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Two torsion and homotopy associative H-spaces

By

James P. LIN' and Frank WILLIAMS

§0. Introduction
In this note we consider the following question:

If Yis a mod 2 H-space, when does Y x S7 admit the structure of a homotopy
associative mod 2 H-space?

There are several examples that are revealing. First, it is well known that the
seven-sphere admits the structure of an H-space, but does not admit a homotopy
associative structure. In the case of Lie groups, it is known that at the prime 2,
Spin(8) is homotopy equivalent to Spin(7) x $7 and Spin(7) is homotopy
equivalent to G, x S”. Among all the compact simply connected simple Lie
groups, only G,, F,, Spin(7) and Spin(8) have a subHopf algebra over the
Steenrod algebra of the following form

_ Z,[x]
==

0.1 A ® A (Sq*x) = H*(G,; Z,), degx = 3.

In this paper we show that this is the key factor in determining if a finite H-
space producted with a seven-sphere can admit a homotopy associative H-
structure. This can be summarized by the following theorems.

Theorem A. Let Y be a finite 1-connected complex and suppose H*(Y; Z,)
does not contain any subalgebras over the Steenrod algebra of type A. Then Y x §7
cannot be a homotopy associative H-space.

Theorem B. Let Y be a finite 1-connected complex and suppose H*(Y; Z,) has
at most one subalgebra of type A over the Steenrod algebra. Then Y x (S7)* cannot
be a homotopy associative for k > 3.

The first results concerning products with 7 and homotopy associativity were
due to Goncalves, [2], who proved that if Y is any simply-connected compact
simple Lie group other than G, and Spin(7), then Y x S7 cannot be a homotopy-
associative H-space, even when localized at the prime two. Hubbuck [3] showed
that the two-torsion is necessary for their products with S7 to be the homotopy
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types of topological groups by proving that if Y has no two-torsion in its
homology then Y x S7 cannot be the homotopy type of a topological group. (In
fact, he proved the stronger technical result that such a Y x S7 cannot be the
homotopy type of an A,-space in the sense of Stasheff [10].) Recently, Iwase [4]
has strengthened Hubbuck’s result by proving that if Y has no two-torsion then
the product of Y with S7 is not a homotopy-associative H-space.

In Hubbuck’s and Iwase’s work the absence of two-torsion is essential, since it
relies in the first case on Iwase’s structure theorem [5] for the K-ring of projective
n-space and in the second case on Iwase’s method of generating complexes. In
Theorem A, above, we specify exactly the type of two-torsion that is capable of
permitting Y x S7 to be homotopy-associative. In particular, there is no
subalgebra of type A in H*(Y) if and only if Sq'(H3(Y)nker Sq*) = 0. We follow
the method of Goncalves, i.e., we use a certain tertiary cohomology operation
defined in [2], and apply it to certain connected covers of Y x S7. A main
ingredient in our work is Lin’s description in [7] of the Steenrod connections in
finite H-spaces, which we use to compute in the cohomology of these connected
covers. Essentially this allows us to compute the fibre of the 3-connective cover
of an H-space where we kill off all 4-, 5-, 8 and some 7-dimensional
generators. If this fibre does not contain non-primitive 14-dimensional generators
or primitive 22-dimensional generators, the original H-space cannot be homotopy
associative.

This work generalized the results of Hubbuck and Iwase because it allows for
the existence of two torsion and it generalized the results of Goncalves from Lie
groups to H-spaces. In the nonfinite case it is interesting to note that there is a
splitting 258 ~ Q2S'5 x §7. One can trace through our proof to show that the
homotopy associativity of 288 is reflected by the non-primitivity of the 14-
dimensional generator of H*(22S8).

The above results may be applied to the rational type of an example described
by Adams and Wilkerson. In their paper, they cite a rational type of the form

{4, 4, 4,8,8,8,12, 12, 16, 16, 20, 24, 24, 28} .

This type is not the type of a Lie group, but for every prime p > 3 it is shown that
it is the type of a loop space. Furthermore, it is the type of a product of a Lie
group with S7. The Lie group is either

G = Spin(15) x Sp(2) x F, or G = Sp(7) x Sp(2) x F,.

In either case, our results show that G x S7 cannot be homotopy associative
(Theorem 5.1).

The organization of our paper is as follows: In section one we review the
proof of Goncalves that the cubes of certain cohomology classes factor through
secondary operations. We give an explicit formula for this factorization. In
section two we describe the ./(2) subHopf algebra of the cohomology of an H-
space generated by its three-dimensional generators. Corollary 2.5 shows that
such a subHopf algebra actually splits over the Steenrod algebra into the tensor



Homotopy associative H-spaces 525

products of subHopf algebras over .&/(2) in a certain range. This allows us to
calculate the cohomology of the 3-connective cover of a finite H-space in chapter
3. This is described by chart 3 at the end of chapter 3. In chapter 4, we kill off
all 4-, 5-, 8- and some 7-dimensional generators in the 3-connective cover and
calculate the cohomology of the fibre. In chapter 5, Theorems A and B are
proved.

In a first reading, the reader may want to read the statements of results in
chapters 1 through 4 and go on to chapter 5 for the proof of the main theorems.

All spaces are assumed to be one-connected and all coefficients of
cohomology are assumed to be Z, unless otherwise stated.

§1. Factorization of the cube

Given an element ug in the cohomology of a space with ugeker Sq', Sq?, Sq*,
deg ug = 8, it was shown in [2] that u3 factors through secondary operations. An
explicit factorization is given here.

The following diagram is due to Goncalves and Harper [2]:

K(Z,, 9, 11) 24 K(Z,. 16, 17, 23)

| |

E, — E
l 14 ) l p
(1.1) K(Z,8) 25 K(Z, 16)

2 sq!

sq
sq‘) sq?
sq8

K(Z,, 10, 12) 25 K(Z,. 17, 18, 24)

Bl l (qu+Sq6'z,Sq7+Sq4'2'l,Sq1)

K(Z,, 13, 16— K(Z,, 25).

(Sqll’sq6.3’
The notation Sq™/ means Sq'Sq’. The matrices A and B are given by
0 Sq°® + Sq*!
SqZJ Sql
_ A= Sg8 Sq*?
B ( Sq°  Sq* 1 4
Sql4 Sq12

With the above defining relations, diagram (1.1) is a commutative diagram of
infinite loop spaces and infinite loop maps. The composition of successive
vertical maps is null homotopic.

It follows that there is a primitive element ee H?*(E) such that
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j*(e) = (Sq® + Sq%?)is6 + (Sq" + Sq*2 )iy, + 8q'ip;
and e represents the secondary operation g 3.
Similarly, there exist stable elements v, ,, v, ,€ PH*(E,) defined by
j¥wo,) = Sq>tis + Sqtiy,
Jj¥(vy,2) = 8q%is + Sq*iy;.
A calculation using the Adem relations shows
j¥g*(e) = Sq'%iy, + Sq'**tig
= 8q'2j¥(vo.,) + Sq°3j¥(v2,5).
It follows that (Adams, Goncalves, Harper [1, 2]).
Proposition L1 g*(e) = Sq'2vy, + S4%°v,,5.
Proof. j*(g*(e) + Sq'2vy 5 + Sq%3v,,) = 0. Therefore, since there is an
exact sequence

PH*(K(Z, 8)) —» PH*(E,) —» PH*(K(Z,, 9, 11))

it follows that
j*(€) + 8q"2vg 5 + Sq°3v, 5 = pTatis
where ae.2/(2) has degree 16. But all such elements «ig lie in kernel p¥. |
Recall the following Adem relations which hold on integral classes:
Sq'Sq® = (Sq° + Sq*")Sq*
Sq2Sq® = Sq*?Sq* + Sq®Sq>.
Since Sq'Sq® and Sq2Sq® are both zero on ig, it follows that there are (unstable)
elements &, y€ H'®(E,), 0, ;€ H'(E,) with
j¥(@o,3) = (S¢° + Sq*V)iy,
J¥@15) = Sq*?iy, + Sq°is.
One checks that #, ; is a suspension.

Since Sq'Sq® is nontrivial on a nine-dimensional class, one can check that

[12]
Ay 5 = ug ® ug where ug = p¥(is).
Hence, Sq®3, ; + uje PH?*(E,), because ugeker Sq', Sq?, Sq*.

Proposition 1.2. g*(e) = Sq®3o 5 + u3 + Sq**'0, 3
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Proof. It suffices to check that j¥(Sq®D, s + us + Sq**'5, ) = Sq'%3%i,,
+ Sq'221i,. [ |

Corollary 1.3. ud = Sq%3,3 + Sq**'0, 3 + Sq'%v,, + Sq%30v, 5.

Let E, be the fibre of the map that kills the elements o3, 7,3,
Ug.2, U2,2- Note that all the elements are uniquely defined with the exception of
Uo,3 because they are the only primitive in their degrees. o, 3 can be changed by
ui. E, is not an H-space, because 7, 5 is not primitive.

K(Z,, 15, 16, 11, 14)

|

E, — K(Z,, 16,17, 12, 15)

Bk,
s

K(Z 8) — K(Z10,12).

Bko

It is easy to check by Corollary 1.3 that
Proposition 1.3. p%(u?) # 0, p%(ug)® = 0.
Looping diagram (1.2) we obtain

K(Z,, 14, 15, 10, 13)

|

QE,

(13) |
QE, — K(Zs 15,16, 11, 14

l

K(Z.T) — K(Z5.911).

QE, has two multiplications that give QE, a loop space structure. We could
choose (Bky)* (i) = Dg.3 OF (Bky)*(iy6) = 0.3 + us. With respect to these two H-
structures the identity map QE, - QE, has H-deviation u; ® u,. Following
Goncalves [2], for their multiplication

Proposition 1.4. There is a primitive element ve PH?(QE,) with a;(v) =
U, @ uq, @ uq.  Further, in the Eilenberg-Moore spectral sequence Exty. op,
(Z,, Z,) = H*(E,)

dy[v] = [uqlus|u,].

See [11] for a definition of aj.
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Theorem 1.5. Suppose there is a commutative diagram of ay-spaces and H-
maps

Theorem 1.5. Suppose there is a commtative diagram of as-spaces and H-maps

K(Z,, 14, 15, 10, 13)

|

QE,

!

hz QE, — K(Z,, 15,16, 11, 14)

/ l k1
VA —h—> K(Z, 8) k—»K(Z2,9,11).

where h*(i,) = z and i€ H¥(K(Z. 7): Z,) is the mod 2 reduction of the fundamental
class. If h, is an az-map, then

a3(h3()) =z ® z & z + a3(hy)*(c*v).
Proof. This follows from the composition formula [11]

as(vohy) = (Qu)as(hy) + a3 (W)(h; A hy A hy), by [11]. W

§2. The A(2) subHopf algebra generated by H3(X)

In this chapter, we prove that the .2/(2) subHopf algebra generated by three-
dimensional elements splits over the Steenrod algebra in degrees less than ten into
subHopf algebras over /(2) generated by single three-dimensional
generators. This fact will be used in the next chapter to compute the three-
connective cover of X in a certain range.

The following theorem is due to Lin [7]:

Theorem 2.1. Let X be a 1-connected finite H-space with associative mod 2

homology ring. Then

(@@ QH®**"X)=0.

(b) QH**Y(X)= Sq*QH**Y(X) for k>O0.

() QH¥* 2"~ 1(X)=Sq¥ QH¥ ¥ 1(X) k>0, r>0.

(d) SqZVQH2'+2'“k—1(X)=O.

(e) X is 2-connected and generators may be chosen to have reduced coproduct in
EH*(X) Q@ H*(X). Hence H*(X) is primitively generated in degrees less than
15.

By Theorem 2.1, we conclude

2.1 HY(X)=H?*X)=H*X)=0
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(2.2) PH®(X) = (H3(X)
PH3X)=0
PHY*Y(X)=Sq% ' Sq*H3(X).
Let
V={xeH?3x?*=0}
V,={xeH?x*=0 or x> #0 and Sq*?x = 0}.

Given a subcoalgebra W < H*(X), let B(W) be the /(2) subHopf algebra of
H*(X) generated by W.

Lemma 2.2. There exists a basis x4, ..., x, for V such that the nonzero Sq'x;
form a basis for QB(V), where

s {547 sa =2
Sq° j=1.

Proof. Because PB(V) = QB(V) in odd degrees, henceforth we will omit the
bars from our notation in this proof. Assume by induction that x,..., x; have
been chosen so that the nonzero Sq'i'x,,..., Sq"ix; are linearly independent.

Let Sq'*x be a generator of highest degree that does not lie in the .&/(2) span
of xy,....x; and x lies in V. Then either Sq™'x=0 or Sg' 'x
=Y a;Sq"™ 'x;, a;€Z,. Let X' =x+ 3 a;x;. Then Sq"'x'=0 and Sq'x' is
not in the 2/(2) span of x,,..., x;. Let x'=x;,,. By induction, we arrive at a
basis for V with the desired properties. |

Now consider kernel Sq*? = H*(X). We have & (kernel Sq*?) is a subspace
of H®(X). Pick a basis y2,..., y2 for ¢ (kernel Sq*?).

Lemma 2.3. x,...., X}, yy,.... Y form a basis for V| and the nonzero Sq"ix;,,
Sq'y, form a basis for QB(Y)).

Proof. By construction Sq*?y, =0 so it suffices to show that x,,..., x,,
Yi-...» Y are linearly independent and Sq°x,,..., Sq°x,, Sq?y,,..., Sq*y,, are
linearly independent.

Suppose Y a;Sq*x; + Y b;Sq*y; =0. Then applying Sq' we get

ijyf =0
so by construction b; = 0. Hence a@; = 0. Similarly the x;s and y;’s are linearly
independent. |
Now extend x,,.... X;, ¥y,..., ¥, to a basis for H*(X) by adding z,,..., z,.
(2.3) Any nonzero linear combination of the z’s has nonzero square.

To see this, suppose
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Y ¢zt = 0.
Then Y ¢,z, = Y a;x;. Hence ¢, =0=a,

Proposition 2.4. In degrees less than or equal to nine PH*(X) has a basis
consisting of

(a) Nonzero Sq'ix, i<3
(b) Nonzero Sq'<y,, y? k<2
(0 Sq'z,, z2 1<3.

Proof. By (2.1) and (2.2) all primitives of degree less than 9 have the above
form so it suffices to show the above elements are linearly independent. By
Lemma 2.3 the elements from (a) and (b) are linearly independent.

Consider
Y ezi+Y by} =0.
Then
Yozt byi=Y ax
which implies ¢, =b; =a;=0. So y}'s and z}’s form a basis of PH°(X).
Consider
Y ¢Sq*?z, + Y a;Sq**x; = 0.
Then
Yazc+ Y ax;=z7
has the property that if some ¢, is nonzero then (z')* # 0 by (2.3). But then
Yaz+ Y, ax; =) by,

and ¢, =a;=b;=0. So Sq*?z,k=1,...,n and the nonzero Sq*?x; form a
basis for PH®(X).
Finally, consider
Y a;.Sq*x; + Y, b;Sq*y; + ) .Sq*z, = 0.

This implies b; = ¢, = 0. We conclude the nonzero Sq’x;, Sq’y;, Sq*z, form a
basis for PH®(X). [ |

Corollary 25. (a) B(V,)= A (8q"'x) R Z, [;]:] ® A (Sq%y,) as Hopf al-

s

Applying Sq',

gebra over s/(2) where only the nonzero Sq'x, are listed.
(b)) B(H3(X)) = B(V,) ® Z,[z,, Sq*z,. Sq**z,] as Hopf algebras over s£(2) in
degrees less than or equal to nine.
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§3. Connective covers of finite H-spaces

The strategy for the remainder of the paper is to obtain liftings of a
homotopy-associative H-space into Q E, that are a5-liftings. If X is a homotopy-
associative H-space that splits as spaces in the form X =~ Y x S7, then since S” lifts
to QE,, we can compose this lifting with the projection map X — S’ to obtain a
lifting of X to QE,. So the only remaining difficulty is to measure the
obstructions to lifting by H-maps and a;-maps.

We will show the following in section 5:

1. If we kill all classes in H*(X) of degree less than or equal to five then the
corresponding cover X, of X will lift to QE;, by an H-map.

2. If we kill all classes of degree less than or equal to eight in H*(X,) except
for certain seven dimensional classes then the lift to QE, will be an H-map.

For this reason this chapter is devoted to a careful calculation of the
cohomology of connective covers of finite H-spaces. We essentially compute all
the generators of certain connective covers in degrees less than 9.

The reader may want to skip ahead to section 5 to see how these calculations
are used.

We begin by outlining theorems of Moore and Smith [9] for Hopf fibre
squares.

Lemma 3.1. Let 0: A— B be an epimorphism of mod?2 cohomology Hopf
algebras over the Steenrod algebra. Then if A is commutative and associative as a
coalgebra, then there exists a Hopf algebra kernel A\ 6 over o/(2).

Proof. Consider the dual map
Z,— B, —> A,

We have 6,(B,) is a subHopf algebra of a commutative associative Hopf
algebra. Therefore A4, /im0, is a Hopf algebra over 2/(2) and there is an exact
sequence of Hopf algebras over &/(2)

Z,—B,— A, — A, /im0, — Z,.
Dualizing we define A\, 0 = (4, /im 0,)*. [ ]

Now let K be a generalized Eilenberg-MacLane space and let X, be the fibre
of a map f: X —» K between H-spaces, with f an H-map.

QK — QK

Lo
3.1) X, — LK
=]

X — K
!
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According to Smith [9], if H,(X) is associative, there is a filtration of H*(X,)
H*X,) > 2F *>F 'oF°

that is compatible with the Hopf algebra structure of H*(X,) and with the
Steenrod algebra and a spectral sequence with

5" = Tor i) (H*(X); Z,)

and E_, = EoH*(X,).

Furthermore by Lemma 2.1, I'= H*(K)\\ f* is an 2/(2) subHopf algebra of
H*(K), hence it is a polynomial algebra. By Kane [6] and Smith [9], the spectral
sequence collapses and

E, =~ H¥X)/im f* Q Tor(Z,, Z,) = E,H*(X )

as Hopf algebras over the Steenrod algebra, with
(3.2) F° = H*(X)/im f*.
Since I' is a polynomial algebra,

Torp(Z,, Z,) = A(s~°Qr).
So
(3.3) E H*(X,)= H*(X)/im f* ® A(s~°Qr)
as Hopf algebras over the Steenrod algebra. The action of the Steenrod algebra
on s~ 19Qr is induced by the map [9, 13.3]

QI = Torp' (Z,, Z,)

(3.4) |
OH*(K) = Torgly (Zy. Z,)

We now use the above data to compute the 3-connective cover of an H-space
in degrees less than nine.

By Corollary 2.5 there exists a basis for H*(X) X1, ..., Xps Vi eevs Yims Z1seens Zp
such that in degrees less than or equal to nine

B(H*(X)) = @ A(Sq"x,) ® Z,[y,] ® A(Sq%y,)
® ZZ[ZH quzn Sq4‘22,]
as Hopf algebras over the Steenrod algebra. For each x,,y,, z, introduce a

K(Z, 3) so that

fiX —J[]KZ3=K

r.s,t

has the property that each fundamental class hits an x,, y, or z,.  Then fis an H-
map and the induced map
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B(H*(X))«— H*(K)

is an epimorphism of Hopf algebras.
By Lemma 3.1, this map has a Hopf algebra kernel which we will denote by
ker f*. If X, is the fibre of f, then we have

EoH*(X,) = H¥(X) /im f* @ A(s™"° Q ker f*)

as Hopf algebras over the Steenrod algebra.
The following is a chart that describes a portion of Q (ker f*):

Chart 1
Q ker f*
A. A (X, Sq°X,,..., Sq"*x,) f*G) =x, i2, (Sq%i)%, ..., (Sq' i),
Sq'+ix, =0 Sq"i., [ > k.
B.Z, [j;‘;] ® ~(Sq?y) I*i) =y, if,(Sq1)?, Sq"il > 2
C. Z,(z,,Sq%z,,Sq*?z,] [*i,) = z, Sq"i, if Sq''z, =0,1>3

(Sq%i,)?* and (i)* are possible but lie in degree

greater than or equal to 10.

Lemma 3.2. [In degrees less than or equal to nine, ker f* is a polynomial
algebra on the generators of the types A, B, C listed in Chart 1.

We now list the generators in low degrees that occur in A(s™"°Q ker f*)

Chart 2

Hopf algebras of Type A A(sT10Q ker f*) &/(2) action in E;H*(X,)

A (x,) ws =57 MO2), wy = 571%(Sqi,) Sq'w, = ws
wg = s~ 10(Sq*2i,) Sqw, = wy

A (X, Sq2x,) ws =5 10»12), wy = s~ 10(8g*2i,) Sq*ws = wq
wy = s~ 10(Sq2i,)? Sq'wg = wy

A (%, 847 x,, Sq*2x,) ws =5~ 1O7), wy = 57 19(Sq%i,)? Sq*ws = wo
Wie = 5 10(SqB2i)

AX,, ..., Sqx,) ws =57 10i2), wy = s~ 10(Sq2i,)? Sq*ws = wg

j>2 Wossy =S V0(Sqli)

Hopf Algebras of Type B

Zz% ® A (Sq’y) wo =5~ "%(Sq?i,)? 5q'wg = wo
wg =57 "(Sq*2i) Sq*wg = wy,

wyp =510
Hopf Algebras of Type C
Z,(z,Sq%z, Sq*?z,] No generators of degree less than 10.




534 James P. Lin and Frank Williams

Proposition 3.3. [In degrees less than or equal to nine

(a) All even generators not in im n} occur in degrees 4 or 8, can be chosen to
be primitive, and have infinite height.

(b) All odd generators not in im n¥ occur in degrees 5 or 9, can be chosen to
be primitive and have height two.

Proof. Let w correspond to an even generator of A (s~ '°Qker f*). Then
Chart 2 implies {w}e EQH*(X,) has the form

s~ 19(Sq%i)  for some ieH3(K).
Hence Sqieker f* and has nonzero projection in QH*(K). Hence,
Sqlv1i = Sq* - Sq¥ Sqliieker f* |>j
and therefore
Sq? --8q¥{w} #0 in A (s710Q ker f*).

But this corresponds to w2 "' #0. So w has infinite height.

By Chart 2 all generators of A (s™!°Q ker f*) in degrees less than ten occur
in degrees 4, 5, 8,9. Given a generator w, it must belong to F~'.

Since the filtration is compatible with the Hopf algebra structure of H*(X ),
we must have

AweF '® F° + FC® F 1.

But F° = H*(X)/im f*. By Theorem 2.1, F® begins in degree 7. Therefore, all
the w’s may be chosen to be primitive.

Now if deg w is odd, {w}?=0 in EoH*(X,) since A(s~"°Qker f*) is
exterior. We have

{wo} = s71%(Sqi)?
{ws} =519
By (3.4)
Sq°{ws} = s~ 10 S¢°(5q%i)* = 0
Sq3{ws} = s 1°8¢°(i?) = 0.

So wieF° and wleF°.
Again by Theorem 2.1, PH!’(X)/im f*)=0 and P(H'°X)/im f*)
=0. Hence w?=wj3=0.
n

Proposition 34. QH'4(X,)=0, QH??*(X,) =0,
PH?*(X,) = PH?*(X)//im f*
= CH'(X)/im f*
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Proof. 1t is easy to check that all the even generators either belong to
H*(X)/im f* or come from A (s""°Qkerf*). All even generators of
A(s"1°Qker f*) occur in degrees 2' for some [>2. Hence since
QH'(X)/im f* =0 by Theorem 2.1 it follows that QH'#(X,)=0. By an
argument similar to Proposition 3.3 any w,, with {w,,;}es™"®Qker f* can be
chosen to have w?, =0. Hence, QH?**(X,) =0, and

(3.5 PH?*(X,) = PH**(X)/im f* = (H''(X)/im f*)

by Theorem 2.1 and the fact that H''(X)/ f* is primitive. [ |

The following chart describes the structure of the Hopf algebras produced in
H*(X,):

Chart 3

Hopf algebra factors of H*(X) Hopf algebra factors of H*(X,) in degrees less than 12
A (x3) Z,y[w] ® A (ws), Sqiw, = ws

A (x3, 5¢%x3) Z,[ws] ® A (ws, wg), Sq*ws = wy, Sq'wg = wy

A (x3, Sq%x3, Sq*2x3, ..., Sq"/x3) A (Ws, Wo), Sq*ws = wo

Ly,

z, v ® A (Sq9°y) Z,[wg] ® A (wg, wy,), Sq'wg = wy, Sq2wg = wy,

Z,(z, Sq%z, Sq*?*z,] No generators of degree less than 10.
§4. H*(X,)

In this chapter, we consider the cohomology of the fibre of a map f,: X,
— K, where f, is an H-map, K, a generalized Eilenberg-MacLane space in degrees
4,5 7 and 8. If X, is the fibre of f,, then X, is a homotopy associative H-
space. The main result of this chapter will be to show that in degrees 14 and 22,
all primitives and generators are in the image of lower-degree primitives as long as
there is no factor of H*(X) of type B. The method of computation is the same as
that used to compute H*(X,).

It follows that

EoH*(X,) = H*(X,)/im f1 @ A(s™"° Qker f}).

Since QH'4(X,)=0 and PH?*(X,) < &PH*(X)/im f*) by Proposition 3.4, it
follows that any new 14- or 22-dimensional primitives or generators must come
from A (s”''°Qker f¥). We proceed to calculate all such elements. Our recipe
for defining f, comes from Chart 3, and the following chart.
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Chart 4

Hopf algebra factor of H*(X,) K, factor

L Z,[wi] ® A (ws) K(Z,, 4), f1(iy) = w,
Sq'w, = ws

2. Z,[wg] ® A (ws, wo) K(Z, 5) x K(Z,, 8)
Sq'wg = wy = Sq*ws S1is) = ws, fT(ig) = wy

3. A(ws, wg) K(Z, 5), f¥(is) = ws
Sqtws = wy

4. Z,[wg] ® A (wo, wyy) K(Z,, 8), f1(ig) = wsg

1 — 2 —
Sq'wg = wg, 8wy = wy,

Occasionally we will also introduce K(Z, 7) factors to kill off elements of
H*(X)//imf*.

Lemma 4.1. H*(X,) is four-connected and all elements of degree less than
twelve are primitive.

Proof. By construction and Theorem 2.1, F°=H(X,)//im f* is six-
connected and by the recipe for f;, A(s”°Qker f¥) will be four-connected. It
follows that EGH*(X,) is four-conected, so H*(X,) is four-connected. It also
follows that since F° is a subHopf algebra, all elements of degree less than 12 of
F° are primitive. Further

AF 'c F'@QF°+FOQF".

Hence all generators of A (s~ °Q ker f¥) are primitive in degrees less than twelve.

]

Proposition 4.2. [f H*(X) does not contain subHopf algebras of type B, then

all fourteen-dimensional generators of H*(X,) are primitive and in the «/(2) image
of primitive classes of degrees less than twelve.

Proof. By Proposition 3.4 QH'*(X,) =0, so Q(H'*(X,)/im f, =0. Hence
all fourteen-dimensional generators of H*(X,) come from
A(s"1%Qker f*). These elements in degree 14 come from 15-dimensional
elements of H*(K,) in ker f¥. Since f¥ is a map of Hopf algebras, it is easy to
check that Q ker f* is spanned by a submodule of PH!*(K,). We show, in fact,
that every 15-dimensional admissible of H*(K,) lies in kernel f¥ and in the 2/(2)
image of admissibles of degree less than 12.

Chart 5
All degree 15 admissibles of H*(K,) kernel f¥
Sq73 i, Sq2i,;Sq>ti, = Sq*%i, and H%X,)=0
Sq73is Sq3is;if Sq*ws = x5, then Sq'x, =0 by Theorem 2.1.
Sq® i Sq*'ig = Sq'(Sq*is) + Sq*(Sq*is);

Sq*igeker f¥ because PH'%(X,) =0

by Theorem 2.1 since PH'3(X,) = PH'*(X)/im f*
Sq%igeker f* since Sq2wgze PH'O(X)/imf* = 0.
8q°'ig = Sq*(Sq™'is)
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Sq4.2.1i8 Sq4.2.li8 = Sq4‘2(sq1’-8 + Sq415)
This is for a Hopf algebra of type 2 in Chart 4.
Hence Sq'iz + Sq*iseker f*

Sq5-2i Sq2igeker f*, see argument for Sq®'iy,
Sq7i, Sq*igeker f*, see argument for Sq%'i,
Sq%2i, Sq?i,eker f* since (H*(X)/im f*)° = 0

by Theorem 2.1.

Remark 4.1. Note that in the case of a type B subHopf algebra

Zz[yj]@) A(Sq%y), H*(X,) would contain a factor of the form

Z,[wg]l ® A (wg, wy;) with Sg>'wg=w;; and hence, if Sg*w,, =0, H*(X,)
would contain an element corresponding to s~ °Sq**!'wg in degree 14 that may
not be primitive. ]

Proposition 4.3. If H*(X) does not contain a subHopf algebra of type B, then
all elements of PH**(X,) lie in the o/(2) image of lower-dimensional primitives.

Proof. By Proposition 3.4 PH??(X )= ¢P(H''(X)/im f*), QH**(X,) = 0.

All 22-dimensional primitives of H*(X,) are either generators or squares of
eleven-dimensional elements.

Consider F° = H*(X,)/im f¥ =« H*(X,). We have the following commuta-

tive diagram

0 0

| I

PEH' (X)) — PEH'(X)/im f7)

l l

(4.1) PH?*(X,) — P(H**(X,)[im f%)

| l

QH?**(X;) — Q(H?**(X,)/im ff) —0

l l

0 0

with exact columns, and exact bottom row.

Since QH??(X,)=0 by Proposition 3.4, it follows that PH?*(X,)/im f¥
= P(EH'Y(X,)/im f¥). But H!(X,)/imf*¥ < F° is primitive by Lemma
4.1: hence all elements of F°c< H*(X,) are in the o/(2) image of eleven-
dimensional primitives of H*(X,). Now the following chart shows that all 22-
dimensional primitives that arise from A (s~ "°Qker f¥) also lie in the /(2) image
of elements of degree less than 12 of H*(X,). By Lemma 4.1, these elements are
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all primitive.
As in Chart 5, we show every admissible of H*(K,) in degree 23 lies in the
2(2) image of some lower dimensional element of kernel f¥.

Chart 6
All 23 dimensional admissibles Kernel f¥
of H¥*(K,)

Sq'l(Sq>*tiy) Sq%2tw, lies in PH'}(X,)= PH'*(X)/im f* =0
by Theorem 2.1.

Sq'!(Sq*%is) Sq*?wse PH'}(X,) = 0

Sq''(Sq>tig) Sq3'wg = Sq2Sq*wg and Sq?wge PH'(X,)=0
by Theorem 2.1

5q'%(Sq*'is) Sq*'ws = Sq'(Sq*ws) + Sq*(Sq' Sq*ws)
Same argument as above.

Sq%*2ig Sq*wg =0

Sq'%3ig Sq*wg =0

Sq't %y Sq*wg =0

Sq8*+2lig Sq?'wg = Sq%(Sq'wg + Sq*ws). This is for type 2
Hopf algebra of chart 4.
Sq'ws = Sq*ws

Sq'%*2i, Sq2 f¥(i;) = 0 since by Theorem 2.1
PH®(X) = Sq*? PH3(X)

Sq''3i, Sq*f1(i5) = Sq*Sq" f1(i;) + Sq*'(Sq* f1(i7))

Sq' f¥(i;) = 0 = Sq? f*(i;) by Theorem 2.1.

Remark 4.2. If H*(X) contained a Hopf algebra of type B and Sq®*w,, =0,
then PH?*(X,) would contain an element corresponding to s~ "°Sq®*2'ig in
degree 22. If Sq*w,, =0 and if s~1%Sq*?'ig is not primitive in H'*(X,) then
this 22-dimensional primitive would not be in the image of Steenrod operations
applied to lower dimenional primitives.

§5. Application
We now can prove Theorems A and B of the Introduction.

Proof of Theorem A. Let X be a homotopy associative H-space and suppose
X is mod2 equivalent to Y x S”. Suppose H*(X) does not contain any /(2)
subHopf algebras of the form

Lyl

7, —
2y4

® A(Sq%y), degy=3.

If W:8" - K(Z,7) is the integral class of H7(S7) then there is a commutative
diagram
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(5.1) X, QE, - K(Z,, 15, 16, 11,14)

-

x 5 g — K(Z7) — K(Zy,911)

By Theorem 2.1, X is 2-connected. Therefore h'n is an a;-map, and D, factors
through K(Z,, 8, 10).

Again by Theorem 2.1, any element of H'(X A X) for | =8, 10 has factors
that lie in the &/(2) subHopf algebra generated by H3(X). Therefore, if X, is the
3-connective cover of X, then

himp, is an H-map.

Similarly, a,(hynp,) factors through K(Z,, 7,9). Since X, is 3-connected it
follows that

(5.2) himp, is an az-map.

This implies if 5 =hymp,, then D, factors through
K(Z,, 14, 15, 10, 13). Examining Chart 2 of chapter 3, one checked that
H'X, A X,), ] =14, 15, 10, 13, involves the elements w,, ws, wy except possibly in
the case of H'#(X, A X,) which could involve (hmp,)*(i,) or a seven-dimensional
class in H*(X)/im f*. Note H*(X)/im f* is six-connected by Theorem 2.1.

Case 1. If [Dy,Je H'(X, A X,) does not contain (h,7p,)*(i;) ® (hy7p,)*(i;), then
by killing off w,, ws, wg and possibly elements of H’(X)//im f* we obtain an H-
map h, = h3mp,p,

X, 2 QF,.

Case 2. If [Dy;] has (hy7p,)*(i;) @ (hy7p,)*(i;) as a summand, then by changing
the k-invariant (Bk,)*(i,¢) = Do 3 + iz Where ig is the lifting of the fundamental
class, then this changes the H-structure of QE, so that [Dy;] does not have
(himp)*(i;) ® (W mp,)*(i;) as a summand. (See the remark before Proposition
1.4)

In either case the map

(5.3) X, L, QE, is an H-map.

Now aj(h,) factors through K(Z,, 13, 14,9, 12). By Lemma 4.1, H*(X,) is
four-connected so

(5.4) h, is an as-map.
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By Theorem 1.5, there is an element h%(v)e PH?*%(X,) with a5(h¥(v))
=zQ®z&®z#0 where z=h*(i,;), h=hnp,p,. But by Proposition 4.3, h¥(v)
=Y a;z; where z;e PH*(X,) have degree less than 22 and «;€ &/(2). This implies

z®:z®ze) xas(z).

But X, has the homotopy type of ¥, x S7 for some space Y,, s0 z® z & z is not
in the image of Steenrod operations. Further z® z® z¢image 4 ® 1
—1® 4. We conclude X could not have been a homotopy associative H-
space. This proves Theorem A.

Proof of Theorem B. We construct X, in the same manner as before. There
are maps

X, QE, x QF, x QE,
[ |
X, S QE, x QE, x QE,

l

X — () — K@Z.1.7.7)

n

If hy =(h} x h} x hY)np, and D,, involves s; ® s; where s, s; are 7-dimensional
spherical classes, then by changing the H-structure of QE, x QE, x QE,, we still
can make h, = (h}, x h, x hy)np,p, an H-map, and therefore an a;-map.

Now there exist elements h¥(v,), i = 1, 2, 3 with

a;(h¥)) =5, ®s;®s; mod MAR1—-1Q 4.

Since dim Sq![H3(Y)nker Sq*] < 1, there exists at most one subHopf algebra of
type B in H*(X).

Therefore H*(X ;) contains at most one nonprimitive generator w,,, and one
primitive 22-dimensional generator not in the /(2) image of lower dimensional
primitives. The analysis due to Goncalves [2, p.19] shows that if V is the 3-
dimensional vector space spanned by 5; Q) s; ® s;, i = 1,2, 3, then

Vv
imA®1-1®4

It follows that there must be at least two linearly independent 22-dimensional
primitives with nonzero aj-invariant. This is a contradiction, and completes the
proof of Theorem B. [ ]

has dimension at least two.

Theorem 5.1. Let X be a finite H-space with rational generators in degrees
{3,3,3,7,7,7, 11, 11, 15, 15, 19, 23, 23, 27} .

Then X has the same rational type as G x S7 where G is either Spin(15) x Sp(2)
x Fy or Sp(7) x Sp(2) x Fy. In either case, if X is mod 2 equivalent to G x S,
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then X cannot be homotopy associative

Proof. In the process of taking connective covers, the only possibility of
creating 14- and 22- dimensional generators occurs in the connective cover of
F,. But Goncalves [2] shows that in the 3-connective cover of F,, Sq*w; = x5,
so no l14-dimensional or 22-dimensional generators are created.
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