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An algebraic cycle relating to a section

with high penetration

By

Takeshi Usa

§0. Introduction

Let X be a complex projective manifold of dimension n, E a holomorphic
vector bundle ( = locally free sheaf) of rank r over X, and h a hyperplane class in
the Chow ring A" (X) of X. Consider the Lefschetz operator L: H'(X, Q%(E))
- H'""Y(X, Q%" (E)) defined by the Hodge-Kihler class we H'(X, Q%) corre-
sponding to the hyperplane class h.

In the case where E = 0y, there is a well-known theorem on the Lefschetz
operator as follows.

Hard Lefschetz theorem. Under the circumstances, the map: L*: H'(X, Q%)
— H'" X, Q%% is bijective for non-negative integers s, t and k with k =n —s — t.

For an arbitrary holomorphic vector bundle E, the bijectivity or even the
injectivity of the map L*: H'(X, Q%(E)) - H'**(X, Q5T*(E)) does not hold in
general.

From the viewpoint of differential geometry, this can be understood as an
effect of the “curvature” of E endowed with a Hermitian metric H, because the

equality [Og, L] =,/ — 160 holds for the Laplacian O and the curvature
operator @ induced by the Hermitian metric H. Moreover, if E admits a flat
Hermitian structure, we can show that the bijectivity of the map L* holds (cf. [C-
L]).

On the other hand, from the viewpoint of algebraic geometry, it is desirable to
understand the degeneracy of the map L* in the general case without using the
terms “metric” or “curvature”. Thus we are interested in the following problem,
which is important also in our investigation on the relationship between
arithmetically normal embeddings and their normal bundles (cf. [U]).

(0.0) Problem. Generalize the Hard Lefschetz theorem to the case of
cohomologies with coefficients in a vector bundle, and describe the kernel and the
cokernel of the map L?: H*(X, Q%(E)) > H*4(X, Q% UE)) (s, t, geNU{0}) in
terms of some suitable algebraic objects such as algebraic cycles.
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In the s = t = 0 case, which is the most important case for our application, we
can obtain a result by which we have good information on Ker (L?: H*(X, Q%(E))
— H* (X, Q% 9(E))). Our result is stated as follows.

Take a non-negative integer p and a global section te H°(X, E) which is
transversal to the zero section. Then the zero locus Z(t) of the section t defines a
(n — r)-cycle Z, which represents the r-th Chern class c,(E)e A"(X). Assume that
the order of penetration of the section t with respect to the hyperplane class h is
greater than or equal to p (namely, the cohomology class LP(1)
=t ® w’eHP(X, Q%(E)) is not zero, or equivalently t¢Ker(L”: H(X, E)
- HP(X, Q%(E))).

(0.1) Theorem. In addition to the assumption above, we assume the following.
Assumption (+): the numerical equivalence on AP(X) coincides with its Q-
homological equivalence (cf. (0.2) Remark (ii)).

Then, there exists an algebraic p-cycle {€ A" P(X) such that h?-{ >0 and the
intersection cycle Z-{e A" P*"(X) is numerically equivalent to zero.

In a sense, this theorem suggests that a section with high penetration, namely,
a section which can be mapped to a non-zero element of a higher cohomology
group by some power of the Lefschetz operator has many directions where the
section is nearly “flat” in E (cf. Remark (3.1) in §3).

(0.2) Remark. (i) In the case where r > p, the assertion above is
affirmative for { to be h"~%.

(ii) Relating to the assumption (+), we shall enumerate several known facts
in the sequel. The assumption (+) is verified for complete intersections,
Grassmannians and abelian varieties (cf. [L], [Gd]). By using the Hodge-
Riemann bilinear relation, it is easily proved that the following assumption (+ +)
implies the assumption (+) (cf. [F] Example 19.3.14).

Assumption (+ +): the Q-vector space H*"~?P(X, Q)nH"~P"~?(X) is generated by
the classes of algebraic p-cycles.

If p=0,1,n—1,n then the assumption (+) and (+ +) are always
satisfied. Also in the p = 2 case, the assumption (+) is verified (cf. [L]). As is
well-known, it was conjectured by W.V.D.Hodge that the assumption (+ +) is
affirmative for every complex projective manifold.

(ili) The existence of an algebraic p-cycle { as in Theorem (0.1) does not
always imply that LP(t) # O (cf. for example Remark (3.1) (i)).

§1. Non-vanishing lemma

(1.1) Lemma. Let X, E, h, o, and p be the same as above. Take a global
section t of E with which is transversal to the zero section (i.e. Z(1) is smooth and of
pure codimension r). Assume that the cohomology class © Q) wPe HP(X, Q%(E)) is
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not zero. Consider the cycle map cl: A" (X)—> H* (X, Q) and the pull-back
j*:H (X, Q)— H (U, Q) induced by the inclusion map j: U: = X — Z(1) = X.
Then, the cohomology class j*cl(h?)e H?P(U, Q) does not vanish.

Proof. Let us consider the projective bundle f: B = P(E) —» X. The section
7 canonically defines an effective divisor D of B. For every point y of Z(z), D
includes the whole fibre f~'(y). Hence, we obtain a commutative diagram of
morphisms:

Jo
B=P(E) «—> Vi=B—D

fl l fo=1lv

X «—— U=X-Z(@).
J

Thus, we have only to show that j¥ f*cl(h?) (= f&j*cl(h?))e H*?(V, C) is a non-
zero class.

Now we shall prove that the effective divisor D has no singularity. For each
point of the open set U, the section t can be taken as a part of a local frame of E
on a suitable neighborhood of the point, which implies that D has no sigularity on
the open set f “!(U). Hence it is enough to see that D is smooth at each point of
f~YZ(1))n D in the case where r < n. Taking a point x of f ~*(Z(1))n D, we put y
to be f(x). Because our problem is local, we may assume the five condition: (a) X

has a system of coordinates (z,,..., z,); (b) Ex= @ Oye,; (c) 1= fie; + -+ f,e,
a=1
(f.el(X, 0x); d) (z4,..., 2,5 [Z1:,...,: 5]) is a system of coordinates of

P (E) = X x P"~! which corresponds to the system of coordinates of X and the

frame (e;,...,e,); () E.(x)#0. Since f,=,..., =f,=0 gives a system of
defining equations for Z(z), the assumption that the section 7 is transversal to the

zero section means

(1.1.1) rank (0f,/0z,(y)) =r.
Let us denote the local fibre coordinates (Z,/%,,..., 5,_,/5,) of the open set

D (&) by (&4, ..., &), where we put s to be r — 1. Then the local equation 1, of D
on the open set D,(Z,) is given by 7, = f,&, + --- + f, &, + f,, and therefore

(1.1.2) (01282, (x), ..., OT,/0z,(x), DT, JOE,(x), ..., Ot /OE (X))

= (o 8 @0 e L)),

where we set £.(x) = 1 for the sake of convenience, | <b<n,and 1 <c<s. If
the right-hand side of (1.1.2) is equal to (0, ..., 0), then the condition (1.1.1) implies
(&%), ..., &(x), £(x)) =(O,..., 0) by the usual argument of linear algebra, which
contradicts £,(x) = 1. Thus we see the effective divisor D is smooth at the point x.

Then, Deligne’s mixed Hodge theory (cf. [D] Corollaire (3.2.13)) tells us that
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the spectral sequence:
Ey* = H¥(B, Q}(log D)) = H'**(V, C)

degenerates in E;-level. The inclusion maps p-: Q3 —» Q5 (log D) give rise to a
homomorphism of sheaves of complex, which induces a homomorphism of spectral
sequences for stupid filtrations:

EY* = H'(B, Q%) = H'*%(B, O)
Ey5(p-) l l J5=E o)

E}* = H%B, Qj(log D)) = H'**(V, C).

Since Hodge spectral sequence on B also degenerates in E,-level, it is enough to
see that the class E2P(p’)(f*(w?)) corresponding to Gr?(j§f*cl(h?)) is not
zero. Using Le Potier’s isomorphism (cf. [S-S] Theorem (5.16)):

a: H(B, Q5 @ Op(1)) ~ H(X, Q%(E))

(where Op (1) denotes the tautological line bundle of P(E)), we get a commutative
diagram:

H?(X, Q%(E)) ~ ~ H"(B, 2} & Opgy(1) )~H"(B Q%(D))
o o] ]

H?(X, Q%) - HP(B, Q%) e HP(B, 2% (logD))
where the isomorphism f and the map y are induced by the canonical
isomorphism: Q§ & Op (1) ~ 24(D) and the inclusion map: Q§(logD) = Q{(D)
respectively. Then, the assumption that the class 1 & w”e H?(X, Q%(E)) does not
vanish obviously implies that the class E{?(p*)(f*(w?))e H?(B, 2%(logD)) is not
Zero.

§2. Proof of Theorem (0.1)

Since Z(t) is smooth, Z(r) has a tubular neighborhood T in X. By using
Thom’s isomorphism theorem and the excision theorem, we see that
H??~2(Z(1), Q) ~ H*/(T, T — Z(1); Q) ~ H*(X, U; Q). Hence we obtain an
exact sequence:

(*)  H» ¥(Z(1). Q) >H™(X.Q) > H¥(U, Q)

where i, denotes the Gysin map induced by the inclusion map i: Z(r) = X. On
the other hand, by virtue of Lemma (1.1), the assumption of LP(t) # O implies that
the class j*cl(h?)e H2P(U, Q) is not zero. Then, no element of the image of the
push-forward map i,: A?7"(Z(1)) ® Q = AP(X) ® Q is numericaly equivalent to
the cycle i e AP(X) ® Q. In fact, if there exists a (n — p)-cycle Ae AP ""(Z(1)) ® Q
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such that the cycle h? is numerically equivalent to the cycle i A, then our
assumption (+) implies that c/(h”) = i,cl(A). Hence, the exact sequence (*) shows
us that j*ci(h?) = 0, which contradicts the fact obtained above. Now we take a
quotient group N'(X) of A(X)®&® Q by the numerical equivalence. Then, the
intersection product induces a perfect pairing N?(X) @ N" " ?(X)—- Q of finite
dimensional Q-vector spaces. Hence we can find a p-cycle {€ A" ~P(X) such that
h?-{>0 and i A-{ =0 for every (n — p)-cycle Ae A?""(Z(1)) on Z(r). Through
the projection formula, we see that i*{e A"~ ?(Z(7)) is numerically equivalent to
zero, which means that Z-{ =i i*{€ A" P*"(X) is numerically equivalent to zero.

§3. Several remarks

In connection with “the order of penetration”, we shall make three more
remarks under the circumstances of §0. For further information, we refer to [U].

(3.1) Remark. (i) It is easy to see that L'(t)# 0 is equivalent to the
splitting of the exact sequence: 0 — Oy — E — E/t0yx — 0, which implies Z(t)
= ¢. In the p = n case, Theorem (0.1) implies the latter fact Z(t) = ¢, because we
can take the fundamental cycle [X]e A%(X) as the cycle { in Theorem (0.1). Then
the section 1 gives a trivial subbundle of E. This can be understood that the
section t is nearly “flat” in E at each point of X in all directions. Moreover, if
(E, H) is a Hermitian holomorphic vector bundle, L"(r) # 0 really implies the
“flatness” (on the cohomology level) of the subbundle S = 10y in (E, H) in the
following sense. Let Ae&!"°(Hom(S, Q)) be the second fundamental form of the
subbundle S in (E, H) and Be&%!(Hom(Q, S)) the adjoint of — A, where Q
denotes the quotient bundle E/t(0y of E. Then B satisfies the equation 6B = 0 in
&%2(Hom (Q, S)) and defines a cohomology class [B]e H!(X, Hom(Q, S)), which
coincides with the extension class of the exact sequence 0 > S—>E—->Q—0
(cf. [Gf]). Hence L'(t) # 0 implies [B] = 0. Since the second fundamental form
A or B= — A* expresses the degree or twisting of the subbundle S in (E, H), we
may say that [B] =0 means the “flatness” of the subbundle S in (E, H) (on the
cohomology level).

(i) The condition LP(t) # O follows if there exists a subvariety Y of dimension
p in X such that the restriction of the exact sequence: 0 » Oy — E - E/t0y — 0

to Ysplits. In this case, we can take the fundamental cycle [Y]e A" P(X) as the
cycle { in Theorem (0.1). Then we may say that the section 7 is nearly “flat” at
each point of Y in the directions of the tangents of Y.

(iii) Even in the situation of Theorem (0.1), LP(t) # 0 does not imply the
existence of an irreducible p-cycle { in general. Hence, the converse of (ii) is not
always affirmative (cf. [U]).
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