On a Hasse principle for 0-conjugacy

Dedicated to Professor Ichiro Satake on his sixtieth birthday

By

Hiroshi SAITO

§O . Introduction

Let M/K be a cyclic extension of finite algebraic number fields of degree *l*, and σ a generator of the Galois group $Gal(M/K)$, which will be fixed. For an algebraic group *G* defined over *K*, we denote by $G(M)$ the set of all points of *G* with coordinates in *M*. The action of σ on $G(M)$ can be defined naturally. We denote it by 'g for $g \in G(M)$. In $G(M)$, we define an equivalence relation \sim by $g \sim g'$ if and only if $g=$ $h^{-1}g''h$ for some $h \in G(M)$. This will be called σ -conjugacy. It was introduced for $GL(2)$ in the study of the twisted trace formula $(5, 7)$, $[4]$). The purpose of this paper is to determine σ -conjugacy classes for *G* such that $G(K) = A^*$, where A is a semi-simple algebra over *K.*

The σ -conjugacy has a close relation with the usual conjugacy, which will be denoted by \sim . For $g \in G(M)$, we define the "norm" of $g \in G(M)$ by $Ng = g^{\sigma}g^{\sigma^s}g \cdots^{\sigma^{s-1}}g$. Then the conjugacy class of Ng depends only on the σ -conjugacy class of g . We denote by $G(M)/\sim$, $G(M)/\sim$ the sets of σ -conjugacy classes, and usual conjugacy classes in $G(M)$ respectively. Then *N* defines a map of $G(M)/\sim$ to $G(M)/\sim$. This map is fundamental in our study of σ -conjugacy. In fact, for $G = A^*$, this map is injective, and to determine $G(M)/_{\widetilde{q}}$, it is sufficient to determine the image of $G(M)/_{\widetilde{q}}$ by *N*. It is easy to see this image is contained in the set $(G(M)/\sim)^\sigma$ consisting of conjugacy classes invariant under σ . To describe the image, we consider the norm at each place of *K*. For each place v of K , let K_v be the completion of K at v and let $M_e = M \otimes_K K_e$. Then the action of *a* can be extended to M_e and $G(M_e)$. We can define in• $G(M_v)$ σ -conjugacy and the norm in the same way as above. Our main result asserts that for $G = A^*$ a conjugacy class in $(G(M)/)^q$ is contained in the image of $G(M)$ by N if and only if it is contained in image of $G(M_v)$ by N for all v (cf. Th. 2.1).

In § 1, we give preliminary results on σ -conjugacy. In § 2, we state our main result and reduce the proof to the cases of semi-simple and unipotent elements. The proofs of these two cases are given in § 3 and § 4 separately.

§ 1. a-conjugacy

In this section, we prove some elementary properties of σ -conjugacy. Let *K* be a field of characteristic 0 and *G* a linear algebraic group defined over *K .* We define *a*conjugacy for M more general than that in the Introduction. Let M be a commutative

Received February 12, 1988.

602 *Hiroshi Saito*

semi-simple algebra over K of dimension l, and σ a K-automorphism of M such that $M^{\sigma}=K$. Here for a set X on which an automorphism σ is defined, we denote by X^{σ} the set of elements invariant under σ . Then we may assume *M* is the *m*-fold product $M_{\rm i}^{\rm n}$ of a cyclic extension $M_{\rm i}$ of K of degree *l/m* with a generator τ of Gal($M_{\rm i}/K$) for a divisor *m* of *l* and the action of σ on *M* is given by $^{\sigma}(x_1, \dots, x_m) = (x_2, \dots, x_m, x_1)$.

Let $G(M)$ the set of M-valued points of G. Then the action of σ on $G(M)$ can be defined naturally. We denote it by 'x for $x \in G(M)$. In $G(M)$, we define an equivalence relation \sim , which will be called σ -conjugacy, by

$$
X \sim Y \Longleftrightarrow X = g^{-1}Y^{\sigma}g \quad \text{for} \quad g \in G(M).
$$

W denote by \sim the usual conjugacy, that is, $x \sim y$ for x, $y \in G(M)$ if and only if $x =$ $g^{-1}yg$ for $g \in G(M)$. For $X \in G(M)$, we define a "norm" N by

$$
NX = X^{\sigma}X \cdots {}^{\sigma^{l-1}}X.
$$

For a divisor *n* of *l*, we define N_1 , N_2 by

$$
N_1X = X^{\sigma}X \cdots {\sigma}^{n-1}X.
$$

$$
N_2X = X^{\eta}X \cdots {\tau}^{l/n-1}X.
$$

with $\eta = \sigma^n$. Then we have

Proposition 1.1. Let *X*, *Y*, $g \in G(M)$. Then

- (X^2) $NX = N_2(N_1(X))$;
- (2) ${}^{\sigma}N_1X \sim N_1X$, in particular for $n = l$, ${}^{\sigma}NX \sim NX$;
- (3) $N_1(g^{-1}X^{\sigma}g) = g^{-1}NX^{\gamma}g$, in particular for $n = l$, $N(g^{-1}X^{\sigma}g) = g^{-1}(NX)g$.

Proof. The assertion (1) can be checked directly, and (2) and (3) follow from $X^{\sigma}(N_1X)^{\sigma}X^{-1} = N_1X$ and $N_1(g^{-1}X^{\sigma}g) = g^{-1}X^{\sigma}g^{\sigma}(g^{-1}X^{\sigma}g) \cdots^{n^{\sigma-1}}(g^{-1}X^{\sigma}g) = g^{-1}(N_1X)^{\sigma}g$.

From this, we see easily

Corollary 1.2. (1) Let $G(M)/_{\widetilde{q}}$ and $G(M)/_{\widetilde{r}}$ be the sets of equivalence classes with *respect to* \sim *and* \sim *respectively. Then* N_1 *and* N *induce maps*

$$
N_1: G(M)/\sim_{\sigma} \longrightarrow (G(M)\sim_{\eta})^{\sigma},
$$

$$
N: G(M)/\sim_{\sigma} \longrightarrow (G(M)/\sim)^{\sigma}.
$$

(2) For $X \in G(M)$, let $C_{\sigma}(X)$, $C_{\eta}(X)$ be the σ and η -conjugacy classes containing X *and C(x) the conjugacy class containing x. Then Nⁱ and N induce surjective maps*

$$
N_1: C_{\sigma}(X) \longrightarrow C_{\eta}(N_1X),
$$

$$
N: C_{\sigma}(X) \longrightarrow C(NX).
$$

For $h \in G(M)$, we define the maps σ_h , N_h of $G(M)$ to $G(M)$ by

$$
{}^{\sigma}R_{h}X=h^{\sigma}Xh^{-1},
$$

$$
N_{h}(X)=X^{\sigma}R_{h}X\cdots {}^{\sigma}L_{h}^{-1}X.
$$

Then we have ${}^{\sigma_h}(Nh) = Nh$. For $x \in G(M)$, let G_x denote the centralizer of x in G. Then we have

Proposition 1.3. Let $X \in G(M)$. Then $(N_h(Xh^{-1})=NX(Nh)^{-1})$ (2) *if* $h(NX) = NX$, Nh^{-1} belongs to $G_{NX}(M)$.

Proof. The assertion (1) can be verified directly, and (2) follows from $NX =$ $h^{\sigma}(NX)h^{-1} = hX^{-1}(NX)Xh^{-1}.$

The formula (1) was remarked by Hijikata. If $h''xh^{-1} = x$, $Nh \in G_x(M)$ and σ gives rise to an automorphism of $G_x(M)$. Furthermore, if Nh belongs to the center of G_x , in particular, if $Nh = x$, the order of the automorphism is finite, and when *M* is a field, G_x has a K-structure so that *x*, $Nh \in G_x(K)$. The automorphism σ_h is nothing but the action of $\sigma \in \text{Gal}(M/K)$ with respect to this K-structure, and N_h is the norm for this action.

Proposition 1.4. Assume $x = N X$, and let g be the group of automorphisms of $G_x(M)$ generated by σ_X . Then the set of σ -conjugacy classes in $N^{-1}(C(x))$ is in one to one *correspondence with* $H^1(\mathfrak{g}, G_x(M))$.

Proof. If $NX \sim NY$, that is, $NX = g^{-1}(NY)g$ for $g \in G(M)$, then $NX = N(g^{-1}Y^{\sigma}g)$. Hence the inclusion induces a bijection $\{Y|YN=x\}/\sim\rightarrow N^{-1}(C(x))/\sim$. Since $\sigma x = x$ $NY = x$ if and only if $Y X^{-1} \in G_x(M)$ and $N_X(Y X^{-1}) = 1$ by Prop. 1.3. For Y_1, Y_2 in $\{Y \mid NY = x\}$, we see if $Y_i = g^{-1}Y_i^{\sigma}g$ for $g \in G(M)$, then $g \in G_x(M)$, and $Y_i \sim Y_i$ if and only if $Y_1X^{-1} = g^{-1}(Y_2X^{-1})^{\sigma}x$ *g* for $g \in G_x(M)$. This proves the proposition.

Corollary 1.5. If $H^1(\mathfrak{g}, G_x(M))=1$ for all $x \in G(M)$, then the map $N: G(M)/\sim \rightarrow$ $(G(M)/\!\!\sim)^\sigma$ is injective.

Proposition 1.6. Let M_1 , m, τ be as above, and let $n=m$ in the definition of N_1 , N_2 , *and η*. Then the following assertions hold.

(1) The norm N , induces a bijection

$$
N_1: G(M)/\sim \longrightarrow (G(M)/\sim)^{\sigma},
$$

and if in N induces a bijection

$$
N: G(M)/\sim \longrightarrow (G(M)/)^{\sigma}.
$$

(2) *The diagonal embedding* $\Delta: x \rightarrow (x, \cdots, x)$ *of* M_1 *into* M *induces bijections*

$$
\Delta: (G(M_1)/\sim) \longrightarrow (G(M)/\sim)^{\sigma},
$$

$$
\Delta: (G(M_1)/\sim)^{\tau} \longrightarrow (G(M)/\sim)^{\sigma}.
$$

Proof. (1) We note that if $n=m$, $\sqrt[n]{(x_1, x_2, \cdots, x_m)} = (\sqrt[n]{x_1, x_2, \cdots, x_m})$ for $(x_1, x_2, \dots, x_m) \in G(M) = G(M_1)^m$. First we prove the surjectivity. For $x = (x_1, x_2, \dots, x_m)$ \in $G(M)$, assume $^{\sigma}x = g^{-1}x^{\tau}g$ for $g = (g_1, g_2, \cdots, g_m) \in G(M)$. Then we have $x_2 = g_1^{-1}x_1^{\tau}g_1^{\tau}g_2^{\tau}$

 $x_3 = g_2^{-1} x_2^* g_2, \dots, x_m = g_{m-1}^{-1} x_{m-1}^* g_{m-1}$, and $x \sim (x_1, x_1, \dots, x_n)$. Since $N_1((1, 1, \dots, x_1)) =$ $(x_1, x_1, \cdots, x_1), N_1$ is surjective. For $X=(X_1, X_2, \cdots, X_m),$ let $g_1=1, g_2=X_1^{-1}, g_3=1$ $(X_1X_2)^{-1}$, ..., $g_m = (X_1X_2 \cdots X_{m-1})^{-1}$ and $g = (g_1, g_2, \cdots, g_m)$. Then we have $g^{-1}X^g g =$ $(1, \cdots, 1, X_1X_2 \cdots X_m)$. To prove the injectivity, it is enough to show $N_1X = N_1Y$ implies $X \sim Y$ for $X=(1, \dots, 1, \dots, X_1)$ and $Y=(1, 1, \dots, Y_1)$. But this is obvious, because $N_1 X = (X_1, \cdots, X_1)$ and $N_1 Y = (Y_1, \cdots, Y_1)$.

 (2) The injectivity is obvious. The surjectivity of the first map follows from the proof of (1). Assume ${}^{\prime\prime} X = g^{-1} X g$ for $X = (X_1, X_2, \cdots, X_m)$ and $g = (g_1, \cdots, g_m)$. Then we have $X_2 = g_1^{-1}X_1g_1, X_3 = g_2^{-1}X_2g_2, \cdots, X_m = g_{m-1}^{-1}X_{m-1}g_{m-1},$ and $X \sim (X_1, \cdots, X_1)$. This completes the proof.

In the rest of this section, we assume M is a cyclic extension of K .

Proposition 1.7. For a unipotent element x in $G(K)$, there exists $X \in G(K)$ such that $X' = x$, and *x* is contained in $N(G(M))$.

Proof. We may assume $x \ne 1$. Then the Zariski closure of the group generated by x is isomorphic to G_a (cf. Remark in §7.4 of [1]). Our assertion follows from this.

For $x \in G(M)$, we denote by x_s , x_u the semi-simple, unipotent parts of x in the Jordan decomposition.

Proposition 1.8. Let $x = x_s x_u$ be the *Jordan decomposition of* x. Then the following *assertions hold.*

- (1) If $x \in N(G(M))$, then $x_s \in N(G(M))$.
- (2) Assume $x_s = NY$ for $Y \in G(M)$. Then $x \in N(G(M))$ if and only if $x_u \in N_Y(G_{x_s}(M))$.

Proof. Let $x = N X$ for $X \in G(M)$. Then ${}^{n} X x = x$, and ${}^{n} X x_s = x_s$, ${}^{n} X x_u = x_u$ by the uniqueness of the Jordan decomposition. Hence x_s and x_u are contained in the set $G_x(K)$ of K-valued points of G_x . By Prop. 1.7, there exists $Y \in G_x(K)$ such that $N_X(Y) = x_u^{-1}$. By (1) of Prop. 1.3, we see $N(YX^{-1}) = N_X(YXX^{-1})NX = x_u^{-1}x = x_s$. This proves (1).

(2) If $x_u = N_Y(Z)$ for $Z \in G_{x_s}(M)$, then $N(ZY) = N_Y(Z)NY = x_u x_s = x$. Conversely, if $x = N X$, then ${}^{\sigma} {}^x(NY) = N Y$, and $Y X^{-1} \in G_{x,s}(M)$, therefore $X Y^{-1} \in G_{x,s}(M)$ by (2) of Prop. 1.3. We see $N_Y(XY^{-1}) = NX(NY)^{-1} = x x_s^{-1} = x_u$. This completes the proof.

$§ 2.$ Hasse principle for σ -conjugacy

Let *K* be a finite algebraic number field, and *M* a cyclic extension of *K* of degree *1.* Let *A* be a semi-simple algebra over *K* and *G* the algebraic group over *K* such that $G(K)=A^{\times}$. We fix a generator σ of Gal(M/K), and consider the σ -conjugacy and the norm N in $G(M)$.

For a place v of *K*, let K_v be the completion of *K* at v and $M_v = M \otimes_K K_v$. Then we can extend σ to M_r by $\sigma \otimes id$. The field K_r and the K_v -algebra M_v satisfy the condition for *K* and *M* in §1. Hence we can define the σ -conjugacy and the norm in *o-conjugacy* 605

 $G(M_v)$. We denote them by $\sim_{\sigma,\mathfrak{v}}$ and the same letter *N* as in the global case. The usual conjugacy in $G(M_v)$ will be denoted by \sim . A class in $G(M)/\sim$ determines a class in $G(M_v)/_{\widetilde{v}}$ by the inclusion, and we have an injection $G(M)/{\sim} \to \prod_v G(M_v)/_{\widetilde{v}}$. In these notations, our main result is

Theorem 2.1. The norm induces a bijection

$$
N: G(M)/\sim \longrightarrow (G(M)/\sim)^{\sigma} \cap (\prod_{v} N(G(M_v))/\sim),
$$

where the product is extended over all places of K.

By (2) of Cor. 1.2, we obtain

Corollary 2.2. For $x \in G(M)$, if " $x \sim x$ and $x \in N(G(M_r))$ for all places v of K, *there exists* $X \in G(M)$ *such that* $NX = x$ *.*

As in the case of the usual conjugacy, a class in $G(M)/\sim$ determines a class in $G(M_v)/\sim$ for each v, and the diagram

is commutative. Since both of the maps $N: G(M)/\sim \rightarrow G(M)/\sim$ and $G(M)/\sim \rightarrow \prod (G(M_v)/\sim)$ are injective, we obtain another type of Hasse principle for σ -conjugacy.

Proposition 2.3. *The natural map*

$$
G(M)/\sim_{\sigma} \longrightarrow \prod_{v} (G(M_v)/\sim_{\sigma,v})
$$

is injective. Namely, for X, $Y \in G(M)$, $X \sim Y$ if and only if $X \sim Y$ for all places v of K.

The proof of the injectivity in Th. 2.1 is easy. Let $A_M = A \otimes_K M$. Then $G(M) = A_M^*$. For $x \in G(M)$, we put

$$
A_x^M = \{z \in A_M \mid xz = zx\}.
$$

Then A_x^M is an *M*-algebra and $G_x(M) = (A_x^M)^{\times}$. If $x = NX$ for $X \in G(M)$, $A_x = (A_x^M)^{\circ}$ is a K-algebra and $A_x^M = A_x \otimes_K M$. It is well known that $H^1(\mathfrak{g}, (A_x \otimes_K M)^*) = 1$, where g is the group generated by σ_x . This proves the injectivity by Cor. 1.5.

We reduce the proof of the surjectivity to the special cases where x is semi-simple or unipotent. Let $x = x_s x_u$ be the Jordan decomposition and assume the conjugacy class of x is contained in the image of the norm for all places of K . Then by (2) of Cor. 1.2, $x \in N(G(M_v))$ for all places v of K. Let $M_v = M_v^m$ for a field M_1 and an integer *m*. We denote by τ the element of $Gal(M_1/K_v)$ induced by σ^m . Let η , N_1 and N_2 be those defined for $n = m$. Then the following diagram is commutative.

606 *Hiroshi Saito*

$$
G(M_{\nu})/\sim \xrightarrow{N_1} G(M_{\nu})/\eta \xrightarrow{N_2} G(M_{\nu})/\sim
$$

$$
\xrightarrow{d \uparrow} G(M_{\nu})/\sim
$$

$$
G(M_{\nu})/\sim \xrightarrow{d \uparrow} G(M_{\nu})/\sim
$$

By Prop. 1.6 and (1) of Prop. 1.8, $x_s \in N(G(M_v))$ for all v. By Prop. 3.1 (proved in §3), there exists $Y \in G(M)$ such that $x_s = NY$. By the proof of Prop. 1.8, we see $x_u \in$ $N_Y(G_{x,s}(M_g))$ for all v. Since x_s is semi-simple, $G_{x,s}(K) = A_{x,s}^*$ for a semi-simple algebra A_x , over *K*. By Prop. 4.1 (proved in § 4), we see there exists $Z \in G_x(M)$ such that $N_Y(Z) = x_u$ and again by (2) of Prop. 1.8, there exists $X \in G(M)$ such that $NX = x$. Thus the proof will be completed.

§ 3. Semi-simple case

Let the notation be as in § 2. Throughout this section, we assume *x* is semi-simple, and we will prove the following special case of Th. 2.1.

Proposition 3.1. For $x = x_s \in G(M)$, assume $^{\sigma} x \sim x$ and $x \in N(G(M_n))$ for all places *y of K*. *Then one has* $x \in N(G(M))$.

We reduce the proof to the case where x is a regular element.

Lemma 3.2. Assume ${}^{\sigma}x \sim x$. Then there exists $Y \in G(M)$ such that $Y{}^{\sigma}xY^{-1} = x$, and *NY* and $x(NY)^{-1}$ are regular semi-simple elements.

Proof. Let *h* be an element of $G(M)$ satisfying $h''xh^{-1} = x$ and let

$$
Z_{\mathfrak{g}} = \{ g \in G \mid g^{\sigma} x g^{-1} = x \}.
$$

Then we have $Z_{\sigma}=G_xh=h^{\sigma}G_x$. Since G_x and $R_{M/K}(G_x)$ are connected, $R_{M/K}(G_x)(K)$ is Zariski dense in $R_{M/K}(G_x)$. Hence $R_{M/K}(Z_\sigma)(K)$ is Zariski dense in $R_{M/K}(Z_\sigma)$. We define a morphism N of $R_{M/K}(Z_\sigma)$ to G as the composite of $R_{M/K}(Z_\sigma) {\cong} Z_\sigma {\times}^\sigma Z_\sigma {\times} \cdots$ $x^{a^T-1}Z_a \subset G \times G \times \cdots \times G$ (the product of *l* copies of $G \rightarrow G$. The last morphism is given by the multiplication in *G*. Then \tilde{N} is defined over *M*, and its image is contained in G_x , because the condition $y_1^{\sigma}xy_1^{-1}=x$, $y_2^{\sigma^2}xy_2^{-1}=^{\sigma}x$, \cdots , $y_i^{\sigma^i}xy_i =^{\sigma^{i-1}}x$ implies $y_1y_2 \cdots$ $y_l x(y_1 y_2 \cdots y_l)^{-1} = x$. Hence *N* gives rise to a morphism of $R_{M/R}(Z_\sigma)$ to G_x . For $z \in G_x$, put $\tilde{z} = (z(Nh)^{-1}h, \sigma h, \cdots, \sigma^{(-1}h)$. Then $\tilde{z} \in Z_{\sigma} \times \sigma Z_{\sigma} \times \cdots \times \sigma^{(-1}Z_{\sigma}$. Let \tilde{z}' be the point of $R_{M/K}(Z_g)$ corresponding to \tilde{z} by the above isomorphism. Then $\tilde{N}(\tilde{z}')=z$. This shows \tilde{N} is surjective. We note that if $z' \in R_{M/K}(Z_{\sigma})(K)$ corresponds to $z \in Z_{\sigma}(M)$ under the $\max_{M/K} (Z_{\sigma}) \rightarrow Z_{\sigma}$, then $N(z') = N(z)$, and $N(R_{M/K}(Z_{\sigma})(K)) = N(Z_{\sigma}(M))$.

Let *S* be the set of regular semi-simple elements in *G*. Then $G_x \cap S \cap S_x$ is a Zariski open subset of G_x defined over M(cf. [5], [7]). Let T be a maximal torus of *G* containing x. Then $T \subset G_x$ and for $y \in T$, $y \in G_x \cap S \cap S \times Y$ if and only if $\alpha(y) \neq 1$, $\alpha(yx^{-1})\neq 1$ for every root α relative to T (cf. Prop. 3 in 3.5 of [7]). The set of such *y* is not empty. Hence $G_x \cap S \cap Sx$ is a non-empty open subset of G_x , and $\dot{N}^{-1}(G_x \cap S \cap Sx)$ is also a non-empty open subset of $R_{M/K}(Z_{\sigma})$. Since $R_{M/K}(Z_{\sigma})(K)$ is dense in $R_{M/K}(Z_{\sigma})$,

there exists $Y \in Z_{\sigma}(M)$ such that $NY \in S$ and $NY \in S_{\sigma}$. This Y satisfies the condition in our Lemma.

We note this lemma holds if G_x is connected, for example, if G_{der} is simply connected (cf. [2], [6]).

Let Y be as in Lemma 3.2, and let $y = NY$. By the remark after Prop. 1.3, G_y has a K-structure such that $y \in G_y(K)$. We see $x \in G_y(K)$, because ${}^{\sigma} Y x = Y^{\sigma} x Y^{-1} = x$. Now we prove

Lemma 3 . 3 . *Let x, Y, and y be as abov e. Then the following assertions hold.*

(1) There exists $X \in G(M)$ such that $NX = x$ if and only if there exists $Z \in G_y(M)$ *such that* $N_Y(Z) = x y^{-1}$.

(2) For a place v of K, there exists $X_u \in G(M_v)$ such that $NX_v = x$ if and only if *there exists* $Z_v \in G_y(M_v)$ *such that* $N_Y(Z_v) = x y^{-1}$.

Proof. We give a proof for (1). The assertion (2) can be proved in the same way. Let $NX=x$ for $X \in G(M)$. Then by Prop. 1.3, we have $N_Y(Z)=xy^{-1}$ for $Z=XY^{-1}$. We show $Z \in G_y(M)$. Since $N_Y(Z) = xy^{-1}$ and ${}^{0Y}(xy^{-1}) = xy^{-1}$, $xy^{-1} = N_Y(Z) = Z^{0Y}(N_Y(Z))Z^{-1}$ $=Z^{\sigma}Y(xy^{-1})Z^{-1}=Zxy^{-1}Z^{-1}$. We see also that $ZxZ^{-1}=x$, because $Y^{\sigma}xY^{-1}=x$ and $X^{\sigma}xX^{-1}$ $=x$. Hence we have $Zy^{-1}Z^{-1}=y^{-1}$ and $Z \in G_y(M)$. This completes the proof.

We note this lemma holds without any assumptions on G. Let y be as above and put

$$
A_y = \{a \in A \otimes_K M \mid ay = ya, \ ^{\sigma} a = a\}.
$$

Then A_y is a commutative semi-simple algebra over *K* and $G_y(K) = A_x^*$. By the above lemma, to prove Prop. 3.1, it is enough to show it in the case where A is a commutative semi-simple algebra over K . Such A is a direct product of finite extensions of K . Hence the proof of Prop. 3.1 is reduced to the following lemma.

Lemma 3.4. Let S be a finite extension of K, and for $x \in (S \otimes_K M)^\times$ (resp. $(S \otimes_K M_v)$), put $Nx = \prod_{i=1}^{l} e^{i-1}x$, where $x = s\otimes^{\sigma}m$ for $s\otimes m \in S\otimes_K M$ (resp. $S\otimes_K M_v$). Let $x \in S^{\times}$. If $x \in (S \otimes_K M_v)^{\times}$ *for all places v of K, then* $x \in N(S \otimes_K M)^{\times}$.

Proof. There exists a cyclic extension T of S of degree l/m for a divisor m of l such that $S\otimes_K M$ is isomorphic to the *m*-fold product of T, and the action of σ is given by ${}^{\sigma}(x_1, x_2, \cdots, x_m) = (x_2, x_3, \cdots, x_m, \lceil x_1 \rceil)$ for a generator τ of Gal(*T*/*S*). Under this isomorphism, the subset *S* of $S\otimes_K M$ can be identified with the set $\{(x, x, \dots, x) \mid x \in S\}$. For a place v of K, $S\otimes_K M_v$ is isomorphic to the m-fold product of $T_v=T\otimes_K K_v$ and the action of σ is given by the same formula as above. The assumption implies that there exists $X_{1, v}, X_{2, v}, \cdots, X_{m, v} {\in} T_v$ such that $N((X_{1, v}, X_{2, v}, \cdots, X_{m, v})) = (N_{T/S}(X_{1, v} \cdots X_{m, v}))$ \cdots , $N_{T/S}(X_1, \ldots, X_m, \mathfrak{d})$, where $N_{T/S}$ denotes the norm for T/S and its extension to $T_{\mathfrak{d}}/S_{\mathfrak{d}}$. The Hasse principle for the cyclic extension T/S asserts that there exists $X_i \in T^*$ such that $N_{T/S}(X_1)=x$. Define an element X of $S\otimes_K M$ by $X=(X_1, 1, \dots, 1)$. Then we see $NX = x$. This completes the proof of Lemma 3.4 and that of Prop. 3.1.

§ **4. Unipotent case**

Let the notation be as in §2. In this section, we will prove the following special case of Th. 2.1 and completes the proof of Th. 2.1.

Proposition 4.1. *Let* $x = x_u$, and assume $x \sim x \cdot x$ and $x \in N(G(M_v))$ for all places v of *K. Then one has* $x \in N(G(M))$.

Proof. Let h be an element of $G(M)$ such that $h''xh^{-1} = x$. Let $y = Nh$. Then $H = G_y$ has a K-structure, and x, $y \in G_y(K)$. Hence H_x is also defined over K, and $x, y \in H_x(K)$. Let $N(X_v) = x$ for $X_v \in G(M_v)$. Then $N_h(X_v h^{-1}) = xy^{-1}$ by Prop. 1.3. In the same way as in the proof of Lemma 3.3, we see $X_v h^{-1} \in G_u(M_v) \cap G_x(M_v) = H_x(M_v)$ and $xy^{-1} \in N_h(H_x(M_v))$. Let $y = y_s y_u$ be the Jordan decompositon of y. Then xy_u^{-1} is unipotent and $xy^{-1} = y_s^{-1}(xy_u^{-1})$ gives the Jordan decomposition of xy^{-1} . Let $H_x =$ $L \cdot R_u(H_x)$ be a Levi decomposition of H_x with a reductive group *L*. Then $x_u y_u^{-1} \in$ $R_u(H_x)(K)$ and we may take L so that $y_s^{-1} \in L(K)$. Since $y_s^{-1}(x_u y_u^{-1}) \in N(H_x(M_v)), y_s^{-1} \in$ $N(L(M_v))$. Now $L(K) = C^{\times}$ for a semi-simle algebra C over *K*. By Prop. 3.1, there exists $Y_s \in L(M)$ such that $N_h(X_s) = y_s^{-1}$. On the other hand, the element $y_u^{-1}x_u$ is contained in the center of H_x and is unipotent. Hence there exists Y_u in the center of H_x such that ${}^{n_h}(Y_x)=Y_u$ and $Y_u^l=y_u^{-1}x_u$. Let $Y=Y_sY_u$. Then $N_h(Y)=N_h(Y_s)N_h(Y_u)$ $= xy^{-1}$ and $N(Yh) = N_h(Y)Nh = xy^{-1}y = x$. This completes the proof.

> DEPARTMENT OF MATHEMATICS COLLEGE OF GENERAL EDUCATION KYOTO UNIVERSITY

References

- [1] A. Borel, Linear algebraic groups, W.A. Benjamin Inc., New York, 1969.
- [2] R. Kottwitz, Rational conjugacy classes in reductive algebraic groups, Duke Math. J., 49 (1982), 785-806.
- [3] R.P. Langlands, Base change for GL(2), Ann. of Math. Studies, No. 96, Princeton Univ. Press, 1980.
- [4] H. Saito, Automorphic forms and algebraic extensions of number fields, Lectures in Math., Kyoto Univ., 1975.
- [5] R. Steinberg, Regular elements of semisimple algebraic groups, Publ. Math. I. H. E. S., 25 (1965), 49-80.
- [6] R. Steinberg, Endomorphisms of linear algebraic groups, Memoirs of Amer. Math. Soc., Providence, R.I., 80 (1968).
- [7] R. Steinberg, Conjugacy classes in algebraic groups, Lecture Notes in Math., vol. 366, Springer-Verlag, Berlin, New York, Heidelberg, 1974.