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§ O . Introduction

Let M /K  be a cyclic extension of finite algebraic number fields of degree 1, and a
a generator of the Galois g ro u p  G a l(M /K ) , w h ic h  w ill b e  f ix e d . For an algebraic
group G defined over K , w e denote by G(M ) the set of all points of G with coordinates
in M .  The action of a  on G(M ) can  b e  d e fin ed  n a tu ra lly . W e  d en o te  it b y  ' g  for
g E G (M ). In G(M ), we define an equivalence relation b y  g--o. g ' if and only if g =
11- 1 ,g' 11 fo r so m e  h E G (M ). This w ill be called a-conjugacy. It w as introduced for
G L(2) in the study of the twisted trace formula ([31, [4 1). The purpose of this paper
is to determine a-conjugacy classes for G  such that G (K )=A  , where A is a semi-simple
algebra over K.

The a-conjugacy has a close relation w ith  the usual con jugacy , w hich  w ill be
denoted by --,. For geG(11/1), we define the "norm" of geG (M ) by N g=gag 0 2 g•••°` - 'g.
T h en  the conjugacy class of N g depends only on the a-conjugacy c la ss  o f g. We
d e n o te  b y  G(M)/- , ,

, ,  G ( M ) / - -  the sets of a-conjugacy classes, and usual conjugacy
classes in G (M ) respec tive ly . T hen  N  defines a m ap of G(M )/—  t o  G(M)1 ,--. This
m ap  is  fun d am en ta l in o u r  s tu d y  o f  a-con jugacy. In fact, f o r  G =A ,  th is  m ap  is
injective, and to determine G (M )/--, it is sufficient to determ ine the image of G(M)/-'-
b y  N .  I t  is  e a s y  to  s e e  th is  image is contained in the set (G(M )/--) 1  consisting  of
conjugacy classes invariant under a .  To describe the image, we consider the norm  at
e a c h  place of K .  For each place u  o f  K , let K„ be  the completion of K  a t  y  and let
M,.=MO K K „. Then the action of a  can be extended to /1//„ and G(lif,). We can define
in• G(M„) a-con jugacy and the norm  in the same way as ab o v e . Our main result asserts
that for G =A  a conjugacy class in (G(111)/)a is contained in the image of G(M) by A'
if and only if it is contained in image of G(M„) b y  N  for all u (c f. Th. 2.1).

In § 1 , w e give prelim inary results on a-conjugacy. In § 2, we state our main result
and reduce the proof to  the cases of semi-simple and unipotent e le m e n ts . The proofs
of these tw o cases are given in § 3 and § 4 separately.

§ 1. a-conjugacy

In th is section, we prove some elementary properties of a-con jugacy . Let K  b e  a
field of characteristic 0 and G  a linear algebraic group defined over K .  W e define a-
con jugacy for M m ore general than that in the Introduction. Let M  be a commutative
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semi-simple algebra over K  of dimension /, and  a  a  K-automorphism o f M  such that
M e  = K . Here fo r  a  se t  X  o n  which an  automorphism a  is defined, we denote by X 6

the set of elements invariant under a .  Then we may assume M  is  th e  in-fold product
My' of a  cyclic extension M , o f  K  o f degree / /m  with a  generator z  o f G al(M IK ) for
a  divisor in o f  / and  the  ac tion  of a  on  M  is given by c(x 1 , ••• , xm)=(x2. ••• , x., 'xi).

L et G(M ) th e  se t o f  M-valued points of G .  Then the  action of a  on G(M ) can be
defined naturally. We denote it by 'x  for xOEG(M ). In  G(/1//), we define an  equivalence
relation ,  which will be called a-conjugacy, by

Y f==;. X =g - 17 4 g f o r  g e G (M ).

W  denote by th e  usual conjugacy, that is, x-.-'y  f o r  x , y G(11) if  and  only i f  X =,
g 'y g  fo r  g G (M ) . F o r X(..--__-- G(M ), we define a  "norm " N  by

NX = X'` X  " I - - ' X.

For a  divisor n  o f 1, we define N i , N 2 by

N i X =X "X  •••

N ,X =X X •••

with , = a 7'. Then we have

Proposition 1 .1 .  Let X, Y, g E .G (M ) . Then
(1) N X = N ,(N i (X ));
(2) a  N i X --N ,X , in particular fo r  n =1 , 'N X , NX ;
( 3 )  N i (g -1 7X ° g)-=g'N X 'ig , in particular fo r  n=1, N (g - IX ° g)=g - i(NX )g.

P ro o f. The assertion (1) can be checked directly, a n d  (2 )  a n d  (3 ) follow from
X " ( N ,X ) X '=N 1 X  and  N X 4 g) ,  g" X" g6(g - 1  X° g) " " - 1 (g - ' g ) =  g - i(N i X)v g.

From this, we see easily

Corollary 1 .2 .  ( 1 )  Let G(M )/ ,--OE and G(.41)/--, be the sets of equivalence classes with
respect to and respectively. T h e n  N , and N  induce maps

N i : G(M)/-;- , ---> (G(M)e;74° ,

N : G (M )/-0 ,  - -> (G (M )/'-)" .

( 2 )  For X G ( M ) ,  le t C ,(X ) , C (X )  be the a and 1j-conjugacy classes containing X
and C(x ) the conjugacy class containing x. Then N i and N  induce surjective maps

N : C c ,(X )--> C (N X ).

F o r hE G (M ), we define th e  maps a,, N n  o f  G(M ) to G(M ) by

h X= h ,

N,,(X )=X ahX •••
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T h en  w e h a v e  'h (N h )=N h . F o r x EG(M ), le t  Gs  denote th e  centralizer o f  x  in  G.
Then we have

Proposition 1 .3 .  Let X EG(11/1). Then
(1) N(X11 - ') =N X (N lir
(2) i f  r h(NX )=NX , Nh - '  belongs to G i v x (114).

P ro o f .  T h e  asse rtio n  (1 ) can  be verified  d irectly , a n d  (2 )  follows from  N X =
h°(NX)11 - '=11X - 1 (NX )X h - '.

The form ula (1) w as rem arked by Hijikata. I f  12". .xli - t=x , N h E G s (M )  a n d  a h

gives rise to an automorphism of  G ( M ) .  Furthermore, if  N h belongs to the  center of
Gs ,  in  particu lar, if N h =x , th e  order of the automorphism is finite, and  when M  is a
field, Gs  h a s  a K -structure so that x , N h E G ,(K ) . The autom orphism  a, is noth ing
b u t th e  a c tio n  o f  a E G a l(M /K ) w ith respect to this K-structure, and  N h  is th e  norm
fo r  this action.

Proposition 1 . 4 .  Assume x =N X , and let g be the group of automorphisms of Gs (M)
generated by  c.v . Then the set of o-conjugacy classes in N - 1 (C(x )) i s  in  o n e  to  one
correspondence with H'(g, G(M )).

P ro o f .  I f  NX-s, NY , th a t  is ,  N X =g - L(N 1r)g fo r gEG (M ), then  N X =N (g'1 7 °g).
Hence the inclusion induces a bijection {Y1Y N =x } /7 - ./V- i ( C ( x ) ) / .  Since /x x =x ,
N Y = x  i f  a n d  o n ly  i f  Y X - 'EG s (A 1) and  N x (Y X - ')-=1 by Prop. 1.3. For Y i , Y 2 in
IY  N Y = x l,  we see if  17 ,=g - iY 2 'g  fo r  gEG (M ), then g e G s (M ), and Y i - ; Y 2 if  a n d
only if Y 1 X - 1 = g '( Y 2 X - ')° ,'cg  fo r  gEG s (M ) .  T h is  proves the proposition.

Corollary 1 . 5 .  I f  I I '( ,  G s (M ))=1 fo r  all  x EG (M ), th e n  the m ap  N:
(G(M)/ , ) ' is  injective.

Proposition 1 . 6 .  Let M ,,m ,z - be as above, and le t  n -=- m  in  the definition o f N„ N 2 ,

and )7. Then the follow ing assertions hold.
(1) The norm  N , induces a bijection

N ,: G (M )/7  — > (G (M )/- ,

and if  in N  induces a bijection

N: G(M)/-;-, --->(G(M )/)' .

(2) The diagonal em bedding 4: x->(x, ••• , x ) o f M , into M  induces bijections

d: (G (M i)/-) — > (G(M)/',-'2 )°

d: (G(111,)/ , )7 ---> (G(M)/•-•, )4

Proof. (1) W e  n o t e  t h a t  if n = m ,  '2
( X 1 ,  X 2 ,  • • •  X m )

=
 X l ,  

'
X 2 ,  • • • X Ire) for

(x,, x 2 , ••• , x„„)EG(M)=G(M i ) m . First we prove the surjectivity. For x2, , Xm)
E  GOV), assume °x =g - 'x rg for g=(g„ g 2 , ••• , g,,,)EG(M ). Then we have x2=gT'x1'gi,
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X3
=

g ' X 2
r

g 2 1  • • • and x z (x 1 , x i , ••• , x i ). S ince  N1((1, 1, xi))=
(x1 , x l, •••  x1 ), N , i s  surjective. For X = (X „  X2, ••• , X ) ,  l e t  ,g1=1, g2=X1 1,  g 3

=

( X I X 2 ) -1
7 •  I g l I t

=
( X 1 X 2  " •  X 1 7 1 - 1 )  and g—(gl, g 2 7  •  • •  7  gm .)•  T h e n  w e  have g  ' Xag=

(1,••• X i X 2 •••X ) .  To prove the in jectiv ity, it is  enough  to  show N ,X = N l Y  implies
X--, Y  fo r  X = (1 , •, 1 , ••• , X i )  and Y=(1, 1, ••• , Y i ). B ut th is is obvious, because
N ,X = (X ,, ••• , X 1 ) and N117 =(Y1, ••• , Yi).

( 2 )  The in jectivity is  o b v io u s . The surjectivity of the first map follows from the
proof of (1). Assume "X = g - 'X g  for X = (X ,, X 2 ,••• , X„,) and g=(g„ ••• '['hen
w e have X 2 = g -

i•1X 1g 1 , ••• , and X--(X 1 , ••• , X i ). This
completes the proof.

In  the rest of th is  section, w e assume M  is  a cyclic extension of K.

Proposition 1 .7 .  For a unipotent element x in  G (K ), there exists X E G (K ) such that
X 1= x ,  and x is contained in  N(G(M)).

Pro o f . W e m ay assum e x * l .  T hen  the Zariski closure o f th e  group generated
b y  x  is isom orphic to G a  (c f. Remark in § 7.4 o f [ 1 ] ) .  Our assertion follows from this.

For xE G (M ), w e denote by x 3 , x„ the semi-simple, unipotent parts of x  in the
Jordan decomposition.

Proposition 1 .8 .  L et x = x ,x „  be the Jordan decomposition of  x. Then the following
assertions hold.

(1) I f  xE N (G (M )), then x 8 EN(G(M )).
(2) Assume x s = N Y  f or Y E G (M ). Then x(1.= N(G(M )) if  and only if  xacNy(Gx,(M)).

Pro o f . Let x= N X  for Xe-G(/14). T hen  " x x = x , and ' x x3= x2, '' r x ” = x „  b y  the
uniqueness of the Jordan decom position . H ence x s and  x ,, are contained in the set
G (K )  o f K-valued points of G .  B y  P r o p .  1 .7 , th e re  e x is ts  YE-G x (K )  such  tha t
N x (Y )= x 7 ` .  B y  (1 )  o f  P rop. 1.3, w e see N ( I 'X ')= N x (Y X X ')N X = x ;Ix = x 3 . This
proves (1).

( 2 )  I f x„=N y (Z ) for Z G . 3 .(211), then N(ZY)=N y (Z)NY=x„x s = x .  Conversely, if
x=N X , then ' v ( N Y ) N Y ,  and YX - ic,- Gs s (M ), therefore XY - IEG x 8 (21/f) by (2) o f Prop.
1.3. W e see N y (XY - ') = N X (N Y ) - i=  x  x =  x „. This completes the proof.

2. Hasse princ ip le  fo r a-conjugacy

L et K  be a finite algebraic number field, and M a cyclic extension of K  of degree
1. Let A  be a semi-simple algebra over K  and G  the algebraic group over K  such that
G (K )= A '.  W e fix a generator a  of Gal(M/K), and consider the a-conjugacy and the
norm N in G(M).

For a place 2) of K . let K„ be the completion of K  a t  1) and M ,= M O K K„. Then
w e can extend a  to  M , b y  a O id .  The field K„ and the K,,-algebra M„ sa tis fy  the
condition for K  and M  in 8 1 .  Hence we can define the a-conjugacy and the norm  in
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G (M ) . W e denote them by and the sam e letter N  as in the global case. The usual
conjugacy in G (M ) will be denoted by  .  A  class in G (M )/-- determines a  c lass in
G(M„)/ ,-, -, b y  the inclusion, and w e have an injection G(M)/--->rfG(M,,)/-s ,

• 
In these

ro v  

notations, our main result is

T h e o re m  2 .1 . The norm induces a bijection

N: G(M )/ ,-: >(G(M)/ , )unajN(G(M„))/-s, -, ),

where the product is extended over all places of K.

By (2) of Cor. 1.2, we obtain

C o ro lla ry  2 .2 . For x _G (11), i f  "x ,--x  and xEN(G(M „)) f o r  a l l  places v  o f  K,
there ex ists X EG(M ) such that N X =x.

As in the case of the usual conjugacy, a class in G (M )/--  determ ines a  c la ss  ina
G(M„)1,--:v  for each y, and the diagram

G(M)/ , - 7   G (M )/--

I t
II(G(My)/;--) — +  ( G ( I l l y ) / ^ ; ')

is commutative. Since both of the maps N: --,G(M)/,,, and G(M)/ , —II(G(111,,)/--,
v )

are injective, w e obtain another type of Hasse principle for a-conjugacy.

Proposition 2.3. The natural map

--> tI(G(My)/;'-',„)

is injective. N am ely , fo r X , Y  EG(M), X ,■ 1 ' if and only if  X i f  for all places?) of K.

The proof of the injectivity in Th. 2 .1  is easy . Let ii,,, =A O K M . Then G(M)=.41;,.
For x eG (M ), w e  put

fzE-A m  x z =z x l .

T h e n  A  i s  an M-algebra and G ( M ) = ( A ! '.  I f  x =N X  for X EG(M ), A z = ( A n 'x  is
a K-algebra and illY=A z O K M .  It is  w e ll k n o w n  th a t I-11 (g, (A.vOKA/))= 1 ,  w h e r e  g
is  the group generated by a x . This proves the injectivity b y  Cor. 1.5.

W e reduce the proof of the surjectivity to  the special cases w here x is semi-simple
or u n ip o ten t. Let x = x ,x , ,  b e  the Jordan decomposition and assume the conjugacy
class o f x  is contained in the image of the norm for a ll places of K .  Then by (2) of
Cor. 1.2, x N(G(A/y )) for all places y of K .  Let M =M T  for a field M i  and an integer
m . W e d en o te  b y  r  the element of Gal(M i /K y )  induced by o.'3 . Let 77, N , and N , be
those defined for n = m .  T h en  the following diagram  is commutative.
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N, N2
G(M,)/-;-, —= -4 .G (M 2 )/,1G ( M ) / - -

4 1'>
G( M,)/^;'

By Prop. 1.6 and (1) o f Prop. 1.8, x s cN (G (M „)) for a ll y. By Prop. 3.1 (proved in §3),
there exists Y E G (M ) such that x s = N Y .  B y  the proof o f  Prop. 1 .8 , w e  se e  x u E
N y (G x ,(Af„)) for a ll v . S in ce  x ,  is  semi-simple, G 2(K )= A 8 for a semi-simple algebra
A x ,  over K .  By Prop. 4.1 (proved in § 4), w e see there exists ZE G x ,(M )  such that
N y (Z )= x „  and ag a in  b y  (2 )  o f  Prop. 1 .8 , there exists X E G (M ) such that N X =x.
Thus the proof will be completed.

§  3 . Semi-simple case

Let the notation be as in § 2. Throughout this section, we assume x is semi-simple,
and we will prove the following special case of Th. 2.1.

Proposition 3 .1 .  Fo r x = x ,E G (M ), assum e "x x  and xEN(G(M„)) f o r  a l l  places
y  o f  K .  Then one has xEN (G (M )).

We reduce the proof to the case where .v is  a regular element.

Lemma 3 .2 .  Assume Then there exists Y EG (M ) such that Y 6 xY - L=x, and
N Y  and x (N Y ) '  are  regular semi-simple elements.

Pro o f . Let h  be an element o f G (M ) satisfying 1i'x/2 - i= x  and let

Z ,= {g E G I e x g - ' = x l .

Then we have Z 7 , G x li =h 1 G x . Since G., and R 1 1 1 ( G )  are connected, Rm/K(Gx)(K)
i s  Zariski dense in Rm/K(Gx). Hence Rm /AZAK ) is  Zariski dense in R i r / K ( Z , ) .  W e
define a m orphism  g o f Rmi/c(Z0) to G  as the composite of Rm/K(Z,):="2. ,,X cZo. X •-•
Xg` - 1 2. 0,c-,GXGX ••• XG (the product of / copies of G)—+G. The last morphism is given
b y  the multiplication in G .  Then g  is defined over M , and its  image is contained in
Gx ,  because the condition y i a x y T i = x ,  y2 ° 2 x y V = 6 x ,  ••• y i l t x y ,=` '` - l x  implies y1 y2  • ••

y1 x(y 1 y2 •-• 3, 1 ) - != x .  Hence Si gives rise to a morphism of Rm IR(Zo)to G .  F o r  zEG.r,
put 2=(z(Nh)'h, ch, ••• , u' - 1 h ) .  Then 1EZ„ X°Z„ X ••• >C“ - 1 Z o . Let 2' be the point
of R m / K (Z,„) corresponding to 2 by the above isomorphism. Then 1(2 ')= z .  This shows
I  is  surjective. We note that if z 'ER m /K (Z c )(K ) corresponds to zE Z 0.(M ) under the
morphism Rmix(Z)— +Z, then g (z ')= N (z ), and A R m irae )( 10 )= M Z ,(M )).

Let S  be the set of regular semi-simple elements in  G .  T hen Gz n S n S x  i s  a
Z arisk i open subset o f G x  defined over M (c f . [5 ] , [7 ]) . Let T  be a maximal torus of
G  containing x. Then TC G x  and for y E T , yEG.r n S n S x  if an d  on ly i f  a(y)*1 ,
a(yx - ' ) * 1  for every root a relative to T  (cf. Prop. 3  in 3.5 o f [ 7 ] ) .  The set of such
y is not empty. Hence G z n S n S x  is a non-empty open subset of Gr, and Al- i(G r n S n S x )
is also a non-empty open subset of R 1 / (Z 0 ).  Since Rm/K(Z,)(K) is dense in Rm/K(Z0),
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there  exists Y E Z ,(M )  such  tha t N Y  ES  and  NY E S x .  T h is  Y  satisfies the condition
in  our Lemma.

W e note this lem m a holds if  G., is connected, fo r  example, i f  Gde r  is  sim ply  con-
nected (c f. [2], [6]).

L et Y  be a s  in  Lemma 3 .2 , an d  le t y = N Y .  B y th e  re m a rk  a f te r  P ro p . 1 .3 ,  G y

has a  K -structure  such  tha t yEG y (K ) .  W e see xE G ,(K ), because °Yx=YaxY '=x.
Now we prove

Lemma 3 . 3 .  Let x, Y, and y be as abov e. T hen the following assertions hold.
(1) There exists X E G (M ) such that N X = x  if and only i f  there ex ists ZEG y (M)

such that Ny (Z )= x y '.
(2) For a place v o f K, there exists X y EG(M,) such that N X ,= x  if  a n d  only  i f

there exists Z,EG y (M ,) such that Ny (Z ,)=xy ".

Pro o f . W e give a  proof for (1). The assertion (2) can be proved in the same way.
Let NX=x fo r  X E G (M ). Then by Prop. 1.3 , we have Ny (Z )= x y "  fo r  Z = X 1 ' .  We
sh o w  Z E G ,(M ).  Since Ny (Z )=xy - '  and  r̀Y(xy - ') = x y - 1 ,  xy - 1 = N y (Z )= Z 6 Y(Ny (Z ))Z "
=Z'Y(xy - 1 )Z - 1 =Zxy - 1 Z " .  We see also that ZxZ - 1 =x, because Y"xY - 1 = x  an d  X 'x X - '
= x .  Hence we have Zy - 1 Z "= y - 1  a n d  ZEG y (M ) .  T his completes th e  proof.

W e note this lemma holds without any assumptions o n  G.
L e t y  be a s  above and put

A y = iaEAO K .11 ay = ya, 'Ya=al .

Then A y  i s  a commutative semi-simple algebra over K  and G ( K ) = A .  By the above
lem m a, to prove Prop. 3 .1 , it is  enough  to  show  i t  in  the  case  w here A  is a commuta-
tive semi-simple algebra over K .  Such A  is a  direct product o f  finite extensions of K.
Hence the  proof o f  Prop. 3 .1  is reduced to th e  following lemma.

Lemma 3 . 4 .  Let S be a finite extension of K, and for xE(SO K M )  (rest). (SOKM,)"),

put N x = k a i - i x, where 6 x= s0 'm  fo r  sOniESO K M (resP. SOKM„). Let x E S  .  I f

xE(SOKM ,r fo r  all places v o f K, then xEN(SOK114)'•

Pro o f . There exists a  cyclic extension T  o f S o f degree / /m  fo r  a  divisor in of
such that SO K M  is isomorphic to th e  in-fold product o f  T , and the action of a is given
b y  7̀ (x 1 , x 2 , ••• , x.)=(x2, x3, ••• 'x1) fo r  a  generator r  o f  Gal (T / S ).  U nder this
isomorphism, the subset S of SO K M can be identified with the set { (x , x , ••• , x ) x  E S } .
For a  p lace  y  of K, SO K M , is isomorphic to th e  m -fo ld  product o f  T„=TO K K„ and
th e  ac tio n  o f  a  is g iven  by  th e  same form ula as a b o v e . T h e  assumption implies that
there exists X i , X2,,, ••• , „E T , such that AVX1,,, X2, r, • • • y  X n t .  VD

=
 ( N r /8 (X 1 ,1 , • • • X 7 1 1 ,  V ),

•  •  •  ,  N T IS (X j, y ) •  •  •  X 7 1 1 , 0 ) ,  w here N T I s  denotes the norm for T/S and its extension to Ty/Sv
The Hasse principle fo r  th e  cyclic extension T/S asserts tha t there  ex ists X,ETx such
th a t  N T / s ( X 3 ) = x .  D e f in e  a n  element X o f SO K M  b y  X = (X i , 1 ,  • • ,  1 ) .  Then we see
N X = x .  T his completes th e  proof o f  Lemma 3.4  and  th a t o f  P rop. 3.1.
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§ 4. Unipotent case

Let the notation be  a s  in  § 2. In  th is section, w e w ill prove th e  following special
case of T h . 2.1 and completes th e  proof o f T h . 2.1.

Proposition 4.1. L et x =x  „, and assume x  and xEEN(G(.11„)) f or all places v of
K. Then one has x EN (G(M )).

P ro o f . L et h  be a n  element o f  G(M ) s u c h  th a t  V x12 - 1 = x .  L e t  y = N h .  Then
H=G y  h a s  a  K-structure, a n d  x , y E G y (K ) .  Hence 11, is also defined over K , and
x , y E ll x (K ) .  L et iV(X„) ,----- x  fo r  X ,,EG (M „). T hen  1\11,(X , , h ') = x y ' b y  P ro p . 1.3. In
th e  sam e w ay a s  in  th e  proof o f  Lemma 3.3, w e see  x„h - LeGyomnG.01„)=-H.(Aft,)
and  xy'OENI,(Hz( 1111 ,)). L et Y=Y8Y ,  b e  the Jordan decompositon o f  y .  T h e n  xyTi l is
unipotent a n d  xy - 1 =y ril(x y V ) g iv e s  th e  Jordan decom position o f  x y ' .  L e t  Hz=
L. R„(11„) be a L evi decomposition o f  H , w ith  a  red u c tiv e  g rou p  L. T h e n  x„Y V E
R,(11„)(K) and  w e m ay  take  L  so  th a t y -i 'E L ( K ) .  Since .3q 1(x,431;`)EN(H,(111,)),Y ; l e
N (L (M ,)). N ow  L ( K ) =C  fo r  a  semi-simle algebra C  o v er K .  B y  P ro p . 3.1, there
exists Y s .EL (M ) such  tha t N h (X ,)=3 ,V . O n the  o ther hand, the  element yVx„ is con-
tained in  the center of H , and  is  unipotent. H ence  there  ex ists Y . in  t h e  c e n te r  of
H ,  such  tha t " , (Y „ )= Y .  and  Y = y V x „ .  L et Y = Y 8 Y „ .  T hen  Nh(Y )=Nn(Y ,)Nh(Y .)
= x y '  and  N(Y 11)=N 1 (Y )N li=x y - 1 y = x .  T h is  completes th e  proof.
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