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A stochastic equation based on a Poisson system
for a class of measure-valued diffusion processes

By

Tokuzo SHIGA

§1. Introduction

Measure-valued diffusion processes are of a typical class of infinite dimensional
diffusion processes, which arise in various fields such as mathematical biology and
filtering theory. Above all, measure-valued branching diffusions in population dynamics
and Fleming-Viot diffusion models in population genetics have been studied extensively
by many authors from points of large time behaviors based on analysis of the distri-
bution at fixed time =0, (cf. [13], [11, [2], [6], [11], [9], [4]).

In the present paper we are concerned with probabilistic structure of sample paths
for a class of measure-valued diffusion processes including measure-valued branching
diffusions and Fleming-Viot diffusion models. For this purpose we will formulate a
stochastic equation based on a Poisson system associated with excursion laws of one-
dimensional continuous state branching diffusions, which gives an intuitive and com-
prehensible description of a class of measure-valued diffusion processes and makes the
sample path structure clearly observed. Furthermore, by solving the stochastic equation
we can provide a new interesting class of measure-valued diffusion processes.

Let S be a basic space that is a locally compact separable metric space, B(S) be
the Borel field of S, M(S) be the set of bounded measures on S, and M,(S) be the set
of probability measures on S. M(S) and M,(S) are equipped with the usual weak
topology. We denote by Cy(S) and Cy(S) the set of bounded continuous functions on S
and the set of continuous functions of S vanishing at infinity, if S is non-compact.
In this paper we will discuss diffusion processes on the state spaces M(S) and M,(S),
which we call measure-valued diffusion processes.

Let us consider the following operator L acting on a class of function on M(S):

2
(LD LF(#)=%SS#(dx)%3—+SS#(dx)A(g—z)(x)
where A is a generator of a Markov process on the state space S with the domain
D(A), and 0F(p)/op(x)=1im. ,(F(p+ed.)—F(u))/e (if exists). For example if F(u)=
fKee, ), then dF(p)/op(x)=¢(x)f'Kgt, $)).

The domain of L is given by

(1.2)  DL)={F(@)=fKp, @3, =, <, $a): k21, ;€ D(A), and fECYR*)}.
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Here 6, stands for the Dirac measure at xS, and C}(R*) denotes the set of C*-
functions on R* that are bounded together with derivatives of order <2.
In particular, if S is a finite set {1, 2, -+, n}, then L of (1.1) turns to

n 0? n 0 .
> x-—-—z-}- 3 (j xjmﬂ)?)g (2,20, 1<:<n),

which generates an n-dimensional continuous state branching diffusion with type
transition rates (m;;).

For the operator (L, D(L)) of (1.1) it is known that there is a unique diffusion
process (2, F, F,, P,; X.) on the state space M(S) such that for every FED(L) and
reM(S)

F(Xt)——S:LF(Xs)ds
is an ((F.), P,)-martingale. Then the distribution of X, is determined by the following
relation: .
(1.3) E (exp(—< X, ¢>))=exp(—<{p, u:)) for every non-negative ¢=Cy(S)

where u,=u,(x) is a mild solution of the equation

3ut _ 1 2
(1.4) W—Au,—ﬁut
uo=¢ .

The diffusion process (2, F, F,, P,; X,) is called a measure-valued branching diffusion
(abbrev. MBD process) driven by (A, D(A)), (cf. [13], [6]).
We next introduce the following operator acting on a class of functions on M,(S):

0°F(p)
ap(x)ap(y)

where (4, D(4)) is the same as (1.1) and we take D(f)=D(L) as the domain of I.
Then there is a unique diffusion process (2, F, F,, P,; X,) on the state space M,(S)
such that for every FED(L) and p=M(S)

F(Y,)—S:fF(Ys)ds

is an (F,), P,)-martingale.

The diffusion process (2, F, F,, P,;Y,) is called a Fleming-Viot diffusion model
(abbrev. FVD process) with mutation operator (A, D(A)), which arises in the theory of
population genetics, (cf. [4]).

Concerning their sample path properties the MBD processes and the FVD processes
have a common picture. Suppose that S=R¢, and A=—(—4)*/* (0<a<2) (the generator
of the symmetric stable process of order a). Then it is known that if d=1 and
1<a<2, both random measures X, and Y, are absolutely continuous with respect to
the Lebesgue measure on R' for all >0 and their densities X;(x) and Y ,(x) are jointly
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continuous in {>0 and x&R' almost surely w.r.t. P, and 13,, for every p=M(R') and
PEM(R") respectively. Furthermore the density processes X,(x)and Y ,(x) satisfy the
following stochastic partial differential equations (abbrev. SPDE):

(1.6) %=AX,x)+«/X,(x)W{(x)
aY,(x) 7 7 oN\TA YV ()
(L.7) L =AY VYW i —([ VTG iy )Y i)

where Wi(x) is a space-time white noise on R' that is a centered Gaussian field on
[0, o] X R' with covariance

EW(x)W(yN=0d(t—3)5(x—y)

where é is the Dirac d-function, and the equations (1.6) and (1.7) should be understood
as continuous processes taking values in the space of Schwartz distributions S’'(R?),
(see [8]). On the other hand if either d=1 and 0<a<1 or d=2, then both random
measures X; and Y, are singular with respect to the Lebesgue measure on R¢ for all
t>0 almost surely w.r.t. P, and ﬁ,, for every p=M(R?) and p=M,(R?), (see [9]).

Also, suppose that A is a bounded generator of a Markov process on the state
space S. Then the corresponding FVD process Y, indeed takes values in the set of
of atomic measures on S for all >0, ﬁp-almost surely for every peM,(S), (cf. [3]),
and the same fact should hold for the MBD process.

In this paper we are interested in the last case. In particular we would like to
give probabilistic construction of sample paths for a class of measure-valued diffusion
processes taking values in the set of atomic measures. For this we will formulate a
stochastic equation based on a Poisson system associated with excursion laws of con-
tinuous state branching diffusions on [0, ). For such a Poisson construction associated
with an excursion law of a continuous state branching diffusion we mention Pitman-
Yor’s paper [10], where they constructed a two parameter process X(t, ¢), t=0,
0=<c¢<1 such that for each ¢, X(t)=X(t, ¢) is a diffusion process on [0, ) generated
by

dZ

d
(18) G—Zyd—y2+c——

iy (0 is reflective),

and further that X(¢)={X(t, ¢), t=0} is a C([0, ), [0, o0))-valued process with independ-
ent increments using a Poisson system associated with an excursion law of a continu-
ous state branching diffusion on [0, o) generated by

d® .
(1.9) G—ZyE—y? (0 is trap.)
Noting that X(¢, ¢) is non-decreasing in ¢, one can regard it as a measure-valued

process, in fact it is equivalent to an MBD process with immigrations governed by
the following generator: ‘

VIR [ g 3R
0,13

(110 L= gl ou(x) "
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Moreover it follows immediately from the Poisson construction that the MBD process
lives in the set of atomic measures for all t>0, even though the process starts at a
non-atomic measure.

Developing this method one can formulate a stochastic equation, and by solving
the equation we obtain a new class of measure-valued diffusion processes, of which
essential state space coincides with M%(S), the set of atomic measures on S.

This paper is organized as follows. In §2, we establish a relation between a class
of M(S)-valued diffusions and a class of M,(S)-valued diffusions, which will enable us
to reduce problems for M,(S)-valued diffusions to those of M(S)-valued diffusions.

In §3 we construct a class of MBD processes with immigrations (abbrev. MBDI
processes) by making use of a Poisson system associated with excursion laws of
continuous state branching diffusions.

In §4 and §5 we formulate a stochastic equation based on the Poisson system.
It will be shown that every solution of the stochastic equation defines an M2(S)-valued
continuous process in the sense of total variation norm in ¢>0.

Finally, in § 6 we translate these results into the context of M,(S)-valued processes
through the relation established in §2, thus we obtain an interesting class of diffusion
models in population genetics, which generalizes the Fleming-Viot diffusion model.
We will also prove a strong ergodic theorem for a simple FVD process by construct-
ing a coupling process base on a Poisson construction of MBDI processes.

Acknowledgement. The author is deeply indebted to H. Tanaka for helpful
comments. In particular, the formulation of the stochastic equation (4.5) is due to
him. He is also grateful to A. Shimizu for many enlightening discussions.

§2. M(S)-valued diffusions and M ,(S)-valued diffusions

In this section we will establish a kind of skew product relation between M(S)-
valued diffusions and M,(S)-valued diffusions, namely, M(S)-valued diffusion can be
obtained by a skew product from M,(S)-valued diffusions. This idea was first given
by H. Tanaka (private communication) in the case where the M(S)-valued diffusions
is the direct product of finitely many independent diffusions on [0, ) generated by

2
x%+(r—x)d¥dx— with a constant 7>0, (S is therefore a finite set).

Suppose that we are given a bounded, uniformly positive and measurable function
B(x) defined on S. Generalizing the operators of (1.1) and (1.5) let us consider the
following two operators L and I on M(S) and M,(S) respectively.

B 3 F () 3F
@n  LF@=] mdnpw S +A(p, —5#) (reEM(S))

Ty R 0" F(p)
2.2) LF(p)—Ssﬁ(dx)(ﬁ(x)éz(dy)-i—((p, .3> ﬁ(x) .B(y))ﬂ(dy))m

0F(p)
ap(x)

+{ pdx)X<p, By—BONGE B+ A(p, ) (HEMS)
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where D(L):D(f) are defined by replacing D(A) by D in (1.2), where D is a sub-
space of Cy(S), A(g, ¢): M(S)XD—R* and f~1(p, ¢): M(S)XD—R" are measurable, and
for each p=M(S) and p=M,(S), both A(g, -) and ﬁ(p, -) are linear functionals defined
on D.

Let W=C([0, o), M(S)) be the set of all M(S)-valued continuous paths w: [0, o)
—M(S), which is equipped with the usual filtration (F,(W)), and denote by X,(w)=w(t)
the coordinate function at time #=0.

Let p=M(S). By the (M(S), L, p)-martingale problem we mean to find a probability
measure P on W such that

(i) P(Xo=p)=1,
(i) F(Xt)—S:LF(Xs)ds is an ((F.), P)-martingale for every FeD(L).

Let define {=inf{t=0:<X;, 1>=0} or =co if {-} is empty. A probability measure
P on W is called a solution of the (M(S), L, p)-martingale problem up to g, if (i) and
the following (ii)’ are fulfilled,

4
(i) F(ch)—S:A LF(Xy)ds is an (Finp), P)-martingale for every FeD(L).

For peM(S), (M(S), r , b)-martingale problem is also defined in the same fashion.
We suppose that L and [ satisfy the following conditions:

2.3) leD, and A(g, 1) is bounded in peM(S),
2.4) A, §)—Alg, 1Xp, $>=A(p, $) for every gD, pe MSN 0}

and peM(S) with p=<u, 1>p.
Then we have

Theorem 2.1. Assume (2.3) and (2.4). Let p=M(S)\N{0}. If P is a solution of the
(M(S), L, p)-martingale problem up to §, then

(i) Sc ds =+o0 P-a.s., hence Ct=St ds defines a hommeomorph from

0 <X, 1D 0 <{X,, 1>
[0, ) to [0, oo).
(ii) Let D,: [0, ©)—[0, ) be the inverse function of C., and set Y ,=Xp,/<Xp,, 1>
for 0<t<oo. Then Y, is an M(S)-valued continuous process.

Furthermore the probability law of (Y., P) is a solution of the (M(S), f, p)-martingale
problem with p=p/{y, 1.
Proof. 1°. Let r,=<(X,, 1). Since for every feC}(R")

PR X, 1)+ AKX, DFCX D)} ds

F&Xne =( {55

is a ((I',), P)-martingale, there is a ((F.), P)-martingale M, satisfying

[7,%4
)2.5) r,,\g—ro=Mt,\¢+So A(X,, 1)ds
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and the quadratic variarion process of M, is

7.4
2.6) Mye={"<X,, rds.
Set
&,=rp, and N,=S:t d:\/l, for 0<t<C;

Then N, is a local martingale with the quadratic variation process

<XD31 ﬁ>d$

t
o 7p,

@.7) N3=(
and &, satisfies that for 0=t<Cy,

(2.8) t—to=| N+ [ 84X, 1is,
hence it holds that for 0<t<Cy

2.9) &i=texp(Ni— 3Nt [ A, Ds).

Note that <N} <(sup f(x))t by (2.7) and for some Browmian motion B, N,=Bp,, which
implies that lim,.c, & exists and is positive almost surely on the event [C;<+o], so
that lim,.; 7. also exists and is positive a.e. on [C¢<c]. Hence by the definition of
{ we see that {=oo, lim,.. 7, exists and is positive a.e. on [Cy<co], which implies
P(Cr=00)=1.

2°. By the first step Y, is well-defined for all t=0 as a continuous M ,(S)-valued
process. For an F(u)=f(Ky, ¢, -, ¢, ¢:>) with ¢;=D and f&C}(R*), set ﬁ‘(;t)z
F(p) with p=p/{u, 1> if peM(S)N{0}. Then a straight-forward calculation yields

LE(p)

1 ko k
=T 2 B DDifb g0 . <, 6| PEDBEXGO—CB, GNP (=B, 6,9)
1

i 5 B DSCD, 0, <, GNP, B, BXD, 6)

+ <ﬁ1 1> éth(<p’ ¢1>: Sty <P» ¢k>)(A(,u’ pi)_A(ﬂ, 1.)<ﬁ, ¢l>)
_LFrp)
e, 1

Thus one can easily see that for every FeD)

F(Y,)——S:fF(Y,)ds

is a martingale, hence the probability law of (Y., P) is a solution of the (M,(S), f, -
martingale problem. ‘ '
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Theorem 2.1 can be rephrased in the following way.

Corollary 2.2. Let (2, F, F,, Py; X, 0=t<{) be an M(S)-valued diffusion process
satisfying that

(i) C=inf{t=0:<X,, 1>=0} or = if {-} is empty,
(ii) F(Xt,\;)—S:MLF(X,)ds is a martingale for every FeD(L).

Then the process Y,, 0<t<oo, defined in Theorem 2.1 for p+0, is an M(S)-valued
diffusion process starting at Y,=p/{g, 1> satisfying that

F(Y,)—S:fF(Ys)ds is a martingale for every FeD(L).

Thus we have obtained an M,(S)-valued diffusion process governed by L of 2.2)
from an M(S)-valued diffusion process governed by L of (2.1) by way of a normali-
zation and a random time change. Accordingly most of sample path properties of the
M(S)-valued diffusion inherit those of the M,(S)-valued diffusion.

Next we would like to assert that the uniqueness of solutions for the (M, L, b)-
martingale problem is also reduced to that for the (M(S), L, p)-martingale problem up
to { for some pe M(S)\N{0} with p=<g, 1>p under additional mild assumptions:

(2.10) A(g, 1) is continuous in g€ M(S) and for some C>0
| A(p, DI SCLy, 1) for every peM(S).
(2.11) D contains a countable subset C such that for every ¢ =D there is a sequence
{¢.} from C satisfying that ¢, converges to ¢ uniformly and lim,_..A(g, ¢.)=
Ay, ¢) for every ueM(S).
Theorem 2.3. Assume (2.10) and (2.11) in addition to (2.3) and (2.4). If the uni-

queness of solutions holds for the (M(S), L, p)-martingale problem up to § for some
p#0€M(S), then so does it for the (M(S), L, p)-martingale problem p=p/{u, 1>.

For the proof we first prepare several lemmas.

Lemma 2.4. Let M (1), 1<i<n, be continuous martingales defined on a probability
space (2, F, F, P) with filiration, and let m;,(t), 0<i, j<n be (F.)-adapted bounded
functionals defined on (2, F, F, P). Suppose that {m;1)}, 0<i, j<n is a symmetric
and non-negative definite (n+1)X(n+1) matrix for every t=0 a.s. and the quadratic
variation processes of M(t), 1<i<n are given by

t
M, Mj>(t)=Somij(s)ds for 1<i, j<n.
Then there exist stochastic processes Mi(t), 0Si<n and mift), 0<i, j<n defined on a

probability space (', F', Fi, P') with filtration. such that M{(t), 0<i<n are (F})-
martingales with quadratic variation processes
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M, Miyt)=(mifs)ds  for 0i, j<n,

and the probability law of {MiQt), 1=<i<n, mi(t), 0<i, j<n} coincides with that of
{Iwi(t)’ lgién’ mij<t): Ogi} jén}‘

Proof. 1°. Let By(t), 0<i/<n be an (n-+1)-dimensional Brownian motion independ-
ent of M(2), 1<i<n and m, (1), 0<i, j<n. (We may assume B;(¢), 1<i<n is an
(F,)-Brownian motion defined on (2, F, F,, P).) For ¢>0 define a; .(t), 0<i<n by

2.12) j_él(mij(t)+ea,-,)a,.s<t)=mio<t> for 1<i<n,
(2.13) B 3 000, (mef0)+e8,)+ @0, (P =mut).

Since {m;;(t)+¢ed;;}, 1<i, j<n is an invertible matrix, a;.(¢), 1I</<n are uniquely
determined and bounded (F)-adapted functionals. Since {m;;(?)}, 0=/, j/<n is non-
negative definite it is easy to check

Moo(t)= E ]gl ai.s(t)aj.e(t)(mij(t)+55ij)y
hence a, (t)also is well-defined as an (F)-adapted, bounded and non-negative functionals.
Let define

M, (t)=My(t)++eBy(t) for 1<i<n, and

n

t t
Mo ()= 33 a0 )M ()% 20, ()4 Bu(s)
By (2.12) and (2.13) M, (t), 0<i/<n are continuous martingales with quadratic variation
processes

Moy My, SXO= Omi(s)+edi)ds  for 15, j=n

Moy My X(O={ mios)ds  for 0=izn

Since it is obvious that M, (1), 1=<i<n and <M, . M, Xt), 1=<i{, j<n converges to
M,(t), 1=i<n and {M;, M;>(¢), 1=i, j<n almost surely and that the probability laws
of a family of continuous processes {M; ., {M; ., M; >, 0<i, j<n}, e>0 are tight,
accordingly there exist (F';)-adapted continuous processes {M(t), mi (), 0=i, j<n} on
a probability space (2', F’, F;, P’) with filtration such that M(t), 0<:/<n are
martingales with quadratic variation processes

M, M;>(t)_—_S:m;j(s)ds for 0<i, j<n

and the probability law of {M(t), 1=i<n, mii(t), 0=/, j<n} coincides with that of
{M;(1), 1=<i<n, my(¢), 07, j<n}, completing the proof of Lemma 2.4.
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Lemma 2.5. Let 13,, be a solution of the (My(S), L, D)-martingale problem for a
PEM(S). Then there exist an M(S)-valued continuous (F.)-adapted process Y, and a
continuous martingale M| on a probablity space with filtration (2', F', F., P') such that
the probability law of the process Y coincides with ﬁp and that for every ¢<D, setting

@18 M=, =<5, g=[ (AL, 9=V, Bg>+<Y ., B, s,

My(t), =D are martingales and their quadratic variation processes are

(2.15) <My, M,X(¢)

=[x, Boey—L, BEXYL =YL, XYY, Bp>+CVY, BXYVS, XYL, g)ds,
M, Myy(t)y={ (Y3, Bgy—<YL, BV, 3,

rw={<ri, prds.
Proof. For C={¢,, n=1} of (2.11) set

t ~
MA(D)=CY o, $>—=C¥ o, $a>—{ (AW s, )= oy Bh>+<Y s, XV, $ud)ds
Since ﬁp is a solution of the (M(S), L, p)-martingale problem, M,(t), n=1 are P,-
martingales with quadratic variation processes

My, Ma>(t)
=0 BBapu>—C¥ s BEIY s Gud>—C¥ s BIuICT 1y $>+H<Y s BXCYV s, XY, Gd)ds
for n=1 and m=1. Define m,n,(t) for n=1, m=1 by

Mo, Ma30)={ man(s)ds,

mon(t)zmno(t)=<yty ﬁ¢n>—<yh B><Yh ¢n>;
moo(t)=<yz; 19>-

Then for each N=1, {M,(t), 1=n=<N, mux(t), 0<n, m< N} satisfies the assumption of
Lemma 2.4. Repeating the same argument as the proof of Lemma 2.4 one can show
that there exists an M,(S)-valued, (F';)-adapted continuous process Y; and a sequence
of martingales M4(t), n=1 defined on a probability space (', F’, F} ‘P’) with filtration
such that the probability law of {Y}, M,(¢), n=1} coincides with that of ({Y,, M,(¢),
n=1 and that
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(2.16)
M7, MaX(t)

=§:<<Y;, Babmd— Xl BEIY b Gud—<¥ s BIudY b Gud-+<V 1l B Ly $udY Ly Sud)ds,

for n=1 and m=1,

M3, Mé)(t)=g «Y% Bpa>—<Y5, BXYS, $ad)ds,

t
t
M= ¥, prds,
where

Mi=CYl, a>—<Vh, gud— (AL, $)=<Vs, Bhud+<YT, BV, §ud)ds.
Denote M'(t)=M(t), and for gD set
Myy=CYi, $9—<¥s, = [ (AL, 9=, Bgo+<re, B, gh)ds.

Then using the condition (2.11) and (2.16) we see that My(t), D are martingales
and their quadratic variation processes are the desired ones.

Lemma 2.6. Let M, be a continuous square-integrable martingales on a probability
space (2, F, F., P) with filtration and let b(x, t)=(b(x, t: w)) be a (F;)-adapted precesses
that are bounded and continuous functional in (x, t)€R'X[0, ) a.s.. Consider the
following stochastic differential equation:

(2.17) dx,=x,dM,+b(x,, t)dt.
Then for every xER! there are stochastic processes xi, M; and b'(x, t) on a probability
space (82', F', F';, P") with filtration such that
(i) xiyw') is an (F't)-adapted continuous process,
(ii) Myw’) and b'(x, t, ®') are (F})-adapted, and the probability law of (M i(w’),
b'(x, t, ®)) coincides with that of (My(w), b(x, t, w)), and

(iif) x£=x+S:x§dM§+S:b’(x§, s)ds
holds almost surely w.r.t. P’.

Since the proof is essentially the same as in the classical case of Ito’s stochastic
differential equations, we will omit it. '

Proof of Theorem 2.3. Let 13,, be a solution of the (My(S), I, p)-martingale problem.
By Lemma 2.5 we have an M,(S)-valued continuous and (F';)-adapted process Y; and
a continuous martingale M| defined on a probability space (2’, F’, F;, P) with filtration
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such that the probability law of Y| coincides with 13,,, and (2.14) and (2.15) hold.
Furthermore, by Lemma 2.6 we may assume that there is a continuous (F})-adapted
process z; defined on (', F’, F,, P’) satisfying

(2.18) dZ;ZZLdMZ‘i'ZtA(ZtY;, l)dt )
ZD=<ﬁy 1>'

We note that z,>0 for all t=0 almost surely, because z, satisfies

1
(2.19) z;=zoexp{Mi——2—<M’>t+S:A(Z,Yé, l)ds}.

Noting that D,=S:z,ds is a hommeomorph from [0, «) to [0, D.), we define

(2.20) X,=zpYs, for 0<t<D..

where E, denotes the inverse function of D,. Using the Ito formula together with
(2.18), (2.14), (2.15) and (2.4) we see

(2.21) zYe, 6>

=2V, 9+ 270, M+ zdMyo+ [z Y, 9)ds.

Here recall that My(¢) is defined by (2.14). Hence it follows from (2.20) and (2.21)
that for every FeD(L) and r>0

AD,
FXino)= | "LF(X)ds

t
0
is a martingale, in particular for every f€C}R?)
tAD, 1
FXinp,, 1>)—So (f'(Xs, ID)A(Xs, 1)+7f”(<Xs. KX, Bd)ds

is a martingale. Accordingly one can construct a standard Brownian motion B, such
that for every t>0 and >0

(2.22) Kinp,» D=<pts 1>?S:AD'*/ X, ﬂ>d3‘+S:ADTA(Xs, 1)ds.

Using (2.10) we have
E'{Xinp,, I)=Lp, 1De  for every t=0 and 720,

tAD,
0

hence for any fixed t>0, M,=S V(X,, B>dB, is a uniformly integrable, so that

lim,..M, exists a.s. for all t=0. This implies that lim,.p _<X;, 1> exists a.s. on the
event [D.<co]. Since

lime-p_<Xer 1y=limz; and DN=S:z,ds,

lim,.p_<X:, 1>=0 holds a.s. on [Do< o],
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Hence D..=C holds a.s., therefore the probability law of (X, 0=<¢<{) is a solution
of the (M(S), L, p)-martingale problem up to §, which is uniquely determined by the
assumption. Let define C. by

¢t ds

om for O§t<c

Ct:S
By Theorem 2.1, C; is a hommeomorph from [0, {) to [0, o), and as easily seen, the
inverse function coincides with D,. Thus we see

Xp,
1—_ D >

Y oy T for all ¢=0.
Therefore the probability law of (Yi, 0=t <o) is uniquely determined, which completes
the proof of Theorem 2.3.

§3. Poisson construction of a class of MBDI processes

In this section we will construct a class of measure-valued branching diffusions
with immigrations generated by L of (3.1) by making use of a Poisson system associ-
ated with excursion laws of continuous state braching diffusions on [0, =) following
the method in [10]:

OF() OF (1)
op(x)? op(x)

where B(x) is a bounded, uniformly positive and measurable function defined on S, 7(x)
is a bounded measurable function defined on S, and V is a bunded measure on S.

We first introduce excursion laws of continuous state branching diffusions on [0, ).
For each 8>0 and rER, p&7(y, dz) denotes the transition probability of a diffusion
process (2, F, F,, p&7, y,) on [0, ) generated by

3.1 LF(#)=%SSy(dx),B(x) +Ss(p(dx)r(x)+V(dx))

proBy & . d
3.2) A 2 dy2+ry iy with 0 as a trap.
Such a diffusion process is called a continuous state branching diffusion (abbrev. CB-
diffusion).
An entrance law for the diffusion process is given by

3.3) AB-1(dz)=e"Clexp(—2zC;) for z>0
A 7({0})=+o0.
3.4) Co=2r/B"—1) i 7%0
—2/pt if 7=0.

Then (A7), satisfies

35) [ 27dptey, dny=2tidn)  for >0 and s>0.
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Such facts can be easily verified using the following expressions:
(3.6) [ e7pt70, do=exp(—y P11, a))  for a0,

3.7 Fbr(t, a)=e"aC,/(a+C,).

(See [10] for the details.)
Denoting by W, the space of continuous fnuctions w: [0, oo)—[0, o) satisfying

(1) w(0)=0, g(w)=inf{t>0: w(t)=0}>0,
(i) w(t)=0 for t=a(w), if o(w)<oo.

We denote by B(W.)XB.,(W.)) the o-field generated by cylindrical subsets of W, (up to
time t). (For a general topological space X, we also denote by B(X) the topological
Borel field.) Then there is a unique o-finite measure Q#7 on W, such that for every
n=1, 0<t,<t,< -+ <t,, and E,€B[0, ), ---, E,€B[0, =)

QFT(w: w(t)EE,, w(t)EE,, -+, w(t,)EE,)
=SE1>< XE 2’31’(dy1)1>'§glt,(yu dy,) - P&’nr—t,,_l(yn—h dya).
The following is a direct consequence from (3.4) and (3.6).

Lemma 3.1. Let 0<s<t and let DL w) be a bounded ByW .)-measurable function
on Wy. Then

(i) {, @*7dwper=e"nCint for nzl,

(i) {, Qtrdw)(wn)—r{ wrdr)=1,

i) § QP rdw)(wt)—wio) -1 wirdr)o.w=0,

@ |, @rraw(wr—we—rfurr) o=, Q*raw)(gfuwrar)o.w.

In order to construct an MBDI process generated by L of (3.1) we fix an initial
point X,=p=M(S). Let N*(dxdw) be a Poisson random measure on SXW, with
intensity measure

(3.8) 2Q(dxdw)=p(dx)QF T (dw).

(See e.g. [5] p. 42 for the definition of the Poisson random measure.).
Let define an M(S)-valued process X{ by

(3.9) X‘z(dx)=SW w(t)N(dxdw) for t>0.

We will first show that X is an M(S)-valued diffusion process starting at p generated
by
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o1 P () 0P (@)
(3.10) LF(={ mdn)px) Sy ANCEE Sux)

We will often use the following basic properties of Poisson random measures.

Lemma 3.2. Let (S, B(S), A) be a a-finite meausre space, and let N be a Poisson
random measure on (S, B(S)) with intensity measure A defined on a probability space
(2, F, P). We denote N=N—A Then for non-negative measurable functions @ and ¥
defined on S

(i) E(exp(—<N, ®y)=exp(—<4, 1—e™?%)),

(ii) EKN, Tyexp(—<N, 0)=<4, Te ®)E(exp(—<N, D)),

(iii) EKN, Ty?exp(—<N, O>)=K4, ¥ ?>+<A, Te ?»)E(exp(—<N, ),
(iv)  EXN, @y={A, 04434, O3,

Denote by F? the o-field generated by {NA(EXF): E€B(S), Fe B,(W.)} for each
t=0. Then

Lemma 3.3. (i) The support of X{ is a finite set for all t>0, X¢ is continuous
in t>0 in the total variation norm, and X{ converges to p weakly as t—0 P-a.s.
(ii)y For ¢=CyS) define M) by

(X1, $y=Cpn, >+ MUP+| <X, 19345,
Then M¥@) is an (F9)-martingale with quadratic variation process
M= X8, fgtrds.
Proof. By (3.3) and Lemma 3.2
B(N{(x. 0): w(>01)={ _u(dn)a1(0, co)<eo,

hence the support of X¢ is a finite set and is non-increasing in t>0 P-a.s. Also, for
¢20€ Cb(s)

E(exp(—(X?, ¢>))=6Xp(—Ss#(dx)Qﬂ“"“"(dw)(l — o P w(t)))

—>exp(—<{y, $>) as t—0,

which yields (i).
For (ii) let 0<r<t. Note that F'} is generated by the following form of functionals;

Hr(w)=exp(—ss¢,(x, w)N/‘(dxdw))

where ¢.(x, w): SXW,—[0, ) is B(S)XB,(W,)-measurable for each r=0. Using
Lemma 3.2, Lemma 3.1 and
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@.11) M‘,’(gﬁ)—M?(q}):st +(w(t)—w(r)—-T(x)giw(s)ds)¢(x)N”(dxdw),

we have

B(M¥$)—MX$HH,)

=pQ, (w(t)—win= | rw(s)ds)p(rlexp(— D, (x, w)>EH,)
and

E((Mi(¢)—MxA$))’H,)

={pQ, (w(t)— w(r)-—Sir(x)w(S)dS)zszS(x)zeXp(—‘DT(x, w)>E(H,)
+pQ, ) —win)—| xS dsIp(Rexp(— 0, (x, w)Y E(H:)
=uQ, | Blayu(s)dsg(xexp(—0.(x, wHYEH,)

=E({ <xs, pgvash.)

Therefore, M¥¢) is an (F{)-martingale and its quadratic variation process is of the
desired form.

Corollary 3.4. X} is an M(S)-valued diffusion process starting at p such that for
every FED(L)=D(L),

F(X?)—S:UF(X‘;)ds
is an (F'})-martingale.

Proof. The martingale property follows from Lemma 3.3. Also, it is known
that the uniqueness of solutions holds for the (M(S), L°, p)-martingale problem (see e.g.
[8], Appendix.) Hence X! is a diffusion process. '

In order to incorporate an immigration factor to the MBD process we prepare
another Poisson system independent of N*(dxdw).
Let N,(dtdxdw) be a Poisson point process on SXW, with characteristic measure

VQ(dxdw)=V(dx)QF = 19 (dw),

(see [5] for the definition of Poisson point process), in other words, it is a Poisson
random measure on [0, o)X SXW, with intensity measure diV@Q(dxdw). Note that
we are assuming the independence of N*(dxdw) and N,(dtdxdw).

Let define an M(S)-valued process X, by

(3.12) X,(dx)zgw w(t)N"(dxdw)-l—S w(t—s)N(dsdxdw)  for every t>0.
+ +

(0, tIxW
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The meaning of this expression would be intuitively clear. In the MBD process gene-
rated by L° of (3.10) each mass at a point x of S fluctuates according to an excursion
path of the CB-diffusion with coefficients (8(x), 7(x)). Moreover immigrants enter the
space S at random times. Then the spatial distribution of immigrants follows V(dx).
After that the mass of each immigrant fluctuates according to an excursion path of
a CB-diffusion with coefficients depending on the place where it immigrates.

Denote by X¢ and X} the first and the second term of the right hand side of
(3.12) respectively. It is easy to see that the support of X} is a countable set for all
t>0 a.s., and X¥E)>0 a.e. holds whenever V(E)>0 for every fixed ¢>0.

Let F} be the o-field generated by such events

{N,(IXEXF): IB[0, r], E€B(S), FeB,_,(W,), 0<r<t}.

Then we have

Lemma 3.5. For ¢=Cy(S) define Mi(@) by
<X, $y=MUG)+{ (X3, 185+<V, $3)ds.
Then Mi(¢) is an (F})-martingale with quadratic variation process
M@= (X3, pgds.

Proof. By Lemma 3.1

;(¢)=S (w(t—s)—S:-sr(x)w(r)dr)gﬁ(x)ﬁp(dsdxdw)

O, EIXSXW
where
Ny(dsdxdw)=N,(dsdxdw)—dsV Q(dxdw).

Let 0<r<t, and let

Hr(w)=exp(—g w(r—-s)¢(x)N,,(dsdxdw)).

O, TIXSXW

For covenience we use the convention: w(t)=0 for t<0 for weW,. Using Lemma
3.2 and Lemma 3.1 one can easily see

E(MY¢)—MxpNH,)

=E(S(o_msxw+(w(t—s)—w(r—s)—Sir(x)w(v—s)dv)¢(x)ﬁ,,(dsdxdw)H,)

dsV(dx)QPF® 1@ (dw)w(t—s)—w(r—s)

S("J]XSXW{-
[ rouwe—9angiae-me-meo e,

- =0.
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Since the quadratic variation process can be calculated in the same way, it is omitted.
Denote by F, the o-field generated by F{ and F}, i.e. F,=F/F1.

Theorem 3.6. (i) X, is an M(S)-valued diffusion process starting at p satisfying
that for every FED(L)

F(X,)—S:LF(X,)ds

is an (F;)-martingale, hence X, is equivalent to an MBDI process starting at Y, which is
uniquely determined by (L, D(L)) of (3.1)

(i) X. is continuous in t>0 in the total variation norm, and X,—p weakly as t—0
P-almost surely.

Proof. (i) The martingale property follows from Lemma 3.3 and Lemma 3.5.
Using the function goﬂ'f(t, a) of (3.7) we define u;(x)=go'9"’-“”’(t, é(x)). Then wu,(x)
satisfies

aualix)—zr(x)ul(x)— ﬁ(zx) u(x)” and  uy(x)=¢(x).

Then it is easy to see that if 0<r<¢

Blexp(—<Xe, )| F)=exp(— (X, ue-r>— | <V, uidds),

which implies that the probability law of X, is the unique solution for the (M(S), L, p)-
martingale problem. Hence X, is an M(S)-valued diffusion process. (ii) will be proved
in Theorem 4.1 of §4.

4. A stochastic equation, I
Let us consider the following operator L acting on D(L) of (1.2):

0°F(p) OF ()
op(x) dp(x)

where f(x) and 7(x) are the same as in (3.1), and V(g, dx) is a measure kernel on
M(S)x B(S), that is

(i) for each peM(S), V(g, -)€M(S), and

(ii) for each E€B(S), V(-, E) is measurable in .
When W(g, dx) is independent of p&M(S), we in §3 constructed an M(S)-valued
diffusion process governed by L by making use of a Poisson system associated with
excursion laws of CB-diffusions. Developing this idea we would like to formulate a
stochastic equation describing an M(S)-valued diffusion process governed by L of (4.1).

Biologically, the resultant diffusion process should be called a generalized MBDI
process, in which the immigration distribution depends on the present configuration of
population.

In this section we restrict ourselves into the following case:

@1 LF(=7 | pdpx) +{ o+, dxy



262 Tokuzo Shiga
4.2) B(x)=B and 7(x)=7 are constant functions.

For simplicity ‘we also assume
4.3) V(u, S) is bounded in psM(S).

So, we will drop the superscripts 8 and 7, i.e. Q#7=Q, --- etc.

Since V(g, dx) corresponds to a spatial distribution of new immigrants and it
depends on the present state p, we prepare an auxiliary function A(y, u) with distri-
bution V(g, -) just as in the theory of stochastic differential equations for jump type
Markov processes as follows.

Let (U, B(U), m) be a og-finite measure space, and we add an isolated point A to
S. Let A(p, u): M(S)X U—S\U{A} be a measurable mapping satisfying that for p€M(S)

C%) [, At wymaw= vip, dxp)

for every bounded measurable function ¢ with ¢(A)=0.

Suppose that we are now given an MBD process X{ generated by L° of (3.10)
under the assumption (4.2), and a Poisson point process N,(dtdudw) on UX W, with
characteristic measure mX@ on a common probability space (2, F, P) such that X?¢
and N, are independent. Here the initial state may be chosen arbitrarily unless
specified.

Let F° and F} be the o-fields generated by {X¢:t=0} and {XJ:0<s<t} respec-
tively, and let F' and F'} be the o-fields generated by N, and {N,(IXAXF): I B[O, r],
AeB(U), FeB,_.(W,), 0<r<t} respectively. We denote F,=F}AF}, the o-field
generated by F{ and Fi.

Based on {X}{, N,} let us consider the following stochastic equation:

(4.5) X,=X%+S w(t—$) s act,, w Np(dsdudw).

O, LIXUXW 4
Here 0. stands for the Dirac measure at xS, I, is the characteristic function the set
A, and for a funcion ¢ on SU{A} we use the notation (¢d,)dx)=¢(x)d.(dx), so that
for ¢=Cy(SU{A}) with ¢{A}=0,

Koy >=CX8 S+ | wlt—)9(AX,, w)Ny(dsdud).

(0, tIxUx
The equation (4.5) clearly is a generalization of (3.12) under the condition (4.2), in
which A(X,, u) shows the location where a new immigrant enters depending on the
present situation Xi.

An M(S)-valued stochastic process X; defined on (2, F, P) is a solution of the
equation (4.5) if

(i) Xi(w) is jointly measurable in (f, ) and (F,)-adapted, and

(ii) the equation (4.5) holds for all t=0 P-a.s.
We first prove some regularity of solutions of the equation (4.5). Recall that M%(S)
is the set of atomic measure on S, namely, every element g of M*(S) has a countable
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subset of S as its support. Then we have

Theorem 4.1. Let X, be a solution of the equation (4.5) under the conditions (4.2)-
4.4). Then

(i) X.eM«S) for all >0, P-a.s.
(ii) X #s continuous in t>0 in the total variation norm P-a.s.
(iii) X, converges to X, weakly as t—0 P-a.s.

Proof. 1°. Recall Q=QF 7. We first claim that

w(t—s)Ny(ds, U, dw)

Yt:S(o.t]xW.,.
is continuous in =0 with Y,=0, P-a.s. Recalling that w(t)=0 for ¢<0 and using
Lemma 3.1 one can show that for every k=1
(4.6) ISU, W (w(t—r)—w(s—r)*drQ(dw)| S Ce(|t—s|*+|t—s|*/*)

s XW

for every t=0 and s=0, where C, is a constant. Since

(Y~ s8E({wtt—r) —us—r)Rydr, U, dw))

4
’

+8(S(w(t—r)—w(s—-r))drm(du)Q(dw))
by Lemma 3.2 and (4.6) we have a constant C>0 such that

4.7 E(Y,—Ys)<C(lt—s|?4|t—sl) for every t=0 and s=0.

Accordingly, by Kolmogorov’s theorem there is a continuous process Y; such that
Y,=Y}, P-a.s. for all =0, hence it holds for every rational =0, P-a.s. Noting
further that Y, is lower semi-continuous, we see

(4.8) Yi=Y, holds for all ¢=0..

Let F, be an increasing sequence of subsets of W, satisfying Q(F,)<<oo and U,z Fr=
W., and set

Y? w(t—s)Np(ds, U, dw).

S(O,L]an

Clearly Y? is a continuous process, and the above calculation yields that for some
constant C>0

4.9) EXY?—Y2r<C(|t—s|®+|t—sl|?)
for every t=0, s=0 and n=1.
Accordingly, by Kolmogorov’s theorem the distributions of (Y}, t=0) are tight, hence

so are those of (Y;—Y?, t=0). Furthermore, it is obvious that any finite dimensional
distribution of (Y;—Y?, t=0) converges to the Dirac measure at the origin, from
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which it follows

(4.10) lim P(ogttlspTIYi—YZ'Ize)=0 for every ¢>0 and T>0.

By (4.8) and the definition of Y7
’_ /I_Vvn
oglgspTIYt Y:Iéoggs;;l)’z Yz,

therefore from (4.10) it follows that Y;=Y, for all t=0 P-a.s.

2°. Denote
@.11) X;:Sw_Mxmw(t—s)lsam,_ o Ny(dsdudw).
Clearly
1K= XHuar < | wtt=s)—utr—5)| Ny(ds, U, dw),

where ||-[..- stands for the total variation norm. Let us denote f,(s, w)=w(t—s). Since
Y. is continuous in =0 P-a.s.,

‘}P}S(O,WM fu(s, wN,(ds, U, dw)=s(o.mjxw+ F+(s, wNy(ds, U, dw).
Also, fi(s, w)=0 and lim,.,f.(s, w)=f.(s, w) for every (s, w), which implies that
{fu«(s, w)}:~» is uniformly integrable with respect to N,(ds, U, dw). Hence it holds

lims
t—=71J(0,00]XW

[ fuls, w)—f+(s, w)| Np(ds, U, dw)=0.
+

Thus we have shown lim,.,[|X}—X!ve-=0 for all »=0, P-a.s.
3°. By Lemma 3.3 and Corollary 3.4 we know that X? satisfies the desired
properties. Therefore, X,=X{+ X} also satisfies (i), (ii) and (iii).

We next assert that every solution of the stochastic equation (4.5) solves the
(M(S), L)-martingale problem.

Let @(t, u, w): [0, o)X UXQ2—R be jointly measurable. @ is called (F,)-predictable
if for every us U, @(-, u, -) is an (F,)-predictable process, (see [5], p. 21). Note that
any (F,)-predictable functional @(¢, u, ) can be approximated by such functionals

L DI A ()
where A;€B(U) and @,,(w) is an F,-measurable random variable.
Lemma 4.2. For a bounded (F.)-predictable funcional D(t, u, w) set
4.12) Y,:S w(t—s)B(s, u, -)N,(dsdudw).

0, LIxUxW 4

Define M, by
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(4.13) Y,:M,+7S:Y,ds+g (Sum(du)Q)(s, u, +))ds.

t
0
Then M, is an (F:)-martingale with quadratic variation process

(4.14) =gl ([, wlr—9)0(s, u, PN (dsdudw))dr

Proof. 1°. We will first show this assuming @(z, u, @)=I,(u)l, »(s) with Ae
B,(U) and 0<a<b. Using Lemma 3.1(ii), (4.12) and (4.13) we see

t ~
(4.15) (wt—9)—7{ wir—s)dr) Rodsdudu).

’_Sm.tnxvxm

For 0<r<t let

H,.:exp(—g f(r—s, u, w)ﬁp(dsdudw)) ,

O, 7IXUXW

where f(¢, u, w): [0, o)X UXW,—[0, =) is a jointly measurable function and for each
t=0, f(t, -, -) is B(U)X B,(W,)-measurable. Note that such random variables generates
the o-field Fi. Then by Lemma 3.2 and 3.1 we see

E(M.—M:)H:)
=E({ , oo (wt—5)—wtr—9)=7 wiv—)dv) L1 e, o)V p(dsdudu)
'eXP(—S(o,,]xmf(’—s» u, wIN,(dsdudw)))

S dsm(du)Q(dw)(w(t—s)—w(r—s)—rS‘ w(w—8)dv) L4 ca. 01(5)
0, LIXUXW 4 r

.(e_f(r—s.u. W)—I)E(Hr)

=0.
and
E((M,—M.YH.)

=E(([, g (@t === =7] wlo—5)d0) Ta)] o, (&) y(dsduct))’

.eXp(_S(o, erUxW+f(r—s’ u, w)Np(dsdudw)))

dsm(du)Q(dw)((wt—S)—w(r—S)—Tgiw(v—S)dv)zlA(u)I ca.5(S)

S(O.UXU"W-).

.e-f(r—x.u. ‘w)E(Hr)

=(Sw J—— dSm(du)Q(dw)(,BSiw(v—s)dv)IA(u)[(a_ pa(s)e=7 s w)) E(H,)
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=E(S o. t:xvxw+(ﬂg :w(v——s)dv)f 4 ca,0:()Np(dsdudw)H r)

Hence it follows that M, is an (F'})-martingale with quadratic variation process

t

(M= ,95 (S(O rjxvxw+w(r—s)1A(u)I<a,b](s)Np(dsdudw))dr.

0

However since F° and F! are independent and F.=F 3}V F}, M, is an (F,)-martingale.
2°. We next assume O(s, u, ©)=@(w)[4(u)l (. 5(s) With an F,-measurable random
variable @,, A= B(U) and 0<a<b. Denote by M, the martingale discussed in 1°, then

M,=90,M; if t<a, and M,=0 otherwise,
hence M, is an (F;)-martingale with quadratic variation process
(M =0%M"), if t>a, and <M ), =0 otherwise,

which shows (4.14).

3°. Finally for a general (F,)-predictable functional @(s, u, -) it is a routine task
to show it by approximating the functional by linear combinations of such functionals
treated in 2°. Therefore the proof of Lemma 4.2 is complete.

Theorem 4.3. Let X, be a solution of the stochastic equation (4.5) based on {X$, Np}
under the assumption (4.2)-(4.4). Then for every FD(L)

F(X,)—S:LF(Xx)ds
is an (Fy)-martingale.

Proof. For ¢=Cy(S\U{A}) with ¢(A)=0, set

X, ¢>::S w(t—5)P(A(X,, W)N,(dsduduw).

€0, LIXUXW o

Note that ¢(A(X;, u)) is (F,)-predictable, because X, is a continuous process by The-
orem 4.1. Accordingly, by (4.4) and Lemma 4.2

xt, g=Mi@+r| <xs, pras+ /([ VX, doygo)ds.

L
[}
where Mi(¢) is an (F;)-martingale with quadratic variation process
t
M@=B <X1, g7>ds.
On the other hand it is easy to see

<X, $=CX3, $>+MUP)+T| <X2, $>ds,

where M¥¢) is an (F{)-martingale with quadratic variation process
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M=p{ (X3, $7>ds,

and using the independence of X} and N, one can see
{M(¢), M*($)>.=0,
hence X,=X?+4 X} satisfies

Koy $>=CX3, $>+ M)+ (1<K, 93+ ( V(X diga)ds,
and M,(¢) is an (F,)-martingale with quadratic variation process

t
M@= X, §%ds.
Therefore, using the Ito formula we have the desired martingale property.

Theorem 4.4. Assume the conditions (4.2)-(4.4). Suppose that for every pe=M(S)
and {X9, N,} with X{=p, the stochastic equation (4.5) has a unique solution. Then the
solutions X, defines an M(S)-valued diffusion process (2, F, Fy, P; X,).

Proof. 1t suffices to show the strong Markov property for (2, F, F,, P; X,).
1°. Let ¢ be any (F,)-stopping time satisfying <o P-a.s., and set

w(t—8) ¢o,:(8)0acx,, vy Np(dsdudw).

t_gw.tlxvxwa,

For every bounded measurable function ¢ on SU{A} with ¢(A)=0, set

(4.16) MYB)=CX1, $5—<X8, =1 <X8, g>ds,
and
(4.17) ($)=Z, $—1\ <20, $3ds—| Tk ([ V(K. d)p())as.

Since I, (1)P(A(X:, w)) is (F,)-predictable, by Lemma 4.2, MY(¢) and Mi(§) are (F,)-
martingales with quadratic variation processes

4.18) M=p] <xe, gds,

M @e=6{ <2, $>ds,

and using the independence of (X{).., and N, we have
(4.15) <M°, MY, =0.
Let Y9=X*,,+Z,s, then by (4.16)-(4.19)



268 Tokuzo Shiga

t
(4.20) XL, $5=(X,, $+1{ V8, $rds+ M),
where M*(¢) is an (F,.)-martingale with quadratic variation process
t
M@=l <re, gds.

Hence (Y'9),.0 is an MBD process generated by L° of (3.10) starting at X, under the
condition (4.2). In particular, (Y¢, P(-|F,)) also is an MBD process generated by L°
of (3.10) starting at a non-random point X, w.r.t. P(-|F,).

2°. Let Y,=X.,, for t=0. Clearly we have

.21) Y,=Y2+S w(t— ) sdacy, »N(dsdudw),
0, LIxUXW 4

where N(dtdudw)=N,y(dt+7, dudw).

3°. We next claim that N3 is a Poisson point process on UX W, with the same
characteristic measure mX @ which is independent of (Y9),.,. Denote by F? be the o-
field generated by {N(IXAXF):IeB[0,t], AcsBU), FEB(W,)}, and set F¥=
F°VF% Since v is a (F¥)-stopping time and N, is a stationary (F¥)-Poisson

point process in the sense of [5], p.60. N also is a stationary (F'#¥..)-Poisson

point process on UXW, with characteristic measure mX@ which is independent
of F#¥, (see [7], Theorem 5.1). Note that (X9),,, is F°-measurable and 7 is F*-
measurable, hence (Y9);:0 is F¥-measurable. Therefore we have shown the independ-
ence of N5 and (Y9);z0.

4°. Since by (4.21) Y, is a solution of the equation (4.5) associated with
{Y?, N5}, the uniqueness assumption implies that the probability law of (Y,),s, under
P(-|F,) is uniquely determined by X, from which it follows the strong Markov
property of (2, F, F,, P; X,).

Now we give a sufficient condition for the uniquely existence of solutions for the
equation (4.5).

Theorem 4.5. In addition to (4.2)-(4.4) suppose that there is a constant K >0 such
that

(4.22) SUI(A(;!, w# Ay, Wm(dw) <K |l p—p' lloar ,

for every p and p' of M(S). Then for every {X?, N,} there exists a unmique solution
for the equation (4.5).

Proof. Define a sequence of approximating solutions of (4.5) by

X=X+ w(t—s)s04cxn, vy Np(dsdudw) for n=0.

S(o,t]xeW.,,

Denote
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Y;'.—_—S(o’ tlexWer(t—s)I(A(X;’, u)#= AX 2, w)Ny(dsdudw).
Clearly
(4.23) I X2+ — XPlloar <2YF.
By Lemma 4.2

Bvp=r| Eonas+ | B([ 1A, w2 Az, wymdn)ds,
hence by (4.22)

4.24) B(YDSK| e B X 1= X7 oar)ds.
Thus it follows from (4.23) and (4.24) that
(4.25) B X2¥ = XPluar S2Ke* | E| X7 = X3~ uasds,

which implies that there exists an M(S)-valued measurable and (F,)-predictable process
X, such that
lim E| X?— X\ |lvar=0.

Obviously X, is a solution of the equation (4.5) for given {X?, N,}. Also the unique-
ness can be proved in a standard manner.

Corollary 4.6. In addition to (4.2) and (4.3) suppose that there exists a o-finite
measure V on S such that for every peM(S), V(u, dx) is absolutely continuous with
respect to V(dx) and its density v(y, x) satisfies that for some K>0,

(4.26) Sslv(,u, =g, HVED)SK| pt— 1 |var

holds for every p and p' of M(S). Then there exist a o-finite measure space
(U, B(U), m) and a jointly measurable map A(p, u): M(S)X U-S\U{A} such that the
conditions (4.4) and (4.22) are fulfilled. Accordingly for every {X$}, N,} there exists a
unique solution for the equation (4.5), which defines an M(S)-valued diffusion process.

Proof. Let U=[0, )X S and m(du)=dr V(dx) for u=(r, x)[0, )X S, and define
A(p, u) by
A(y, w)y=x if u=(r, x) and 0=r=v(y, x), and Ay, u)=A otherwise.

Then it is obvious that (4.4) and (4.21) hold. Thus Theorem 4.5 is applicable. Further-
more, the solution defines an M(S)-valued diffusion process since it satisfies the strong
Markov property by Theorem 4.4.

§ 5. Stochastic Equation, II

In this section we will discuss a spatially inhomogeneous case:
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1 8F (1) OF(p)
5.1) LF (= sdn)p(x) e +{ (oo +vig, N3

where f(x): S—R is bounded, uniformly positive and measurable, 7(x): S—R is
bounded measurable, and V(g, dx) is a measure kernel on M(S)XB(S) satisfying the
conditions (4.3) and (4.4).

Intuitively the corresponding stochastic equation should be formulated in the
following way. Let X? be an MBD process generated by L° of (3.10). We prepare
an independent system of Poisson point processes {N&7: >0, y€R} on UXW,, where
(U, B(U), m) be a ¢-finite measure space and N2:7 is a Poisson point system on UX W,
with characteristic measure m(du)Q? "(dw). We also assume the independence of X¢
and {N&7: >0, yeR'}. Then the desired stochastic equation would be

(5.2) X,(dx):X‘Z(dx)+S( w(t—s)s(x)0acx,, w(dx)N E(dsdudw)

0,LIXUXW 4
where Ni(dsdudw)=N§< 7" (dsdudw), §. stands for the Dirac measure at
x€S, and I4(x)=1 if x€ A, I[,(x)=0 otherwise.

However we do not know how to give a precise meaning to the second term of the
right hand side of (5.2) because of the independence of {N: x&S}.
If we impose the following restrictive assumption:

(5.3) P(x) are 7(x) are of the form
Bx)= 3 Buls,(), and 1(x)= 3 7als,(x)

where (S»).z: is @ measurable partition of S, (8,) is a bounded and uniformly positive
sequence, and (7,) is a bounded sequence, then the equation (5.2) clearly makes sense,
which turns to

5.4) Xy(dx)=X¥dx)+ i

=1 S(O,l]XUXW.,,

w(t—$)Is,(x)04cx,, w(dx)N 3(dsdudw)

where N 3(dtdudw)=N &»Tn(dtdudw).

In fact, we can prove the corresponding results to Theorems 4.3, 4.4, and 4.5 for the
stochastic equation (5.4).

In order to treat the M(S)-valued diffusion process governed by (5.1) with general
B(x) and 7(x) we here take another strategy. We first consider the following case:

(5.5) 7(x)=0.

For a general 7(x) one can reduce it to this case by using a suitable drift transformation.
In order to formulate a stochastic equation we assume that there is a measurable
mapping B(y, u): M(S)X U—-S\U{A} satisfying that for peM(S)

(5.6) [, 9Bt wymt@y={ v (g, dxxg/BYx)
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for every bounded measurable function ¢ defined on S\U{A} with ¢(A)=0.

Suppose that we are given an MBD process X{ generated by L° of (3.10) and a
Poisson point process N, on UX W, with characteristic measure mXQ"° on a common
probability space (2, F, P) such that X} and N, are mutually independent. The
initial state X$=X, may be chosen arbitrarily unless specified.

Based on {X¢, N,} let us consider the following stochastic equation:

(5.7 X,:X‘2+S w(t—s)Bls0px,. v Np(dsdudw),

(o,t]xeW+

so that for every bounded measurable function ¢ defined on S\U{A} with #(4)=0,

{X., $>=<X{, ¢>+S w(t—s)XBPNB(Xs, u))Np(dsdudw).

0, LIxUxW

The o¢-fields F{, F}, F, and the notion of a solution for the equation (5.7) are defined
in the same manner as the equation (4.5). Then by the same proof of Theorem 4.1
one can see that every solution X, of the equation (5.7) satisfies the following property :

(5.8) P(X,eM«S) for all t>0, X, is continuous in ¢>0 in the total variation norm,

and weakly continuous at ¢t=0)=1.

Theorem 5.1. For given {X?, Np}, let X, be a solution of the equation (5.7). Then
for every FED(L),

F(Xt)—S:LF(X,)ds

is an (F,)-martingale.

Proof. For ¢=Cy(SU{A}) with $(A)=0, set

X, ¢>=S w(t—s) BGNB(Xs, w)Np(dsdudw),

€0, LIxUXW o

and

()= X1, ¢>—S:(SSV(X,, dx)p(x))ds

Then, by Lemma 4.2 together with (5.6), Mi(@) is an (F,)-martingale with quadratic
variation process

argpe=((] w(r—sY G (B(X,, u)N,(dsdudu))dr

0 O, TIxUxW
=S:<X L, Bo*ds.

Since it is easily seen that M {(¢)=<X¢, ¢>—< X3, ¢> also is an (F,)-martingale such
that their quadratic variation process satisfy

M), M ($)»=0, and M@= X3, pgt>as,
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we obtain

t
0

5.9) X, py=<x3, >+ { (| VX, dr)g)ds+Mi9),
where M,(¢) is an (F;)-martingale with quadratic variation process
M) =<X., Bgds,
hence the desired martingale property follows from (5.9) together with the Ito formula.

Furthermore, by the same arguments as Theorems 4.4 and 4.5 we have

Theorem 5.2. In addition to the conditions (5.5) and (5.6), suppose that there is a
constant K>0 such that

(5.10) [, 0BG, W Blar, wym( @) S Kl =

for every p and p' of M(S). Then for every {X$%, Ny} there exists a unique solution
X, for the equation (5.7), which defines a diffusion process taking values in M(S) such
that for every FeD(L),

F(X,)—S:LF(X,)ds
is an (F,)-martingale, and further that the property (5.8) holds.

Corollary 5.3. In addition to (4.3) and (5.5), suppose that there is a d-finite measure
V(dx) on S such that for every psM(S), V(p, dx) is absolutely continuous with respect
to V(dx), and ils density v(y, x) satisfies

(5.11) [ 1ot =o', ) VDS Kl = o

for every p and p' of M(S). Then there are o-finite measure space (U, B(U), m) and a
measurable map B(p, u): M(S)X U—-SU{A} such that the conditions (5.6) and (5.10).

Proof. 1t is clear that V'(y, dx)=(1/B(x))V(y, dx) satisfies the condition (4.26),
hence Corollary 4.6 and Theorem 5.2 imply Corollary 5.3.

In order to treat an L of (5.1) with a general 7(x) we consider a drift transfor-

mation. Let (2, F, F, P,; X,) be an M(S)-valued diffusion process governed by
(L, D(L)) of (5.1) with r(x)=0, which has been obtained in Theorem 5.2. Then,

Mo=X,, 1/8>—Xo, 1/85— | (( V(X,, dx)r/p))ds
is an ((F), P,)-martingale with quadratic variation process

<M>,=S:<X,, 12/ B>ds.
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Let N, be a multiplicative functional defined by
1
N,=eXp(M,——2—<M>,> .
As easily seen, E,(N;)=1 for every >0 and #€M(S), and N, satisfies
Nt:1+S:N,dM, .

Then a new probability measure 13,, on the measurable space (2, F, F,) is well defined
by the following formula: for every =0,

P(A)=EN,: A) for AE€F,.
Then we have

Theorem 5.4. (2, F, F,, 13,, 3 X,) is an M(S)-valued diffusion process such that for
every FeD(L),

F(X,)—S:LF(X,)ds

is an (F), ﬁ,,)-martingale, and further that

(5.12) ﬁF(X,EM“(S) for all t>0, X, in continuous it t>0 in the total variation norm,

and X, is weakly continuous at t=0)=1.

Proof. Note that for a bounded measurable function ¢ defined on SU{A} with
6(4)=0,

M=X,, >—<pt, > (] VX, dign)ds

is an ((F}), P,)-martingale with quadratic variation process

M@= { <Ko, Bg*3ds.
This implies
(5.13) M(@), Nyo={ Nuacrtig), Md.=( NucXi, r>ds,
because of M,=M,(7/B), hence using the Ito formula together with (5.13) we see that

A$)=(X,, $>—<pt, 5= (<Ko, 18>+ { V(X,, dr)gin)ds

is an ((F)), ﬁ,,)-martingale with quadratic variation process

@)= <X, Bg™>ds.

Therefore the desired martingale property follows. The property (5.12) and the strong
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Markov property of (2, F, F,, ﬁ,,; X,) are inherited from the diffusion process
(2, F, F,, P,; X;) and (5.8) by the general theory of Markov processes.

As a conclusion of this section we have obtained

Corollary 5.5. Consider the operator (L, D(L)) of (5.1) with general coefficiets
B(x) and 71(x). Suppose that V(u, dx) satisfies the assumption of Corollary 5.3. Then
there exists a diffusion process (2, F, F,, P,; X,) taking values in M(S) such that for
every Fe D(L),

F(X,)-—S:LF(X,)ds

is an (F,)-martingale, and further that the property (5.8) holds.

§6. Construction of a generalized Fleming-Viot diffusion model

In this section we will construct a class of M,(S)-valued diffusion processes as an
application of the stochastic equation discussed in the previous two sections.
Let us consider the following operator acting on a class of functions on M,(S):

6D LRO)I=5 panB@i-dy +p, =B BoNpd)g sl

OF(p) 5F(1>))
op(y)  0p(x)

0F(p)
ap(x)

where the domain D(IN,)=D(L) which is defined in (1.2) with D(A)=CyS), f(x): S—
(0, ©) is bounded measurable and uniformly positive, M(p, x, dy): M(S)XSXB(S)—
[0, =) is a bounded measure kernel, and a(p, x): M,(S)XS—R is bounded measurable.

We interpret an M,(S)-valued diffusion process governed by L of (6.1) as an infinite-
allelic diffusion model in the theory of population genetics. Genetically, S is regarded
as the set of alleles, each p=M,(S) means a gene frequency of alleles, 8(x) corresponds
to variance of the number of offsprings that depends on the allele x&S, M(p, x, dy)
is a mutation transition kernel depending on the gene frequency and a(p, x) is a
haploid selective intensity of the allele x&S which is also depends on the gene
frequency.

In particular, if M(p, x, dy) and a(p, x) are independent of p&M,(S), and B(x)
is constant, then L of (6.1) is the generator of the Fleming-Viot diffusion model. In
this case it is known that (Z s D(f)) generates a unique M,(S)-valued diffusion process
(2, F, F,, P,;Y,) and further that for every p=M,(S), and

+{ pan(| M, x a5

+] paxxas, H—<p, atp,

(6.2) Py(Y,eM{S) for all >0, and Y, is continuous in ¢>0 in the total variation

norm and weakly continuous at t=0)=1, (cf. [3]).
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We will here construct an M,(S)-valued diffusion process governed by (f, D(f))
and to show the property (6.2) as an application of the stochastic equations. It should
be emphasized that the mutation kernel M(p, x, dy) and the selective intensity a(x, p)
in L of (6.1) depend on p&M,(S).

Theorem 6.1. Suppose that the following conditions are fulfilled :

(i) a(p, x)=M(p, x, S)+cB(x) with some cER?,

(ii) there exists a o-finite measure V(dr) on S such that for every (p, x)€M(S)XS,
M(p, x, dy) is absolutely continuous with respect to V(dx) and its density m(p, x, ¥)
satisfies that for some constant K>0,

6.3 [ (supmes, x, V@NK  for cvery peM(S),

(6.4) [ 1m(p, 2, 9)=m(p’, %, 9)IVANSKIp='luar

for every peM\(S), p’eM(S) and xES.
Then there is an M(S)-valued diffusion process (2, F, F,, P,;Y.) such that for
every F eDp)

F(Yz)—S:fF(Y,)ds

is a Ppymartingale for every peM(S) and further that the diffusion process
(R, F, F,, P,;Y,) satisfies (6.2).

Proof. For simplicity we will prove the theorem assuming ¢=—1. Otherwise, it
can be easily reduced to this case by using a drift transformation by a natural multi-
plicative functional as in the proof of Theorem 5.4.

Define a measure kernel V(g, dx): M(S)\N{0} X B(S)—R. by

vy, u)=gsp(dy)m(1>, v, x) and V(g dx)=v(g, x)V(dx) with p=p/{n, 1>.

As in the proof of Corollary 4.6 let U=[0, c0)XS, B(U)=B[0, )X B(S), and m(du)=
drV(dx) for u=(r, x)€[0, )X S, and set B(g, u)=x if 0=r=uv(g, x)/B(x) and
B(g, u)=A otherwise. Then B(g, u): Mi(S)N{0} XU—S\U{A} is a measurable map
satisfying (5.6). Moreover by (6.4)

(6.5) Svm(du)l(B(p, w)#= By, u)SK|p—p'llar With p=p/{y, 1}

and p'=p'/{y’, 1).
For each 6>0 define
Bi(g, w)=x if u=(r, x) and 0=r=<min{({g, 1>/0)*, 1}v(g, x)/B(x),
Bi(p, u)=4 otherwise.

Clearly Bs(p, u)=B(y, u) if {¢, 1>=0, and using (6.3) and (6.4) one can easily check
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that there is a constant K;>0 satisfying that for every p and g’ of M(S),
(6.6) [, @By, w)# B, WS Kol luas

Let peM\(S) be fixed, and let X? be an MBD process starting at X{=p generated
by
1 o*F
(6.7) LR (=5 pd ey S e

op(x) -
Let N, be a Poisson point process on UXW, with characteristic measure mXQ"°,

that is independent of X{¢ system. Since B; satisfies (5.10), by Theorem 5.2 there
exists a unique M(S)-valued solution X{® of the following stochastic equation:

6.8) xP=x1+( BBX®, w)wlt—s)[sdpcx®, > Ny(dsduduw).

O, LIXUXW .
Let Zy=inf{t=0:<X{®, 1><d}. Since By, u)=B(y, u) if <{g, 1>=d, Theorem 5.2
implies that X®=X " holds for 0<t<{;Als;, hence there exists a unique solution
X, for the equation (6.9) up to time {=lim;, {5,

6.9) thX'H—S w(t—)BIsdpcx,, w)Np(dsdudw).

O, LIXUXW 4
Furthermore, it is easy to see that (X.)s:<c has the strong Markov property since so
does (X{)ogsc@ for each §=0 by Theorem 5.3. Accordingly, by virtue of Corollary
2.2 we have an M,(S)-valued diffusion process (2, F, F,, P,;Y,) such that for every
FeD(L)

F(Y,)—S:fF(Y,)ds

is a Pp-martingale for every pe&AM,(S). Also, the property (6.2) is obvious by (5.8)
and Theorem 2.1.

Finally we apply the Poisson construction for MBDI processes to prove an ergodic
theorem for a simple FVD process. Let us consider the following operator on D(L)
=D(L):

(6.10) EPp)=51,, 200 —pan oo
OF(p) OF(p)
. # M (G505 550)-

where M(dx) is a finite measure on S.

We denote by (2, F, F,, P,;Y,) the M,(S)-valued diffusion process governed by
(E, D)) of (6.9), that is a simple Fleming-Viot model in which the mutation kernel
M(p, x, dy) is independent of pM,(S) and xS, i.e. M(p, x, dy)=M(dy). Then it
is easy to see that the diffusion process (2, F, F,, P,;Y,) has a unique reversible
stationary measure R(dp) such that for every finite measurable partition (S;, S,, ---, Sa)
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of S, the distribution of (p(S,), p(S.), -+, p(S.)) under R is a Dirichlet distribution (or
a beta distribution) with parameters (2M(S,), 2M(S,), -+ , 2M(S,)), namely its density

function is
(3 2mes)) nes "
—,,——I((ng, “Yna20, 3 yigl)il}ly M S0
I 17 (2M(S:)) B B

iMs

where y,=1—y,— -+ —¥,_,, and I'(a) is Gamma function.
For the FVD process (2, F, F,, P,;Y,) we can construct a nice coupling process
by making use of the Poisson construction in §3 and Theorem 2.1.

Lemma 6.2.” There exists a diffusion process (2%, F*, F¥, P, py; (Y1, Y?) taking
values in M,(S)XM(S) such that for every (p', p2)eM,(S)X M(S)

(i) the probability law of the process Y} under Pipi, pey coincides with that of Y,
under Pp,

(ii) the probability law of the process Y? under P(,,1 p2y coincides with that of Y,
under sz, and :

(iii) =YY% holds eventually P pi, p2r-almost surely.

Proof. Let any (p*, p2)eM,(S)XM,(S) be fixed. We prepare a Poisson system
{N° N,} satisfying that

(@) N° is a Poisson random measure on SXSX W, with 1ntensxty measure
p XprQl []

(b) N, is a Poisson point process on SX W, with characteristic measure MXQ°,
and

(¢) N°and N, are mutually independent.

Let define three M(S)-valued processe by

Ut

Il

0
SSxSxW+w(z)5,N (dxdydw),

S

2
t

0
SSXSxW+w(t)6,,N (dxdydw),

<

Il

w(t—s)0:Np(dsdxdw),

t
Sco.tleXW+

and set
=U}i+V, and X:=U3i+V,.

Then by Theorem 3.6, both processes X} and X% are MBDI processes starting at p!
and p? generated by

0" F(p)
op(x)”

OF(p)

SM(d) R

(6.10) LF(p):—S w(dx) 2

1) T.G. Kurtz also constructed a similar coupling process by a different method. (Oral com-
munication).
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Clearly, U}, 1>=(U3%, 1> holds for all =0 a.s., and the process r{=<U}, 1> is equi-
valent to a CB-diffusion (2, F, F,, P}°, y.) generated by

y

d2
TEJT{ (0 is a trap.)

hence {°=inf{t=0:7!=0}<co a.s., which implies that X;=X?% holds eventually a.s.
Also, noting <X}, 1>=<(X3, 1> for all t=0 a.s., we set »,=<X}, 1> and

el

Then, by Theorem 2.1, its inverse function D, is well defined on [0, o), and both
M,(S)-valued processes

Xb, and Y%:i

rDt rDt

Yi=

are equivalent to the FVD processes starting at p' and p? respectively, and it is obvious
that the property (c) holds. Thus the proof of Lemma 6.2 is complete.

The following theorem is a direct consequence of Lemma 6.2,

Theorem 6.3. Let (2, F, F,, P,;Y,) be the FVD process generated by (lN, , D(LN))
of (6.9). Then for every pM,(S),

1:31 “Pp(yte ')_R“var:O .
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