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Two torsion and homotopy associative H-spaces

By

Jam es P . LIN1 a n d  F ra n k  WILLIAMS

§ 0 .  Introduction

In  this note we consider the following question :

If Y is a mod 2 H-space, when does Y x S 7  admit the structure of a homotopy
associative mod 2 H-space ?

There are several examples that are revealing. First, it is well known that the
seven-sphere admits the structure of an H-space, but does not adm it a homotopy
associative structure. In the case of Lie groups, it is known that at the prime 2,
Spin (8 ) i s  homotopy equivalent to Spin (7) x S 7 a n d  Spin (7 )  is homotopy
equivalent to G 2 X  S7 . A m ong all the com pact simply connected simple Lie
groups, only G 2 , F 4 ,  Spin (7) a n d  Spin (8) h a v e  a  subHopf algebra over the
Steenrod algebra of the following form

(0.1) A  =  

Z
2

[X ]
A  (S q 2 x )  =  H * (G 2  ;  Z 2 ) ,  d e g  x  =  3 .X4

In this paper we show that this is the key factor in determining if a finite H-
space producted w ith  a  seven-sphere can a d m it  a  homotopy associative H-
struc tu re . This can be summarized by the following theorems.

Theorem A .  L et Y  be a f inite 1-connected complex and suppose H*(Y; Z 2 )
does not contain any subalgebras over the Steenrod algebra o f  ty pe  A . Then Y  x 5 7

cannot be a homotopy associative H-space.

Theorem B .  Let Y  be a finite 1-connected complex and suppose H*(Y ; Z 2 ) has
at most one subalgebra of type A  over the Steenrod algebra. T hen Y  x (5 7 )k cannot
be a hom otopy  associative for k  > 3.

The first results concerning products with S 7  and homotopy associativity were
due to  Goncalves, [2], w ho proved that if Y is any simply-connected compact
simple Lie group other than G 2 and Spin (7), then Y x S 7  cannot be a  homotopy-
associative H-space, even when localized at the prime tw o .  Hubbuck [3] showed
that the two-torsion is necessary for their products with S 7  to  b e  the homotopy
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types o f topological groups by proving that if  Y  h a s  no  tw o-to rsion  in  its
homology then Y x S 7  cannot be the homotopy type of a topological group. (In
fact, he proved the stronger technical result that such a  Y  x  S 7  c an n o t b e  the
homotopy type of an /14 -space in the sense of Stasheff [10].) Recently, I wase [4]
has strengthened Hubbuck's result by proving that if Y has no two-torsion then
the product of Y with S 7  is  n o t  a homotopy-associative H-space.

In Hubbuck's and Iwase's work the absence of two-torsion is essential, since it
relies in the first case on Iwase's structure theorem [5] for the K-ring of projective
n-space and in the second case on Iwase's method of generating complexes. In
Theorem A, above, we specify exactly the type of two-torsion that is capable of
permitting Y  x S 7  to  b e  h o m o to p y -a sso c ia tiv e . In  p a r tic u la r , t h e r e  i s  no
subalgebra of type A  in H*( Y) if and only if Sq 1 (H 5 (Y )n ker Se) = O. We follow
the method of Goncalves, i.e., we use a certain tertiary cohomology operation
defined in  [2 ] , a n d  a p p ly  it  to  certain connected covers of Y  x S 7 . A main
ingredient in  our work is Lin's description in [7] of the Steenrod connections in
finite H-spaces, which we use to compute in the cohomology of these connected
covers. Essentially this allows us to compute the fibre of the 3-connective cover
o f  a n  H -s p a c e  w h e r e  w e  k i l l  o f f  a l l  4 - ,  5 - ,  8 -  a n d  some 7-dimensional
generators. If this fibre does not contain non-primitive 14-dimensional generators
or primitive 22-dimensional generators, the original H-space cannot be homotopy
associative.

This work generalized the results of Hubbuck and Iwase because it allows for
the existence of two torsion and it generalized the results of Goncalves from Lie
groups to H -spaces. In the nonfinite case it is interesting to note that there is a
splitting QS 8 Q S 1 5  x  S 7 . One can trace through our proof to show tha t the
homotopy associativity of QS 8 is  re f lec ted  b y  the non-primitivity of the 14-
dimensional generator of H*(QS 8 ).

The above results may be applied to the rational type of an example described
by Adams and W ilkerson. In  their paper, they cite  a  rational type of the form

{4, 4, 4, 8, 8, 8, 12, 12, 16, 16, 20, 24, 24, 28} .

This type is not the type of a Lie group, but for every prime p > 3 it is shown that
it is the type of a loop space. Furtherm ore, it is the type of a product of a Lie
group with S 7 . The Lie group is either

G = Spin(15) x Sp(2) x  F ,  o r  G = Sp(7) x  Sp(2) x  F ,.

In  either case, our results show th a t  G x S 7  cannot be  hom otopy  associative
(Theorem 5.1).

The organization of our paper is as follows : In section one we review the
proof of Goncalves tha t the cubes of certain cohomology classes factor through
secondary operations. W e give a n  explicit form ula for this factorization. In
section two we describe the sl(2) subHopf algebra of the cohomology of an H-
space generated by its three-dimensional generators. Corollary 2.5 shows that
such a subHopf algebra actually splits over the Steenrod algebra into the tensor
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products of subHopf algebras over si(2) in a certain range. This allows us to
calculate the cohomology of the 3-connective cover of a finite H-space in chapter
3. This is described by chart 3 at the end of chapter 3. In chapter 4, we kill off
all 4-, 5-, 8- and some 7-dimensional generators in  the 3-connective cover and
calculate the cohomology of the  fibre . In  chapter 5, Theorems A and B are
proved.

In a first reading, the reader may want to read the statements of results in
chapters 1 through 4 and go on to chapter 5 for the proof of the main theorems.

A ll sp a ces  a r e  assum ed to be one-connected a n d  all coefficients of
cohomology are assumed to be Z 2  unless otherwise stated.

§ 1. Factorization of the cube

Given an element u8 in the cohomology of a space with u8 e ker Sq1 ,  
s q 2,  s q 4,

deg u8 = 8, it was shown in [2] that z4,33 factors through secondary operations. An
explicit factorization is given here.

The following diagram is due to  Goncalves and Harper [2] :

A
K (Z 2 ,  10, 12) K(Z2, 17, 18, 24)

B I (s q 8+5 q 6,2, 5q 7 ±s q 4,2,1 , s q l)

K(Z 2 , 13, 16) 8K(Z2, 25).
(Sq 1 2 ,5q6 .3 )

The notation Sq i 'i  means Sq i Sq i . The matrices A and B are given by

0 Sq5 sq4,1

B =
Sq 6  S q 4

A =S q 8 sq4,2

sql4 sql2

With the above defining relations, diagram (1.1) is a commutative diagram of
infinite loop spaces an d  infinite loop m aps. The composition of successive
vertical maps is null homotopic.

It follows that there is a primitive element ee H 2 4 (E) such that

Sq 2 'l  S q l )
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j* ( e )= (S q 8 s q 6,2) i 1 6 ( s q 7 s q 4,2,1 ) i 1 7 s q i i2 3

and e  represents the secondary operation 00 ,3.

Similarly, there exist stable elements U0,2, U2 ,2 e PH*(E i )  defined by

it  (v0,2) = s q 2,1 .9 +  S q 1 il 1

ft(v2,2) = Sq6 i9

A  calculation using the  Adem relations shows

f tg ,*(e ) = s q lo,3
i11

s q 12,2,1i9

c, 12_
aq  ft(v0 ,2 ) +  Sq 6 '3 it(V2,2).

It follows that (Adams, Goncalves, Harper [1, 2]).

Proposition 1.1.

Proof. j r ( g * ( e )+  S q  
1 2  v o ,2 s q 6 , 3  

V
2,2

)  =  O. T herefo re , s ince  the re  is  an
exact sequence

PH*(K (Z, 8)) PH*(E i ) PH*(K (Z 2 , 9, 11))

it follows that

j* ( e )+  S q  21  v 0 , 2 s q 6 ,3 v 2 ,2 = p Œ  i8

where a e esaf(2) has degree 16. But all such elements a i8 lie  in  kernel pr. •

Recall the following Adem relations which hold o n  integral classes:

s q l s te  ( s q 5  5 q 4,1)5q 4

s q 2 sq 8 = s q 4,2sq 4 s e s q 2.

Since Sq l  Sq 8  a n d  Sq2 Sq8 a re  both zero on i8, it follows that there are (unstable)
elements i30,3 e1/1 6 (E1), /31,3 e H 17 (E1) with

Pi(/-30,3) = (Sq5 + 5 q4 '1)i11
i N t31,3 )  =  Sq4,2 Sq 8 

1
9 .

One checks tha t 131,3 is  a suspension.

Since Sq'5q 8  is nontrivial o n  a  nine-dimensional class, one can check that
[12]

2670,3 = U8 C) U8 where U8 = plc(i 8 ).

Hence, Sq 8 i50 ,3 + u38 EPH 2 4 (E1), because u8 Eker S q l ,  s e ,  s e .

Proposition 1.2. g *( e ) s q 8i50 ,3 s q 4 , 2 , 1

g *( e )  =  s q  12 v 0 ,2  +  s q 6,3 y 2 ,2 .
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P ro o f . It suffices to  check that jf(Sq8i30,3 + sq4,2,1 5 1 , 3 )  =  s q 10,3i
1

s q 12,2,1i9 . •
Corollary 1.3. u  =  s q 8130,3 s q 4,2,1 171,3 s q l2 v 0 ,2 s q 6,3 v 2 ,2 .

L e t  E 2  b e  th e  f ib r e  o f  th e  m a p  th a t  k ills  th e  elements f50 ,3 , i31 , 3,

y0,2 ,  y2,2* Note that all the elements are uniquely defined with the exception of
i50 ,3 because they are the only primitive in their degrees. (70, 3  can be changed by
u .  E 2  is not an H-space, because 150, 3  is not primitive.

K(Z 2 , 15, 16, 11, 14)

I i2
E2

(1.2) I p2

Bk

K(Z 2 ,  16, 17, 12, 15)

K(Z 2 , 10, 12).

It is easy to check by Corollary 1.3 that

Proposition 1.3. 101(4) 0 0 , p (u 8)3 =  O.

Looping diagram (1.2) we obtain

K(Z 2 , 14, 15, 10, 13)

f2E2

(1.3)

f2E1K ( Z 2 ,  1 5 ,  1 6 ,  1 1 ,  1 4 )
k

K(Z, 7 )  - -ko K ( Z 2 , 9, 11).

f2E2 h as tw o  multiplications that give f2E2 a  loop space structure. We could
choose (Bk1) *

(i16) = 17,0,3 
o r  (Bk1) *

(i16) = 170,3 + U .  With respect to these two H-
structures th e  identity map f2E2 -+ f2E 2 has H -deviation /47 CI u7 . Following
G oncalves [2], for their multiplication

Proposition 1.4. T here is a prim itiv e element y e PH 2 2 (QE 2 )  with a3 (v) =
u7 u 7 C) u 7 . Further, i n  t h e  Eilenberg-M oore spectral sequence ExtH .( n E 2 )

(Z 2 , Z2) H *(E 2 )

d 2 [V] - [14 7 U 7 I 14 7 ]  .

See [1 1 ] for a definition of a3 .
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Theorem 1.5. Suppose there is a commutative diagram  of  a 3 -spaces and H-
maps

Theorem 1.5. Suppose there is a commtative diagram of a 3 -spaces and H-maps

K(Z 2 , 14, 15, 10, 13)

E2

E, K(Z2, 15, 16, 11, 14)
k,

K(Z, 8) K(Z2, 9, 11).
h ko

where h*(i 7 ) = z  and i 7  e H*(K(Z, 7); Z 2 ) is the mod 2 reduction of the fundamental
class. I f  h ,  is an a 3 -map, then

a3 (h1(v)) = z z  C) z  + a 3 (h2 )*(o- * v)

P ro o f . This follows from the composition formula [11]

a3 (v  h 2 ) — (12 v)a 3 (h2 ) + a 3 (v)(h2  A  h2 A  h2 ), by  [11]. •

§ 2. The A(2) subHopf algebra generated by H 3 (X)

In  this chapter, we prove that the si(2) subHopf algebra generated by three-
dimensional elements splits over the Steenrod algebra in degrees less than ten into
subHopf algebras o v e r  si(2) generated b y  single three-dimensional
generators. This fact w ill be used in  th e  next chapter to com pute th e  three-
connective cover of X  in a certain range.

The following theorem is due to  L in [7] :

Theorem 2.1. L et X  be a  1-connected finite H-space with associative mod 2
homology ring. Then
(a) Q H ""(X ) = O.
(b) QH 4 '( X )  =  S q 2 k QH 2 k + 1 (X )  f o r k  >  O.
(c) QH 2 r + 2 r ± l k - 1 (X ) = S er k QH 2 r+ 2 '( X )  k  >  0 ,  r  >0 .
(d) Sq2r12H2r±

 2 '

 +  1 k  1 (X )  =  O.

(e) X  is 2-connected and generators may be chosen to have reduced coproduct in
H *(X )C ) H *(X ). Hence H*(X ) is primitively generated in degrees less than

15.

By Theorem 2.1, we conclude

(2.1) H1(X ) = H 2 (X ) = H 4 (X ) = 0
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(2.2) P H 6 (X )= H 3 (X )

PH 8 (X ) = 0

PH 2 - 1 + 1 (X) = Sq 2 j  • • •  S q 2 H 3 (X ).

Let

V =  Ix E H 3 1x 2  =

vi  =  E H 3 I X2  =  0 o r  x2 0 0 and  Sq 4 '2 x  = 01.

Given a  subcoalgebra W OE H *(X ), le t B (W ) b e  th e  si(2) subHopf algebra of
H *(X ) generated by W.

Lemma 2.2. There exists a basis x, f o r V such that the nonzero Sex,
form a  basis for QB (V ), where

{ S q 2 j  • • • S q 2 , j > 2
=

Sq ° j = 1 .

P ro o f. Because PB (V )'s QB (V ) in odd degrees, henceforth we will omit the
bars from our notation in th is  p ro o f . Assume by induction that x 1

.  ,  x i have
been chosen so that the  nonzero are linearly independent.

Let S e x  be a  generator of highest degree that does not lie in the sl(2) span
o f  x1 , , x i , a n d  x  lies i n  V .  T h e n  e i th e r  Sq l k+1 x  = 0  o r  Sq 1 k+1 x
= l a , S q l k+1 x 1, a i e Z 2 .  L e t x ' = x  + E a x , .  T hen  Sq l k =  0 a n d  S e x '  is
not in the si(2) span of x1 , , x i . Let x' = x 1 + 1 . By induction, we arrive a t a
basis fo r  V with the desired properties. •

Now consider kernel Sq
4 ,2  H3 (X ).  We have ç (kernel Se' 2 ) is a  subspace

of I-M X ) .  Pick a  basis y ç (kernel Sq4 '2 ).

Lemma 2.3. x 1 , . . . ,  x1, yrn form a basis for V, and the nonzero Sq i , x,,
S e y s  form a  basis for QB(Y i ).

P ro o f. B y construction Sq 4 t2 y s = 0  so it suffices to  show  th a t x l , ,  x i ,
Yi' ,  y „ ,  a r e  linearly independent a n d  Sq x2 15 s e x i ,  s e y  i ,  s q 2  y  a r e
linearly independent.

Suppose a i Sq 2 Xi E  bi se y ;  = O. T h en  ap p ly in g  Sq l  w e get

bi j j  =  0

so by construction bi  = O. H e n c e  a, = O. S im ila r ly  the x i 's  and yi 's are linearly

independent. •

Now extend x1 , x i , yi , ,  y m t o  a  basis for H 3 (X ) by adding zn.

(2.3) Any nonzero linear combination of the z's has nonzero square.

To see this, suppose
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ck zz = O.

Then Eck zk = E ai x i . Hence ck = 0 = ai .

Proposition 2.4. In  degrees less than o r equal to nine PH*(X ) has a  basis
consisting of

(a) N onzero S ex ,. 3
(b) Nonzero Sq l kys , y 2  k  2
(c) Sqilz„ z 1 < 3.

P ro o f  By (2.1) and (2.2) all primitives of degree less than 9 have the above
form  so it suffices to  show  the  above elements a re  linearly independent. By
Lemma 2.3 the elements from (a) and (b) are linearly independent.

Consider

ckzk2 + L.4v h V2 = 0 .

Then

E ck zk +  b i y ;  = E ai x i

which implies ck = bi  = a i = O. S o  e s  and d's form a  basis of PH 6 (X).

Consider

E ck Sq 4 '2  zk + E ai Sq 4 '2 x i = O.

Then

E ck zk + E ai x i = z '

has the property that if some ck  is nonzero then (z) 2 0 0 by (2.3). But then

E ck zk +  ai x i = E b o i

and  ck = ai = b i  = O. S o  Sq4,2 z k ,  k = 1, ,  n  a n d  th e  nonzero Sq4 '2 xi fo rm  a
basis for PH9 (X).

Finally, consider
E a1Sq 2  x i + E bi se y i  + E ck Sq 2  =  O.

Applying Sq l  ,
E +  ck d  = O.

This implies bi  = c k = O. W e  co n c lu d e  the nonzero Sq 2  x i , Sq 2  yi , Sq 2  zk fo rm  a
basis for PH 5 (X). •

Corollary 2 .5 . (a) B(V i ) = A (Seix,.) Z2 
L y s ]

A  (Sq 2  ys )  a s  Hopf  al-

gebra over ca(2) where only the nonz ero S ex ,. are  listed.
(b) B(113 (X))a.z B(V1) Z2 [z, Sq 2 z, Sq 4 '2  zr]  a s  Hopf  algebras ov er d (2 ) in
degrees less than or equal to nine.
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§3 . Connective covers of finite H-spaces

T h e  strategy f o r  th e  remainder o f  th e  p a p e r  is  to  o b ta in  liftings of a
homotopy-associative H-space into Q E 2 that are a 3 -liftings. If X is a homotopy-
associative H-space that splits as spaces in the form X  Y x S 7 , then since S 7 lifts
to  QE2 , we can compose this lifting with the projection map X  - > S7 to  ob ta in  a
lif ting  o f X  t o  QE2 . S o  th e  on ly  rem ain ing  d ifficu lty  is  to  m easure  the
obstructions to  lifting by H-m aps and  a 3 -maps.

W e will show the following in section 5 :
1. If we kill all classes in H*(X ) of degree less than or equal to five then the

corresponding cover X 1 o f  X will lift to  Q E ,, by  a n  H-map.
2. If we kill all classes of degree less than or equal to eight in H*(X  i ) except

for certain seven dimensional classes then the lift to  QE2 w ill b e  an  H-map.
F o r  th is  rea so n  th is  ch ap te r  is  d ev o ted  to  a  careful calculation of the

cohomology of connective covers of finite H-spaces. We essentially compute all
the generators of certain connective covers in  degrees less than 9.

The reader may want to skip ahead to section 5 to see how these calculations
are used.

W e begin by outlining theorems of M oore and Sm ith  [9 ]  fo r Hopf fibre
squares.

Lemma 3.1. L et 0: A --0 B  be  an epim orphism  of  mod 2  cohomology Hopf
algebras over the Steenrod algebra. T hen if  A  is commutative and associative as a
coalgebra, then there ex ists a H opf  algebra kernel A % 0 over

P ro o f .  Consider the  dual map

Z 2  - *  B*
 62 2

- > A *

W e have 0* (B * )  is  a  subHopf algebra of a commutative associative Hopf
algebra. Therefore A* // im 0*  is  a  Hopf algebra over .91(2) and there is an exact
sequence of Hopf algebras over .91(2)

Z2 B* -->  A * --> A * 11 im 0*Z 2 .

Dualizing we define A ‘ 0  = (A* // im 0* )*. •

Now let K  be a  generalized Eilenberg-MacLane space and let X , be the fibre
of a m ap f :  X  -+ K  between H-spaces, with f  a n  H-map.

OK

(3.1)

 

X K
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According to Smith En  if H * (X ) is associative, there is a filtration of H*(X ,)

H *( x D  F -2 D  F -1 D  F o

th a t  is  compatible w ith  the  H opf algebra structure of H*(X i )  a n d  w ith  the
Steenrod algebra and a spectral sequence with

=  Tor Sfit*( K ) (H*(X ); Z 2 )

and=  E 0 H*(X i ).
Furthermore by Lemma 2.1, T = H *(K )%  f* is an es1(2) subHopf algebra of

H*(K), hence it is a polynomial algebra. By Kane [6] and Smith En  the spectral
sequence collapses and

E 2  H*(X)II imf* () Tor r (Z 2 , Z 2 ) E,H*(X ,)

as Hopf algebras over the Steenrod algebra, with

(3.2) F° = H*(X)II im f*

Since F  is  a polynomial algebra,

Tor r (Z 2 , Z 2 ) = A(s -  Q T ) .

So

(3.3) E0H*(X1) = H*(X)//im f * A(s -
 l '°  QT)

as Hopf algebras over the Steenrod a lgeb ra . The action of the Steenrod algebra
on s -  i '° QT is induced by the map [9, 13.3]

Q T  Tori- 1 (Z 2 , Z 2 )

(3.4)
Q H * (K )  Tor „4,10 0  (Z 2 , Z 2 )

We now use the above data to compute the 3-connective cover of an H-space
in  degrees less than nine.

By Corollary 2.5 there exists a  basis for H 3 (X ) x 1 , yi, ym , z 1 . . . . .  z,,
such that in  degrees less than o r  equal to nine

B(H 3 (X)) C ) A (S e  x ,.) Z2 [y s ] A(Sq 2 ys )

Z2 [z, Sq2 zi , Se 2

as H opf algebras over the Steenrod a lgeb ra . F o r  each x,., ys , zt in troduce  a
K(Z, 3) so that

f: X I K (Z , 3) = K
r,s,t

has the property that each fundamental class hits an x,., Y s  o r  z , .  Then f  is an H-
m ap and the induced map
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B(H*(X))4.-- H*(K)

is an epimorphism of Hopf algebras.
By Lemma 3.1, this map has a Hopf algebra kernel which we will denote by

ker f * .  If X , is  the fibre of f ,  then we have

E0 H*(X ,) H * (X )I l im  f *  A (s -  "° Q ker f* )

as Hopf algebras over the Steenrod algebra.
The following is a  chart that describes a portion of Q (ker f *):

Chart 1

Q ker f *

A . A  (x„ Sq 2 x„ , Sq 1 kx,.)

Sq l " ' x r = 0

„  [Ys],
D. L 2 4  Q 9  A  kaq -

2

 y)s
Y,

C. Z2 [z„ Sq 2 z 1 , Sq 4 '2 z1]

f* (ir )=  x r (Sqh r )2  ,
Sqn ir, I > k.

f* (is )=  Y, rs',(Sq2 is )2 , Sq l 'i s l >  2

f*(ii) =  z, S e i t i f  Sq'tz , = 0,1 > 3

(5q 2 i,)2  a n d  (0 4  are possible but lie  in  degree
greater than o r  equal to  10.

Lemma 3.2. In  degrees less than o r equal to nine, ker f *  is  a polynomial
algebra on the generators of  the types A , B, C listed in  Chart I.

W e now list the generators in low degrees that occur in  A(s -  " O Q ker f* )

Chart 2

Hopf algebras of Type A A (s -
 1 '° Q  ker f*)

A (Xr) w 5  = =  s - 1,0(sq 2 0

1V8 s- 1,0(5q 4.2 ir )

(x r , Sq 2 .xr ) w 5 s -  1,0(i2) ,  w 8  =  s -  1,0(5q 4,20

w 9  =  s - 1,0(sq 20 2

(xr , Sq 2 xr , Sq 4 '2 x r ) w 5  =  s - s - 1 , 0 ( s q 2 0 2

1V16 =  s -  1,0(sq 8,4.20

(x„ , S e x ) w 5  = _  s -  1,0(i2) ,  w 9  =  s - 1,0(sq 2i02

j  > 2 wv +1 = S l '° (S e + i r )

Hopf Algebras of Type B

d (2 )  a c tio n  in  E0 1/*(X  ,)

5 q  wa = w5
Sq4 w4  =
Sq4 w, = w,

Sq ws = w9
Sq4 w, — W9

Sq4 w5 — W9

[Ys]
Z2 - 74

- -  0  A  (Sq 2  ys)
Y,

w 9  =  s -  1 ,0 (se i s)2

w 8  =  s - 1.0(s q 4,2i 5)

w it = " ( it )

Sq2 w9 =  w „

Hopf Algebras of Type C

Z 2 [z„ Sq 2 z„ 5q 4 •2 z t ] N o generators of degree less than 10.
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Proposition 3.3. In degrees less than or equal to nine
(a) A ll even generators not in im  nt occur in degrees 4 or 8, can be chosen to

be prim itive, and have infinite height.
(b) A ll odd generators not in im it  occur in degrees 5 or 9, can be chosen to

be primitive and have height two.

P ro o f . Let w correspond to  an  even generator o f  A  (s - " Q k e r f * ) .  Then
Chart 2 implies {w} E0 H*(X 1) has the form

s
- i •'° (Sq l it) for s o m e  i e H 3 (K ).

Hence Sq i iiek er f *  and has nonzero projection in Q H *(K ). Hence,

= Sq 21 ••• Sq v  Se ie k e r f *  1

and therefore

Sq21 • • • Sq2 i  {w}  0 0 in A  (s -  "  Q  ker f*).

But this corresponds to O. So w has infinite height.
By Chart 2 all generators o f  A  (s  "°Q  ker f  *) in degrees less than ten occur

in  degrees 4, 5, 8, 9. Given a  generator w, it m ust belong to F - 1 .
Since the filtration is compatible with the Hopf algebra structure of H*(X i ),

we must have

e  F
F O  F O  0  F  - 1 .

But F °  =  H *(X )//im  f * . By Theorem 2.1, F °  begins in degree 7. Therefore, all
the w 's m ay be chosen to be primitive.

N o w  i f  d e g  w  is  o d d , 114, 12 =  0  i n  E0 H*(X 1 )  since A(s - "Q  ker f * )  is
exterior. W e have

{w9} = s -1,0(sq 202

{w5 }
s- 1,0(i2)

By (3.4)
sq 904,91 = s -1,0 sq 9(sq 202

sq 5{w 5 } = s-1,0sq5(i2) O.

So w4 e F° an d  w i F ° .
A g a in  b y  T h e o r e m  2 .1 , P(H 1 8 (X )// im f*) = 0  a n d  P(H 1 ° (X)// im f*)

= O. Hence wi = w4 = O.
•

Proposition 3.4. QH 1 4 (X 1) = 0, QH 2 2 (X 1) = 0,

PH 22(X 1) = PH 22 (X)//im f *

= .1-1 1 1 (X )//im f*
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Pro o f . I t  is  e a sy  to  check th a t a ll th e  even generators either belong to
H * (X) I im  f *  o r  c o m e  f r o m  A  (s -  " Q  ker f *). A ll e v e n  g e n e r a to r s  of

( s  " Q  ker f * )  o c c u r  in d e g re e s  21 f o r  s o m e  1> 2. H ence since
QH 1 4 (X )Ilim  f* = 0  by  T heo rem  2 .1  it  fo llo w s  th a t  QH 1 4 (X 1 ) = O. B y  an
argument sim ilar to Proposition 3.3 any w „  with { w1 e s - " ° Q ker f *  can be
chosen to have wL = O. Hence, QH 2 2 (X 1) = 0, and

(3.5) PH22(X 1) = PH 22 (X)Him f  * = (11 1 1 (x)//irn f *)

by Theorem 2.1 and the  fact that H i l (X)11 f* is  primitive. •

T he following chart describes the  structure  of the  Hopf algebras produced in
H*(X 1 ):

Hopf algebra factors of H*(X)
A  (X3)

 

Chart 3

Hopf algebra factors of H*(X i )  in  degrees less than 12

Z 2 [w4 ] A (w,), Sq l w4  = w 5

   

A  (X3, Sex 3 )
A  (X3 , Sq 2 X3 , Sq4 -2 x 3 , ,  S e ix 3 )

Z 2 [w 8 ] ®  A  (W5, W9), Sq4 w5 =  W9, Sq l W8 — W9

(w5 , w9 ), Sq 4 w5 = w 9

Z2[w8] 0 A  (W9, W11), Sq W8 = W9, Sq 2 W9 = W11

N o generators of degree less than 10.

 

[vs] 
Z 2 4  0  A  (S e y s )

Ys
Z 2 [z„ Sq 2 z„ Sq 4 '2 z i ]

  

§4. H * (X 2 )

In  this chapter, we consider the cohomology of the fibre  of a  map f 1 : X 1

--+ K, where f 1 is  an H-map, K , a generalized Eilenberg-MacLane space in degrees
4, 5, 7 and  8. If  X2 is  the fibre of f 1 ,

 th e n  X 2 i s  a  homotopy associative H-
sp a c e . The main result of this chapter will be to show that in degrees 14 and 22,
all primitives and generators are in the image of lower-degree primitives as long as
there is no factor of H*(X ) of type B . The method of computation is the same as
that used to com pute H*(X 1 ).

It follows that

E0 1-1*(X 2) = II * (X Oilim ft A(s -  " Qk er fr).

Since QH 1 4 (X 1 ) =  0  and  PH 2 2 (X 1) O E  (PH*(X )//im  f*) b y  Proposition 3.4, it
follows that any new 14- o r 22-dimensional primitives or generators must come
from A (s -  " ° Qker f r ) .  W e proceed to calculate all such elements. O ur recipe
for defining f 1 com es from  C hart 3, and the following chart.
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Chart 4

Hopf algebra factor of H*(X ,) K ,  factor

1.Z2[W4] 0  A  (W5)
Sq 1 w4  = W 5

2. Z2[ 14'8 ] 0  A ( 4'5, w9)
Sq l  =  W 9  = Sq4 w5

3. A (w5 , w 9 )
Sq4 w5 — 1419

4. Z2[w8] 0  A  (W9, W1 i)
Sq l  w8 = w 9 , Sq 2 w9  =  w „

K (Z 2 , 4 ), f i(i 4 ) =  14'4

K (Z , 5) x K(Z 2 , 8)

f t(i 5) = w  f  TO 8) = W8
K (Z , 5),.f t(i 5 ) = w

K (Z 2 , 8),f Vi 8 )  -  W8

O ccasionally w e w ill also introduce K(Z, 7) factors t o  k i l l  o ff  elements of
H*(X )§im f*.

Lemma 4.1. H*(X 2 )  is four-connected and all elem ents of  degree less than
twelve are primitive.

P ro o f . B y  construc tion  and  T heorem  2.1, F
°
 =H(X,)//im p i' i s  s i x -

connected and  by the recipe for f 1 , A  (s -  Q  ker f t )  will be four-connected. It
follows that E0 1-1*(X 2 )  is  four-conected, so  H*(X 2 )  is four-connected. It also
follows that since F ° is  a  subHopf algebra, all elements of degree less than 12 of
F ° a re  p rim itive . Further

3
-
F - 1 OE F - 1 F o F o 0 E - 1.

Hence all generators o f  A  ( s  
1 ' ° Q

 ker f r)  are primitive in degrees less than twelve.
•

Proposition 4.2. If  H*(X ) does not contain subHopf algebras of  type B , then
all fourteen-dimensional generators of H*(X 2 ) are primitive and in the sl(2) image
of primitive classes of  degrees less than twelve.

P ro o f . By Proposition 3.4 QH"(X i ) = 0, so Q(H"(X  011 im f i  = O. H e n c e
all fourteen-dimensional generators of H*(X 2 ) come from

(s - L° Q k e r  fr) . These elem ents i n  degree  1 4  c o m e  f ro m  15-dimensional
elements of H*(K 1) in  ker f f . S in c e  fic is a  m ap of Hopf algebras, it is easy to
check that Q ker f  is spanned by a  submodule of P11 15(K 1). We show, in fact,
that every 15-dimensional admissible of H*(K i ) lies in kernel f f  and in the d(2)
image of admissibles of degree less than 12.

Chart 5

A ll degree 15 admissibles of H*(K ,) kernel f *

Sq ." '  i4 S q 2 i 4 , 5 q 3 ' 1 i 4  =  5 q 2 . 2 i4  and  116 (X 1 ) = 0

5q 7 '3  i5S q 3  i  5 ; if 5q 2 w5 = x 7 , then Sq l x 7 = 0 by Theorem 2.1.

sq 6 , 1 i8 Sq4 '1 ig  =  Sq (SC14 i8) Sq2(5g3i8);

Sq4 i8 Eker,f *  because P H  2 (X  ,) = 0
by Theorem  2.1 since P H  2 (X  ,) = PH ' 2 (X)// im f*

Sq 2  is  eker f '',̀ since Sq 2 W8 E PH "(X )// im f* = O.

S q "  i 8 =  5q 2 (5q 4 . 1  i8)



Homotopy associative H-spaces 537

Sq 4 , 2 1 
1
8s q 4,2,1 i8 =  s q 4,2(sq  1 i8s q 4 i 5 )

This is for a  Hopf algebra of type 2  in  Chart 4.
Hence Sq 1 18 + Sq 4 i5 ek er

5q 5 .2 i8 5 q 2 i 8 e k e r p ,  see argument for Sq 6 •1 i8

Sq4 i8 e ker see argument for Sq 6 ' 1 i8

5q 6 . 2 i7S q 2 i 7 e k e r  f t  since (H*(X)// im f*) 9 0
by Theorem 2.1.

Remark 4.1. N o te  t h a t  i n  t h e  c a s e  o f  a  t y p e  B  subH opf algebra

7  [Y s ] ,r_42 4  0 (Sq2 ys ), H * (X  1 ) w o u ld  c o n t a in  a f a c t o r  o f  t h e  form
Ys

Z 2 [1v 8]  0  A  (14,9, 1V11 ) with Sq 2 ' 1 w , =  w „  a n d  hence, if Sq 4 w  —  0 , H*(X 2 )
would contain an element corresponding to s- 1 , 0 s q 4 , 2 , 1

 w8 in  degree 14 that may
not be  primitive. •

Proposition 4.3. If H*(X ) does not contain a subHopf algebra of  type B, then
all elem ents of  PH 2 2 (X 2 )  lie in the si/(2) image of' lower-dimensional primitives.

P ro o f . By Proposition 3.4 PH 2 2 (X 1 ) =  P(H 11 (X ) im  f*), Q H 22( x  1 ) =  O.
All 22-dimensional primitives of H*(X 2 ) are either generators or squares of

eleven-dimensional elements.
Consider F °  =  H*(X 1)//im f *  H * (X 2 ). W e have the following commuta-

tive diagram

0 0

P (M i l (Xi)) P(M 11(X 1)ilim fn

(4.1) PH22(X1) P(H22(X1)llimin

QH 2 2 (X 1 ) Q(1-122(X1)//imft)

0 0

with exact columns, and exact bottom  row.
Since QH 2 2 (X 1 )  =  0  b y  Proposition 3.4, it fo llow s that P H 2 2 (X 1)//im ft

= P (UI 1 1 (X Oil im f t ) .  B u t  H 1 1 (X  i m  f f  F °  i s  p rim itiv e  by  L em m a
4.1; hence all e lem ents o f  F °  c  H*(X 2 ) a re  in  th e  ,s1 (2 )  im a g e  o f  eleven-
dimensional primitives of H*(X 2 ). N ow  the following chart shows that all 22-
dimensional primitives that arise from  A  (s - "Qker f *) also lie in the d(2) image
of elements of degree less than 12 of H*(X 2 ). By Lemma 4.1, these elements are



538 Jam es P. L in and Frank  W illiam s

all primitive.
As in Chart 5, we show every admissible of H* (K 1) in  degree 23 lies in the

se/(2) image of some lower dimensional element of kernel ff.

Chart 6

All 2 3  dimensional admissibles Kernel f t
of H*(K i )

Sq"(Sq 5 '2 ' 1 1 4)

Sql1(Sq 5,2 
1

5 )

Sq " (Se '  i8)

Sq l ° (sq 4 '1 i8)

Sq 9 .4 .2 i8

Sq l " i 8

sq 11,4i 8

sq 8 ,4 ,2 ,1 i 8

5q5'2.1w4 lies in PH 12 (X 1) PH 12 (X)// im f  * = 0

by Theorem 2.1.

 

5q 5 .2 w5 EPH 1 2 (X  =  0

 

Sq 3 .1 w8  = Sq 2 Sq 2 w8 a n d  Sq 2 w8 P H " ) (X i ) = 0

by Theorem 2.1

 

5q 4 •1 w8 =  Sq (Sq 4 w8 ) +  Sq2 (5q 1592 ws)
Same argument as above.

 

Sq 2 w8  = 0

 

Sq 4 w8  = 0

 

Sq4 w8 = 0

 

5q 2 •1 w8  = 5q 2 (5q 1 w8  + 5q 4 w5 ). This is  for type 2
Hopf algebra of chart 4.
Sq 1 w8 =  5q 4 w5

 

sq 10,4,2i 7 Sq 2  f t(i 7 ) = 0  since by Theorem 2.1
PH 9 (X) =  S e 2 PH 3 (X)

5q 1 1 i5 i7 S e f t ( i 7 )  =  5 q 4 5q 1 f t ( i 7 ) + 5 q 2 i1 (Sq 2  f t( i 7 ))
Sq l  f t( i 7 ) = 0  =  Sq 2  f t( i 7 )  by Theorem 2.1.

Remark 4 .2 .  If H*(X) contained a  Hopf algebra of type B and Sq8 '4 w  =
then  PH 2 2 (X 2)  would contain a n  element corresponding to s -  ,1 Osq 8,4,2,1i 8 i n

degree 22. If Sq4  w =  0 and if s
-1,0 s q 4,2,1 .8 is not primitive in H 1 4 (X 2 ) then

this 22-dimensional primitive would not be in the image of Steenrod operations
applied to lower dimenional primitives.

§ 5 .  Application

We now can prove Theorems A  and  B of the Introduction.

Proof of Theorem A .  Let X  be a homotopy associative H-space and suppose
X  is mod 2 equivalent to Y x S7 . Suppose H *(X ) does not contain any saf(2)
subHopf algebras of the form

Z 2  

b)
4] .( S q  2  y ), d e g  y  =  3 .

Y

If  h' : S7 K (Z ,  7 )  is  the  integral class o f  H 7 (S7 )  then there  is a commutative
diagram
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QE 2

f2E 1K ( Z 2 ,  15, 16, 11,14)
k1

h 1 

X S7 K(Z, 7) K(Z2, 9, 11)
h' ko

By Theorem 2.1, X  is 2-connected. Therefore h' n is an a 3 -map, and Dh ir factors
through K(Z 2 , 8, 10).

Again by Theorem 2.1, any element of H i (X  A  X ) for 1 = 8, 10 has factors
that lie in the d(2) subHopf algebra generated by H 3 (X ) .  Therefore, if X 1 is  the
3-connective cover of X , then

Wi n!), is  an H -m ap.

Similarly, a3 (h'i np 1 ) factors through K(Z 2 , 7, 9). S in c e  X 1 is 3-connected it
follows that

(5.2) h'inp is  a n  a 3 -map.

This implies if h'2 =  h'2 7r p 1 , then Die; factors through
K(Z 2 , 14, 15, 10, 13). E xam ining C hart 2 o f  ch ap ter  3 , o n e  checked that
111(X  X 1 ), 1 = 14, 15, 10, 13, involves the elements w4 , w 5 , w9 except possibly in
the case of I/ 1 4 (X  A  X 1 ) which could involve (h'i np i )*(i 7 ) or a seven-dimensional
class in H*(X)//im f * .  Note H*(X)//im f *  is six-connected by Theorem 2.1.

Case 1. I f  [D h ] E A  X 1 ) does not contain (h'i np 1 )*(i 7 ) (j) (h'i np l )*(i 7 ), then
by killing off w4 , w 5 , w 9 and possibly elements of 11 7 (X)//im f  * we obtain an H-
map h 2 = W2nP1P2

h2
X 2  - >  S L C i .

Case 2. I f  [D h ]  has (h7rp 1 )*(i 7 ) (h'i np 1 )*(i 7 ) as a summand, then by changing
the k-invariant (Bk1)* (i16) = 17o,3 + i w h ere  i 8 i s  the lifting of the fundamental
class, then this changes the H-structure of QE 2  s o  t h a t  [D h ]  does not have
(h'i np i )*(i 7 ) ( h ' i np 1 )*(i 7 )  a s  a  summand. (See the remark before Proposition
1.4.)

In either case the map

(5.3) X2 QE, is an H -m ap.

Now a 3 (h2 )  factors through K(Z 2 , 13, 14, 9, 12). B y L em m a 4.1 , H*(X 2 )  is
four-connected so

X 2

I P2
(5.1) X i

! p i

(5.4) h2 is a n  a 3 -map.
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B y  T h e o re m  1 .5 , th e re  is  a n  elem ent h(v )e PH 2 2 (X 2 ) w ith  a3 (14(v))
= z 1 0 z 0 z 0 0  where z =h*(i 7 ), h  = h 'np 1 p2 . B ut b y  Proposition 4.3, h(v)
= E l i ;  where z, E PH*(X 2 ) have degree less than 22 and a i e s?;/(2). T h i s  implies

z Q z ® z e I a i a3 (zi).

But X2 has the homotopy type of Y2 x S 7  for some space Y2, so z z z  is not
in  th e  im a g e  o f  S te e n r o d  ope ra tions. F u rthe r z z z  im a g e  A C) 1
— 1 A .  W e conclude X  cou ld  no t have been a homotopy associative H-
sp a c e . This proves Theorem A.

Proof of Theorem B .  We construct X2 in the same manner as before. There
are maps

X2 QE2 X QE2 X S2E2

1P 2

hxhx '
X , Q E , x  Q E , x  O E ,

P1

X (S K(Z, 7, 7, 7)
Itk o

If h, = (h', x  h', x h',)np, and Dh i  involves s is i  where s i , s i  are 7-dimensional
spherical classes, then by changing the H-structure of f2E 2 x QE 2 x  f2E2 , we still
can make h 2 = (h'2 x h'2 x  h'2 )7rp1 p2 an  H -m ap , and  therefore an a 3 -map.

Now there exist elements hI(v i), i = 1, 2, 3 with

a 3 (111 (v i )) = s C) s i 0  s im o d  i m  A (I) 1 — 1 A.

Since dim Sq l [11 5 (Y) n ker S e ] < 1 , there exists at most one subHopf algebra of
type B  in H*(X).

Therefore H*(X 2 ) contains at most one nonprimitive generator w 1 4 , and one
primitive 22-dimensional generator not in  the  d(2) im age of lower dimensional
prim itives. The analysis due  to Goncalves [2, p. 19] shows th a t if V is  the 3-
dimensional vector space spanned by si (1) si ®  s i ,  i = 1, 2, 3, then

im  21_ 1 1A h a s  dimension at least two.

It follow s that there m ust be at least two linearly independent 22-dimensional
primitives with nonzero a 3 -invariant. This is a contradiction, and completes the
proof of Theorem B. •

Theorem 5.1. L et X  be a f inite H-space w ith rational generators in degrees

{3, 3, 3, 7, 7, 7, 11, 11, 15, 15, 19, 23, 23, 27}.

T hen X  has the sam e rational type as G x  S 7  w here G  is either Spin(15) x Sp(2)
X F 4  or S p(7) x Sp(2) x F 4 . I n  either case, if  X  is mod 2 equivalent to G x 57,

V
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then X  cannot be homotopy associative

P ro o f .  I n  t h e  process o f  taking connective covers, t h e  only possibility of
creating 14- a n d  22- dimensional generators occurs in  t h e  connective cover of
F 4 . B u t  Goncalves [2] show s that in  the  3-connective cover of F 4 , S ew

1 1  =  x 1 5 ,

so  n o  14-dimensional o r  22-dimensional generators a re  created.
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