedrig
forms. Thus we obtain

Vo=SEI"#(7), dim S3(I7§(7)=8, dim S5(I"§*(7)=3.

In particular, V, is invariant under .£. It must contain two more eingliedrig
forms. The characteristic polynomial of T(2) on V, is (X°*—165X%247602X—
76248)(X*—90.X+1832)(X*+4X2—636.X+4656). Put d=193 and

H=2(8013—861+/d )9’ +2(475195—5915+/d )n® +(9969+51v/d )5®

+(36785—973v/d Y +2(1515—51+/d )9 +(66711+1461v/3 )02
+4(411143+284645«/d“)09>+(—E%Zi+3ossvz)(0gl>— 6 —32903).

Then we can prove that ¢§ and its conjugate ¢¢ by Gal(Q(+/d )/Q) are 8,-
eingliedrig forms. We have observed the relation

(4.18). L(s, pi?)=C(s—=4(s—=5)L(s, fio),

where fi,(z)= i;lcne(nz)eSTo(Fé"G))(two dimensional) is the normalized eigen

cusp form such that ¢,=1, c,=—3++/4d .
Finally we have calculated eigenvalues of T(7) using Fourier coefficients of
7P, 1<71<6.

Proposition 4.2, The eigenvalues of 7-T(7) on S¢(I'&(7)) are 7%, T2, 7%, —T72,
—7% and the six roots of the equation X°+10.X°42303.X*—57428 X°+5529503 X%+
57648010.X +13841287201=0.
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Table (1)
p a(p) b(p), d=11x179 c(p)
2 —36 —2743+4/d —12
3 -8l 729 —729
5 —1314 203854-384+/d —30210
7 —4480 —10504—10368+/d 235088
11 1476 336204—109824+/d —11182908
13 —151522 8766302269568+/d 8049614
10 10
In the Table below, we set N,—(O l)’ Nz—(o 2).
Table (II)
n A(n N,)/576 B(n N,)/48 c(n N,)/48
1 1 —1 33
2 —4 —362 10938
3 —81 —729 24057
4 656 —42500 1327908
5 2436 —116266 3707754
6 324 —263898 7973802
7 14728 —28672 4429824
S 11200 —5347048 163352616
9 6561 —531441 17537553
10 —9744 —35637092 1079471748
11 147886 —12040248 434229048
12 —53136 —30982500 968044932
13 248332 —90140426 2884059210
14 —58912 —184561664 5504249856
15 —197316 —84757914 2702952666
16 309504 —516486288 16038071568
Table (II)
n B.(n N,)/288 Co(n N,)/288
1 71 2175
2 —17302 526278
z —51739

1585575
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Table (IV)
n E(n Ny) F(n Ny) E(n N,) F(n N,)
576 X6 48 576 24 576
1 0 1 0 1
2 1 146 1 44
3 4 —135 -3 —513
4 42 33428 —28 8816
5 224 67882 110 55620
6 —103 286146 —105 —77004
7 960 — 178688 4086 882088
8 9860 3217288 4944 709312
9 972 321489 3645 269001
10 55338 23684089 40660 4443120
11 29392 5691576 28534 4478254
12 94106 106555604 —27204 —2998512
13 183264 50555402 223596 59526028
14 216064 137891840 326392 112948256
15 149896 52380378 —163890 —34520580
16 824296 338438352 518208 162635520
Table (V)
n E,(n N,) Fy(n Ny) Ey(n N,) Fy(n Ns)
576 X6 48% 2 576x 24 576
1 1 105 1 108
2 106 40458 —28 22898
3 153 138753 —297 —109836
Table (VI)
G (n N,) G (n Ny) GO (n Ny) G® (n N,)
" 192 T 3840 576 3% 3840
1 1 1 1 1
2 —208 —208 —208 —208
3 —1215 243 243 —1215
4 15872 15872 15872 15872
5 —3350 —3350 27900 27900
6 252720 —50544 —50544 252720
7 —147584 —147584 —147584 —147584
8 —536576 —536576 —536576 —536576
9 59049 —649539 —649539 59049
10 696800 696800 —5803200 —5803200
11 830808 830808 —2712314 —2712314
12 —19284480 3856896 3856896 —19284480
13 —6473782 —6473782 3179836 3179836
14 30697472 30697472 30697472 30697472
15 4070250 —814050 6779700 —33898500
16 32047104 32047104 32047104 32047104
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5. Conjectures

We now come to the place to meditate upon our experiments and to for-
mulate conjectures.

Conjecture 5.1. Let FESYI'p) be a 6,,-eingliedrig form. Let F|H=c¢F,
e=x1. Then F=F(p,, @) with ¢, €S*(R, 0), 0:€S*(R, 2n), where n=k—2 and
+ is the signature of €. The Euler product of F corresponds to a pair of forms
in G3(I'§P(p) X Sie-oL'§(P)) or forms in SHIP(P)X St §2(p)) as (3.9).

This conjecture, which accords with all experiments that we have made,
characterizes 6,,-eingliedrig forms. One may expect similar characterization
for @,-eingliedrig forms. However, by the data

dim Sg(I"#(7))=26, dim S, (I"§>(7)=T7, or
dim S(I"#(13))=46, dim S;o(I"§"(13))=9,

we see that this expectation cannot be satisfied, since 267 mod 2, etc. To
formulate more accurate conjectures, we need information about representations
of a certain Hecke algebra. We use the notation of §2. Consider three Hecke
operators

S, =I'pwl's, Se=Ipw,lp, Sp'——FBprB ’

where w, and w, are given by (2.1) and wpzw,(_(j)) (1)) Then S,, S; and S,
satisfy the relations
=0—DSi+p, =12,
(5.1) (S:152)°=(S.S.)%,
Si=1, Si5,=S5,51, (S:S,)=(S,S.).
These relations follow from Iwahori-Matsumoto [8]. In fact, set

5——-(}51)(2, Q,)/the center, I?=GSp(2, Z,)/the center,

B={keK | kmod p=

S ¥ ¥
S x O
[« I
* K ¥ X
——

00

Then A[(é, 1§), the Hecke algebra of G with respect to ﬁ, is isomorphic to
C[S;,S:, S,]. We have H(K, E)zﬂ(G,B);C[S,,SZJ. We set £=C[S,, S:, S,]
=4(G, B), %4,=C[S,, S:1= 4K, B).

As S, S; and S, act on S,(I'5), we get a representation of 4 on S.(I's);
this representation decomposes into a direct sum of irreducible representations,
since S;, S., S, are hermitian with respect to the Petersson inner product.
Assume FESYI's) (CS,(I'p) is a 6,-eingliedrig form. Then we see easily
that F generates the one dimensional representation S,—p, S,——1, S,—e¢
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(e==1) of 4. The point is that, if F is @,-eingliedrig, there are three possi-
bilities for the representations of 4 generated by F.

To determine irreducible representations of 4 explicitly is a somewhat
laborious task, although there is a work of Kazhdan-Lusztig [9] on general
case. In the Appendix, we list explicit realizations of representations = of 4 ;
if dim7>2, we assumed that =z |4, does not contain the “trivial representations
7.”: S;—p, S;—p. This condition is satisfied if = is generated by a form in
SUTp).

Assume FeSY['p) is a fy-eingliedrig form which generates an irreducible
representation © of . Then there are three possibilities: #=1II;, or II,, or
the two dimensional representation

. a B p 0 1 0
H"'S‘—’(r o) S 1) Se—=( 1)
of 4 (cf. Appendix). By the examples in §4, we see that the “lifted” 6,-

eingliedrig forms generate the representation /I, We can now formulate the
following (cf. §4. (1))

Conjecture 5.2. Let FESYI'p) be a Oq-eingliedrig form which generates the
irreducible two dimensional representation Il, of 9. Then the FEuler product of
F corresponds to a pair of the Eisenstein series in Gz(I'§P(p)) and of a form in
Sgi-o(I"§2()).

Appendix
(I) The one dimensional representations of 4.
These are
S,—> p or —1. S;— por —1, S,—>1lor —1.

According as the above choices, we get eight irreducible representations of 4.
Let a, B, 7, 0 be given by (2.4).
(I) The two dimensional representations of 4.

These are

NI APSCE R

or

sy 1) o (5 1)

(p—D/2 (p+1)/2 1 0
5 e (p—l)/z)' Se _’(o 1)
According as the above choices, we get four irreducible representations of 4.
(M) The irreducible representations of 4 whose dimensions are higher
than 2 and whose restriction to 4, does not contain the “trivial representation” :
Si—p, Sa—p.
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We label the representations of 4, by the corresponding representations of
Sp2, Fp) (cf. (2.3)). Set

__(p—1p _ (=1
(5.2) A= T pRl
a 0 B p 0 0
H1251—>(O —1 O), Sz—>(0 b 0),
r 0 3 0 0 -1
—2 1 —1/2p
Sﬂ—»i(—lﬁa“ ip? —,2/217), I | %,=6,80,,.
—(p*+1) —2p 0
a B 0 p 0 0
H2:51—> 7 5 O), SQ__)<0 —1 0),
0 0 b 0 0 —1
0 —=1/2p  1/(p*+1)
S, — -+ 2 1 ) 1,190, 0,80,,.
PHDA —Ept

a B 0 p 0 O
II:S,—|y & O), S;— (0 —1 0),

0 0 —1 0 0 —1
0 1/(p*+D —1/21>\l
S,—> +| 2p o 1 |, I |%,=0,50,.
—2pp  —prA! —pd!

a 0 B 0 p 0 0 0

) 0 -1 0 0 0 » 0 0
IiSi—\. 0 5 o) S0 o -1 o
0 0 0 —1 0 0 0 —1
1—p't (I—p~'0)/2p t/(p—17¢ —1/2p'
S . 2ppit p't ATt 1
e - 2ppt —(1—p ') 1427 1 0

—2pp (1427 (I—p't)(14+271) —27%1+27) —A7Y
teC, t#0, g, —24, I1,1%4,=0,80,,56,,.

a B 0 0 » 0 0 0
e A A (R |
0 0 0 -1 0 0 0 —1

0o t/(p—1r 1/(p*+1) —1/2p

Se—> vagfﬁ(/j"t)zj u[l—,j-lty] _‘ul—l,« (1)

—2pu[1—2"t)] 7ll—@A"')] 0 -2
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pP+1 2
(p+12 7T e

Let m be an irreducible finite dimensional representation of 4 on a vector
space V over C. For m to occur in the representation of % on S,([ '), there
must exist a positive hermitian inner product (, ) on V such that S,, S, and S,
become hermitian with respect to (, ). When this is the case, let us call =
unitarizable. We obtain

where v= teC, t+0, +p, +24, 11| 9,=0,D0,,Db;s.

Proposition A.1. All representation m such that dim #<2 are unitarizable.
II, and II, are not unitarizable. Il, is unitarizable. II, is unitarizable if and
only if 0<i<p. Il is unitarizable if and only if —p<t<p.

The proof, which is not difficult, is omitted.

Example A.2. The zweigliedrig form 20 n{®++/—2 9§ € Sy(I"§*(3)) gener-
ates the irreducible representation I7, with t=p/3=2/15.
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