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The imbedding theorems for weighted
Sobolev spaces

By

Toshio HORIUCHI

§ O. Introduction

Let F be a  closed set of R " , and let 12 =Fe\F. The purpose of this paper
is to study imbedding theorems for weighted Sobolev spaces of three categories
W i

ce,'P(S2), cW ,P(2) and I-1!•P(R"), where the weight functions considered here are
powers of a(x), where (3(x) is equivalent to the distance from x  to the closed set
F, see the § 1 for the precise definitions of those spaces.

In [37-39] S. L. Sobolev introduced a notion of generalized derivative and pro-
ved general integral inequalities for differentiable functions of several variables,
which are usually lumped together in a single theorem as the so-called Sobolev im-
bedding theorem. Later the Sobolev theorem was generalized and refined variously
(Kondrat'ev, G a g l i a r d o ,  Nirenberg etc.), and such theorems proved to be a
usefull tool in functional analysis and in the theory of linear and nonlinear partial
differential equations.

Weighted Sobolev spaces also have been studied intensively for more than
twenty years, and the main field of application are the degenerated (elliptic) ope-
rators. This fact makes clear that a large part of papers concerned with Sobolev
spaces with weights where the weight functions are powers of a distance to mani-
folds (see Grisvard [14], Kufner [20], Lizorkin [23-24], Uspenskii [45] etc.). For
the further references, see a  survey paper by A. Avantaggiati [8]. The author also
studied in [16] the degenerated elliptic operators, and the present paper is strongly
motivated by the author's research in this field.

Recently in [30], V. G. Maz'ja has proved a variant of Sobolev imbedding
inequalities in the case of a weighted norm in the right-hand side with weights being
powers of the distance to a  linear subspace of R", and refined both the Sobolev
and Hardy inequalities. Here we present his result as our starting point.

Let us consider functions u  of z , where z = (x, y)eRn - s XI? '  (1 < s <n).
Moreover let u be a given positive measure on R " such that the number

(0.1) K  = Sup (p+ I y I ) - 6 4 0 1 -n rit (BP(Z)11 1 1

P,z

Communicated by Prof. S. Mizohata October 6, 1987



366 Toshio Horiuchi

is finite, where 1 q< s <a <-F 00 and B p (z) {C  R n ; — z I <p}.

Theorem 0 .1  (V. G. M az'ja [30]). We have the following inequality

(0.2)
R
 u ( z )  gclii)v g  C y '  IF zu(z)Idz uE C WM")” R"

with a positive constant C independent of u.
Let C be the best constant in this inequality. Then we have

(0.3) C iK < C < C ,K

where K is the number defined by (0.1), C, and C, a re positive numbers independent
of I t and depending only on n, s, q, a.

Our main interest in this paper is to study imbeddings of weighted Sobolev
spaces in parallel to this result, however we do not work with a general measure it
but the Lebesgue measure with weight for simplicity. In Maz'ja's theorem the
subspace {z=(x, y )  Rn - s x R s ; y=0} is considered as Fin  our notation. In order
to treat more general F, we shall introduce in § 2 two regularity properties P(s)
and SP(s) which a closed set F of i f  may possess, and roughly speaking, we shall
generalize and refine Theorem 0.1 in the following ways.

In the first place, the sets F considered in this paper are not necessarily linear
subspaces but arbitrary closed sets having the property P (s ).  In Theorem 1, we
shall prove the existence and compactness of imbedding operators of 1-/L.P(R") into
L'A(R") under the assumption P(s) for F .  Here the property P(s) is defined by means
of the behavior as n 0  of the n-dimensional Lebesgue measure of the tubular
neighborhood of F defined by ; dist(x, F)< 771.

What is essential for the proof of Theorem 1 is the equivalence of imbedding
for Sobolev spaces with weights and isoperimetric inequality with weights (cf.
Federer [11], Talenti [41] and Maz'ja [26-29]). The property P(s) is a sufficient con-
dition for the validity of isoperimetric inequalities with weights (see (2.5) in § 2).
A fairly large class of sets F of R" satisfies this property, for example, a set of finite
points (s =n), a (n —k)-dimensional subspace of i f  (s =k), a finitely many union of
(n—k)-dimensional Lipschitz manifolds of i f  (s =k), a Cantor set (s=1 —log, 2)
and so on (see §2, for the detailed).

Secondly we consider the case where F is an arbitrary closed set of if  without
any regularity assumption. It is already known that there exists in general no
imbedding of the type (0.1) in Theorem 0.1 (cf. [4], [6], [12], [13], [25], see also [7]).
However we can prove an analogous result Theorem 2 by the aid of suitable norms
with weights and the covering lemma in § 4 (cf. Triebel [42], § 3).

Thirdly we shall assume that F satisfies the property SP(s) which is a stronger
assumption than P(s) in general. Then we shall show the existence of imbeddings
of W V-LP(S2) into W (S 2 ) using the previous theorems and the extension lemma
in § 4. In particular if p>n, these spaces can be imbedded into Schauder spaces
with weights denoted by S C (Q ) and SCA•x (12). For the proof we shall make use
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of suitable averaging functions in addition to potential estimate initiated by
Sobolev (cf. [7], [18] and [32-34]). SP(s) is also  a  regularity assumption for F.
For instance, if F  satisfies SP(1), then the boundary of F has the strongly local
Lipschitz property (for the precise definition, see § 2).

Our main imbedding results can be classified according to the following list:
Let p satisfy that 1 < p <+ 0 0  •

Case 1 (Theorem 1): F has the property p(s) for some s e (0, n]. Then

(0.4) FILAR") — ,- L (Ir ) .

Case 2 (Theorem 2): F is an arbitrary closed set of R . T h en

(0.5) c14)!+i,P(S2)—> 511 ,7 (S2), S C  (2 ) o r  SC ii.x(12) , 0<2<1 .

Case 3 (Theorem 3): F  has the property SP(s) for some positive integer s<n.
Then

(0.6) W•P(S2) WA. 1 (! ) ,  S C (2 )  o r  SCA.x (2) , 0<2<1 .

In asserting an imbedding I I L (R n )—>L(R n )  for example, it is intended that
there exists a positive constant C such that

(0.7) ilu; 411 Ciiu;

where C is independent of each u  H 0 ,
1 (R").

We also construct counterexamples just after the statements of Theorems
showing that they give in some sense best possible imbedding results for the spaces
considered.

There are already many authors who have studied various aspect of weighted
Sobolev spaces, see also [15], [31] and [35]. For the complete references, see the
books by R. A. Adams [6], A. Kufner [21], V. G. Maz'ja [30] and H. Triebel [42]
for example.

This paper is organized as follows:
In § 1, we define weighted Sobolev spaces and Schauder spaces. In § 2, we standar-
dize some geometrical concepts and notations which are useful in this paper. In
§ 3, our main imbedding results will be stated, and most of counterexamples are
also given there. The § 4 is devoted to prepare the lemmas concerned with covering,
extension and isoperimetric inequalities. Theorem 1 will be proved in  a chain of
auxiliary lemmas through § § 5, 6 and 7. The proofs of Theorem 2 and Theorem
3 will be given in § 8 and § 9 respectively. The § 10 is devoted to establish techini-
cal lemmas. To end this paper we shall give the proof of extension lemma stated
in § 4 for the sake of self-containedness.

The author wishes to express h is gratitude to Prof. S . Mizohata, Prof. N.
Shimakura, Prof. K. Yabuta, and the staff in Institut Mittag Leffler, especially to
Prof. L. Hiirmander, for their kind help and a number of useful conversations.
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§ 1 . Definitions of weighted Soholev spaces

Let F be a closed set in R  and set 12 = R n \F.
Let a(x) E C(S2) be a nonnegative function satisfying

(1.1) C1 ..8(x)/dist (x, ,
(1.2) 1 81 6(x)I -.._C(r) dist (x, F)1-171 , x e  =

where r is an arbitrary milti-index, C and C (r ) are positive numbers depending
only on r  and n.

Here we note that for an arbitrary closed set F, there exist functions 8(x) with
required properties (1.1) and (1.2), see [Triebel [42], P. 250, § 3], for example.

In this paper we shall deal with weighted Sobolev spaces denoted by

(1.3) W1.1)(2), cf,P!' 1' ( 2 )  a n d  H !.°(R "),

where k is a nonnegative integer, p is a real number > 1  and a is a real number.
The spaces W (S 2 ) and 5446 .P(2) are the set of functions on S2 —Rn\F, whose

generalized derivatives 07u of order <k satisfy

(1.4)l u ;  W !'" i =  E  ( I tru(x)1P8(x)P dx)uP <
irisk

and

(1.5) 11u; 94)!.P11 = E  ( 1 alu(x)1Pa(A) ( e"-1 1 1 - k)Pdx)1/P <+00
1115k a

respectively.
These spaces are Banach spaces with the norms (1.4) and (1.5) respectively. Con-
ventionally we set

(1.6) Lf,(2) = n ° (t2 )  =  5PV( 2 )

and

(1.7) 11u; a l 11u; wVII Ilu; "WVII
In order to define H ( R ) ,  we assume that 1 F1 (n-dimensional Lebesgue

measure of F ) = 0 .  By I n ,P(R"), we mean the completion of O R"), the space of
functions of the class Ck having compact support, with respect to the norm defined
by

(1.8) I I u  I n ' PI  =  E  ( I alti(x) I Pa(x)codx) 1/P ,
vvi k R .

where the range of a will be specified later.
This space is also a Banach space with the norm (1.8) under additional assumptions
on a and F (see the property P(s) in § 2 and Theorem 1 in  §3).

Here we note that these spaces Wf..P(12), 5Pct'o(S2) and I f et.P(R") do not
essentially depend on the choice of the function 8(x) having the properties (1.1)
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and (1.2).
We shall define Schauder spaces with weights as target of our imbeddings when

p and k  are large numbers.
Let j  and k  be nonnegative integers, and let A satisfy 0< 1<  1 .  Let us define

for any uEC;(S2),

(1.8)l u=  E (7- !)- Sup 8(x) m ax((*•°)
 I 8'u(x) I,

111=1 Cl

(1.9) I u I =  E  (r ! )
- 1  Sup i5(x)  a7u(x) I ,

111=i

(1.10) l u =  E (r ! )
--1 S u p  m in [a (x), a (.01  I alu (x )-0 7  u(y) I 

111=1 CrdOEQ x II
f

I X —y1

(1.12)

Then we set

(1.13) SC(S2) =  f u e C h(Q);

(1.14) S O D )  =  fu e  Ck(D);

We also set

(1.15) SC x(D ) =  fue Ck(2 ); ik,o-x I u °°1 a > 0 ,

and

(1.16) S C:• x (D) =  f u E C k(2 ); ulk,, <+001 •

These are Banach spaces with the norms:

(1.17) Hu; SC!ii = iluiik,d ilu; SC:11 = N IL
(1.18) iiu; SC:' x ii = Hulik,o-x+
(1.19) ilu;= iulk.x.0 •

Here we remark that these spaces do not essentially depend on the choice of 8(x)
as before.

§  2 . Sufficient conditions on F for the imbedding theorems

In this section we shall introduce two regularity properties which a closed set
F  of R" may possess, and we also introduce weighted isoperimetric inequalities
which are essentially equivalent to our imbedding results stated as Theorem 1 in § 3.

Let s  be a positive number satisfying 0<s < n .  We first define the property
P(s) which concerns the (n— s)-dimensional Hausdorff measure of F and the n-di-
mensional Lebesgue measure of the tubular neighborhood of F denoted by F„ with
>0, that is:

=  1E:0 I I j. e -k + j

Ilul Ir.. = E l u i t a t - k - F j  •
1= 0
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Definition of P (s ) .  Let s  be a positive number satisfying 0 <s <n and s* =
Min (s, 1). A closed set F  is said to have the property P(s) if I F I =0  and there
exist positive numbers C, and A , such that

(2.1) B n (F ,\F ) Cs ns - 3 *(77 —O s t d (B ) "  ,
where =  { x e R n ; dist (x,F)<77)- ,

B is an arbitrary open ball with diameter d(B)<A 0, n and n ' are arbitrary numbers
satisfying

(2.2) 0<72' <77_<_d(B)_./10 .

Here I* I stands for the n-dimensional Lebesgue measure.

In order to make clear in advance the role of this condition P (s) as well as
what it means, we shall describe here the weighted isoperimetric inequalities which
will play an important role in the proof of Theorem 1 and will be established under
this condition in the §§ 6 and 7. To do so, we need the definition of d-dimensional
Hausdorff measure. Let S be a set in R. Consider various coverings of S by balls
of radii< e. We put H d,(S )=v d  Inf E r, where r  is the radius of the j-th  ball,

V  d is the volume of the unit ball in R d and the infimum is taken over all such
coverings. Then we define ,qtd (S) (the d-dimensional Hausdorff measure of S) by

(2.3) A d(S ) lim  H t(S ) .

Since HI is monotone, this limit, finite or infinite, obviously exists. We also define
d(S) (the diameter of S ) by

(2.4) d(S) =  Sup [dist (x, y); x, y 5] .

Proposition 2 . 1 .  Suppose that F has the property  P (s) with s n]. L et M
be an  arbitrary bounded open subset of  R" with smooth boundary. Moreover sup-
pose that d(M)<A,A o . Then there exists a positive number C, such that

(2.5) ( dist (x, dx)1/q  C, dist (x, F )dan  -1 ( x )
8M

where 0 < 1 - 1/q = (1—a+19)In and either
— s lq < g _ a 0 ,0 < s _ 1  o r  — slq<13<a,1<s<n.

Here C, is independent of M, A , is also a positive number defined in Proposition 6.2
in § 6 and S1n - 1 (x) is the (n-1)-dim ensional Hausdorff measure.

For the sake of simplicity we assume that Ao = +  co for a moment. As will be
seen later, this proposition leads us to the imbedding of the type H .1 .1(R")--->
L(R"), and we also have

(2.6) ilu; L73115Const.II Ful; LLii for a n y  u  C 6̀° (R") .

Conversely we have the following:
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Proposition 2 .2 . The inequality (2.6) implies (2.5) with A0= - 1-  °°•

P ro o f  We take a bounded open subset M  of R " with smooth boundary and
construct approximative characteristic functions ue 's  of M  for sufficiently small
e> 0 as follows.

Let us set M ,={ x E M ; dist (x , am)> e l  and

1 x /1 / / ,
(2.7) u,(x) =  d i s t  (x, 8111)16 x E M \M e

O X E M c .

Since u,'s belong to the space 11,1•1(R ") with a> —s, it follows from (2.6) that

(2.8) Hue; LAII_Const. I Fue l ;

Then we have, letting e--, • 0,

(2.9) lim I lue ; L ll =  ( a(x)P4c/x)11/ .
P-0.0

Since aM e is a smooth manifolds for sufficiently small e>0, we also have

(2.10) fim sup I Vu, I 6(x )dx  = lim sup dt f 8(x)"d.511'( x )
C-$.0 R" e 0 all f t

8(xrdSt n - 1 (X)
OM

Noting that .3(x) is equivalent to dist (x , F), we have the desired inequality. Q.E.D.

Before defining another property SP(s), we shall give some important remarks
here.

Let F satisfy P(s) with s  (0 , n]. Take and fix an arbitrary ball B  of R " with

Let us set

(2.11) fB(77) =  I B nF,I,
Since I F I =1F01  = 0 , we get f B (7 7 )..C s cl(B)n — sns. Moreover f B (77) is Holder con-
tinuous with exponent s* =Min (s, 1). If s> 1, then we have the following lemma
which will be proved in § 6 (see Proposition 6.1).

Lemma 2 .1 .  Assume th at s>1  and F  has the property  P(s). T hen w e have
the followings:
(1) It holds that

(2.12) Sin-1(B naF„) Cns- id(B)n - 3  ,

for any 77 E (0, d(B)) with d(B)_A 0.
(2) For any 77 d(B)) with d(B)<A 0, there exists a sequence of smooth manifolds
{1■10}7:..1 such that N k C (k =1, 2, •••), N k converges ap; as k—>+ co and
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(2.13) rim sup ..91" - 1 (B n
k-). +0 .

Here 9P - 1 (x) is the (n-1)-dimensional Hausdorff measure, and C is a positive number
depending only on the dimension of the space (independent of B and 77).

The followings are typical examples of the set F with the required property
P (s ). First we assume that s is a positive integer <n.

Example 1. Assume that F consists of finitely many points of R . T h en  F
satisfies P(s) with s=n.

Example 2 .  Let F be a (n—s)-dimensional linear subspace:

F {z  = - (x , y )e  Rn - s x i t s ;  x e R n - 8 , y  =  .

Then F satisfies P(s) with Ao = + 00 and C3 =2s.

Example 3 .  Let F be a  (n—s)-dimensional compact Lipschitz manifolds in
R" with s < n . Then F satisfies P(s) for some A0 <+ 00 •

As is easily verified, if F' and Ft satisfy P(s) and P(t) respectively, then F' U Ft
satisfies P(min [s, t]). Therefore the Lipschitz property and compactness of the set
F are not necessary for the validity of P (s ). To illustrate this we also give the fol-
lowing example:

Example 4 .  Let n=2 and s = 1 .  Let us set

F,,, = {(x, y)e R 2 ; (x-4m ) 2 ± y 2  =  m- 1- a n d  F = U

Then F satisfies P(1) with A0 =1/2, C1 =27r.

Proof . First note that dist (Fi , Fk)> 5/2 provided k *  j .  So that each ball B,
with radius r can meet only one component of the set F„, provided 0<n<d(B,)=
2r <1/2. Then we immediately get

l(F„\F„, ) fl Br j 2 (length of aBr ) I 77- 77' I =  27rd(B,.)In--72' I ,
fo r  0._._72'_<_77.._d(B,),_1/2

Q.E.D.

As for the case that 0< s< 1 , the following is typical.

Example 5 .  Assume that n= 1  and s=1 —log3 2. Let F be the Cantor set in
Ho =[O, 1]. Then F satisfies P(s) with A0 = 1 , C3 --- 1 8 , and F does not satisfy P(t)
for t> s .  (The proof will be given at the end of this subsection for the sake of self-
containedness.).

We note that there exists a set F with null the d-dimensional Hausdorff measure
,le (F ) for any nonnegative d such that F fails to satisfy P(s) for any s G(0, n].

Counterexample 6 .  Assume that n=2 and b > 0 . Let t be a positive integer
which will be specified later. Let us set
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(2.14) =  ( n + km- 6-1) ,

Q 7k  = (M -Fk111-b -i, im -b -1)

F„, = (13 7,k , QT, k ; j = 0, •••, m, and k  = 0, mt.} ,
0 0

F =  Um=1

Then F is a null set with respect to .90(x) for any positive number d, nevertheless
F does not have the property P(s) for any s  (0, n].

Proof Since F consists of a countable set of points, it holds that S i d ( F ) = 0 ,

0<d _<_n. Let n =277' =rn -

b - t
1

4 ,  R,„—(m-Fm -  m ' 1 2 )  and let B(m)=B„,-b(R.)
be the ball with center R m  and radius m - b. Then there exists a positive number
C  independent of each m  such that

I(F\F„,)n B(m)1 R I 77 - 7 2 'I s* n s - s* d (B (m ))" - s)- _-_Cin ( s- 1 ) t+1 .

with s* =Min [1, s]. If we set t = 1  for example, this inequality implies the assertion.
Here we also note that Theorem 1 fails to hold for this set F, see § 3.

We proceed to define another regularity property of F, which is a variant of
the well-known "strongly local Lipschitz property" (see Adams. [6] P. 66, for
example).

Definition of S  P ( s ) .  Let s be a positive in te g e r< n . A closed set F has the
property SP(s) provided there exist positive numbers K , L , M , a locally finite open
cover (U 5I  of a S 2 =6F=F\Int F, and if s <n , there exists for each U 5 a  system of
real valued functions G1 = {gt, •••, gls}  of n— s variables such that the following
conditions (1), •••, (6) hold:
(1) If s=n , F consists at most of countable points, and every pair of distinct
points x, C E F satisfies I x—C I > M.
(2) For 1 <s <n , every collection of K +1 of the set U 5 has empty intersection.
(3) For every pair of points x, fx ED ;  a (x )< M I such that I x—C I  <M ,
there exists j  such that

x, CEV 5 f z e l _ 1 5 ; dist (z, ° u p .

(4) If 1 <s<n , for some Cartesian coordinate system

(x', yl) = (x -f, • • •, yl, • • •, yis) depending on j  ,

the set F n U. is represented by the equalities

yi, = • , , I = 1, • • • , s.

( 5 )  If s=1, Q n u,—(RV) fl U1 is represented by the single inequality

yl>gf(xf, •.., .

for some Cartesian coordinate system depending on j.
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( 6 )  Each of functions g in (4) and (5) satisfies a Lipschitz condition with constant
L,

ex„ —en_s) I,
for 1=1, •••, s,0<s<n and jE N .

Here we note that if s=1, then this condition is equivalent to the  strongly local
Lipschitz property of .Q=.1r\F. If a closed set F of measure zero satisfies SP(s),
then it also satisfies P(s), see example 2.

Proof of Example 5. Let F be the Cantor set in 1-10 =[0,1], more precisely

(2.15)F =  n U I-1;  ,
J= 0

where Hi = U { OM ; I ,

0 (I )  =  {Inf / Inf /-F(1/3) diam U
U {Inf/4-(2/3) diam /<xInf /±diam  .

Without loss of generality we assume that

(2.16) 3-k-1< d(B)< 3- k, for some nonnegative integer k .

First we take 72 and 72'  such that

(2.17) 3-i-1< 72' <72< 3- i, for some nonnegative integer j .

From the definition of F and Hi , H. consists of 2i disjoint closed intervals with
lengths 3- i, a n d  F\F„, consists of disjoint closed intervals with lengths <
3- i —3- 1 - 1 =3 - i -1 2 .  Then it holds that

(2.18) F\FcH 0\FIJU [ - 3- .f, 0] U [1, 1+3 - 1 .

Here HAH;  consists of 2 i - 1  disjoint closed intervals, and each connected com-
ponent contains at most 2 components of F,,\F„,. Hence the number of compo-
nents of F A F , is at most 2 ( 2 1 _ l ) + 2 = 2 1 + 1 .  It is easy to see that at most 2) +1 - k
components of F\F„, can be contained in B provided d(B)<3 - k. So that we have

(2.19)I  B n (F A F )I<  2i+' k ( n  _ 7 2 ')  <  2 ( 7 7  7 7 , ) 3 U - k ) (1 - s )

2(72 —77')77' 1 3 d ( B ) rs < 4 ( 7 2 - 72')sd(B)I -
3  ,

if s=1 —log3 2.
Secondly we assume that, for some positive integer m,

(2.20) 72 , .<3 - j - n1 <  3- j- 1.< 7 7 ‹  3 - i

If m=1, it follows by the repeated use of the previous step that

(2.21)I  B n (F„\F,,,) 3(72 —72)72s13d(B)]1 - 8  .
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So we assume that m > 2 . In this case we have

(2.22) U {F
P - 1

E \ F E  } , where f p = 0 - P .
P=1 P

By (2.21) we have

(2.23)I  B n (F ,\ F ) 2[3d(B)]1 - sns[ 1 +3- s+-•• +3 ' ]
-..2[3d(B)]' - sns(1-3 - 5 ) - 1 6 [3 d ( B ) ]'s n s

Sl8d(B)' - s 77

Consequently, F satisfies P(s) for s=1 —log, 2.
On the contrary, assume that B=H 0 an d  3- l - 1 . 72'<n<2 - 1 3- .1. Since it

holds that

(2.24) Min [diam /; =  3 i ,

we have

(2.25) I F V ,I.(2 i-1 )(7 7 -7 7 ')_ 2 i - 1 (77-77')

zi- - 1 (77- 7 /')n s - 1

So that F does not satisfy P (t) provided t> s. Q.E.D.

§ 3. Results and Counterexamples

In this section we shall describe our imbedding theorems according to the list
in § O.

Let p  satisfy 1< p < +  0 0 . Let a  and /9 be real numbers, and let k and j  be
nonnegative integers. Let F be a closed set in R " ,  and set D =R"\F, 812 =8F=F\
Interior of F .  Note that F —aF if either F satisfies P(s) or SP(s) with s * l .

Theorem 1. Let p  satisfy  l < p<d- 0 0
 .  Assume that a  closed set F  has the

property P(s) with s e (0, n]. L et D  be a  bounded subdomain of W . T h e n  the
following imbeddings are valid:

Suppose (1—a+fl)p<n, 0 .11p-11q(1—ad-i9)In and either
—slq<13 a . . . - 19q(1 -11p ),0<s1 , or —slq<,61 a , 1 < s n .  Then

(3.1) 1/01,,P(R " ) — >  L (W ) , p_<_q_npl[n—p(1—a-1-13)].

Moreover if  0- 11p-1/q<(1—a+,9)1n, then the following restrictions o f  the map-
pings defined by (3.1) are compact;

(3.2) HL.P(Rn) L (D), p<q<npl[n—p(1—a-I-7 9)].

Theorem 2 .  Let p satisfy l <  p<H -00. Let F be an arbitrary closed set in R",
and set 2  = R "\ F . Then the following imbeddings are valid:
Case A  Suppose (k—a+,9)p<n, 0 :<1,1p-11q(k —a+13)In and i9 _.<_a. Then

(3.3) 54»+i•P(.9) WA•q(D), p _ q n p l[n —p(k —a-Ffi)].
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Case B Suppose (k— a+d9)p=n and )9 a .  T h e n  (3.3) is valid for p_<_q<+ 00.
Moreover if either p=1 or f i <a, then

(3.4) cf4):+l'P(2) SCA P) •

Case C Suppose (k— l— a+ 19)p<n<(k— a+ 19)p and '9 S a, then

(3.5) cf,n+i•P(..Q) sckx(a),
C ase D  S uppose (k -1— a+,9)p=n and 11.a. Then (3.5) is valid f or 0<2<1.
Moreover if either p=1 or /9<a, then (3.5) is valid for 2=1 as well.

Theorem 3 .  L et p satisfy 1< p < + 00 . Assume that a  closed set F has the
property SP(s) with s nonnegative integer <n. Then the following irnbeddings are
valid:
Case A  Suppose (k— a+,9)p<n,0_<_11p-11q<(k— a+,9)In and — slq<ft <a, then

(3.6) W!÷i.P(.Q) WA, q(S2) , p < q npl[n— p(k —a+ 13)] .

Case B  Suppose (k— a+fl)p=n and 0 then (3.6) is valid for p q<+ 00.
Moreover if either p=1 or 0<f i <a, then it holds that

(3.7) soso.
Case C Suppose (k-1— a+19)p<n<(k— a+p)p and 0 then

(3.8) WV-"(12) SC A 'x (2 ) , 0<2 <k —a+ fl —n/p.

Moreover if  a*k œ nlp , then (3.8) holds for 2=k — a+ it9 —nlp as well.

Case D Suppose (k — 1— a+ fi)p=n and 0.< fi <a, then (3.8) is valid for 0<2<1.
Moreover if  either p=1 or 0<fi'<a, then (3.8) holds for 2=1 as well.

Here we remark that: Since elements of weighted Sobolev spaces are not
functions defined everywhere but rather equivalence classes of such functions
defined and equal up to values on sets of measure zero, by an imbedding of

SCV(2) for example we mean that the equivalence class u e  W„h ± " (2 )
should contain an element belonging to the target space.

In the rest of this subsection, we construct examples showing that in certain
respects these theorems 1, 2 and 3 give best possible imbedding results for the
spaces considered. For some questions it is helpful to consider spaces without
weights as special cases of spaces with weights.

First, we give counterexamples to Theorem 1 assuming that s  is a positive
integer <n, 3 (z )=Iy i for simplicity and that

(3.9)F =  =  ( x ,  y ) e l i n - s x R s ; x  R n  , y  =  .

Here we note that F satisfies P (s ) . (See § 2).
Let B;',={ z -=(x , y )eR n - 8  x R s ;  I z I <h} , and choose a function f  E  C ̀ 0"(B7) SO
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that f  > 0 and f =1  for z e B712.

Counterexample to Theorem 1  (1/p-1/q>(1—a+ 48 )/ n ). Suppose that

(3.10) 1/p —1/q> (1 —a -HOP/ a n d  — slq<,9 < a .

From this condition, we can choose t and r so that

(3.11) n+(t+r+a — 1)p> 0, n +(t+r+,9 )q <0  and t is sufficiently large.

Let us set

(3.12) u(z) — f(z)IYItizr.

Then we have ue 1-/L.P(2) but uELA(S2), where SI = R " \ F .  In fact, both of the
following inequalities are valid:

(3.13) aPiau(z)!Po/z.<C zi(i 'a-1)Pdz<+00 ,

(3.14) I z I ( t+T+13)qdzIY114 111(z)l q dz i
zihs iy i <1/2
1/3

rn - 1 +( t+T÷mqdr =  + 0 0  .
o

Here we used a trivial estimate I Fu(z)I 5 Y z 11.+1 Yi t izi 1 - 1 ). Hence no
imbedding of the type F .P(S2)—> L (D) is possible provided q>npl In— p(1— a+16 )1

If 0<s< 1 and a> —q(1  — l/p), then the imbeddings in Theorem 1 do not
hold in general. To see this we give the following example:

Counterexample to Theorem 1  (s= 1 , p = 1) . Suppose that s=1 , p=1, n=2,
— 11q<f i<a and 0 < a .  Let F  be the closed set defined in the example 4 in § 2.
Then the imbedding (3.1) can not hold.

P ro o f Let us set

( 0 , X  E  (G,„, e)C

(3.15) u ( x )  =  d is t (x, aG,„. ,)le , x E G „ ,  and dist (x, aG„,, e) e
is 1, x e G„,,, and dist (x, 8G„,, e) e ,

where G„,,, { ( x ,  y )  .1?2 ; (x -4m ) 2 + ( m - 1 +e) 2)- and e  is a  sufficiently small
positive number.
Assume that 1 —1/q —(1 — a+,6')/2. Then we have

(3.16) Ern S I u,(x) Iqi3(x)q dx C(q, ,9)d(F„,) ( '+1>q ,
e-eo

(3.17) lirn I u (x )  I S (x )dx  = C(1, a)d(F„,)+2 ,
e-eo

(3.18) lim  VuL(x) a(x)dx lim [r+d(F,„)1211.' dr = 0 ,e4.0 e-*0 cl
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where C(q, P) and C(1, a ) are positive numbers independent of n i and e. There-
fore the imbedding L4 does not hold. Q.E.D.

Assume that F does not satisfy P ( s ) .  Then Theorem 1 is not necessarily valid
however the set F  is "small". To see this, we give the following:

Counterexamples to Theorem 1 (F fa ils to have P (8 )) . Let F be the set defined
in the counterexample 6  in the § 2. Then we can choose a  parameter t  so that
Theorem 1 (n=2) does not hold for any s E (0, 2].

P ro o f  We note that Theorem 1 is essentially equivalent to Proposition 2.1
in § 2 (see also Propositions 2.2 and 5.1).

(1) Assume that a > p >  —2/q and a > 0 .  In this case we set M = {Convex
hull of F .}  in the isoperimetric inequality (2.5) with 1-1 /q= (1 - ,9)12. Then
we have

(3.19) ( ô(x)Pq dx)vq> Cm-  (a+ 1)(b+ 1)+2/4
9

and a(x rc ic lin -1 (x ) .4 m t 
m -  d —

am 

where C is a positive number independent of each ni. Then we put t =1 , if a> ig;
t =2 , if  a = P > 0 . Anyway the right side of the above inequality can not remain
bounded as m—>+ 0 0  . Therefore the propositions 2.1 and 5.1 do not hold.

(2) Assume that —2/q< fr< a < 0 .  In this case we put t =1  and set

M  { x G R 2 ; dist (x, F„,)_m - b} .

Then we have in a similar way

(3.21) ( a(x)oqdx) 1 4 7 ( a(x)qdx)vg —
M (C o n v e x  b u ll of F m )

—  00 1 -0+1)(0+1)+219

and s(x )dan-1(x ) o(m - b(.±')).
8M

So that we have

(3.22) ( a(x)Pqdx)vg( a(x rdS in - 1 (x)) - 1 > Cm - P .

Therefore the propositions 2.1 and 5.1 do not hold. Q.E.D.

Counterexamples to Theorem 3 .  We retain the notation introduced by (3.9).
Moreover let us set 2*=S 2, if s >  1; 2  n  1?1, if s = 1 .  It suffices to give counter-
examples in the cases B and C.

e d r  =  Cm- ( b + t ) ( 6 + 1 ) + t

So that

(3.20) ( a(x)figc/x)vq( a(xrA n - 1 (x)) - 1 >Cm.v ( t- 1 ) +2/q- 1

8M
9
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Case B .  Suppose that fi =0 and p> 1. Then we have a =1 — n lp .O . Let us set

(3.23) u(z) =f(z ) log flog (2 z I - 1 )} •

Then clearly ty$ L - (12*). But we have uE WL•P(D*). In fact,

(3.24) lau(z)IPIY I"dz i
/31

< C S  IzI - n I log(1z1/2) I "Pdz  C ' r  1 l log (r/2) I - Pdr<+ 00 •0

Therefore the imbedding Wal •P(S2*)-->SC(Q*)cL;(,f2*) does not hold in case /9=0
and p > 1 .  It is also clear from the Sobolev imbedding theorem that the space Wc,l 'P
can not be imbedded into Li; in case a =9  and p>1.
Case C. Suppose that ,u=1—a+13 —nlp> O. From  the previous example it suffices
to assume that a4 1 — nlp. In fact, if a= 1—nip, then we have Ilu; S C rl I >
I u; SC °o_p41= liu ; L - 1 I. Since p> 1, the function u  defined by (3.23) becomes a
counterexample again. We proceed to the case that a* 1 — n lp . Let 2  satisfy
2> A .  Then we can choose t and r so that

(3.25) it = 1— a+ ie — nlp<t+r+ fi <2, r +2t *0 and is r sufficiently large.

Again we set u(z)-- --f (z)I.Y1'1 2 l T. Then w e have uE H L A R 's xRs) from (3.13)
and (3.25) But u  fails to belong to SCV(Rn - s x R s ).  To see this, we take any
points (x, y) and (0, 2) ) with 0 < l y l = 1 1 / 4 .  Then

(3.26) Ilu; SCN>:. I Y 113 1 it(x, y) —u(0, 2 Y)I I i(x, Y) — (0 , 2 Y)I x

= 2 (T- x)12(1-2t+ 1 2 ) I y I ̀ + " " ` + co

as I y I tends to zero . Thus u has the required properties.

Counterexample to Theorem 2. Case A: In this case the assertion in Theorem
2 is equivalent to the isoperimetric inequality (8.1) in § 8, therefore it suffices to
show the following is sharp up to constants C, and C2.

(8.1)* ( 8 (x)og dxYlq a m  ( x )d ( x ) l +  C, 
L 6(x) - 1cix ,

where M  is a compact domain c D with smooth boundary, 1 —1/q=(1 —a+ - /9)In
and /9<a.

Let us set

= {(x, y) R "; x ER n - 1 , y>0}
and M  = f(x, y)eR"; x 2 +(y— k - 1 )2 (2k) - 1 .

Then it follows by the dimension argument that the relation among a, g  and q is
sharp. Moreover the following example shows that if a> 0, then the second term
in the right side of (8.1)* is needed. Let n=2  and hk =exp(—k). Let us set
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A k  =  {k<x<k+k - i , hk <y<h k +k - 1 ,

B k  { k < x < k ± h k , 0< y_h k }

= {(x, y) E R 2 ; y <0} U A k} U .

Since A k  can be approximated by smooth domain from inside, we can put M=A,,.
Then as is ovbiously seen, the first term in the right side of (8.1)* vanishes rapidly
when k tends to + co, so that the second term becomes the principal part.

In the cases B, C and D, we can show in a similar way that there exist no im-
beddings of the type considered in the previous examples, except that those explicitly
stated in the theorem 2. Q.E.D.

§  4 . A  review of covering, extension and isoperimetric inequalities

In this section we shall prepare some lemmas which will be needed later. I n
the first place we give two covering lemmas (see [30] for the proof).

Lemma 4 .1 .  Let l > 1 and let 2  b e  a  domain of R 8 . Then there exists an

uniformly locally finite cover of 2 by open balls

B, 1 (el) = {x; I x <1. 3}
such that:

(1) 12 c U B 45-1).
(2) 2'  d i s t  (v, 82)< r i <2 - 1 dist (el, 82).
(3) DC U (1 —2 - 1 )B r i (ei).
(4) For an arbitrary point xE 2 , the number o f balls 1 3 4 o  which intersect

B2 -1, s t c ,, a , ) (x) is uniformly less than N, where N=(1+2 1+5n)8 .

Lemma 4 .2 . Let D  be a bounded set in R 8 . W ith each point xE D , we as-
sociate the ball Bd ( x ) (x) whose center is x and radius is d(x)> 0. Then we can select

a sequence of balls {B } in  'KB r ( x ) (X ) }  x eD such that:

(1) D c  UB J .
(2) There exists a number K depending only on the dimension of the space, such

that every collection of K+1 of the sets B ;  has empty intersection.

Secondly we give a lemma on the existence of extension operator which is due
to E. M. Stein provided a = 0 . The proof will be given in § 11.

Let a* be a modification of a such that 8* e C - (R 8 \8F) and such that 8 *(x )=
6(x) if xE  Q =R"\F, 8*(x) is equivalent to dist (x, 8F) if xE  {Interior of F}.

Lemma 4 .3 . Le t F  satisfy the property SP(1). Le t D=1? 8 \ F .  Then there

exists a continuous extension operator Ek , p, ,  mapping each element of W (2 ) in to

f l (R") such that: E k ,p u=u on 2  and there exists a positive constant C such that
we have

(4.1) iiEk.p,ou; W!'P(Q)11,
for an arbitrary u G W1:,•°(12).
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Here the space 11 (R") is def ined in  analogous way, except that w e use a* in
place of &

Thirdly we prepare isoperimetric inequalities which are essential for the present
paper (See [30], P. 163, § 3 for the proof).

Lemma 4 .4 . L et n> 2 and let B be an open unit b all o f  R . Let M  be an open
subset of B such that aM fl B is a manifold  of class C °J. T h e n

(4.2) Min (1M I , M I Co S(OM n B)"/(n-1 ) ,
for C, 2 - ,

where SOM n dso-1,x s, Sln - 1 (x) denotes the (n-1)-dimensional Haus-
80 n B

dorff measure and v„ denotes the Lebesgue measure of the n-dimensional unit ball.

Lemma 4 .5 . L et n>2 nad let B  be an open unit ball of  R . L et M , and M ,
be two open subsets of B whose boundary portions 0M 1 n B , i=1, 2, are of class C ° .1.
Then

(4.3) Min {1M1 n Af2 I, I B v m , n M2) I } co s(8(ml n A/12)n B)""".

where C, is the same number as the one in the lemma 4.4.

For the proof of Lemma 4 5, it suffices to note that m, n M, can be approximated
from inside by a sequence of open subsets of B  with smooth boundaries and with
smaller volumes than I M2 n 1112

Lastly we prepare the following (The proof is omitted.).

Lemma 4 .6 . If  f : R —  R 1.111 is Lipschitzian, then

(4.4) g(x)I Vf(x)I dx dt g(x)d.414-1(x) ,R .  
R 1 f  - 1(t)

for every Lebesgue integrable real-valued function g.
Here ..41" -1 (x) denotes the (n-1)-dimensional Hausdorff measure and IFf (x )I =

I aff(x) 2
)

112
.

This formulation is due to  Federer [11; Theorem 3.2.12.], see also Maz'ja
[30; Theorem 1.24.]. We recall that if n=1 and g(x)=1, then this equality is known
as Banach's theorem.

§  5 . Proof of Theorem 1 (First step)

In this section we shall reduce the statements of Theorem 1 to the following
proposition 5.1 in terms of isoperimetric inequalities.

Definition. An open subset M  of R " is called admissible if M  is bounded
and am  is a manifold of class
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We note that if u e  C7(R), then for almost all t  the sets

(5.1)M ,  = {xER"; u(x) = t}

are admissible. In fact Sard's lemma implies that the set of critical values of u
has measure zero in IV.

Then Theorem 1 is reduced to the next proposition 5.1 which will be estab-
lished in § 6.

Proposition 5 .1 .  L et F  have the property P (s )  with s  G (0 , n ] . L et M  be an
arbitrary admissible set with d(M)=-diam M <A,A o . Then there exists positive con-
stant C, such that

(5.2) ( c1d(m )1-64-P-0--vq) 6 ( x r d S l ' ( x ) ,
am

where 0<1 - 1/q (1 — a - 1--fr)In and either

—slq<fr:<a_<_0,0<s_<_1, or — s/q< /3< a, 1< s < n

Here C', is independent of  M , and A , is a positive number independent of  M  defined
in Proposition 6.2 in in§ 6.

Admitting this in the present, we shall establish Theorem 1.

Proof of Theorem 1. By virtue of a suitable partition of unity with radius less
than Min [A,Ao , 1], it suffices to establish the following inequality for an arbitrary
u e  C7(B 0) , where B , is  an arbitrary ball with d(.130) < Min [A,A, 1]. Let p , q , a
and fi satisfy the hypotheses in Theorem 1. Then it holds that

(5.3) u  qaPqdx)lh_ ci (  I Fu jP a.P dx)'/P

where C, is the same constant as the one in Proposition 5.1.
In the first place we have

(5.4) u(x) I g  a(x)fiq dx)vq ( d ( t ) a(x)fig dx)"q
Boo 1,4(x)r i

(3(x)fiq dx) 1Iq dt .
o

Here we used the following elementary inequality which is valid for an arbitrary
non-increasing function g > 0:

(5.5) g(t)qd(tq))ilq g (t)d t

which is a direct consequence of the inequality g ( t ) <  g ( s ) d s .  By the proposition

5.1 with M---- -(Iu (x )I> t}  and the lemma 4.6 with f = 1 :1  g = e ,  we have the desired
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estimate (5.3) provided p =1. If p> 1, it suffices to replace q - 1 , a, fi in the inequality
(5.3) with p = 1  by l -1/p+ 1/q, a+ f ig (p - 1)Ip, fig(1 - 11p+11q) respectively and u
by u 1 1+ (

- t) /J.

The assertion (3.2) concerned with compactness also follows from Proposition
5.1:

First we shall prove that the imbedding opreator of l i c,1 'P (F e) into L (D )  is
compact, if D is a bounded subdomain of R"

Let F(77)= -Dc R n ; a(x)<77)- ,  and let fi satisfy that max [—s/p, a —1]<fi <a.
Then it follows from the previous part that

(5.6) I I u ; LAD (1 F(77))II LAD n < cn- - Pilu; HL , P(Rn)II
Since FOly n D is an open subset of D with smooth boundary and compact closure
for almost all 77 >0, the imbedding operator 1-1„.P(RP) into L:(F(77)` n D) is compact.
So that the assertion follows.

Secondly we proceed to the general case . We need more notations. We con-
struct a covering -(B i )- of D by balls with diam B J - 72 <Min [il i A 0 , 1] the multiplicity
of the covering being not more than a constant that depends only on n. Here
we used the lemma 4.2. Let {59,1 be a partition of unity subordinate to this cover.
Then it follows from Proposition 5.1 that for e =1 —a+ 19 —n (lIpœ l/ q ),

( 5 .7 )  S  u(x) I q a(x)Pgdx •Igaoqdx<
D i =1 D

< c in "  E (1 1 7 (uw i )IP (36 P  dX) g IP

D

-CC1 712 q 1114 ; 1 1 ,17c. P (R n Al q +C2(7)iiii; LAR n Al q 7 for an y  u G C7:7(R") .

Here we used the estimate I FT ;  I <Const. 77- 1 . Since the imbedding 1-/L.P(W)—>
L(D ) is compact, it is clear that the imbedding (3.2) is compact provided e>  O.

Q.E.D.

§  6 .  Proof of Theorem 1 (Second step: Proof of Proposition 5.1)

In this section we shall prove Proposition 5 .1  using Proposition 6.3 which
will be established in § 7.

First we state the following which is a direct consequence of the property
P(s).

Proposition 6.1. Let F have the property P ( s ) .  Then the following inequalities
are valid for any n, 72' and any ball B satisfying

0<77'<72<d(B)L<A 0 .

(1) a(x)dx<C7is - 5 *+'177 Is*cl(B)n - s, —s<a•
B n (F n \Fn ,)

(2) a(x rdx< C d(B )n[d (B )+ dist(B , n r , —s
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(3) 8(x)6dx .....Cd(B) n [d(B)--Fdist (B, F)J , a> O.

(4) s
B 888,,

Moreover ifs then it holds that:
( 5 )  For any 77e  (0, d(B)), there exists a sequence of smooth manifolds {Nk } 17-1 such
that NkCP7, N I, converges OF„ as k—>+ co and

hm sup StflA B  fl N k) Cvs - i d (B )s

Here C is a positive number independent of B, 77 and 77'.

Proof . For the sake of simplicity we assume that 3(x) =dist (x, F).
(1) In case a> 0 the assertion is obvious, so we assume — s<a < O. Let e i =77'+

CO

(71 =e ,,,± (77 - 7 7 )2 - i - 1 inductively on j .  Then F,,\F„, = U co J =Fe AFE

and in co;  we have 8(x)>e ;+,. Hence it follows from the property P(s) that:

8(x)6 dx<C2s - 3 *d(B)n_5 I 77-72' I s* E  es.i-Tr 2 ( - i - ' ) s*<
n (F,\Fw) i o

< C V - s * + `̀  I 77-77'1 s *
( ) n _ 3

 .

Here we used e i <2e i + 1  and 77/2'4 4  ‹e  i +i < 77.
(2) In case d(B)<dist (B, F), we get

(6.1) (1/2)[d(B)+dist (B, F)]_<_8(x) _<_d(B)d-dist (B, F), x e B  .

Therefore the assertions (2) and (3) are clear. Now we assume dist (B, F)_<_d(B)
/10 ,13, then 3B c FA 0 . From (1) we have, letting 77' = 0  and 77=3d(B),

(6.2) 8(xr dx 8(x)°' dx Cd(13)1 + "<
38

< C 2 - `'Cl(B)[d(B)+dist (B, F ) ].

We note that the excluded case that A0 13<d(B)<A 0 can be treated in  a  similar
way by dividing B into small balls with finite multiplicity.
(3) Again we assume d(B )>dist(B , F). For a small 72 we have

(6.3) S(x)adx_. (x) dx. 716 (1 B I — I F,, n BenF4
77̀°{1 — C,[77 I d(B)]1 B I •

Then putting 77 =Min [1, (2C,) s]d(B)12, we get the desired estimate.
(4) Let e and t be sufficiently small positive numbers, and set

B, Ix e B ; dist (x, 813)>11, fo r  6 <t
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Then it follows from the property P(s) and the lenmm 4 2 that there exists an uni-
formly locally finite cover of B, f l OF by open balls /3)  with d(.13l)=6 and centers
on OF, such that:

Cl(Bi ) ' i  C O  f l  (F,0 _,\F„_.)1/(26)5 077+ 26 )s - i d(B)n_s ,

where C  and C ' are positive constants independent of 77 and e. In view of the
definition of the Hausdorff measure, we have, letting 6--).0,

n aFn) c7is- Aion - s .

Since t is arbitrary, the desired estimate follows.
Here we note the following: From the general measure theory it also holds

that

SIn-'(B (1 8F) sup 12- '1(F„ h \F) n B 5 C,71s - 1  ABY
h-+0

for allmost all 7i. For the detailed proof, see [11, Theorem 3.2.15, p. 252, Theorem
3.2.26, p. 261 and Theorem 3.2.39. p. 275] for example. Since B n aF„ may have
a positive measure, the first inequality can not be replaced by the equality.
( 5 )  For the sake o f simplicity, we assume that A0 ---F c o .  Take and fix an
arbitrary 7;E (0, +  00). Let g(x) be a nonnegative smooth function satisfying

(6.4) C 'd ( x , azi)
irg (x)1 _<C , xEFf,

for some positive number C independent of x and 77.
Then we have for a sufficiently small e>0

(6.5) m e a s  e B ; 0  <g (x )<e} I n B I 5
.

By the lemma 4.6, we have

(6.6) g(x) I dx Stn-1({xeB; g(x) t} )dt
(0<h(.)<) n

Then by (6.4) and (6.5) we have

(6.7) ÇoStn-le[xEB; g(x) 1 } ) d t  C 7 r i ed (B )' - s

Since g(x) is of class C - , we can choose a sequence ftk li°_,. so that t k —>0 as k-->+ 00 ,
Nk= { X ;  g(x)=-4}  is of class C -  and lim sup Stn - l(Nk n d ( B ) ' .  Q.E.D.

k-*

The following is also a direct consequence of the property P(s):

Proposition 6 .2 .  Assume that F has the property P(s) and a> — s. Then there
exists a positive number A1 such that:
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For any  admissible set M  satisfying d(M)< A,A, and for any  x E M , there
exists an open ball B with center x and d(B)<A 0  such that

(6.8) (1(x)a dx = (1/2)
 L a ( X r  d X

lift1B

holds, where A, is depending only on a and the dimension of the space.

Before the proof we remark that A , is uniformly bounded with respect to a  if
a is contained in a interval [—s, + 0 0 )  for a given e  satisfying s< s.

P ro o f  Take an  arbitrary amdissible set M  satisfying d(M)< A 0/(4N), where
N is a positive number >2 and  will be specified later. Moreover we take an
arbitrary ball B, with d(B0 ) = A 0 1(2N) so that M  C B0 a n d  th e  center of B 0 M .
For simplicity we assume the center is the  orig in . L et B be an arbitrary ball con-
centric with B, and satisfying d(B) A0 . Then we set

(6.9) r 2 a(x)dx(i a(xrdx) - 1  .
MAE

As is obviously seen, r  equals 2 fo r sufficiently small B .  Therefore it suffices to
show that r<1 /2  if d(B)>A 0 . B y  Proposition 6.1, we have

(6.10) r 5C 0 [4130)14B)ln  - ( [ 00)+ dist (Bo , F)]I[d(B)±dist (B, F )I 6

where Co is a positive number depending only on n.
(1) Assume that dist (Bo , F)> (N —1)d(B0). In this case we put B =N B0 . Noting
that dist (B, F)=dist (B 0 , F)—(N —1)d(Bo )/2 and d(B)=Nd(B,), we get

(6.11) r <C o N - n f[d(B0)+dist(B 0 , F)]I[Nd(B0 )12+dist (B,, F)]}'
<CC o N - n =  1 , fo r any  a> —s ,

where C is a positive number depending only on n.
(2) Assume that dist (B o, F)< (N  —1)d(B„). Then we pu t B ---(2N)B, so that
dist (B , F )=0 . Using another positive number C depending only on n, we have in
a similar way

(6.12) r < CC0 N - n  Max[1, r2,f o r  a n y  a> —s .

Here we choose N  so that Max [7-1 , r 2].< 1/2, and we set A 1 = [4 N ] '. T h e n  the
assertion is now clear. Q.E.D.

Now we state the main proposition which will be proved in § 7.

Proposition 6.3. Assume that F has the property P (s ). Let M be an admissible
set with diam M<A,A,, and let B be an ball with d(B)<A 0 . Assume that

(6.13) s(xr dx = (1/2) a(x)dx
mna

Then it holds that
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(6.14) S(x)dx<C(a)d(B ) a(x)d91n-1(x),
MnB 8MnB

w here either — s<a<0, 0<s <1 or — s<a, 1<s <n, C(a) is independent of each
M  and B, and A , is the positive number defined in Proposition 6.2.

Admitting this in the rest of this section we shall establish Proposition 5.1.

Proof of Proposition 5.1. Let M  be an arbitrary admissible set with diam M  <
A,A o ,  where A , is possibly permitted to be + 00 • B y  v ir tu e  of the lemma 4.2
we can construct an uniformly locally finite open cover by a  sequence of balls
{B1} 7. 1 with d(B 1)<A 0 such that the equality (6.13) holds for B=13 ;  (j=1, 2, •••)
and the constant C depends only on n. Then

-
(6.15) ( c1(x)13gdx)1iq E ( aoqdx)1/q <

i= 1M n B i

_< E ( sogdx)vq _< C  [d(B ; )+dist (B 1 , F)rd(B i )fq<
Bi 1=1

___C" Cl(M ) 1 — Ø + P — n ( 1 - 1 1 q )
 cÊ' .3 ( x ) d x d ( B 1 ) ':
1=1 B i

È  f a(x)d9tn-1(x) =GC'C(a)C101) 1 - 6 + 1 3 - n( 1 - 1 1 q) '*
=1  i M flBJ

=C'C(a)K el(m )'.+p - no- vq)a ( x ) a dStn - 1 (x).am

Thus Proposition 5.1 has been established. Q.E.D.

§  7 .  Proof of Theorem 1 (Final step: Proof of Proposition 6.3)

In the first place we shall deal with the case that — s<a<0, which is rather
simple. We prepare the following:

Lemma 7.1. Let F have the property P(s) with sG (0, n]. Assume that — s<
a < 0 .  Let B be an arbitrary ball with d(B)<A 0 . T h en

(7.1) I u(x) — uBI a (x)°' dx<C(a)d(B ) B IFU(X )1(3 0 0 a CIX ,

for any uGC 1(B), where uB =I B1 - 1 u(x)dx and C(a) is a positive constant inde-B
pendent of B and u.

Proof of Proposition 6.3 in the case a <O. We can replace u in (7.1) by u, de-
fined by (2.7), the modification of the characteristic function of the admissible set
M, and letting e to 0 we have the desired estimate. Q.E.D.

Proof of Lemma 7.1. The following inequality is familiar (see [30], p. 20 for
example):

(7.2)I  u ( x ) — u B
 I _G. d(B)ml(nIBI) Llx— yr-nIV u(Y )IdY
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for any u  CAB).
Without loss of generality we assume that B is a unit ball {1 xi <1} and set

(7.3) V (y, p) = s(x+y)0 dx
'ASP

Then it follows from Proposition 6.1 that

(7.4) V(y, p) C(a)a(y) p n , 0< p< 2 .

By multiplying S(x)°' to the both sides of (7.2) and integrating over B with respect
to the variable x we get

(7.5) B U W — Ug I C I(X rdX . C  is 1, 4.0 d Y  I x —y 4I ' 8 ( '  dx

SC1 Iru(Y )IdY  k V ' a(x ± y r d x
B 2B

r3
S C  IV u (Y )I d Y  P i  dV (y , p )

._• .C C ( a) ru(y)16(y)dy

Therefore the lemma 7.1 follows. Q.E.D.

Proof of Proposition 6.3 in the case a> O. F o r th e  sake o f  simplicity we
assume that a(x)—dist(x, F ) .  The proof will be carried out in a chain of auxiliary
lemmas. Though it is rather lengthy, the  techiniques involved here are  quite
elementary, being based on isoperimetric inequalities. First we treat the case that
d(B)<dist (B, F).

Lemma 7 .2 . Suppose the same hypotheses as in Proposition 6.3. Further
suppose th at  a  0 and d(B)<dist (B, F ) .  Then the inequality (6.11) holds.

Proo f . By the lemma 4.4, (6.1) and Holder's inequality we have

(7.6) a(x) dx_<_ uSup à(x)d(B) mnBI, imenBil(n - ')/n
M nB

<C0(n-lilnd(B ) Sup 8(x)'S(8.M n B):<_

c»-1)In d(B)S. 6(x)'d Sin '(x).
OM nB

Q.E.D.

Lemma 7 .3 . Suppose the same hypotheses as in Proposition 6 .3 . Further
suppose that a > 0 and d(B )<dist(B , F). Then it holds that

(7.7) Min-C W (1B I, , 0<x<1/2,

w here is a constant independent of M nad B.
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P ro o f  From Proposition 6.1 we have for some constant ic with 0 <x 5 1/2,

(7.8) 44° dx  = (1/2) (x) dx x 1 Bl(d(B) -Fdist(B, F ) r. .

On the other hand, 8(4' dx  1M  nBI sup a(x) , hence we have

(7.9)1 M  n B (d(B)-Fdist (B, F))/Sup

Q.E.D.

Let us set for small 77>

(7.10) M , = M  a n d  M , = F  =  -(x eli n ; dist (x, .

Here we remark that M , is not admissible in general. Nevertheless it can be
apporximated from inside by a  sequence of admissible sets with smaller volume
than 1M 2 1 for all 72> 0 (Proposition 6.1).

Then from Lemma 7.3 and Lemma 4.5 we have

Lemma 7 .4 . Suppose the same hypotheses as in Lemma 7.3. Then

(7.11) im1nAl2CIBI CI(M1nAl2)cnBI and

I M 1  n M2 n B  C  d (B )S (a(M i n ma) n B)

fbr any n>o.
Here C and C' are positive constants independent of B and M.

P ro o f First we have from Lemma 7.3 and the remark just after (7.10),

I (MI n m2Y nBi= Off n u(Mn B)i

Also from Lemma 4.5, Proposition 6.1 (5) and Holder's inequality we have the
desired estimate. Q.E.D.

End of the proof of Proposition 6.3. Asumme that a > 0, O <sS n and d(B)
dist (B , F ) . By virtue of the property P(s),

(7.12) CIBI Sup c1(x)0
m

 a ( x ) Ø  dx
n

5 Sup 8  (x)6  I M 1 n M2 n B 4- C s d (B )" ns Sup S (x r. .

Here M , and M 2  are defined by (7.10). Without loss of generality we assume
8M2 ={ x EB ; dist (x, F)=721 is adimissible as w ell. Also from Lemma 7.4

(7.13) IM 1nA nB iS ed(B )S (8(M 1 n mo n
< C' 77-  md(B) Ç.wins
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Let us set 77 —d(B)IN, for N>1.
Then combining (7.12) with (7.13) we have

(7.14) C Sup 8(x)d(B) n a ( x )  d x
M O B

< C' Sup 3(x)d(B) ' 8(4' dcgln - 1  (x)d-
w i ns

+2C,d(B)" Sup ô(x) N ' <

< cAdmie (x )dS tn '(x )+d (B )" N 's  Sup 8 (x r),
ami nB

where C"= Max [2-c , 2C,].
Letting N = N o —Max [2, (2C"/C) 1/ ( s- 1 ) ], we have

(7.15) S(x)dx_<_2C"Ntc/(B) a(xrd,_.10-1(x).
m nn amns

Therefore Propostion 6.3 is now established. Q.E.D.

§  8 .  Proof of Theorem 2

Let F be an arbitrary closed set and set 2  = R n \ F . Let O i l 7-0= -(B rg i»
be a open cover of 2 so that the properties (1)---(4) in Lemma 4.1 are fulfilled.
We assume for the sake of simplicity that k=1, j= 0  and ri <1, because most of the
proofs in the excluded cases follow from this inductively.

[Case A]. In this case Theorem 2 is proved in a quite similar way be using the
following Propostion 8.1 in place of Proposition 5.1:

Proposition 8 . 1 .  Let M  be an arbitrary admissible set such that

M  c 12 a n d  d ( M )  diam  (M )<+ co .

Then there exist positive constants C, and C2 such that for 2=1—a+ fi—(1-1/q)>0

(8.1) (  
f r r  

8(x)oqdx)ik<C1d(M)" 8 (x )n d S ('(x )+ C
2
d(M) x 8 ( x ) " - 1  dx ,

where 0<1 -1/q (1— cr+ 19)In and fl a, C, and C, depend only on the dimension
of the space.

Since C o°(12) is densely contained in cf/P (2), it is easy to see that Proposition
8.1 implies Theorem 2 [case A] by the arguments in § 5. Now we prove this pro-
position. Again we assume that (3(x) —dist (x, F) for simplicity. Let {9),} 7. 1 be a
partition of unity subordinate to the cover {B1} . 1 such that I Vço1 l <Cr7 1, let M be
an admissible set in 2  and let u,'s be approximative characteristic functions of M
defined by (2.7). Then for any 77> 0 , we have for a sufficiently small e
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(8.2) ( 8(x)figc/x)vq_ 72-F( (u,sP)dx )
1
iq

J m Jm

_ 77-F(S i (spi u1)q (314n + E  (  f (ppogsPqdx)'iq

Assume that 2 = 0 . Then from Lemma 4.1 and Sobolev's imbedding theorem we
have

(8.3) ( ( ç  , u 1)  SPq dx)liq Cr ( (çoi ne)qdx) l h

< r1+ 1 - "" - 1 " ) 1 1 7 (so1lit ) I d x .C "  1 17(Soille)la‘dx

I r u , l e d x + C " C  l u t la' d x
tr;

Letting we get from (8.2) and (8.3)

(8.4) (
m  

8(x)Pqdx)vq_<_. + C i  am
S'clAn - 1(x)d- C, J a ' d x

Since 77 is arbitrary (8.1) follows. In case 2>0, we can derive the desired estimate
from (8.4) by virtue of Holder's inequality.

Proof of Case B and Case C .  First we assume that

0 < 2  1  —a -1- fi —n lp < 1  a n d  i9<a

Then, for each x E D  there exist a ball Bi  and a positive number C depending only
on n such that

(8.5) lu(x)1 C i fo r any  u e c 1(12) .
B j

Then noting p > n > l, we get

(8.6) 1u(x)1 C6 - n / P - (r7 111u; L(B1)11+111 Vu1; L (B 1)II}

Therefore

(8.7) a(x) "/P - 1  1 u(x) I CI u ; 991'° (2 )11 for any xES. .

On the other hand, from the inequality (7.2) it holds that for any ball B.

(8.8) u(x)—uB Cr 1 - n/P I I I ru 1 ; L(B )1  , r d(B) .

Take an arbitrary point (x, y) from D x D and put r=  x —yl . First we assume that
r = lx —y  <Min 16(x), a(Y)1/4 . So that we have

dist (B,(x), .12)> 38(x)/4 a n d  4c3(x)/5_.<6(y) 58(x)/4 .

Then we have from (8.7) and (8.8)
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(8.9) 11u; SC13)'x ii —11/4114-x+ 1u10,x,ft =
= a(x)P - x I u(x)1 + Min {.3(x)P, (Y)fi)I u(x)—u(y)I I I x ix

Cllu; 54'11<+ 00 .

If  1 x —y1>Min fa(x), 8 (Y)} /4 , then we have

Max {8 (4  a (y)} Min fa(x), a(y)} + I x ---.Y1 5 1 X.  - .VII.

So that the desired estimate (8.9) follows in  a  similar w a y . Thus the assertion in
the case C has been established.

Secondly assume that

1 —ad- 19 = 0  and 9 <a .

Since th e  weight function 8  does not vanish f o r  an y  x e 12, b y  Sobolev's
imbedding theorem, th e  imbedding (3.4) can not be true in case that a and
p> 1. Hence it suffices to assume either p =1 or 19 < a .  If  fi <a, then from (8.7) it
holds that a(x)P1u(x)1< C 11u; 5Pa

l 'P(12)11. Hence this implies that u belongs to the
class S C13

) (2 ) .  We proceed to the case p = 1 . We may also assume that n=1 and
a —19, otherwise p should be strictly larger than I. F o r  simplicity we assume that
eF and (0, 2T)c 2 , T> 0. Then the assertion follows from the next elementary

inequality:
PT

(8.10) 14x) I x < W(t)It 6 dt-Fa lu(t)It'"dt<Cilu; `14) ,16'1 11
o

for any ue C1(0, T) fl 5,111.1(2) and any x e (0, T).

Proof of (8.10). Since lim u(x)xa =0, this is ovbious. Q.E.D.

In  a  similar way we can prove the cases C and D  using the  previous result,
so that Thoerem 2 has been just established. Q . E . D .

§ 9. Proof of Theorem 3

We shall begin with the case A.

Proof o f  th e  case  A . F or simplicity assume that k =1 and j =0 a s  before.
Assume that F has the property S P (s ). So that aF has measure zero, and if s *1,
F satisfies P(s) as w ell. Therefore the assertion in the case A  follows from Theorem
1 and the extension lemma 4.3 (s=1), if  either —s/p< s = 1  or —slp<a,
1<s <n . Hence it suffices to consider the excluded case s=1, a>0. In this case
F= 8F has the  strongly local Lipschitz property. By Proposition 8.1 we have
already established that:

(9.1) ( lulg aPgdx)lig< C( 117 u18'dx+ lui8e"dx) ,
a

for any ue C (D ) .  Here 1 —1/q---(1 —«+fi)/n, a and C is a positive constant
independent of u and D.
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Assume that 2 satisfies the stronlgy local Lipschitz property. Then Hardy's
inequality implies that the space CA2 ) is densely contained in WL• 1(2 )  provided
a> 0 or a< — 1 . For the detailed proof, see [15], [21], [42].
Therefore the assertion follows easily from the following lemma.

Lemma 9 . 1 .  Let 2  have the strongly local Lipschitz property . Assumue that
a> O. Then there exist positive numbers C, and C, such that we have

(9.2) 1036-1dx < C i  I  ru I e d x +  C ,  I u edx ,
a a

for any uECAS2). Here C, and C, are independent of each u.

P ro o f  In the first place we asuume that

=  {x = (x ', x„)eR n  ;  x „ > 0 1  a n d  8(x) = x .

Then integration by parts gives

(9.3) 1u14-1dx_a-1 P,,u1x:dx .

The proof in the general case follows from this elementary inequality using a
partition of unity and diffeomorfism. Q.E.D.

We proceed to the proofs of the cases B, C and D . H ere  w e note that the
assertions in the case D  follow from those in  th e  ca se s  B  an d  C . Again by a
partition of unity and diffeomorfism, we can reduce the assertions to its simplest
form as follows:

We denote by z—(x, y ) and  f =(e, 77) points in R 's  x i? ' w ith  x ,  ERH - s,
y, 77 E Rs, where s is a positive integer <n. Let F--(z—(x, y)eRn - s xRs ; x R ' ,
y = 0 ) . i f  s > l ,  a n d  le t  F—{z=(x, y ) E R n 'x R ;  xE R " - 1 , y _ 0 ) -  if  s =  1 .  We
adop t y I as (3(z) for simplicity (See Example 2  in § 2.). Lastly we set 2  = ir\F
(If s=1, Then

Proposition 9 . 1 .  Let p satisfy and let a and f i  be real numbers.
Case B. Suppose that p(1—a±/9)----n and 0 <fi< a. Then the following imbeddings
are valid:

(9.4) W (2 ) —3. L (D) , p  q<d- co

Moreover if either p=1 or 0<fr <a, then it holds that

(9.5) WL"''(2)--> SC;(2) .

Case C. Suppose that 1—a+19 —n/p>0 and 0< ) 9 <a. T h e n  the following imbed-
dings are valid:

(9.6) WL.P(12)— SC'e(D), 0<2< 1—a-1-11—nlp

Moreover if a *1—nlp, then it holds that
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(9.7) 147i•P(12) SC°A•x(2) , 0<2<l—a+ fi œnlp

In order to prove this proposition we prepare more notations. Let B i(a)
denote the s-dimensional ball with center a e l l s  and radius h , and let S s '  equal
aBl(0). Let us set

(9.8)C .  { Y • Ys)ER'; ( K (Y ?+
-

4
-
YI- 1)1/2 <Y5<h},

where e---(0, •••, 0, 1) S ' 1 denotes the direction of the cone. By C L  with
w e S e", we mean the congruent cone to C1,,, with the same vertex, where co
denotes the direction of the cone. We also set for s> 1.

(9.9) rke {y ( y , • . . ,  yO G Rs; 0 _ ( y ? + • • • + ) 1 ) 112 < y
5
.

In a similar way let denote the boundary portion of C L  which is perpendicular
to GI and congruent to rk e .  We introduce averaging functions as follows:

(9.10) 137,- lu 1] I B '  I ' u,(x)dx = ui(x)dx ,

f o r  u, E  C (S "" ) .

I u,(y)dSy u,(y)dSy,s > ! ,

u2 (h(o) s =1

f o r  u,eC°(Rs) .
h

M [u 3 ]  =  mh- m t m - l u,(t)dt , fo r  u3 e  C
°
( R )  an d  m> 0 .

0
As[u] = 1 1 1 in,'"[T7 y)]]] =

.Y-it

h
(m+s) - 1 11-  m

-
s tm 's "  d t dS- u(x, y)dx,s > 1

h
(M+ 1) - 1  h-  t h e n  d i u(x, t)dx, s=1

4 - 1

for u E O R ' s X R s ) and a> e S s " .  Here Sy  is the (s-1)-dimensional
Lebesgue measure.

The proof of Proposition 9.1 will be carried out in a chain of auxiliary lemmas
being based on potential estimates. The next lemma 9.2 will be established in
§ 10.

Lemma 9 .2 .  L et u e C (R " ),  and let in be an arbitrary positive integer. Then
f o r an  arbitrary point z—(x, y )  with x e  B'h's (0 ) and 0<  y  I <h , th e  following
inequalities are valid:
( 1 )  Suppose that s = 1 .  Then

1/71(9.11) u(z) —21 r.:1[u] C (
I VW, m  

B1- 1 C h o ,  I  — C I"  z — C*  I m  6171
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where co =y11 y I and e*
(2 )  Suppose that 1<s < n .  Then

7 n 2(9.12) u(z)—AZts[u] C d e ( I vu(e,7) I I lm 
B c iz—ci" (1y1+17z1)"

c b

de IFtKe , 01172Im  dii,(

YI +1 771)m + s - 1

where co is an arbitrary element of  Ss - 1  satisfying 10 ) — (0 0I <N/ 2 /4 with co0 =y1 I y I
and C is a positive constant depending only on n and m.

The following lemmas are easy corollaries of this lemma and (7.2) in § 7.

Lemma 9 .3 .  L et p  satisfy p > n  and let u E C (IV ) .  Suppose that 1—a+,9
—n/p>0 and 0:<,8 :<a. Then f or any z=(x, y)ER n w ith xEBrs(0) and 0 < y l
<h, ii holds that

(9.13) ylfil u(z) —A 'h",:s[u] Ch1 - 6 + P - n / P 11 FUI ; Ltall

where co is an arbitrary element of Ss- ' satisfying I ° I—c°13I < 1 T / 4 with coo-- --Y/ y
and C is a positive number independent of each u and h.

Lemma 9 .4 .  L et p  satisfy  p > n  an d  le t u e C (R " ) .  Suppose th at 0 < a <
1 —n/p. Then for any  point a=(a', a n ) e  x R  and any  positive number h , it
holds that

(9.14) I u(z) — B'au(* a)]I C(h-FIcinI)*h i - nIP III VnI; L II ,
Bg[u(* a)]I C(h+ I an I) -  11- "IPIlu; L:II , f or a n y  z E 1312(a) .

Here C is a positive number depending only on n and a.

Proof of Proposition 9.1. Since the weight function I y I does not vanish in D,
the assertion (9.4) follows from Theorem 1 by making use of partition of unity.
So we proceed to the assertion (9.5). First we assume that p = l .  Hence we have
n=s=1 and 0<a=/9. From (9.2) with B—(y, y+l), y.0, we have

y+1 y+1
(9.15) y° u(Y)I 7761u(77) ch2+C 776 18472)1 , u E C (R ).

Y Y

So that we have

(9.16)

Secondly we assume that p> 1 and 0<ft <a. Again from (7.2) with D = C (z )=
X R S ,  y * 0  and co —(0, Y/ I Y I) , it holds that for an arbitrary

u E C (R )

(9.17) I u(z) I In(C)IdC+C IVu(C)11z—C11-"dC —
c, 0 (z)

= I+ T
where e=(e, 72)E R n — s X .
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By Theorem 1 and Holder's inequality we have Ix  lylo<Ch - n/Pliu; WL.P1 I. As
for J we further divide it into two terms. Let us set D = ,„,(z)\ Bryi(z) and
D,= C 'hi (z)\D„ and set J=C [. • •]ol C + C [. • •]dC =J1 +  J ,. Then by Wilder's

DI D2
inequality we have

(9.18) J1>< 51 113-‹C IYI P ( Iz—C1 (1 ' ' )P 'c/C)1/P 'lia;Di

< C'i y I /3( r (1 /+ n- 1 dr)11P' I ill; WL' P l I
yi

WL'P l I •

Let e satisfy 0<e <a —19, then we have

(9.19) J 2  X  I YI P  SC Y I - e ( iz— C 1" - ° '+ 1 3 - "+ e ) P ' dCYIP/ iiu;D2

<C ' I y r(1 / WL•Pil<

L<_C"Iii4; WL.P11 , where 1 = p(p — 1)_1
.

Therefore we have the desired estimates.
Lastly we prove the assertion in the case c.

Suppose that ,a=1 —a+ fr —nlp> 0 and fi a .  Then it follows from the previous
part and the lemma 9.4 that:

(a) If a =1 —nl p, I lu; SC 11...xli Ciiu; WL' n li, 0 <2 <12.
(b) Ifa *1 p, Mu; O<2< a.

Here C is a positive constant independent of u.

Proof. If a =1 —nlp, then we have 0=fi — u<fi —2<a and 1 — a +(fi
nlp> O. Hence one can choose r so that n <r<p and 1 — a +(,9 — 2)—nlr =O. Then
the assertion (a) follows from (9.5) and W L•P(B)—>W1.'"(B) by virtue of a partition
of un ity . If a>1—nlp, then we have 0<fi --2<fi <a, so that the assertion (b)
follows from (9.5) replacing 19 by fl — ti. In a similar way, if 0<a< 1 —nlp, the
assertion follows from the lemma 9.4. Q.E.D.

We proceed to the estimates of Haider norms of uŒ WL.P. Let ,a=1 — a+
—n/p> 0. We shall establish the following:

(c) luloxp-<Cliu; W!' P il, 0 <2

.*  od../1Here I I is the semi-norm defined by (1.10), and C is a positive constant in-
dependent of each u.

Proof Let z =(x, y ) and C = (e, n ) be arbitrary points in  12, and put
p —21z —C . Without loss of generality we assume th a t I I  I 771 and p> 1 .
Now we shall classify the case by the values of p .  In the first place, assume that
p =21 z—C I<Iyi /2. Then we have z, C ŒB;(z) and I I> 3 p/2 . By the inequality
(7.2) we have for y ')e



Weighted Sobolev spaces 397

(9.20) u(z)—B[u(*+z)] i 117u(z')I I z —z' .
B(z)

S ince  0  /3< a  and 3p/2< I 1 yI, we have

(9.21) I YI P I u(z) — B [u (*+z)]

_<_C I W O Yi — P r  1 IYI °1 17u(z)Ilz — z' WiJii •13(.)

In a similar way,

(9.22) I 77 I 13 I u(C) — Ho[ti(*+z)] I cel I u ; wLd'I I •
So that

(9.23) min [I y 1 fi, I n u(z)—u(c) I WL'Pll •

Secondly we assume that p =2 I z—C > I y1/2> I I /2 . W ith o u t lo ss  of generality,
we also assume that z--(0, y) w ith  y * 0  and 77* 0 .  Then z, C EBL(0) (s> 1), and
z, CE B3p (0) n R  (s = 1 ) .  If 0 < a <1 —nip, the desired estimate (9.23) follows from
the lem m a 9.4. So w e assume that a>1 —n lp . Moreover if s=1, then the asser-
tion follows directly from the lemma 9.3 in place of the lem m a 9.4. I f  s> 1, one
can choose a finite number of points co i ,  i=1, •••,n(s), so  that co,----y/ 1 y L con ( s )

77/ I 711 , coi E Ss - 1  and C c l *,75, where the  number n(s) depends only on ii
and s. Then it holds that yE G C L„,,n (  an d  B L - '(0) n Bl;- s(e)* 0. By an
obvious inequality we h a v e  I u(z)—u(C) I I u(0, y)—u (0, 77)1 + 1u(0, 77) — 10 ,  77)1.
After multiplying the factor Min [ I y I P , I 77I P

]  to the both sides, the repeated use of
the lemma 9.3 gives the desired estimate (c). Q . E . D .

§ 10. Proof of Lemma 9.2

W e have postponed to this section the proof o f  Lemma 9.2 which will be
established in  a  chain of lemmas being based o n  Potential estimates. We retain
the notations introduced in  §  9 . Without loss of generality, we assume that co—co,
—Y/ I Y I —(0, • • •, 0, 1)E Ss - 1 .  We begin with the  following lemma which implies
the assertion (1) of the lemma 9.2 in the case n=s=1.

Lemma 10.1. Let vECAR + ). Let in and h be nonnegative numbers. Then

(10.1) I v(r)—M r[v]I<2'n+ iI  V(r) I rm l(r+ r) m dr, , for a n y  r E [0, h] .

P r o o f  By virtue of integration by parts, we have

(10.2) 1 v(r)-111[v] I = I v(r)—m12- m rm- l v(r)di- I _<

2 I V(r) dr+h - m v'et-)1dr ,



398 Toshio Horiuchi

and hence

fh h
(10.3) 3 I v'(r)1c/2- < (r)i'rm g - kr rr d r,  ,

(rih)m v ' (z )ldr < I v'(7)1rm  l(r+r)rn dz. .
0

So that we have the desired estimate. Q.E.D.

From now on we assume that n > 2 .  First we deal with the case s = 1 .  Let
•••, tm + i ) and a —(a1, •••,a„,+1) denote points in R "  with m positive integer.

Take an arbitrary function uE C (R n
) ,  and set

(10.4) U(x , t) =  u(x , I t I )

where x— (x,, •••, x„_ i ) R n  1 an d  t1 =(ti+ • • +t1 +1 )1 1 2 . Then setting

(10.5) B'hz-1.'n+[u] ( 1 - 1 A - 1 1 1 1 3 1 7 + 1 1 ) - 1 d x  fU ( x ,  t ) d t  ,
s r ' 4 + 1

we have B r i 'm+ 1 [u] = A t i [u]. Since B r  x  ± i  is convex, we also have by the
inequality (7.2), for any (x, t) B r' x

(10.6) U(x, t)— A Zt 1 [u]1 1(x, t) — (e a)1 1 - n - m  i Fu(e , 1 a 1)1 de d a .
x 117; +

In order to estimate the right-hand side of this, we prepare the following:

Lemma 18.2. Let v  and w be of the class C (I i + ). Let tube a positive integer.
Then we have

(10.7) Lz +  i v(1 t Div(1 Dd a =
P h PI

= C,n o w(r)r m  dr [64(1 -0 )] - 1 +ml2 v(f(1t1, r, Opd0
O

 ,

where C ,„=2 'Ism - 1i, r, 0)=R It  —r)2(1

Admitting this for a moment, we establish the assertion (1) of the lemma 9.2.
z 2 + 1 1 ( 1 — n — , n ) / 2Let v(r)=[ with z#C, and let w (r)-1V u(e , r)1 . Then we have

for any z =(x , y) E  Br 1 X C

(10.8) lu(z)— Ar,t 1 [1111 72m1Vu(e,77)1dŒdnx

ml 2  [1 z —C 1 2 (1
 — 0 )+

 1 z — C* 1 2 69( 1 - ' '" ) 1 2 d e ,

where C*=(OE,
Thus with somewhat more calculations we have
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(10.9) I u(z)— <C 1Vu(C)11z—C11-n nm I z—c* I - mdC ,

for any z y ) E B ' which is the assertion (1) in the lemma 9.2.

Proof of Lemma 10.2. W e make use of the polar coordinate system defined by

(10.10) t  = r r ,  a = p r' w i t h  r, r'ESm ,
dS 7 = (p sinl/r)m - l dS7T i dift. w ith  0 < i/ r< 7 c , a n d  r"G S "" - /  .

Then we have

(10.11)
r

 v at — c l D w ( l a  pda —
B

h
= w(p)d dS,77i v((r2 + Jo' p cos Itt)1/2)(sin .

o sm-i

Carrying out the change of variables defined by

(10.12) sin = 2[0(1 —0)]h12 , t h a t  is, c o s t ' =  2 0 -1
difr =  (-2/sin  11r)d 0 ,

the desired estimate follows. Q.E.D.

We proceed to the  case  s> 2 . F or the  sake o f simplicity we assume that a =
coo =e--(0, ••• , 0, 1) E Ss -

1 a s  before. Letting y =p e  with 0 <p <h , we have

(10.13) u(z)—A'hT[u] I+ J± K  ,

where

I = u (z )-2 /p  P  r ; , e [Brs [u(*, 77)]]dr, ,
pt2

J  =  2/pr ;  e[B [u(*, 72)]1dr — 1 7 e[B r fu(*, n)]] ,0 2  •
K  r , e[Bg — [ to  , 7

? ) ] ]
— A [u]

e [Bz- s [4* , 72)]] dS ,,f u(e , ) d e .

In the first place we can rewrite 1 to obtain

(10.14) I  =  u(z)— I 2 1- 1 u (C )c 1 Ca
where 12 s  x {77 c';,,e ;  pl2<n s <p}  .

Since 12 is convex, we have by an easy variant of the inequality (7.2)

(10.15) II7u(C)Ia

<C1 If7u(C)11z—C11-ninimAlnl+P)mdC.
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As for J and K, we have

(10.16) J = 2/p v (r)drœ v (p) a n d  K  =  v(p)— Mrs[v] ,

where v(P) = s[u(*, a)]]

By the lemma 10.1 and its easy variant.

(10.17) K  2 " ` + ' I V (r)I /(r+p)m ± s dr, ,

rh
11/(r)1dr Vf(r) I r  'n + s g r+ P r + s dr

Since it holds that

(10.18) IvV)1 c[IB Ith z - s1 Ir;,.11- 1 H v,u(e, 77) I de dS, ,
x r;,„

we have the desired estimates. Q.E.D.

§  1 1 .  Proof of Lemma 4.1

We shall prove the extension lemma 4.3 in  § 3 which is estentially due to
E. M. Stein . H e treated the case a = 0 . F o llow ing h is arguement we shall
show the existence of extension operator Ek ,p : W V'(12) —>11„k , P(R ") satisfying
11Ek ,p ,„u; I n ,P (R n )i 1-<Cliu; W:,'P(S2)11. For the sake of simplicity we assume that
S2= { (x, y)=(x,, •• • , x„_„ y)ER n ; p(x)<y, where p; R n -

1--> R  is a Lipschitz func-
tion with Lipschitz constant 1. In fact the main part of his proof is based on the
existence of functions defined in neighborhood of a simple domain as above. Then
by virtue of a partition of unity he constructs a global extension in general case.
Choose a smooth function *(2) so that

(11.1) ij'(À)d2 1,* ( 2 ) . l i d  2 0 ,1 1, 2 , . . . .

For the sake of simplicity we assume that ô introduced in § 1 satisfies

(11.2) 8(x, y ) = 0 fo r  y ,
2(p(x)—y)_<6(x, y)_3(5.0(x) —y) fo r  y ç o (x ),

and I a/ a(x, Y) C(r) P(x) — Y 1 -
111 •

Let us set

u(x, y) , Y.40(x)

u(x, y+23(x, y)).0 ,(2)012 , y ço(x ) .

In the first place we shall see that, Œ H '( R )  provided ue WL , P(S2). Since
1*(2)1 is rapidly decreasing, it is majorated b y  Const. 1/2 2 . So  w e have for

(11.3) (Ek,p,,u)(x, Y) =
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y <90)

(11.4) 6(x, y)(E u)(x, Y)__ CS- 50(x) — Y 1° 1
-
1 I u (x, 01 I I t— y 12 dt .

y-F8(x,y)

Raising both sides to the p-th power and integrating for y c o ,  so(x)],

99(z)
(11.5) I(x)a..-- a(x, Y )" I (Ek.p u)(x, Y) I Pdy

S C  r( x ) Y — P(x)I°H- litt(x, t)i 1 it — y rdt IPdy

Using the fact t — y y+S(x, y) — (x)_ço(x) —y 0 ,  for y <50(x), we have

(11.6) 1(x) C r ( x ) r (9(x) — Y) i  u(x , sa(x)+ t) I /t 2c/t I Pdy

S  c i r 9(x)±t)Ilt2dt IPdz .o

The following inequality is familiar. For the proof, see [15].

Lemma 11.1 (Hardy). Let p satisfy p ..1  and p (r+1 )+1 >0 . Then

(11.7) f (s) I ds)P tP( 7 ± 1 ) dt { /M P(r + 0 - Fin- P r  s.f(s) I P  SP e i+ i ) dS
0 t 0

for any f  C n f f+ ).
From this we get

-
(11.8) I ( x ) C I u(x, 9(x)+01P/Pa cit =  C I u(x, y)IP  y—ço(x) dy.

v(x)

Hence we have, by integrating with respect to x over

(11.9) (Ek.p..u)(x, Y) I P8 (x, Y )Pdxdy_ C I lu; Lf,(2 )11P •
R"

Secondly we proceed to the estimate of derivatives 07(Ek ,p u) with I r I =1.
Let a;  and ô denote az , and ax i s respectively.

(11.10) a i (Ek ,p ,„ u) = Ju)(x, y- F 28)*(2)d (0 y+ 26).18 (2)d ,

8 y (Ek ,p ,o u) (a yu)(x, Y+ 28)(1 - - 28 ) ,)* (2 )d  .

Since the first derivatives of cl a re  bounded, we h a v e  in  a  similar way that
1117(Ek.P,ccil); L(Rn) Il _C1111; Wl*P H. The proof for k > 0  is sim ilar. Consider for
example k = 2 .  We shall handle typical term a?(Ek ,p ,6 ) only.
Then it is easy to see that only the following term

(ayu)(x, y+26)28,.,*(2)d,1
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needs to be dealt with separately. We write
y+X8

(11.12) ay u(x, y+ 28) =  ay  u (x, y + u„(x, t)dt .
y+8

Since is rapidly decreasing, it suffices to estimate

y +xa
(11.13) J I y  9 7 (x )1 ' 2- 2 c12 uyy(x, t)dt .

1 y+8

By interchange of the order of integration we have

-(11.14) l/2(Y—P(x)),-- uyy(x, t)(3(x, — y I 2dt .
y+8

So that it follows from the earlier case that the desired estimate holds. Q.E.D.
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