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On the homotopy group =g, ., ,(Sp(n))
and the Hopf Invariant

By

Kaoru MORISUGI

The purpose of this note is to study the homotopy groups of U(n) and Sp(n) of the
first dimension over the meta-stable range. Our method is to use the classical
EH P-sequence.

§0. Notations

F = C (the complex number) or H(the quarternion).
n: a fixed positive integer.

OF = Y CPZ (The stunted complex projective spaces) if F = C,
" 1Q%, (The stunted quaternionic quasi-projective space) if F= H.

d = dimgF.
_fum ifF=c
GFn) = {Sp(n) if F=H.

This paper is organized as follows: In §1 we prepare the required
preliminaries. In §2 we state our results. In §3 we collect necessary lemmas for
the proofs of the results in §2. §4 is devoted to the proofs of lemmas in §3. In
§ 5 we give the proofs of our results. §6 consists of the corrections of my previous
paper [M1] about the meta-stable homotopy groups of Sp(n). In §7 (Appendix)
we give a necessary condition for the existence of the Hopf invariant one map.

§1. Preliminaries

Since QF is d(n + 1) — 2 connected, by the suspension theorem, the suspension
E: n,(QF) — m(QF) is isomorphic for k < 2d(n + 1) — 4 and onto for k = 2d(n + 1)
— 3. For n,(GF(n)), the range dn +d — 2 < k < 2d(n + 1) — 5 is called the meta-
stable range. In this note we shall investigate the homotophy group
Tam+1)-4(GF(n)). As is known, QF is a subcomplex of GF(c0)/GF(n) and the pair
(GF(0c0)/GF(n), QF) is 2dn + 3d — 3 connected [J]. Recall that
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H*(QF; Z) = Z{a, 1, 0y 43, %13, -}, Where dimo; = dj — 1.

Let i: $“"*V~1 » OF be a generator of myy,4,,-(QF) = Z. H, stands for the
mod 2 reduction of the Hopf invariant,

H: yum+1)-1(20QF) — yyws 1)~ 1 (ZQF A QF) = Z.
The following theorem is the starting point of our investigation.
Theorem 1.1 (Oshima [O1]). If n+1#2, then H 5y (Ta4m+1y- 1 (ZQF))
= 0. Therefore, using EHP-sequence, there exists a short exact sequence;

(1.1) 0—2/2 4 7T24(n+1)—3(QF) -+ nsld(n+l)—3(QF) — 0,

where A(1) = [i, i], the Whitehead product, and E is the suspension.
The following proposition is well known.

Proposition 1.2.
(1) There exists a short exact sequence;

0— Z — m4,4,(U/U(n) % m,,(U(n)) — 0.
(2) There is an isomorphism[M 2];
Tgn+4(Sp(n)) = Z/2 @ mg, 4 5(Sp/Sp(n)).

In the above proposition, from (1), in order to determine the group 7,,(U(n)),
we have to solve the unstable James number problem and a group extension
problem (See, for example [CK]). However fortunately in the quaternionic case,
Tign+4(Sp(n)) has no relation with James numbers.

§2. Statement of results
Theorem 2.1. If n+ 1+# 2, then the sequence (1.1) splits, that is,
Taam+1)-3(QF) = Z/2 D T4+ 1) - 3(QF).

Now recall that my,.,,-,(GF(n)) is a finite cyclic group. We denote its
generator by o,. Let {o,, g,> be the Samelson product of ¢, and itself. Then we
have the following theorem;

Theorem 22. Let n=1 and n+ 1 #2'. Then the element (o, 0,> in
Tyam+1)-4(GF(n)) gives a direct summand of order 2.

From the above theorem we easily get the following corollary.
Corollary 23. Let n=1 and n+ 1 #2'. Then,
Tgn+4(Sp(n) = Z/2 D Z/2 D 74 5(Q0% 1)

Here the first Z/2 summand is generated by pg,., on S* = Sp(1) and the second is
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generated (cf.[O1]) by the Samelson product <o, 0,> of the generator
0, € M4 2(Sp(n)) wheih is a cyclic group of order a(n)-(2n + 1)!, where a(k) =1 or 2
according as k is even or odd.

As an application of Corollary 2.3, we have Mimura-Toda’s result[MT],
,T20(SP2) = Z/2 D Z/2 @ Z/2, because ,15,(QF) = Z/2 [M3], where ,m,(—) or
,75(—) stands for its 2-primary component.

If there is an element of Hopf invariant one in 7,44, +)-1(ZQF), then from the
EHP-sequence it is obvious that 7,44+ 1y-3(QF) = 73414 1)~ 3(QF). The following
theorem gives a non-trivial example, which does not seem to follow from the well-
known solution of Hopf invariant problem on spheres.

Theorem 2.4. There exists an elemet feny,(2QY) such that H(f) = 1. Since
250(QF) = Z/2, therefore,

2M2(Sp(3) = Z/2 D Z/2.

From Theorem 2.4 we get the result of Hubbuck-Oshima [HO] which states
that there exists a map femny,;(XCP%) with H(f) = 1.

§3. Lemmas for the proof of Theorem 2.1

Let M* be the mod 2 Moore space, that is, M* = S*"1u,e*. The folloiwng
Lemma is a slight generalization of F. Cohen’s observation (Proposition 11.4 in

[C])

Lemma 3.1. Let X be a 2m-connected complex. Assume that
Tome1(X) = Z/2 or Z. Let i: S*™*' - X be a generator of myp . (X). Suppose
that H,, is trivial on Ty, 3(ZX). Under these assumptions, [i, i] = 2x for some
XEM4m+1(X) if and only if there exists a map f: M*™** - XX such that H(f) # 0.

The followng lemma is easily verified.
Lemma 32. In H*QF; Z/2) = Z/2{tty+ 1 %us2s""}»
. m
Sq Uy = k/d Um+rja+1 OF O,

according as k =0 mod d or not, where Sq* is the Steenrod squaring operation.

Let I be the following two-sided ideal of the mod 2 Steenrod algebra A4;

1,={>Ak)Sq'A(q — k — )|k 2 d, | £0 mod d},

where A(i) stands for an element of 4 of homogeneous dimension i.

Lemma 33. Let n+1=2""m+2m=1 and s 20). Then,
s—1 X i
Sqnt Vi = $q74Sq> T 4y, Sq* Ad(n + 1 - 2)) mod Iy
=0

Lemma 34. Let n+1=2*"'"m+2° m=1 and s=0). Then for any
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fG[MZd("+1)_1, ZQF],
5q%(Bans2-2) =0 for 0<i <5, in HX(Cy; Z)2),

where C is the mapping cone of f and B,. ;€ H*"*)(C,; Z/2) is the corresponding
element to Zu,. ;€ H*"*)(XQF; Z/2) under the obvious isomorphism for 1 <j<n
+ 1

Lemma 35. If n+ 1 #2', then for any fe[M**"*V=1 FOF],
Sq"* V4B, 1) =0 in H*(Cy; Z/2).

§4. Proof of lemmas

Proof of Lemma 3.1. First, note that (Zi A i), : upy3(S**3)
= M4m+3(ZX A X) is epimorphic. So from the naturality of the EHP-sequence
and from the assumption, it follows that the image of P:m,,,;(ZX A X)
— M4m+1(X) is isomorphic to Z/2 generated by [i, i]. Let

S4m+1—2—?S4m+1‘L-)M4M+2 q S4m+2

be the usual cofiber sequence. If [i, i] = 2x for some xemn,,+,(X), then there
exists a map f:M*"*25QFX such that E(x)=fcj. We assert that
H(f) #0. Suppose that H(f) = 0. Then there exists a map g: M*"*2 - X such
that E(g) = f. Since E(x — gej) = foj — foj =0, from the EHP-sequence, we see
that x — goj belongs to the image of P. Therefore, x — geoj = k[i, i] for some
integer k. Since [i, i] is of order 2, it follows that [i, i] = 2x = 2x — 2(g°})
= 2k[i,i] =0. This is clearly a contradiction. Now suppose that there exists a
map f: M*"*2 5 QXX such that H(f) #0. By the suspension theorem, there
exists a map g: S*"*! - X such that E(g) = foj. Since E(2g) = 0, we see that 2g
= k[i, i] for some integer k. We assert that 2g #0. Suppose 2g =0. Then
there exists a map h: M*"*2 - X such that g =hej. Since (f— E(h))°j =0,
there is a map h:S8*"*2 -5 QXX such that hoq=f— E(h). Then H\h)
=q*H(W)=H(f — E(h)) = H(f) #0. This contradicts the assumption that
Hy): Mam+3(ZX) > Z/2 is trivial. This completes the proof of Lemma 3.1.

Proof of Lemma 3.3. Induction on s = v,(n + 1)= 0. When s = 0, Consider
the following Adem relation;

w2z (dn—1—j .y
Sq*Sq™" = t ( nd Y j> Sq™ I Sq’.

j=0
Since s = 0, thus since n is even, we have
din+1 d d

Sqr* Y = Sq?Sq™ mod Iyp41)-

Assume that Lemma 3.3 is true for n such that v,(n + 1) <s. Consider the Adem
relation, then we have
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202 md —id — 1
2sd 2s*timd __
S¢tSqT = Z( @ — 2i)d

i=0

>Sq(2‘*1m+2’—i)d Sqid mod Id(n+1)

s+1 _ _ 2s-1
=<(2 " zlslld-*-d ]>Sq"'+”"+ Y SgFTmr 20 Aid) mod I,y

2s-1

_Sq(n+1)d+ Z S, (2-‘+'m+25~:)dA(ld) mod Id(n+1)

Since k; = v,(2*"'m + 2° — i) < s — 1 for 1 £i <271, by inductive assumption, we
have

Sq(n+l)d Sq2=dS 25* Imd

2s-1

+ 3 (Z SqFUA(R ' m + 2 — i — 2)d)) A(id) mod Iy,

Therefore, Sq"+ V¢ = Sq2'4Sq? " '™ + Z Sq? 4 Ad(n + 1 — 2Y) mod I 41y
This completes the proof of Lemma 3.3.

Proof of Lemma 3.4. First, note ly,+)(By+;) =0. Because H"*)(C,; Z/2)
~ HY*)(XQF; Z/2) for 1 £j<n+ 1. We shall prove by induction on i(0 < i
<5s).
For i =0, S¢“(Byn+1) = Sq°Sq*(B,,) by Lemma 3.2

(S97Sq" + 5¢°Sq*)(B,,) if F=H
= by Adem relation
S4°Sq' (B>.) if F=C

=0 by dimensional reason.
Now quid(ﬁzpa +2-29)

= SqZ‘d(quid(ﬁ2”+ 5 gis 1))

i+1
from Lemma 3.2 and <2n + 121 2 >= 1

i-1
_ 2i+1—20)d Q,2id )
= j;o Sq Sq% (Bansz-2101) by Adem relation

1 . ’ j
Z Z g AR =2 = 29d) Sq* (Banr 2 - 201)) from Lemma 3.3

Z Z 2d(*ﬁ2n+2—2r)

=0 by inductive assumption.
This completes the proof of Lemma 3.4.

Proof of Lemma 3.5.



126 Kaoru Morisugi

Sqg* A((n + 1 = 29d)(Bas 1)

DM«

Sq*"* (B, 1) = )

1

by Lemma 3.3

]
o

= 'Zo quid (*Ban+2-2)

=0 by Lemma 3.4.

This completes the proof of Lemma 3.5.

§5. Proof of theorems

Proof of Theorem 2.1. We shall applly Lemma 3.1 for this proof. Note that
the necessary conditions are satisfied by Theorem 1.1. Let fe[M?2+D-1
XQF]. Consider the cofiber sequence;

MZd(n+1)—1 LPZQF;)CJ—L*M“('H'“.

According to Boardman-Steer[BS], the following diagram commutes:

l” T.'M'

me+v 2D, soF A $QF,

where 4 stands for the reduced diagonal. Thus, since in our case H(f) can be
detected by the induced homomorphism of H(f) on H*"*)(XQF A XQF; Z/2) =~
Z/2, H(f) =0 if and only if f2,, =0 in H*"*'(C,: Z/2). From Lemma 3.5,
Sq** Vg =p2,, =0 for all fe[M>*"*D~1 FQF]. Therefore the proof of
Theorem 2.1 follows from Lemma 3.1.

Remark. If n =0 mod d, then Theorem 2.1 can be proved easily as follows;
Let J = A{Sq'|l £ 0 mod d} be a left ideal of the Steenrod algebra A. If n=0
mod d, then there is a following relation;

StV = §q2Sqi" =Y + S¢*Sq* mod J.

Associated with the above relation, we can define the (unstable) secondary
operation, say @. It is not difficult to see that & can be defined on
%, € H" P VIQF U je? "+ V"2, Z/2) =~ Z/2 and that & detects the Whitehead
product [i,i]. Thus it follows that [i, i] cannot be divisible by 2 in
Tam+1)—1(QF). (see Brown-Peterson [BP]).

Before we give the proof of Theorem 2.2, we need some notation and a
lemma. Let iy: S¥"*Y~' — GF(c0)/GF(n) be the bottom inclusion. Note that
i€ M4+ 1y-1(QF) corresponds to ig€mypyq)-1(GF(0)/GF(n)) under the natural
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isomorphism. It is well known that
a[iO’ lO] = i <O-n’ 0',,>,

where 0: M54+ 1) - 3(GF(0)/GF(n)) = M40+ 1)-4(GF(n)) is the connecting homomor-
phism associated with the fiber bundle;

GF(n) — GF(o0) — GF(c0)/GF(n).

So when F = H, the proof of Theorem 2.2 is obvious. Now let F=C. Let
€Ty (U)=Z be a generator. We denote the usual bundle projection U
— U/U(n) by j~. We need the following lemma.

Lemma 5.1.  [f'n = 3, then ji(A,,+,) is divisible by 2 in ny,, (U/U(n)). How-
ever ji(1s) can not be divisible by 2.

Proof. The idea of the proof is originally due to Crabb and Knapp. First
observe that jZ(4) is divisible by 2 in n5(U/U(2)). Since there exists an unstable
Adams map A:S'2U,e'® > S*U,e’[02], using the periodicity (See [CK] or
Theorem 1.9 in [M2]), we see that jZ(ly+s) is divisible by 2 in
g+ s(U/U(2)). Therefore ji(A43) is divisble by 2 in mg . s(U/U(n) for k
> 0. Next observe that j3(4s) is divisible by 2 in mg(U/U(3)). Then by the same
argument as above, we see that jl(d44s) is divisble by 2 in
Tge+o(U/U(3)). Therefore ji(A4+5) is divisible by 2 in mg,,o(U/U(n)) for k
> 0. The assertion in case that n =2 follows from Theorem 2.1 and the exact
sequence of Proposition 1.2. This completes the proof of Lemma 5.1.

Now we shall return to the proof of Theorem 2.2 in case of F = C. When n
=2, since ng(U(2)) = Z/2, the proof follows from Theorem 2.1 and the exact
sequence (1) in Proposition 1.2. Let n = 3. Suppose that {o,, 0, = 2x for some
xen,,(U(n). Take an element yemn,,,(U/U(n)) such that dy = x. Then from
the exact sequence (1) in Proposition 1.2 we see that [ig, io] — 2y belongs to the
image of j3. From the above lemma, it follows that [i,, io] is divisible by 2 in
Tans 1 (U/U(N) = 14, 4,(ZCP). This contradicts Theorem 2.1.

Proof of Theorem 2.4. The proof comes from the following observations.
1) m,5(Sp(3)) = Z/2 @ m,4(Sp/Sp(3)). ((2) in Proposition 1.2.)
2) 7w,9(Sp/Sp(3)) = 7,4(QF) (unstable). (By the connectivity of the pair (Sp/Sp(n),
02 1))

3) Computation of the spectral sequence;
H (03 2m3(S%) = ,m5(Q9),

shows that ,754(QF) =~ Z/2 generated by the class y; ® nu, where ys is a
generator of H,4(Q3; Z) =~ Z. This follows from [M3]. Note that 7,,(2Q%)
= m39(02)-

4) Consider the following commutative diagram of the EHP sequences:
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131(ZQF A QF) B m0(0F) B m30(2QF) — 0.

IU ez Ti* T,;

T31(Z8'% A S1%) £ 71,4(S1%) £ 71,(ZST5) —s 0.

5) According to Toda’s book [T], P(13,) = 2015. Since i, 2635 = 0, (This follows
from the above 3) or [M3]), from the EHP-sequence it follows that i, a}5€
Image of P. The image of P of this dimension is generated by i,[i;s, 1;5] =
2i,0%5. Therefore it follows that i 625 = 0. Thus we get ,7,5(QF) = ,75, (QF).

Thus it follows from the EHP-sequence that there exists a map fen;,(2QF) of

Hopf invariant 1.

Remark. We don’t know how to construct directly such a map f.

§6. Corrections of my paper Metastable homotopy groups of Sp(n)

There were many careless mistakes and transcription errors. Some of errors
were pointed by D. Davis and A. T. Lundell. The author thanks them for their
interests. The statements in Main Theorem of [M1] should be changed as
follows. The statements corrected are underlined.

3) If n=3 (the case n =2 is excluded, since n =2 is not contained in the meta-

stable range.), then
Tan+12(Sp(n) = Z/2PD Z/2

4) If n=3, then

Z/8 if n=1 mod 4,

Z/(128, 4(n — 3)) if n=3 mod 4,

Zl2+Z/4+ Z/8 if n=6 mod 8,
Tan+13(Sp(n)) =

Z/2 + Z/32 if n=2 mod 8,

Z/2+ Z/2+ Z/8 if n=0 mod 8,

Z2+ Z)2 + Z/A+ ZJ(64, (n+4)/2) if n=4 mod 8,

Here (a, b) means the greatest common divisor of a and b.



Homotopy group and Hopf invariant 129

§7. The Hopf invariant and the e-invariant (Appendix)
Throughout this complex Y is assumed to satisfy the following conditions.

1) Y is 2n-connected.

2) dimY=<4n+1

3) Hyn(Y; )= Z.

4) H*(XY; Z) is free and is generated by even dimensional elements. Choose
a basis {uy, u,,..., u} of H¥ZY; Z) with dim u; = 2m; and m; < m;,,
(my=n+1).

Under these assumption, The reduced K-theory of XY, K(XY), is also free and we
can choose a basis {x,, x,,..., x;} of K(2Y) so that there exist rational numbers
c;; for 1 £1i, j <5 such that

Ch(x_,) = Z Ci‘jui, With Ci,i = 1 and ci,j = 0 if i<j,
i=1
where ch is the Chern character. We denote the matrix (c;;) by C. For an
integer k, let A(k) be the diagonal matrix with diagonal entries, {k™, k™2, ..., k™}.

Definition and Proposition A.l. For any keZ, all entries of the matrix
C YA(k)C are integral. We denote the j-th column vector of the matrix k*"*2E
— C~YA(K)C by a'(k), where E is the unit matrix. Especially we denote a'(2) by h
which we call the Hopf vector.

Proof. The existence of the Adams operation ¢* on K(XY) and the
commutativity of the following diagram imply the assertion.

K(ZY) 4 [[H*(ZY; Q)

lfp" l""'

K(ZY) -4 [[H*(ZY; Q).

Let fen,,+3(2Y). The e-invariant vector of f, e(f), is defined by

ec(f)(xy)

ec(f)(x2)
e(f) = : ,

ec(f)(x,)

where e is the Adams-Toda ec-invariant, that is,

ec(f): Mans3(2Y) — Hom(K(2Y), Q/2).
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The following theorem gives a relation between the Hopf invariant and the e-

invariant. It is a slight generalization of Adams or Toda’s observation in case Y
— SZn+ l.

Theorem A.2. Under the same assumption, let fen,,,;(2Y). Then for any
ke Z, the inner product of the vector a’(k) and the e-invariant vector, (e(f), a’(k)) is
always integral. And the mod 2 Hopf invariant of f, H,,(f), is equal to the mod 2
reduction of the integer (e(f), h).

Proof. Consider the cofiber, say C, of f: §4*3 5 XY, The same argument
as in the proof of Proposition A.l implies that the matrix

<C 0>_‘<A(k) 0 <C 0
e(f) 1) \0 k2 ) e(f) J

is an integral matrix. Note the above matrix product is

C tAk)C 0
<le(f)(k2n+2E _ C—IA(k)C) k2n+2>'
Especially ‘e(f)(k?"*2E — C ~*A(k)C) is an integral row vector. Therefore, for any
keZ and 1 <j <5, (e(f), a'(k)) is always integral.
Now recall that ¢2(¢) = &2 mod 2K(C,) for (e K(C;). This means that in
H**(Cy; Q),

(M12Y)(ch(x,)) = (ch(xy))* mod 2ch(K(C,)).

On the other hand, (ch(x,))* = u? by our hypothesis 2). Let ve H*"**(C;; Z) = Z
be the generator. Then under our conditions of Y, according to Boardman-
Steer [BS],

ui = H(f)v,

where H(f) is the Hopf invariant of f.
Therefore there exists integers [; for 1 £j < s+ 1 such that

s+1

(TM2Y)(ch(x,)) = H(N)o +2 Y. Lch(x)),
=1
where x,,, is an element of K(C,) such that ch(x,,,)=v. This implies

h he first col f th tri Aty 0 c 0 is equal to
that the first column o € matrix o k2+2) Le() 1 q

0
2 <'f(f) l> ‘Uhsooos e ) + 90, 0, H(f)). - Thus, multiplying from the left

C 0\ ! ) 1

<'e(f) l) , we have the desired result.
Note that all entries of the Hopf vector h are always even, since ¢*(x,;) = x3

mod 2K(XY) and x2 = 0 in K(2Y). Therefore the mod 2 reduction of the inner

product (h, e(f)) is independent of choice of lifts of x;e K(2Y) to K(C/).

The following theorem gives a necessary condition for existence of a map with
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Hopf invariant one.

Theorem A.3. Under the same assumption, if H,: T4, 3(2Y) > Z/2 is onto,
then, there exists a non-zero vector ee(Q/Z) which satisfies the following:
(1) for any ke Z and for any 1 £j <s, (a'(k), e)e Z,
(2) (h, e) is odd.

Corollary A4. Under the same assumption, if H,: m4,3(ZY) = Z/2 is onto,
then, for any ke Z, there exist (2)-localized integers 1,(k), 1,(k), ..., l(k) such that

v

1(k)- det|a' (k), @*(K), ... h, ... @*(K)] 1‘[ (k+2 — kmi),

-

i=1

where the symbol det || means the determinant of matrices.

Proof. From the assumption, there exists a map f: $*"** - XY such that
Hg)(f)=1. By Theorem A.2, since (e(f), a'(k))e Z for 1 <i < s and H(f) = (e(f),
h) = 1 mod 2, there exist 2-localized integers [; for 1 <i <s such that (e(f), a'(k))
= l(e(f), b). Since e(f) # 0, this implies that

det|a'(k) — I,h, ..., a’(k) — Lh| = 0.
The rest of the proof easily follows by linear algebra.

I believe that in case Y = XCP2" or Q2n*%!, the severe restriction on n comes
from the Theorem A.3 and Corollary A4 if one can compute effectively.
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