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§0. Introduction

Let M/K be a cyclic extension of finite algebraic number fields of degree /, and ¢
a generator of the Galois group Gal(M/K), which will be fixed. For an algebraic
group G defined over K, we denote by G(M) the set of all points of G with coordinates
in M. The action of ¢ on G(M) can be defined naturally. We denote it by “g for
g=G(M). In G(M), we define an equivalence relation ~ by gf;;g’ if and only if g=
h'g’?h for some heG(M). This will be called ¢-conjugacy. It was introduced for
G L(2) in the study of the twisted trace formula ([3], [4]). The purpose of this paper
is to determine o-conjugacy classes for G such that G(K)=4", where A is a semi-simple
algebra over K.

The g-conjugacy has a close relation with the usual conjugacy, which will be
denoted by ~. For g&G(M), we define the “norm” of g&G(M) by Ng=g°g°’g - o=ty
Then the conjugacy class of Ng depends only on the g¢-conjugacy class of g. We
denote by G(M)/f;/, G(M)/~ the sets of ¢-conjugacy classes, and usual conjugacy
classes in G(M) respectively. Then N defines a map of G(M)/f;J to G(M)/~. This
map is fundamental in our study of o¢-conjugacy. In fact, for G=A", this map is
injective, and to determine G(M )/f;a, it is sufficient to determine the image of G(M)/f;/
by N. It is easy to see this image is contained in the set (G(AM)/~)’ consisting of
conjugacy classes invariant under o. To describe the image, we consider the norm at
each place of K. For each place v of K, let K, be the completion of K at v and let
M.=M®rK,. Then the action of ¢ can be extended to M, and G(M,). We can define
in. G(M,) o-conjugacy and the norm in the same way as above. Our main result asserts
that for G=A" a conjugacy class in (G(A1)/) is contained in the image of G(M) byr N
if and only if it is contained in image of G(A,) by N for all v (cf. Th. 2.1).

In §1, we give preliminary results on o-conjugacy. In §2, we state our main result
and reduce the proof to the cases of semi-simple and unipotent elements. The proofs
of these two cases are given in §3 and §4 separately.

§1. o-conjugacy

In this section, we prove some elementary properties of og-conjugacy. Let K be a
field of characteristic 0 and G a linear algebraic group defined over K. We define g-
conjugacy for M more general than that in the Introduction. Let M be a commutative
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semi-simple algebra over K of dimension /, and ¢ a K-automorphism of M such that
M?’=K. Here for a set X on which an automorphism ¢ is defined, we denote by X°
the set of elements invariant under ¢. Then we may assume M is the m-fold product
M? of a cyclic extension M, of K of degree //m with a generator = of Gal(M,/K) for
a divisor m of / and the action of ¢ on M is given by (x;, -+, xm)=(X2, ***, Xm, “X1)

Let G(M) the set of M-valued points of G. Then the action of ¢ on G(M) can be
defined naturally. We denote it by “x for x&G(M). In G(M), we define an equivalence
relation ~, which will be called o-conjugacy, by

X7Y<:=)X=g“)’”g for geG(M).

W denote by ~ the usual conjugacy, that is, x~y for x, y=G(M) if and only if x=
g'yg for geG(M). For X=G(M), we define a “norm” N by

NX=X'X ... "'x.
For a divisor n of [, we define N,, N; by

NX=X"X.-o"'X,

N X=X1X...ntin'x

with p=¢". Then we have

Proposition 1.1. Let X, Y, g=G(M). Then

(1) NX=N,(N(X));

2) "Nleva,X, in particular for n=I[, "NX~NX;

3) Ni(g'X°g)=g 'NX'g, in particular for n=I, N(g7'X°g)=g"'(NX)g.

Proof. The assertion (1) can be checked directly, and (2) and (3) follow from
XN X)"X'=N, X and N(g"'X'g)=g'X"g"(g"' X"g) - ""(g"' X" g)=g (N, X)"g.

From this, we see easily
Corollary 1.2. (1) Let G(M)/f;a and G(M)/~ be the sets of equivalence classes with
respect to ~ and ~ respectively. Then N, and N induce maps
Ni: GM)/ 7 —> (G(M)7)7,
N: GIM)/~ —> (GIM)/~)° .

(2) For XeGM), let C,(X), C(X) be the @ and n-conjugacy classes containing X
and C(x) the conjugacy class containing x. Then N, and N induce surjective maps
Ny Co(X) — C(N X)),
N: Co(X) —> C(NX).
For heG(M), we define the maps a,, N, of G(M) to G(M) by
"nX=h°Xh"",
Nu(X)=XrX - 4" X,
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Then we have °#(Nh)=Nh. For x=G(M), let G, denote the centralizer of x in G.
Then we have

Proposition 1.3. Let XeG(M). Then
(1) N (Xh=H=NX(Nh)™";
2) if ""(NX)=NX, Nh~! belongs to Gyx(M).

Proof. The assertion (1) can be verified directly, and (2) follows from NX=
hRO(NX)h '=h X {(NX)Xh™'.

The formula (1) was remarked by Hijikata. If h’xh'=x, Nh€G. (M) and o,
gives rise to an automorphism of G.(M). Furthermore, if Nh belongs to the center of
G., in particular, if Nh=ux, the order of the automorphism is finite, and when M isa
field, G, has a K-structure so that x, Ni=G.(K). The automorphism ¢, is nothing
but the action of c=Gal(M/K) with respect to this K-structure, and N, is the norm
for this action.

Proposition 1.4. Assume x=NX, and let g be the group of automorphisms of G (M)
generated by ay. Then the set of a-conjugacy classes in N'(C(x)) is in one to one
correspondence with H'\(g, G .(M)).

Proof. If NX~NY, that is, NX=g Y(NY)g for g=G(M), then NX=N(g 'Y ?g).
Hence the inclusion induces a bijection {YIYN=x}/r;a—>N"(C(x))/7. Since ‘xx=x,
NY=x if and only if YX*'eG. (M) and Ny(Y X ")=1 by Prop. 1.3. For Y,, Y, in
{Y|NY=x}, we see if Y,=g7'Y,%g for g&G(M), then g=G (M), and YIA;Y'z if and
only if Y\ X '=g (Y, X ')xg for g=G.(M). This proves the proposition.

Corollary 1.5. [If H'(g, G.(M))=1 for all xG(M), then the map N: G(M)/f;a-»
(G(M)/~)" is injective.

Proposition 1.6. Let M,,m,r be as above, and let n=m in the definition of N,, N,,
and n. Then the following assertions hold.
(1) The norm N, induces a bijection

Nit GIM)/ e —> (GMD/ )7,
and if m=l, N induces a bijection
N: GM)/n —> (G(M)/)°.
(2) The diagonal embedding 4: x—(x, ---, x) of M, into M induces bijections
4 (GM)/~) —> (G’
4: (G(My)/~) —= (GM)/~)" .
Proof. (1) We note that if n=m, 7(x,, x4 =+, xm)=Cxy, “Xo, -+, “xm) for

(%1, Xy, =, X)) EGM)=G(M,)™. First we prove the surjectivity. For x=(x,, xp, =+, xm)
€G(M), assume “x=g"'x"g for g=(gy, &>, -, gn)EG(M). Then we have x,=g7'x,"g,,
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Xy gey vty A=K Gmen, AN Xy, Xy, e, X, Since Ni((L L - x0))=
(x4, x4, =+, &), N, is surjective. For X=(X,, X, -+, Xn), let g,=1, g,=X7!, g,=
(XiXo)™h o, gn=(X X, - Xn_)™! and g=(gy, g2, -+, m). Then we have g'X’'g=
(L,-, L, X, X,---X,). To prove the injectivity, it is enough to show N, X=N,Y implies
Xf:Y for X=(, -, 1, -, X)) and YV=(.1, ---,Y,). But this is obvious, because
N X=(X,, -, X,) and N,\Y =, ---, Y)).

(2) The injectivity is obvious. The surjectivity of the first map follows from the
proof of (1). Assume "X=g 'Xg for X=(X,, X,, -+, X») and g=(g,, -+, gm). Then
we have X,=g7'X,g,, X;=g3'Xo8,, -, Xo=gn1Xm 18n-1, and X~(X,, -+, X,). This
completes the proof.

In the rest of this section, we assume A is a cyclic extension of K,

Proposition 1.7. For a unipotent element x in G(K), there exists X G(I) such that
X'=x, and x is contained in N(G(M)).

Proof. We may assume x#1. Then the Zariski closure of the group generated
by x is isomorphic to G, (cf. Remark in §7.4 of [1]). Our assertion follows from this.

For x=G(M), we denote by x, x, the semi-simple, unipotent parts of x in the
Jordan decomposition.

Proposition 1.8. Let x=uxx, be the Jordan decomposition of x. Then the following
assertions hold.

) If x&NGM)), then x.=N(G(M)).

(2) Assume x;=NY for Y @G(M). Then x&N(GM)) if and only if x,€ Ny(G: (M)).

Proof. Let x=NX for X&GWM). Then "Yx=ux, and "Yx,=x; “"Yx,=x, by the
uniqueness of the Jordan decomposition. Hence x, and x, are contained in the set
G () of K-valued points of G,. By Prop. 1.7, there exists Y =G.(K) such that
Nx(Y)=x3'. By (1) of Prop. 1.3, we see NY X H=Ny(Y XX Y)NX=x3'x=x, This
proves (1).

@) If x,=Np(Z) for Z=G. (M), then MZY )=Ny(Z)NY =x,x,=x. Conversely, if
v=NX, then "Y(NY)=NY, and Y X"'=G. (M), therefore XY 'eG. (M) by (2) of Prop.
1.3. We see Np(XY HN=NX(NY)'=xx;'=x,. This completes the proof.

§2. Hasse principle for o-conjugacy

Let K be a finite algebraic number field, and M a cyclic extension of A of degree
l. Let A be a semi-simple algebra over K and G the algebraic group over K such that
G(K)=A". We fix a generator ¢ of Gal(M/K), and consider the g-conjugacy and the
norm N in G(M).

For a place v of K. let K, be the completion of K at v and M,=M@xK,.. Then
we can extend o to M, by e®id. The field K, and the K, ,-algebra M,. satisfy the
condition for K and M in §1. Hence we can define the g-conjugacy and the norm in
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G(M,). We denote them by ~ and the same letter N as in the global case. The usual
conjugacy in G(M,) will be denoted by ~- A class in G(M)/~ determines a class in
G(Mv)/f;a by the inclusion, and we have an injection G(M)/N—»lJ[G(M,,)/f;;. In these
notations, our main result is

Theorem 2.1. The norm induces a bijection
N: G(M)/’: — (G(M)/N)”H(I}N(G(A4z»))/’:/),

where the product is extended over all places of K.

By (2) of Cor. 1.2, we obtain

Corollary 2.2. For x=G(M), if "x~x and x=N(G(M,)) for all places v of K,
there exists XeG(M) such that NX=x.

As in the case of the usual conjugacy, a class in G(M)/f;/ determines a class in
G(M,,)/;vv for each v, and the diagram

G(M)/~ G(M)/~

l |

MGCM)/) —— THGMM)/~)

is commutative. Since both of the maps N: G(z\!)ﬁ:—»G(M)/N and G(M)/N—»l}(G(Mv)/'\vJ)
are injective, we obtain another type of Hasse principle for ¢-conjugacy.

Proposition 2.3. The natural map
GCIM)/y —> IvI(G(Mv)/;jJ”)

is injective. Namely, for X, Y eG(M), Xf"vY if and only if X{;\;Y for all places v of K.

The proof of the injectivity in Th. 2.1 is easy. Let Ay=AQ M. Then G(M)=Aj}.
For xeG(M), we put

A¥={z€ Ay | xz=2zx}.

Then A¥ is an M-algebra and G.(M)=(A¥)*, If x=NX for XeGM), A.=(A¥)’"x is
a K-algebra and A¥=A,QxM. It is well known that H'(g, (A-QxM)*)=1, where g
is the group generated by ¢y. This proves the injectivity by Cor. 1.5.

We reduce the proof of the surjectivity to the special cases where x is semi-simple
or unipotent. Let x=ux,x, be the Jordan decomposition and assume the conjugacy
class of x is contained in the image of the norm for all places of K. Then by (2) of
Cor. 1.2, x& N(G(M,)) for all places v of K. Let M,=M7 for a field M, and an integer
m. We denote by r the element of Gal(M,/K,) induced by ¢™. Let 3, N, and N, be
those defined for n=m. Then the following diagram is commutative.
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N, N,
G(M,)/~ —==— G(My)/y —> G(M.)/~

475 4%
GIM )/~ — G(M,)/~

By Prop. 1.6 and (1) of Prop. 1.8, x,=N(G(M,)) for all v. By Prop. 3.1 (proved in §3),
there exists Y €G(M) such that x,=NY. By the proof of Prop. 1.8, we see x,&
Ny(G. (M) for all v. Since x, is semi-simple, G, (K)=Aj}, for a semi-simple algebra
Az, over K. By Prop. 4.1 (proved in §4), we see there exists Z&G,, (M) such that
Ny(Z)=x, and again by (2) of Prop. 1.8, there exists XeG(M) such that NX=x.
Thus the proof will be completed.

§3. Semi-simple case

Let the notation be as in §2. Throughout this section, we assume x is semi-simple,
and we will prove the following special case of Th. 2.1.

Proposition 3.1. For x=x,=G(M), assume °x~x and x&N(G(M,)) for all places
v of K. Then one has x = N(G(M)).

We reduce the proof to the case where v is a regular element.

Lemma 3.2. Assume ‘x~x. Then there exists Y &G(M) such that Y°xY '=x, and
NY and x(NY)™ are regular semi-simple elements.

Proof. Let h be an element of G(M) satisfying h’xh '=x and let
Z,={geG | g'xg'=x}.

Then we have Z,=G.h=h"G,. Since G, and R, x(G.) are connected, R ,x(G )K)
is Zariski dense in R, x(G:). Hence Ry x(Z,XK) is Zariski dense in Ry/x(Z,). We
define a morphism N of Ryx(Z,) to G as the composite of Ry x(Z,)=ZZsXZgX -+
X' Z,6.GXG X - XG (the product of / copies of G)—G. The last morphism is given
by the multiplication in G. Then N is defined over M, and its image is contained in
G, because the condition y,"xy7'==x, y:.°*xy3'="x, -+, ¥.°'xy,="""'x implies y,y, ---
Yix(31y2 - ¥y '=x. Hence N gives rise to a morphism of Ry,z(Z,) to G,. For zeG,,
put #=(z(Nh)*h, °h, -+, °**h). Then 2€Z,X°Z,X - X°'"'Z,. Let # be the point
of Ry, x(Z4) corresponding to # by the above isomorphism. Then N(#)=z. This shows
N is surjective. We note that if z’& Ry, x(Z,)K) corresponds to z€Z,(M) under the
morphism R x(Zs)—Z,, then N(z')=N(z), and N(Ryx(Z:)K)=NZ,(M)).

Let S be the set of regular semi-simple elements in G. Then G,N\SNSx is a
Zariski open subset of G, defined over M(cf. [5], [7]). Let T be a maximal torus of
G containing x. Then TCG, and for yeT, yeG,NSNSx if and only if a(y)#1,
a(yx~Y)=#1 for every root a relative to T (cf. Prop. 3 in 3.5 of [7]). The set of such
y is not empty. Hence G,\SNSx is a non-empty open subset of G, and N-YG.NSNSx)
is also a non-empty open subset of R, x(Z,). Since R,,x(Z,)K) is dense in R, x(Z,),
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there exists Y €Z,(M) such that NY&ES and NY&Sx. This Y satisfies the condition
in our Lemma.

We note this lemma holds if G, is connected, for example, if Gge, is simply con-
nected (cf. [2], [6]).

Let Y be as in Lemma 3.2, and let y=NY. By the remark after Prop. 1.3, G,
has a K-structure such that yeG,(K). We see x&G,(K), because ‘Yx=YxY '=x.

Now we prove

Lemma 3.3. Let x, Y, and vy be as above. Then the following assertions hold.

(1) There exists XeG(M) such that NX=x if and only if there exists Z&G, (M)
such that Ny(Z)=xy~'.

(2) For a place v of K, there exists X, €G(M,) such that NX,=x if and only if
there exists Z,=G ,(M,) such that Ny(Z,)=xy*.

Proof. We give a proof for (1). The assertion (2) can be proved in the same way.
Let NX=x for XeG(M). Then by Prop. 1.3, we have Ny(Z)=xy! for Z=XY " '. We
show ZeG,(M). Since Np(Z)=xy7"' and “¥(xy D=xy"", xy '=Np(Z)=ZY(NW(Z))Z™*
=2"Y(xy N2 '=Zxy'Z'. We see also that ZxZ'=x, because Y "xY '=x and XxX!
=x. Hence we have Zy'Z'=y~' and ZeG,(M). This completes the proof.

We note this lemma holds without any assumptions on G.
Let y be as above and put

Ay ={a€AQ«M | ay=ya, "va=a}.

Then A, is a commutative semi-simple algebra over K and G ,(K)=Aj;. By the above
lemma, to prove Prop. 3.1, it is enough to show it in the case where A isa commuta-
tive semi-simple algebra over K. Such A is a direct product of finite extensions of K.
Hence the proof of Prop. 3.1 is reduced to the following lemma.

Lemma 3.4. Let S be a jinite extension of K, and for x=(SQxM)" (resp. (SQxM,)*),
put Nx=il_£]i'”f_lx, where ‘x=sQ’m for sMESQrM (resp. SQxM,). Let x&S*. If
x=(SQrMy)* for all places v of K, then x&NSQrM)".

Proof. There exists a cyclic extension T of S of degree //m for a divisor m of [
such that SQxM is isomorphic to the m-fold product of T, and the action of ¢ is given
by “(xi, Xay =+, Xm)=(Xs, Xa, =+, Xm, “X;) for a generator r of Gal(T/S). Under this
isomorphism, the subset S of SQxM can be identified with the set {(x, x, ---, x) | x&S}.
For a place v of K, SQxM, is isomorphic to the m-fold product of T,=TQ®xK, and
the action of ¢ is given by the same formula as above. The assumption implies that
there exists X;.., Xo.vy '+ X, =T such that N(X,,,, Xo. v, X o)) =(Nprs( Xy v Xmnoo),
oo, Npjs(Xy o+ Xa,w), where Np,s denotes the norm for 7/S and its extension to T,/S,.
The Hasse principle for the cyclic extension T /S asserts that there exists X,&T* such
that Np,;s(X,)=x. Define an element X of SQxM by X=(X,, 1, ---, 1). Then we see
NX=x. This completes the proof of Lemma 3.4 and that of Prop. 3.1.



608 Hiroshi Saito

§4. Unipotent case

Let the notation be as in §2. In this section, we will prove the following special
case of Th. 2.1 and completes the proof of Th. 2.1.

Proposition 4.1. Let x=ux,, and assume x~"x and x<N(G(M,)) for all places v of
K. Then one has x=N(G(M)).

Proof. Let I be an element of G(M) such that h’xh'=x. Let y=Nh. Then
H=G, has a K-structure, and x, y=G,(/K). Hence H, is also defined over K, and
x, yeH,(K). Let MX,)=x for X,=G(M,). Then N,(X,A " )=xy"! by Prop. 1.3. In
the same way as in the proof of Lemma 3.3, we see X,h'eG (M)NG(M,)=H.(M,)
and xy ‘e N, (H,(M,)). Let y=y,y, be the Jordan decompositon of y. Then xy3' is
unipotent and xy '=y;'(xyy') gives the Jordan decomposition of xy~'. Let H,=
L-R,(H.) be a Levi decomposition of H, with a reductive group L. Then x,y3'e
R,(H:)K) and we may take L so that y;'<L(K). Since y;'(x,yz")YSNH.(M)),y;i'e
N(L(M,). Now L(K)=C* for a semi-simle algebra C over K. By Prop. 3.1, there
exists Yy=L(M) such that N,(X,)=y5'. On the other hand, the element y3'x, is con-
tained in the center of H, and is unipotent. Hence there exists Y, in the center of
H, such that "«(Y,)=Y, and Yi=y3'x,. Let Y=Y, ,Y,. Then Ny(¥Y)=N,(Y )N, (Y ,)
=xy ' and MYh)=N,(Y)Nh=xy 'y=x. This completes the proof.
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