J. Math. Kyoto Univ. JMKYAZ)
31-1 (1991) 165-170

Homology of the Kac-Moody groups II
Dedicated to Professor Shord Araki on his 60th birthday

By

Akira KoNo and Kazumoto KoziMA

§1. Introduction

Let G be a compact, connected, simply connected, simple Lie group and g its
Lie algebra. Let X{n) be the n-connected cover of the space X. Since n5(G) > Z
is the first non-trivial homotopy, there is an S!-fibration

ST - Q2G> — QG.

(Notice that sometimes one likes to write QG<3) = 2(G{3)) instead of our
QG2) = (2G){2).) The homotopy type of the Kac-Moody group K(g'V) is
2G{2) x G. (See [10] and [11].) Since the homology of G is known and
H,(2G(2); Z) is finitely generated, we have only to determine H,(Q2G{2); Z,)
for all prime p to determine H,(R(g""); Z).

The homology of G has non trivial p-torsions if and only if (G, p) is one of the
following:

(Spin(n), 2) n > 17, (Eg, 2), (Es, 3)
(E7’ 2)’ (E7’ 3)? (ES’ 2)’ (ES’ 3)’ (ES’ 5)’
(F4, 2), (Fy4, 3) and (G,, 2).

In [14], we computed H,(2G{2); Z,) for such (G, p) except (Spin(n), 2) and
(Es 2).

The purpose of this paper is to determine it for the groups whose homology
has no p-torsion. The major problem in the above case is that it is very difficult
to compute the Gysin sequence of Z,-coefficients directly. To avoid this
problem, we consider the Bockstein spectral sequence of the Gysin sequence. By
using the Serre spectral sequence associated with QG{2> - QG —» CP*®, we can
prove that the first non trivial p-torsion of H,(2G(2); Z,) is order p for all G.
(See Theorem 3.1.) This fact becomes the “seed” of our computation of the above
Bockstein spectral sequence and also gives the result for (Eg4, 2).

We define Z,-modules C(d, p) and L(G, p) in §3. Then the main result is
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Theorem 3.2. If H (G; Z,) has no p-torsion, then
H,(Q2G<2); Z,) = C(d(G, p) — 1, p) ® ¢, (G, p)

as a Z,-module.

§2. Bockstein spectral sequence

Let (C= ®;0Cj, 0) be a differential graded commutative algebra over
Z,, (or Z) where C; is free, 0C; = C;_, and 0 is derivative: d(x-y) = (0x)-y +
(— 1)*!x-9y. Let put D= H(C) and E = H(C® Z/p). Then we have an exact
couple

where i = X p, j is the mod p reduction p and k is the connected homomorphism d
associated with the short exact sequence

25 Z/p — 0.

xp
0 Z(p) ? Z(p)

The derived couple of this exact couple is

Dr_ir_)Dr

N
E,

where E, = k~'(Im i"/j(Ker i"), D, = Im i", i, = i| D,, k, is the map induced from k
naturally and j, =j°(i")”'. Let us introduce some notation. For aeKer d, we
denote its class in H(C) as [a]. If daep-C, we write (a) for the class of a in
H(C® Z/p). For aek™'(Imi") = H(C® Z/p), we denote the corresponding
element in E,-term as {a},.

Lemma 2.1. Let ack™'(Im i"). Then there exists be H{C & Z/p) satisfying
dr({a}r) = {b} and dr+ 1({ap}r+1) = {b'ap_l}r+1

Proof. From the assumption, we can take an element beH,,_,(C) so as to
satisfy da = i'b. Let x€ C,, (respectively ye C,,_,) be a representaive element of a

0 .
(respectively b). Since da = [?le there is ue C,, satisfying

0x
—=p-y+0u
p

in C,,_,. Using the fact that C,,_, and C,, are free, we obtain an equation
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1 r
—0(x—p-u)y=py.
P

So d(x — p-u)ep-Cy,_y and {x — p-u) = {(x) =a. We put b =<y). Then we
have

dr({a}r) = jro kr({a}r) =jr(pr' y) = {b}r .

Since d, is derivative, d,(a?) = 0 and
ky+1(a?) = d(a”) = [;_)'50‘ - p-u)p] =[0(x —p-uw-(x—p-uw']=

[pr*ty-(x—p-upf ']

Since j,+ [p"* 1y (x —p-up = {y-(x —p-wp D}y = {b-a"" '}y, We ob-
tain d,,,({a"},+1) = {b‘ap_l}rﬂ-

§3. Proof of Theorem

Let G be a compact Lie group as in §1 and G{3) be the 3-connected cover of
G. For a graded module 4 = @ A; of finite type over F, we define P(A4, q)
=Y (dim A)g;. Let m(l)=1< m(2) < --- <m(l) be the exponent of the Weyl
group of G. Let te H*(QG; F,) be a generator. Since G is compact and
H*(QG: F,) is a Hopf algebra, there exists an integer d(G, p) satisfying

(PP =1 20 and P = 0.
Now let us recall the result of Kono [13].

Theorem A (Kono [13], Theorem 2.). If H,(G; Z,) has no p-torsion, then
d(G, p) is given by the following
(1) For the classical groups,
r(n, p) if G=SU(n),
r(2n, p) if G = Spin(2n + 1), Spin(2n) or Sp(n)
d(G, p) =
and p is an odd prime,
1 if G=Spn) and p =2,

where p"™P "1 < n < pP),

(2) For the exceptional groups, d(G, p) is given by the following table:

G G, Fa, Eg E, Eg

p S| #5| <t |>1|5<p<17|>17|7<p<29|>29

dG,p) 2| 1 2 1 2 1 2 1
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Theorem B (Kono [13], Theorem 1.)
P(H*(QG{2); F,). 9) = P(A(G, p), q)-(1 + q>*@P~1)

where A(G, p) is a graded algebra satisfying
!
P(A(G. p). @)™" = ([ (1 = ¢>")-(1 = g©)

=
and a(G, p) = p*C»,
Since the fibration
RG22 — QG — CP*
is a Hopf fibration, the Z,-homology Serre spectral sequence of this fibration is

the Hopf algebra spectral sequence. The homology of CP® is the devided
polynomial algebra, so

H (CP®; Z,) = Z,)le,., e5...., ¢ - 1/(€} = p-ej,y, j > 0)

where deg e; =2p~'. Since H,(QG: Z,) is zero at the odd dimensions and
H,, 1(2G{(2); Z,) is zero for n<a(G,p), ¢;®1 is a permanent cycle for
j<d(G, p) and ey )+, is transgressive to the generator b of

Hu6.p)- 1(2G(2); Z(p))

which is the cyclic group Z/p* where a« > 0 by Theorem B. Since ef; ,, is clearly
transgressive to zero, p-b which is the transgressive image of ey ,+1 = €ic.p 18
zero. Thus we have

Theorem 3.1. H,,_,(2G{2): Z,) is zero for n < a(G, p) and
Hiuep-1(RG<2); Z,)) = Z]p.

The homology Gysin sequence associated with an S!-fibration S’
- QG{2> 25 QG is split to the following exact sequence:

0 — H,,(RG2); Z,)) - H,,(QG: Z,,) %

p)

H,,_,(2G; Z,) — H,,_,(2G(2); Z,) — 0.

Let Cy, = Hy,(R2G: Z;), Cypoy = H3,-2(QG; Z,))® s and Ja®1)=x(®)®s,
a®s)=0. Then H(RG{2); Z,) = H{(C, 0) for all i. By Theorem 3.1, there is
a generator be Hy,g. )-1(R2G{2)>; F,) and there exists a€H,,,)(2G<2); F))
satisfying d,({a},) = {b},. First recall that P, = the image of

Qi,: H(2G(2): F,) — H,(QG; F,)

is a polynomial algebra, since it is a Hopf subalgebra of a polynomial
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algebra. H,(2G{2); F,) is isomorphic to the tensor product of P, and
A(b). Hence for all (G, p) # (Sp(n), 2), (G,, 5), the E;-term of the Bockstein
spectral sequence is generated by elements of degree not greater than 2a(G, p) by
dimensional reasons. Consider the fibration

QSp(n — 1){2> — QSp(n)(2) — QS*" 1.

The spectral sequence of the above fibration collapses since the Poincaré series of
H, (2Sp(n)<2); F,) is equal to the product of those of H,(2S*~!;F,) and
H, (2Sp(n — 1)<{2>; F,). Therefore we can assume that d,(a) = b and d,(other
generators of deg < 4n —2)=0 for r > 1. If d, is non zero on the generator of
deg = 4n — 2, the rank of the rational homology of 2Sp(n){2) fails to match with
the rank of Q[s¢, S10,...» San_2] (deg s; = i) at deg = 4n — 2. Thus the generators
except a are permanent cycles in the Bockstein spectral sequence. (The case (G, p)
= (G,, 5) is clear by dimensional reasons.) Therefore by using (2.1) inductively, we
obtain the equation

d({a"""}) = {b-a”""" "1},
for all r > 1. Define a graded Z,-module C(d, p) by

Z, if j=0
Cd, p;=3 Z/p* ifj+1=2p"k (k,p)=1and r=d,

0 otherwize.

We also define a graded free Z,-module L(G, p) so as to satisfy
]
P(L(G, p), q)"" = ﬂz(l —gq*")
i=
Now the Bockstein spectral sequence and Theorem A, B give the proof of the
followng theorem.
Theorem 3.2. If H,(G; Z,) has no p-torsion, then
H,(QG(2); Z,,) = C(d(G. p) — 1. p) @z, LUG. p)

as a Z ,-module.

(p)

Example. (1) For G = SU(2), L(G. p) = Z,, and d(G, p) = 1 for all p. Then
H (QSU(2)<2); Z,) = C(0, p) which is the result of Serre [18].
(2) For G = SUQ), m(2) =2 and (G, p) = Z,[s] where deg s = 4. In the case
p =2, d(G,2)=2. Therefore

H, (QSUB)(2); Z) = C(1, 2) @z, Z 3 [5]-
If p is an odd prime, then d(G, p) =1 and
H, (QSUB)2); Z,)) = C(0, p) ® 2, Z[5]-
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Remark. As an application of (3.1), we can determine H, (QE.(2); Z,)).

Since  H,(QEe<2); Z/2) = A(y31) ® 22Z/2[hsg, 1o, hy4, hi6s ha2, ¥32] where
A( ) is the exterior algebra over Z/2 and all subscripts designate the degrees of the
elements (See [14].), one can deduce that y,, is Sg, image by (3.1). Then the
argument in [14] works well and we have

H,(QEe2); Z;) = C(3,2) ®z(2, Z3)[585 510, S1as S165 S22]

as the Z,-module where deg s; = .
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