J. Math. Kyoto Univ. (JMKYAZ)
31-2 (1991) 495-541

Construction of irreducible unitary representations
of the infinite symmetric group S..

Dedicated to Professor Nobuhiko Tatsuuma on his sixtieth birthday
By

Takeshi HIRAI

Introduction.

For a set I, we denote by &, the group of all finite permutations on /. In this
paper, we study irreducible unitary representations (=IURs) of the infinite symmetric
group &y, denoted also by ©.. We consider it as an infinite discrete group, of non
type I, and apply our results in the previous paper [DG] (=[8]), getting a big family
of completely new type of IURs.

Representations of the infinite symmetric group have been studied from many
standpoints. All the indecomposable positive-definite class functions (or characters)
have already been determined by Thoma [21]. They are also studied recently by
Vershik and Kerov from different points of view ([9], [22], [23]). When we intro-
duce a certain non-discrete topology in &,, it becomes of type I and its IURs can be
completely determined as shown by Lieberman ([11], [12]). Cf. also O’lshanskii [17]
from this point of view. We have also other works ([3], [5], [7] etc.), rather operator
algebra theoretic.

Very recently a new type of IURs has been constructed by Obata [16]. Discus-
sions with him on his study and on Saito’s [18] are one of our motivations of the
present work, and discussions with Hashizume on his work [6] were also inspiring.

In our previous paper [DG], we studied a general theory of representations of
infinite discrete groups, and applied it to wreath product groups ©4(T)=D4(T)x&, of
a group T with the permutation group &,, where D (T)=IIscaT s To=T (a€A), is
the restricted direct product. We consider a family U(&4(T)) of subgroups of the
form H:l'[;epC‘v:»Ar(TT), where A=II,erA, is a partition of A and T,’s are subgroups
of T. Further consider a family %y of IURs of H coming naturally from characters
%, of &, IURs pf of T, and reference vectors to form tensor products, and put
R(ST)=UxRy (HEU(S,(T))). Then, in case |T|<co, the induced representations

Ind34Pr, HeUAGAT)), ncRrCR(GSLT)),

give always IURs of &4(T) if |I'y|<1 with [';={rel"; |A;| <} and Ind%rp’rr is
irreducible for yeI';. Moreover the equivalence relations among these IURs are also
completely determined.

For our study on the infinite symmetric group G=8&y in the present paper, we
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apply fully these results. Start with a set A, and a finite group T, then the wreath
product @"r(T ;) is imbedded into G as follows. First take a faithful permutation
representation of T, and imbed it into the symmetric group &.q, of degree n(y).
Second, take a set S,={/;.«; a<=A,} of ordered n(y)-sets J, . parametrized by ae&A,.
Here an ordered n(7)-set is an ordered set of n(y) different elements in V. Then, for
Jr.a=(D1, D2 =+, Da)y n=n(y), put j-,_az{p,, b, -+, P} the underlying subset and de-
fine a map ¢, from j-,,a onto {1, 2, ---, n} as ¢, (p;)=j, 1=<j<n. Further define an
isomorphism ©n—>@77,a by o—z'egt,. Assume that f,_a’s are mutually disjoint for
3, we get an imbedding ¢ ; ©4(T,)—>©Sy=G. Such subgroups of G are called of
wreath product type. We consider a family % of subgroups of G obtained as images
of “saturated” imbeddings ¢¥Q(®yer¢;) of groups of type

@NXH;I'GF@AT(Tr) with co>NZ=0, IArl:°° (rer),

where ¢v: ©Gy—Gy and ¢,’s should satisfy certain conditions (cf. (B1)~(B3) in §2.4).
For every He%, we consider a family Ry of its IURs obtained similarly as above,
and put R=Ugea®n. Then the induced representations

Ind§r, He¥, TERLCR,

are the principal object of our study. We prove that they are all irreducible (Theorem
7.1) and also determine completely the equivalence relation among them (Theorem 8.9).
As in the case of the wreath product &4(7T), we have an interesting equivalence rela-
tion (Equivalence 2 in §8.11) other than the usual one (Equivalence 1 loc. cit.) coming
from inner automorphisms of G. We note that our method here is quite different
from other ones and gives us a completely new big family of IURs which we call
standard together with subgroups in . Furthermore the approaches through AF.
algebras as in [1] and [19] can not give us such results eventhough they are powerful
to study factor representations.

As an important step to arrive at our final results, we prove in §3 that the con-
ditions (GRP1)-(GRP2) (cf. §1.1.4) hold for the family U of standard subgroups.
Further we study how far the condition (REP) (cf. §1.1.4) holds for the family % of
IURs of subgroups in %. Let %, be the family of all finite-dimensional IURs of He ¥,
then R,CR and (REP) holds for it. Hence we can prove by Theorem 1.2 that the
induced representations Ind§rx, HEW, n=RyNR,, are all irreducible and the equi-
valence relations among them are all elementary, i.e., coming from inner automor-
phisms of G (Theorem 5.1). All the IURs of G constructed so far were in this family.

This paper is organized as follows. In §1, we summarize the results in [DG]
necessary to this paper and also give a general lemma for applying the boundedness
conditions (B,) and (C.) (for the definition, see §1.3). In §2, we study the properties
of subgroups of wreath product type, and in § 3, using these results, we study standard
subgroups of G and prove that U satisfies the conditions (GRP1)-(GRP2). In §§4-5,
we treat completely the inducing up of finite-dimensional IURs. In §6, the family %
of IURs of standard subgroups is introduced and studied. In §7, the irreducibility
of the induced representations Ind§r, HEU, n=RyCR, is established. In §8, the
equivalence relations among them are completely analyzed. The main tool in these
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sections, §§7-8, is the boundedness conditions (B,) and (C,), and the results in [DG]
are essentially applied in §8. We add as Appendix a simple proof of Moore’s criterion
for the unitary equivalence between tensor products of IURs.

CONVENTION. To refer Theorem 1.1 or §1.1 in [DG], we sometimes refer it as
Theorem DGI1.1 or § DGI.1 for brevity.

Acknowledgements. The author expresses his heartful thanks to Professor N.
Obata for the frequent and fruitful discussions and also to Professors N. Tatsuuma,
K. Nishiyama, H. Yamashita, H. Furutsu and K. Suto for their helpful discussions.
His thanks also go to Professors G. Schiffmann and M. Duflo for their helps to his
study when he stayed in France.

§1. Fundamental tools and methods

We summarize here the results in the previous paper [DG] and give a general
lemma, which are necessary in this paper. At the same time, we prepare some nota-
tions and tools for later use.

1.1. Induced representations for discrete groups

1.1.1. Induced representations. Let G be a discrete group and H its subgroup.
Take a unitary representation = of H on a Hilbert space V(z). We realize the induced
representation U,=Ind§n of G as follows. The Hilbert space 4 (U,) for U. is the
space of V(x)-valued functions on G such that

f(hg)=n(h)f(g) (h€H, g€0C),
/2 1=2emal f(@)*<eo,

where the summation runs over a section of H\G in G. (The convenient notation
g€ H\G will be used throughout this paper.) The operator U,(g,) for g,&G is given
by

(1.2) Uxgof(g)=f(ggy) (8€G).

We introduce the notion of induced vectors. For a vector veV(x), define an f&
I(U,) such that f(e)=v and f(g)=0 outside of H. Here e¢ denotes the unit element
of G. This f is called the induced vector of v and is denoted by Ind§v.

The set of all induced vectors in H(U.) is cyclic in the sense that the G-invariant
subspace containg it is everywhere dense.

(L.1)

1.1.2. Intertwining operators for induced representations. Let H,, H, be two
subgroups of G, and #; a unitary representation of H; for /=1, 2. Put U.,=Ind§,x;,
and let Home(U,,, U,,)=Hom (U, U,,; G) be the space of intertwining operators of
U., with U,,. Then, every T€Homg(U,, U,,) is given by a kernel K(g., g1), 8
g:€G, with values in B(V(x,), V(x,)), the space of bounded linear operators of V(x,)
into V(=n,), as
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(1.3) (Tg= = K(g g)flg) ((feLlU),
g'€H\G
and the kernel satisfies the conditions
(A) K(hogs, hig)=my(ho)K(ge, g)mi(h))™  (hi€H;i, 8:€GY),
(B) > GllK(g, vlr=Mivl? (EeG, veV(ry),

8EH o\

© = GIIK(E, rwllPsMlwl|® (€6, weV(rw),

EEH |\
(D) K(g:8, 8:18)=K (g &) (g2 &1, BEG),

where M is a positive constant. The conditions (B) and (C) guarantee the boundedness
of the operator defined under (A) by the right hand side of (1.3).

Conversely we know by Mackey [13] that every kernel function K satisfying (A)-
(D) defines an intertwining operator T &Homg(U;,, Us,) by (1.3) if dim Home(U-,, Us,)
<o, and that, in general, dim Home(U;,, Us,,) is equal to the dimension of the space
of kernel functions satisfying (A)-(D).

1.1.3. Boundedness conditions. Let K be the kernel of a Te&Home(U;, U,,).
Then it is determined by k(g)=K(g, ¢). The functions £ satisfies

k(hygh)=my(ho)k(g)m (hy) (h;eH;, geG).
For x&G, we put *g=xgx""' (g=G), H,*=x"'H,x and
(1.4) (m") h)=ms(*h)  (h€H,").
Then L=Fk(x) belongs to Hom (m,, % ; HN\H,*), that is,
(L.5) Lom(h)=(z.")(h)- L  (h&eH\NH,*).

Further L determines K(g,, g,) for g.g,"*€H,xH,. Rewriting the conditions (B)
and (C) for this part of K, we get the following two conditions for L : there exists a
positive constant M such that for vV (x,) and weV(x,),

(Bz) :2{ ILz(hl*sMvl* (heHiNx Hyx)NHy),

(Ca) hZZ [L*zo(hwl*sMwl®  (he€H,NxHix™)NH,) .

Conversely there holds the following

Lemma 1.1 [13]. For an x=G, put
(1.8) dr=dim {LeHom (x,, m,*; Hi{N\H,*); L satisfies (B;) and (C,)}.
For a complete system X of representatives of H,NG/H,, we have

(1.7) dim HomG(ley Uzg)=215}.'dr .

In the sequel, we call the conditions (B.) and (C.) the boundedness conditions.
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1.1.4. Irreducibility and equivalence relations. Let U be a family of subgroups
of G. Consider the following two conditions on 9. '

(GRP1) Let H=¥ and g=G. (i) If [H: HNgHg ']<e, then HCgHg™'. (ii) If
HCgHg™, then geH.
(GRP2) Let H,, H,e¥, and g&G. If [H,: HiNgH,g ']<eo and [gH,g™': H\N
gH.g ']<, then Hi=gH,g".
Under the condition (ii) in (GRP1), the normalizer Ng(H) of H in G is equal to H
itself. We note that (GRP1) is devided into (i) and (ii) for later convenience.
Let % be a family of irreducible unitary representations (=IURs) of groups in U.
For a pair {r,, .} of elements in R, we consider the following condition.
(REP) Let =; be an IUR of H;=% for /=1,2. Suppose, for an x=G, Le
Hom (7, m.*; HiNH,*) satisfies (B,) and (C,). Then L=0 unless

(1.8) [Hllﬂlf\x_ngx]<00 and [Hz: x]*]lx_’/'\H2]<00.
We say that (REP) holds for % if it holds for any pair z,, 7,=®%.

Theorem 1.2 [DG, Th. 1.10]. (i) Assume that W satisfies (GRP1). Let n<R be
an IUR of HEW. If the condition (REP) holds for m,=n,=mr, then the induced repre-
sentation U.=Ind§r is irreducible. /

(ii) Assume that U satisfies (GRP1)-(GEP2). Let ;&R be an IUR of H;¥U for
i=1,2. If the condition (REP) holds for any pairing {mi, =;} (i, j=1, 2), then U.,=
Ind§,n: are irreducible, and they are mutually equivalent if and only if, for an xEG,

(1.9) H,=H,*, and m=r," for H=H,*.

(iii) Assume that (GRP1)-(GRP2) hold for % and (REP) holds for R. Then the in-
duced representations of nER are all irreducible, and the conclusion in (ii) holds for any
pair w, T=R.

We call elementary the equivalence relation U, =U., if it comes from the relation
(L.9).

Remark 1.3. Let X, be the subset of X consisting of x for which (1.8) holds.
Then, under the condition (REP), we have

(1.10) dim Homg(U., U:,)=2:ex ,dim Hom (7, 7,7 ; HiNH,*).

We know from [10] that for any pair of finite-dimensional IURs n; of any sub-
groups H; (=1, 2), there holds the condition (REP). Hence we get the following

Corollary 1.4. Assume (GRP1)-(GRP2) hold for U, and R consists of finite-dimen-
sional IURs. Then the condition (REP) holds for . Hence the induced representations
U., <R, are all irreducible, and the equivalence relations among them are all ele-
mentary.

Remark 1.5. For G=8,, the infinite symmetric group, Obata’s case in [16] and
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our simple case in §4 can be controlled by this corollary (cf. Remark 1.8). However,
in our general case, the situation is not so simple that it cannot be controlled only by
the above criterions, and we have non-elementary equivalence relation essentially (cf.
§8.10 and also Theorem 1.9).

1.2. Wreath product groups and their representations

1.2.1. Wreath products. For a set I, we denote by &; the group of all finite
permutations on I. A permutation ¢ is called finite if it leaves invariant almost all
elements in I, or ¢()=: except a finite number of /=/. If J is a subset of I, &; is
canonically imbedded into &;.

Let G, (ac A) be a family of discrete groups with an index set A. Then the
restricted direct product II,esG. is defined as the subgroup of the direct product
TlecsG. consisting of g=(ga)scs With g,=e, for almost all ac A, where e, denotes
the unit element of G,.

Let T be a discrete group and define the wreath product ©&4(T) of T with &, (cf.
[20, Chap. 2, §10]) as

(1.19) SUT)=Du(T)*S,, DuT)=IlteaTa with T.=T (ac4),
for which the product is given by
(1.12) 0-(ta)aca 0 '=(ta)aca with ta=ts-1 (0€6,, t,.€T.).

An element ¢=®, which is imbedded into &,(T), is denoted again by ¢ or sometimes
by 1X¢ to avoid the confusion.

IURs of a wreath product group &4(T) were studied in detail in [DG], and the
results necessary in this paper are summarized below, except some detailed accounts
on intertwining operators [DG, §7].

1.2.2. Representations of a restricted direct product group. First consider re-
presentations of a restricted direct product G,=TI,e4G. of discrete groups. A unitary
representation (=UR) of G, is called factorizable if it is equivalent to a direct product
Rleam. of URs 7w, of G, with respect to a reference vector a =(a@.)ses. Here n%=
R%eam, is defined as follows. The representation space V(x®) is the tensor product
RleaV a=QuacaiVa, aat of Vo=V (n,) with respect to the reference vector a=(a4)acy,
a4,V (7o), lla.l=1, and

(1.13) TU8)=Q%ecama(8a)  fOr g=(ga)aca=Ga.

(For infinite tensor products of Hilbert spaces, cf. [4], [15] or § DG2.) This repre-
sentation is irreducible if and only if so is every n, of G..

Consider v=_V4)aca With v,EV,, |v.]=1, and a formal vector Qa.ecsv.. Then it
can be considered to belong to ®2%4V . if and only if

(1.14) Seeall—<va, )| <o,

where <:, -> denotes the inner product on V,. We call this relation the Neumann-
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. . N . .
equivalence and denote it as v=a. We consider another weaker relation

(1.15) Daca(l—[<vq, agy])< 0,

and call it the Moore-equivalence and denote it as v=a.
We know from [14, Th. 5] the following equivalence criterion (see Appendix, for
a proof).

Lemma 1.6. Let Q%ama and Rbearml be two factorizable representations of G4=
Tl2caGea, where mq, wh are IURs of Go (@G A), a=(0a)acs, <V (%), |laall=1 and b=
(ba)aca, ba€EV (), |ball=1. Then they are mutually equivalent if and only if w.=m,
for every ac A and

(1.16) ag(Kaba)aGA ’

where K, is a unitary intertwining operator of w, with w,.

We say for (1.16) that a and b are Moore-equivalent in an extended sense. But we
should note that this time there essentially enter representations of groups, or K,&
Hom (zt}, 7a; Ga).

1.2.3. IURs of a wreath product group S4(7). Let T be a finite group. We
consider IURs of the wreath product ©,(T)=D(T)x&,, which come from factorizable
URs of D4(T) or its subgroups.

For a UR 7 of Dy(T)=1TseaT« With T,=T (acA), we put

(1.17) (m)(t)=m(o"to) teD(T))

and G (n)={0=S,; “w=x} the stationary subgroup of =. The reason why we restrict
ourselves here to the case of factorizable =, is that, for infactorizable =, we know
almost nothing about &,(x) and intertwining operators for c=&,(x).

First take a UR pr of T and consider a factorizable UR n*=@Q%c4m. With 7,=pr
(ac A) with respect to a reference vector a=(@a)acs, @.EV(m.)=V(p1), la.l=L
Then, for 7=x% we have S,(7r)=&,. More exactly an intertwining operator [, of
°r with 7 is given as follows. For a decomposable vector v=Qaecav. in V(n)=
RieaVa, va€V=V(pr), put

(1.18) 1,v=uucaVi with ve=v,-1(ay (@ = A).

Then I,,. =1,1, (o, c’eS,) and

(1.19) Ioo("m)t)=n()-1, teDAT), 0€6,=6,(n)).
Take now a character X of &, (X=1 or sgn) and put

(1.20) (¢t 0)=(xt):)- W) (€DAT), 0€&,).

Then II=II(n, X) gives a UR of S4(T), which is determined by the datum Q=
{A, pr, X, a=(a).ca} and is also denoted by [1(Q). If pr is irreducible, then so is
II(Q). This type of IURs are called elementary, and we call II(Q) a WP-induced
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representation of pr.
Generalizing this process, we obtain [URs of &,(T) which will be called standard.
A standard representation p(Q) is determined by a datum

(1.21) QZ{(Arr P?T» xr)rel‘y (a(T))rEF: (br)rel‘},

where (A,)er is a partition of A, T a subgroup of T, p’rr an IUR of T,, ¥, a character
of @AT’ and
G(T):(aa)aeA,, aaL:—Va-——V(PYTr), ”(la”':l (aEAr)r

b,E=@3LVa Ibll=1  (rel’).
T

(1.22)

To give p(Q), first consider elementary IURs II(Q,) of ©,4(T;) with data Q,=
{4, PTTr’ X, a()}. Then, consider a subgroup of ©,(T) given as
(1.23) H=H(Q)=1l;er®4(T,)
and an IUR of H through a tensor product
(1.24) (Q)=R%erI(Q,)  with respect to b=(b,)er ,
and finally induce it up from H to S,(T):
(1.25) p(@Q)=Ind (z(Q); H1GT)).

Now we assume A is countably infinite, and further restrict ourselves only to the
case which will be necessary in this paper. Put

(1.26) Ii={rel'; |4 |<w}, T.={rel;|A;|=»},
where |A,| denotes the cardinal number of 4,. Consider the following condition on Q:
Q1) VAREIV AV ANE-S N

Then we have

Theorem 1.7 (cf. Th. DG4.2). Let T be a finite group and S(T) the wreath pro-
duct group. Then the induced representation p(Q) of ©4(T) is irreducible for Q in
(1.21) satisfying the condition (Ql), if Ind?rp’Tr is irreducible for y<l;.

Remark 1.8. In relation to Theorem 1.2, we remark here the following. Put
G=6,(T) and let A be the set of subgroups H in (1.23) of G for which the condition
(Q1) holds and T,=T for yel';, Then we can prove that the conditions (GRPI)-
(GRP2) hold for % (cf. Theorem DG3.2 for (GRP1)). Further, let ®, be the set of
finite-dimensional IURs of HeU (a special subclass of 7(Q)’s). Then the condition
(REP) holds for %;.

1.2.4. Commutativity of two kinds of inducing processes. Let T be a group
and S its subgroup. Consider wreath product groups &,4(S) and &4(T). Then we have
two kinds of inducing S1T7T and ©4(S) T &4(T) of representations. We give here a
certain commutativity of these inducing processes.

Let us start with a datum
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R:{Ay pSy X) a:(aa)aeA}

for an elementary representation of &4(S).
On the one hand, put jr=Ind§ps, and let @.=Ind5a.=V(5r) be the induced vec-
tor of a,€V(ps). Then a=(@.)aca is a reference vector for (V,)ees with I7a=V(,6T).

We denote @ also by Ind%a in abuse of notation. Thus we get a new datum for
&4(T) as

(1.27) R={A, pr, %, a}  with sp=Ind%p, a=Ind%a,

and correspondingly an elementary representation p(ﬁ) of ©4(T). On the other hand,
we have the induced representation Ind (p(R); ©4(S) 1 S4(T)).

As the commutativity of inducing processes (WP-inducing and usual inducing), we
mean the following

Theorem 1.9 (cf. Th. DG3.13). Let R be a datum for an elementary representation
of ©4(S). Then the two representations p(k) and Ind (p(R); &4(S) 1 ©4(T)) of &«T)
are canonically equivalent to each other.

A similar assertion holds for standard representations of ©4(S) and S4(T).

1.2.5. Equivalence relations between standard representations. Take two standard
representation o(Q,), p(Q;) of &4(T), and let the corresponding data be

le{(Ar: P?,T» x:y)rel‘, (ax(r))rel‘y (blr)rel"},
Q:={(Bs, 0%, Xe8)ocs, (a2(0))scs, (b2s)sca},

where, in particular, (4,),er and (Bj)ses are partitions of A, and Ty, and T.; are sub-
groups of T.
For an element £ of &,, we call an adjustment of Q, by { the following datum:

(1.29) CQ:={((Bs), pF,5 Xdscar (a2(0))scs, (b2s)sca}-

Then p(Q) is equivalent to p(*Q,) in a trivial fashion.

(1.28)

Theorem 1.10 (cf. Th. DG4.5). Assume that two data Q, and Q. satisfy the condi-
tion QL), i.e., |[';1<1, |4,1=<1, and that both p(Q,) and p(Q.) are irreducible. Then
they are mutually equivalent if and only if the following three conditions hold.

(EQU1) Replacing Q. by its adjustment by an element in S, if necessary, we have
a 1—1 correspondence & of I' onto 4 such that A,=B,y, for y€I'. Further %,=X.»
for rel', and

(1.30) Ind%lrp'}wglndizapi}zs for rel’s and d=«(7).

(EQU2) For y€lw, put Toy=Tay and To=TyNTsy. Then, for every 7€l
there exist an IUR PrTor of T and a reference vector ao(T)=(aoa)aeAr, aMEV(p’TOT),
laoal=1, such that for j=1, 2,

(1.31) or;,=Ind (oFg, s Tor 1 T57)

and a;y) is Moore-equivalent to Ind (ao(7); Toy 1 Ty) in the extended sense.



504 Takeshi Hirai
(EQU3) Replace 6=k«(y) by 7 and put

QfT: {AT’ p;'jr’ xj?" aj(T)} ’ 0§ jéz ’

with X=Xy (=Xy) and consider IURs II(Qy) of H;=84(T;). Then there exists a
unit vector b, €VII(Qy)) for every vyl such that (bj)er., 1=1, 2, are respectively
Moore-equivalent in the extended sense to

(Ejr)re['w with 5;r=Ind (bor; Hor 1 er)
with respect to I1(Qj) and Ind (IT(Qoy); Ho 1 Hy).

Here note that under the condition (EQU2) the IUR II(Q;,) is equivalent to the
induced one Ind (II(Q.,); Ho * Hj,) for j=1, 2, by Theorem 1.9.

Remark 1.11. The intertwining operators for the equivalence p(Q.)= p(Q.), unique
up to scalar multiples, can be easily written down using the explicit form of non-zero
L=Hom (#(Q,), n(Q.); HiNH,) satisfying the boundedness conditions (B.) and (C,),
given in Theorem DG7.8, where H;=H(Q;), j=1, 2. This explicit form of intertwinig
operators plays an important role in our later discussions on the unitary equivalence
among the standard IURs of €. (cf. §8), however we do not reproduce it here since
we need still some more notations for that.

1.3. A general lemma for the study of intertwining operators

We give a general lemma which will play an important role for studying the
boundedness conditions (B;), (C.), and then in §8 the equivalence relations between
standard IURs constructed in §7.

Let T be a finite group, S its subgroup, and p an IUR of T. Put V,=V(p) and
consider a unitary S-module V, Take a complex Hilbert space W, and consider
trivially V,®@W, as a T-module. Now take an L=Homs(V,QW,, V,) and evaluate the
following sum for u,eV.,QW,:

1 2
ST ET"LPO)M” .

Detailed evaluations of this kind of sums were necessary to prove the results in
[DG] on irreducibility and equivalence relations for standard IURs of a wreath product
group &4(T) (cf. Theorem 1.10 just above). Here we restrict ourselves to give a
simple result as follows.

(]..32) ](ux): t%)\THLp(l‘)ullIz:

Lemma 1.12. Let U be any isometric linear operator of V, into V, and extend it
naturally to V.QW, as such an operator. Then J(Uu,)=](u,) for u,€V,QW,..  Further

(1.33) sup J(u)Z|L|®.
fuiist
Proof. Take a CONS {v;; 1<j<d(p)=dim p} of V,. Then a unit vector u, is

expressed as u,=>},v;Qw; with w;EW, such that 3;|lw;|*=1. By a simple calcula-
tion, we get
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BILo0uml= 1ot 2 ILe@u)l.

From this the first equality follows immediately.

For (1.33), it is enough to use certain generalizations of Lemma DG5.6 (ii) and
Lemma DG5.7. Q.E.D.

§2. Certain subgroups of G=G,

2.1. Permutation groups and wreath products

Let I be a set. An element ¢=&; can be represented by a matrix M(s) with
suffices /X1 as follows: the components of M(¢) are equal to 1 at (¢(2), 7), i=I, and
zero elsewhere. By definition, (g¢')(?)=0(c'(?)), ¢, 6’'ES,;, and so we have M(gg’)=
M(o)M(c’) in the usual multiplication rule of matrices. Put G=6, with N=
{1, 2, 3, ---}, the set of all natural numbers. We denote G also by &, frequently.

Let T be a finite group and &,(7T) the wreath product of T with &, given in
(L.11)-(1.12). We define certain types of subgroups of G by imbeddig the wreath pro-
duct groups and taking their restricted direct products.

The results on IURs of the wreath product groups in [DG] will be applied to con-
struct a new type of IURs of the groups &, in later sections.

2.2. Imbedding of the wreath product groups into G

An ordered set J=(p;, ps, -+, Do) of different n integers p,= N is called an ordered
n-set. We denote by J the underlying set {p;, ps, -, pa} of J. Now let &, be a
family of infinite number of ordered n-sets [, (a=A) such that J.'s are disjoint
mutually. Take a subgroup T, of &,=Gy, with N,={1, 2, -+, n}. Let ¢, be the
order-preserving correspondence between J, and [,=(l, 2, ---, n) such that ¢.(p;)=7J
(1<5<n). Using this ¢, we imbed T, into &5, as

2.1) Qo Gr2t > Q) =ta ot E@7,

or @a(t)p;=pi» for Ja=(p1, ps -+, Pa). Denote by T, the image 0 (T2)C&7,CG
of T,.

For a given (3., T»), we define a subgroup D(J,, T,) and H(Jn, To) of G as
follows:

D(Sn: T)=IlwcaTa with Tazspa(Tn) ,
H(sﬂl Tn):D(Sny Tn))(lgA ’

where D(S., T»)xS, denotes a semidirect product of D(,, T,) and &, such that, for
(ta)aeAED(Sn, Tn) and €&,

2.3) 07 (te) 0=@t2)  With a7 (t)=(@ocar) (o) ETn -

2.2)

We know that H(S., T.) is canonically isomorphic to the wreath product &,(T,)=
Du(T,)xS, In other words, the datum J,={/.; acA} gives an imbedding of the
wreath product ©4(T,) into G. We call this type of subgroups of G of wreath pro-
duct type.
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Every element (s.)-0=(ss)X0 in H(S,, ©,)DH(3,, T») can be represented by an
AX A-matrix M,((s.)-0) whose entry at (g(a), a) for a€A is §o=¢. " (s)ET . CTS,,
identified with its matrix M(s,), and is zero elsewhere. Then, as is easily seen,

(2.4) My(hihe)=Mu(h)Ma(he) (R, he€H(3n, Tw)).

Note that, to arrive at subgroups of type H(3,, T,.), we can start with a wreath
product group ©4(T) with an arbitrary finite group 7 and a countably infinite index
set A. Take any faithful permutation representation of T into &,. Let T, be the
image of T in &, and take &, in addition, then we get a subgroup H(I,, T,)=S(T).

2.3. Properties of subgroups of G of wreath product type
We remark certain properties of this type of subgroups.

Lemma 2.1. Take a £€6,, and put
(2.5) e Jn={bcJa; a€ A}, £T,=6-Tp-&1,
where, for Ja=(p1, P2 ==, Dn)s

(2‘6) §°]a'—’(Pe'l<1), Pe"l(z), oy ﬁe'lcm)-
Then ]—[(Sn: Tn):H($°3n: $°Tn)-

Note 2.2. When T,=6,, the orders in J,’s are superfluous in the sense that the
imbedded subgroup H(J,, ©,) is determined only by the family of non-ordered sets
S.=1{/.; a=A}. However the orders are not superfluous in the sense that the imbed-
dings of &4(T,) into G, determined by various J,’s with the same underlying 3., are
in general not conjugate under Int(G). This fact is essential when we induce an IUR
of H(J,, T,) from that of &4(T,) through the imbedding ©4(T,)—H(J,, T.)CG, and
then induce it up from H(J,, T,) to G (see latter sections). Thus we should keep
not only non-ordered J, but also ordered &, even when T,=6,.

Note 2.3. From Lemma 2.1, we see that for some fixed a,=A4, we may fix with-
out loss of generality the order in [u,=(pi, ps ---, pa) once for all, for instance, as
P1<pe< - <pn. However we do not do so for the sake of convenience (see, for
example, Lemma 3.1). We note further that if n=1, then necessarily T,={1}, and
0 H(3, Ta)=8¢ with C=supp (3,)CN, the union of J, (a€ A).

Let Jn=1{J3; B=B) be another family of ordered m-sets. Then we say that J,
is a refinement of I, if m=Nn with an integer N, and every J§ is a union of N
number of J,, a=A. Further we say that S, is equivalent to &}, under T,CS&, if
(1) §,=1{/.; a= A} coincides with I}, (in particular, m=n), and (2) for every a, there
exists s,=T, such that

sa°]a:j:9 s

where BB is determined by a as [.=Jj.
The meaning of these definitions can be seen from the following lemmas.
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Lemma 2.4. Let H=HQ,, Th), H'=H&,, Th) with Sp={Ja«; acA}, Sp=
{J5; BeB}, and T,, Tn subgroups of &,, &, respectively.

(i) Assume that HCH. Then I, contains a refinement of Jn, and so m=Nn for
some integer N, and supp (J,)Dsupp (Jn).

(ii) Let m=n and suppose supp (IJ,)=supp (In). Then HCH if and only if there
exists a £&&,, such that & T,CT,, and &3, is equivalent to I, under T,.

Proof. (i) Assume that H'CH. Then, for acA and BeB, j-é contains J, in
total or has no intersection with it: j3DJ, or JiNJ.=@. Therefore every J; is a
union of some number of J,, a=A. Let this number be N, then m=Nn.

(ii) Assume m=n and supp (J,)=supp (J,,). Then we can use the same set of
indices A for J, and J}, and we have, for every a=A, a unique 7.€©, such that
Je=mn.°J.. Let us express an element A’ in H'=H(J;, T;) according to the decom-
position analogous to (2.2) but for J;. Let ¢g: ©,—~&j., be analogous to ¢.. Then,
for X1,

h'=(ty) -0’ with te=0u(ts), To€T;, 06'€6,.

Since H(;, TH)CH Q% ©,)=H(J,, ©,), the element A’ has also an expression for J,
according to (2.2) as an element of H(J,, ©,). Let it be as, for I,
h' < (ta)-0 With t,=@a(Ta), T« EG,, 6ES,.

Then we have oc=¢’ and
2.7 Ta:naffrna(a)—l (acA).

Therefore, to have H’CH, it is necessary and sufficient that 9,779 *CT5 for
acA, 6@, Put £=1,, for a fixed a,E A, then &x=7anq, '=7.6"" is in T, for any
acA. Hence 7,=&.& with & =T, for a fixed é&&,. This means that £&-3; is equi-
valent to I, under T,.

Moreover we have

TnD"]aT;z"]a(a)_l:EaET;zg_lSa(a)-1=Ea(E°T1/'L)E'7(a)_‘ .

Hence T,D&-T%. This completes the proof of the lemma. Q.E.D.

In general, when N=2, a necessary and sufficient condition for H'CH, is a little
more complicated than above as seen below.

Lemma 2.5. Let H=H (S, T,), H=HQ%, Tn) be as in Lemma 2.4. Suppose
supp (3a)=supp (I5). Then, H'CH if and only if the following two conditions (J1) and
(J2) hold.

D S, is a refinement of I, in particular, m=Nn with an integer N.

(J2) For every BB, let A(B)={acA; J.CJ4}. Fix a numbering ai, as, -+, ay
of elements in A(B) and define an ordered m-set J} as
(*) ]g:(.[alx .]crg) ”.’j“N)’

and put In={Jp; BEB}. Then there exists a §EES, satisfying
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(J21)  &Jn is equivalent to % under T(m)=T,xSy, where T(m) is canonically
imbedded into &, according to (x), and &Iy is as in Lemma 2.1, and
(J2ii) & T CT(m) with EeTn=&Tn-&

Proof. From Lemma 2.4(i), we may assume from the beginning that (J1) holds.
Now let D° (resp. H®) be the subgroup of H consisting of all elements which leave
every subset ngN stable for BeB (resp. which permute subsets jg, peB). ltis
not difficult to see that D°=D(]%, T(m)), and then we get H'=D"x&Sz=H(J%, T(m)).

Therefore, H'CH is equivalent to H'CH°’. Now apply Lemma 2.4(ii) to H'=
H(Q, Tw) and H°=H(J%, T(m)), then we get the desired result. Q.E.D.

Moreover we have the following

Lemma 2.6. Let H=H(J,, T,) with 3,.={J«; a= A} be as in Lemma 2.4. Then
for g=G,
gHg '=H (S, T, with 83,=1{%].; ac A},
where

gja:(g(pl)r g(l)z), ] g(pn)) f07’ jaz(ph D2y pn)

Proof. Take a= A, and let Jo=(py, Pz -, Da)s EJa=(q1, Gor ++, Ga). Put co(p;)
=7, ta(g)=j (1£j=n). For any t€T,C&,, @a(t)=ta"'etota acts on p; as @a(t)(p;)=
P> On the other hand, g-¢.(¢)-g7" acts on g¢; as

(g @a(t)- 87 Ng)=(g  @atN(P)=8(D1») =G> -

This proves that, through ¢,, we have also the group T, as the canonical subgroup
acting on £J,. This, in turn, proves our assertion. Q.E.D.

It follows from Lemmas 2.4 and 2.6 the following important property of these
subgroups.

Proposition 2.7. Let H=H(J,, T,) be as in Lemma 2.4. If g=G satisfies gHg™!
CH, then gHg '==H, that is, g belongs to the normalizer Ng(H) of H in G. Moreover,
if Sa={Ja; a=A} is a partition of N, then No(H)=H.

Proof. Since gHg '=H(43,, T,) is contained in H=H (J,, T,), and since ¢/,=],
for almost all a= A, we get supp ($,)=supp (J}), and so we see from Lemma 2.4 that
€%, is equivalent to I, under T,. Hence we get gHg '=H.

Now assume that &, is a partition of N and take a g&Ng(H). Then, since £3,
=(%3,)"=3,, we see that g€ H(S,, &,). Define =&, by xja:ja(a), and §,€8&, by
Se=tsr(g|Ja)ote"". Then the matrix M,(g) for g is given by these data, that is,
components are 5, at (o(a), a) for a= A, and zero elsewhere. Since c=€6&,GH, we
get g'=go 'eNs(H).

On the other hand, M,(g’) is a blockwise diagonal matrix with diagonal components
54 at (a, ). Take r=%,C H and consider g’'rg’ 'eH. Then its matrix M,(g'tg’™")
has components §...,5."'€T, at (r(a), ) and zero elsewhere. Note that there exists
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a finite subset A; of A such that §,=1if a&A;. Take r=&, such that 7(a)& A,
for any a=A;. Then for ac Ay, $:(8a"'=5."'€T,, that is, §,&T,. This proves
that g'e H=H(J,, T.) and so is g=g'a. Q.E.D.

Note 2.8. By Proposition 2.7, we see that H satisfies the condition (ii) in (GRP1)
if 3, is a partition of V.

2.4. Standard subgroups of &

Now take b={F, (J,, T,); r€[l'} with an index set I, finite or infinite, such that

(B1) F is a finite subset of NV;

(B2) for every rel’, there corresponds co>n(y)=1, and J,={/,..; a=A4,} an in-
finite set of ordered n(r)-sets J,.., and T, a subgroup of &, ;

(B3) {F, J,.a; 7€', a€A,} is a partition of N.

For this set b, we define a subgroup H=H"® of G as follows:

2.8) H=H'=H/H,,
where
2.9) H;=6p, H.=IljerH, with H,=H(,, T,).

Here H,=H(J, T)=6,4(T;) is given as in §2.2 for (Ja, T2)=(J;, T;) with n=n().
We call H; and H.. the finite and the infinite part of H respectively.

Furthermore we call standard this type of subgroups of G, and denote by B the
family of all such b that satisfy (Bl), (B2) and (B3) above, and by U the set of all
standard subgroups: A={H"; beB}.

In the following, we study the set of representations of G obtained by inducing
up IURs of H in %, thus getting a big family of new IURs of G. For this purpose,
we give in the next section some important properties of these subgroups, which are
similar as those for H(X,, T,) given in §2.3. From this study, we can see that the
conditions (GRP1) and (GRP2) hold for our set of standard subgroups .

Notation 2.9. We have introduced the following notations which will be utilized
frequently in the sequel. Let J=(pi, ps -+, pa) be an ordered set of natural numbers
and T a subgroup of &,. Then, for a (€,

&o J=(Pe-1a1ys De-1c23 5 Pem1cmd) §-T=§-T-&",
and for ge&,,

¢]=g]=(g(p1), &(p2), =+, (D).
Under this notation, for J, in J, and £€&,, we have & J,=@.(§7") /.

§3. Properties of standard subgroups of G

In this section, we investigate some properties of subgroups H in %, and establish
the conditions (GRP1) and (GRP2) for %, which will be necessary to study the irre-
ducibility and the equivalence relation of the representations of G induced from those
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of Hel.

3.1. The conjugate of H under g=G
To begin with, we remark the following elementary fact, a straightforward gen-
eralization of Lemma 2.6. Recall that a datum 63 is of the form

@.D ={F, 3, T)); rel’t,  J={/ra; a€4;},

where T, is a finite group faithfully represented in &,,, each J, . is an ordered n(r)-
set and s0 |/,.«i=n(7), and |A,|=co.

Lemma 3.1. Let H=H*c¥ with b=B in (3.1). For any g&G, the group gHg™*
belongs again to A and corresponds to a datum *6=B, i.e., gHg '=H*®. Here

(3.2) gp={¢F, (¢3,, T,); rel’}
with $F={g(i); i€F}, 3,=1{%],.; a€A,}.

Let &y denote the group of all permutations on V. Then the above lemma holds
also for any ge@y. Further we know that Aut(Sy)=Cy.

3.2. Conditions for the inclusion H'CH
Now consider the relations between two subgroups H=H" H'=H" in % with
b, =3B in (3.1) and

(3.3) V={F", Qs Ts); 6€4d}t, J=1{Js5; BEBs}.

First we give a necessary and sufficient condition for the inclusion H'CH. To do
so, we introduce some definitions. Put

(3.4) b={F, J,; rel'}  with ,={/,..; acA4,},

where j,,,, denotes the underlying set of J,., and call b the underlying two-step
partition of N for b. We say that b is a refinement of v ={F’, J}; 64} if there
hold the following two conditions (R1), (R2).

(R1) (i) F=F’; or (i) F=@ and F'=UsispJ;.«; for some yel" and a,, a,, -
ap,=A,, and in addition p=1 if n(y)>1.

(R2) If supp(J)DF’, put A=A N ay, as, -, ap} with a,, as -, ap=A, such
that F’=Ulsisp],_ai, and otherwise put A}=A,. (Note that A}+ A, for at most one
ycI'.) Then there exist (1) a partition of each A} as Ay=\Uses A} and (2) a partition
of each A{ as

»

A= KﬁJ A¥B) (BeBy),
such that, putting I';={rsl"; A+ @}, we have for every B& B,
(3.5) Js=UUlra  GEls a=A)p)

and that | A%(B)|=N(7, ), independent of & B;.
To visualize these relations, let us illustrate the inclusion of J, . (a€4,) into J; 5
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(B=B;). In the figure below, 7; runs over [ ;.

Figure 3.1.

J3.5 (length=n(8))

Jra's (@€ A3 (B)) Jra's (@€ A3(B))
(each length=n(r,)) (each length=mn(7,))
# of [, «'s=N(11, 0) # of J,.«'s=N(7, 0)

Note that A} (resp. A¥B)) is the part of A, corresponding to B; (resp. S B;),
and that n(6)=X,er;N(7, O)n(y), and so I's is a finite set, and |A}|=|B;s|=c for
r&l';, The meaning of this definition will be clarified just below.

Theorem 3.2. Let H=H® H'=H" be in A with b, ’EB in (3.1), (3.3) respec-
tively. Then H' is contained in H if and only if the following two conditions (I11), (12)
hold.

(11) b is a rejinement of b,

(I12) Fix 64 and a numbering 11, T2, -, Ym» m=1|"5|, of elements in ['s. Then
there exists an element &S, satisfying the conditions (121)-(12iii) below. Put for
BEBs.

(36) jg.ﬁ:(j{s"v .,;rﬁzr ) j/gm)
where, for each Y€, fixing a numbering a; (1SiSN(7, 9)) of elements in AY(B),
(3.6") j%:(jr.ay jr.agv Tty .[r.zw) with N=N(y, 0)

(cf. Figure 3.1). Then Jy=1{J5.5; BEBs} is an infinite set of ordered n(0)-sets.
(121) &3°35=1&s°J5.5; BEBs} is equivalent to I under

T@)= 11 (T,)"1x&w),

where Ny=N(rs, 0) and T(0) is canonically imbedded into &, according to
(3.6)-(3.6").

(12ii)  &;°T7;CT(0), where &5T5=EsT3Es™" by definition.

(12ii)) If F'=], with yl', a€A,, then T,=C,,.

3.3. Proof of Theorem 3.2
The sufficiency of the conditions (I1)-(I2) can be seen without difficulty. So let us
prove the necessity. First put

3.7 N,= kau‘,.a (ac4,), Nj= \ﬁ}jé.ﬁ (BEB,).
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STEP 1. Assume that F’#F. Then F\F'#£@ or F'\F#=@. First assume F\F’
#@. Then (FNF)NJ 5,#@ for some 6 and B.&Bs Put E={B<Bs; (FNF)N\J55
#@}. Since E is finite, we have ¢=&p; such that ¢(E)YNE=@. Then 1X0c€65,C
H(J3 T;CH' sends (F\F’)r\jg,po into J_{,_ﬁ which has no intersection with F\NF’ nor
with F. This means that (1X¢)FETF, and so 1Xo&H. Hence H'dCH because 1Xo
eH’. Thus it should hold that FNF'=@ or FCF'.

Now assume that FCF’, F+ @ and F'N\F+@. Then we have a 6 =S, such that
d(FINF)NF+# @, whence o¢(F)+F. This means that 1Xo=H’ does not belong to H.
Hence it should hold that F=F’ or F=@, if H'CH.

STEP 2. Consider the case where F=@, F'#@. Assume that, for some J, .,
j—,,af\F';&Qj and j,,anjg_ﬂ;e@ with a f€B;. Then we can find 6€&p; such that
1XoeH’ sends jg_,g (D]_,,af\j_{;,,g) into J§ .cs which is disjoint with j-,,a. Since 1X¢
leaves j,_aﬂF’ invariant, 1Xoe&H and so H'¢CH. Thus we see that F"_‘)j-,,a if
F'N],.#®, whence F’ is the union of J,.CF".

Since Sy ={1} X&pr CH’, the inclusion H'CH means that {1} X&CH. This
occurs only when F'=], , with T,=G,, and acA,, or F'=Uiisp);.«; With n(r)=1
and a,, a,, -+, ap,€A,. Thus we have proved in particular that the conditions (R1)
and (I2iii) hold.

STEP 3. Assume that for some [, ., j,,aﬂjéi,,sﬁ&@ for two different 0, 0,4,
where 8;=B;, (i=1, 2). Take a ¢€©, with L=B;, such that ¢(B8,)=p satisfies that
j,,mj,;l,,g:@. Then 1xXe<H’ does not belong to H, because any element g H sends
in total f,. onto J, . for some a’€A, whereas, under 1Xa, J,..N/}, 5,% D is left
invariant and J,..NJ},.p, is sent into Jj, ., =J3, 5 Which is disjoint with J, .. Thus
it follows that H’¢CH. Therefore, when H'CH, there exists, for any J, ., a unique
de4 such that J,,.C\Upes;J5.5-

STEP 4. Assume that for some J,.., J;.«NJj.5,# @ for two different f,, 8. B.
Take 0=®g, such that o(8;)=f, and that o(8,)=p satisfies [, .NJj; s=@. Then,
under 1Xo€H’, J,.aNJ} 5, is left invariant, whereas [, ..N\J;s, is sent into J§.cs,
=/ 5 which is disjoint with [, .. So we see that 1Xeoe&H whence H'CCH, similarly
as in Step 3. Thus we have proved that for every J, . there exists a unique J} 4
such that j,,acj,g,,g.

STEP 5. Fix y&I and let J;.o,CJ}.5, for some a,€A4,, B.=Bs Put
(3.7 AABY={ac A;; Jr.aClisl, N, 8; B)=1A%P)I.

Then we shall prove that N(7, 0; B)=N(7, 9; Bo) for every B&B;. Assume the con-
trary: for some B&B; N(1,0; B)#N(r, d; B,). Take g=&p; which sends B, to
B:a(Bo)=B. Then 1xXas=H’ sends [} 5, to Jsaopp=Jsp On the other hand, the
numbers of elements in [, 8, and in Js g coming from N, are different from each other.
Indeed, they are respectively equal to n(y)N(7, d; Bo) and n(y)N(7, d; 8). Therefore,
under 1xa, N,NJ} s, can not be sent to N,NJ; s bijectively. This means that 1xo
&H, whence H'¢CH. Thus, if H'CH, we have N(7,9; B)=N(r,0; Bo) (=N(7, 0)
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(put)) for any B<B;.
Now put

(3.8 A= \ﬁj AXB)  (BeB,).

Then we get a partition A,=\JscsA¢ of A, for which |A¢|=co or 0, and in turn, for
non-empty A{, (3.8) gives its partition into infinite number of subsets A8) with ex-
actly N(7, ) elements. Thus we have proved that the condition (R2) holds.

STEP 6. Fix d=4 and B,=B; and put

(3.9) Is={rel'; A)B.)+d}.

Then, for any B B; we have

(3.10) Ts.5= er Ulra (€l as A¥B)).

Note that

3.11) n@)=2,n(NN(, 0) (Fl).
Now fix numberings 7y, 72, =**, ¥m, m=|["s|, of elements of I';, and a,, a,, -, ay,

N=N(r, 0), of elements of AB,) for each yI’;. Define

(3.12) ]3‘_,90:(j£10, ]220) Tty J;?:) ’

where, for every rel’;,

(3.13) j{ﬂo:(jr.alr jr,agr ) .Ir.aN)~

Then there exists a unique £;£6,, such that

(3.14) §s0J5.8,=J3.8,-

We know from Lemma 2.1 that H(Jj, T3)=H(&:°J5 &°T5). On the other hand,
take an arbitrary S Bs, and then ¢&&g; such that ¢(8,)=8. Then the element 1X¢
in H(j, Ts)=H (5035 §a°T35)CH’ sends §;0J5,5, 0nto &5 /5,059 =6s°J5.5 preserving the
orders in both of them. Since H’'CH by assumption, 1X¢ must send each set of ele-
ments j_,,a in J§ p,=&s°J5.p, bijectively onto a set f,,a, in &s°J5.5. This makes us

possible to define a numbering aj, @;, -, ay in AYB) corresponding to ai, a,, -+, ay
in A%B,) by
(3.15) (IXU)(]}.aj)=]}.ajf (IS;EN=N(, 3)).

Now put for feB;,
(3.16) Js.e=U% J& -, T, m=\I";l,
where, for every yel’;,
(3'16,) jfgz(jr.air ]T.aéy ) jr,a'N) ) N—_—N(T, 5) ,

and put 3}={/3 5; = B;} an infinite set of ordered n(d)-sets.
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The relation (3.15) means that there exists an s(7, 8, )@, such that, in
(I1x0)J3. 5,=(1x0)&s°J5.8,)=EsJ5.5 and in J§ 5 B=0c(Bo), we have

(A1%X0)]r.a; =57, B, ©)°Jr.a;  (elementwise).
Since 1Xg=H'CH by assumption, we get s(7, 8, ))&T,. Put

S(ﬂ)=(8(7’1, ‘8): S(Tz, ,B)r R S(Tm, ﬁ))
with
S(rjr ﬂ):(S(ij .B: 1)’ S(Tj, ﬁr 2)! Tty 3(7’;‘» ,Bv IVj))ElsENka ’

where T,=Ty, N;=N(y;, 0). Then we have proved that
(3.17) EsoJ5.8=5(B)J3.5-
This means that £;°3j is equivalent to Jj={/3.5; = Bs} under
(3.18) T'@)=(T; )V X (Ty)NeX o (T )Vm
with N;=N(y;, ). This group 7'(0) is imbedded canonically into &, according to
(3.16)-(3.16").
If we take an arbitrary numbering ai, a3, -+, ay, of elements in A';j(ﬁ), then the

relation (3.15) does not necessarily hold, and therefore &;°J; is equivalent to J% under
the bigger group

(3.19) T(a):mrs[m (T )Vix&y,)DT'(9),

where T(d) is imbedded into &, s, according to (3.16)-(3.16’). This gives the condition
(I21) in the theorem.

STEP 7. We see as in Lemma 2.1 that H'=H" is also expressed as H* with
B°={F', (6:°3%, Es°T5); 04},

Then, since H'CH=H" we see from (3.16)-(3.17) and the last statement in Step 6
that the condition (I2ii) holds:

(3.20) £ T5CT(0).

Thus the proof of the necessity is now complete, and so is the proof of Theorem
3.2

3.4. Conjugacy between standard subgroups
We can deduce from Lemma 3.1 and Theorem 3.2 a property of our parametriza-
tion by B of standard subgroups and a conjugacy criterion for these subgroups.

Theorem 3.3. Let H=H® H'=H"Y be two subgroups in A with %, &’<B in (3.1),
3.3).

(i) H=H' if and only if the following conditions (E1) and (E2) hold for b, b':

(El) F=F';

(E2) there exist (1) a bijection k of I' onto 4, and (2) for every y&I', an element
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£,EG,y, such that n(y)=n(0) with =x(r)e4 and &,T,=T}, and that &3,
is equivalent to I under &,°T,=Tj.

(ii) H is conjugate to H' under G if and only if the following conditions (Cl) and

(C2) hold for 6 and %' :

Q€L |FI=|F'|;

(C2) there exists (1) a bijection & of I' onto 4, and (2) for every yEI', an element
§,€EG,(p, such that n(r)=n(0) with d=k(y) and &T,=Tj; for vl except a
Jinite number of v, and that, for exceptional y, after removing the same finite
number of ordered n(y)-sets (here n(y)=n(0)) from each of &,°3, and I3 they
are equivalent to each other under &,°T,=Tj.

Note 3.4. Put ¥'=}F, (§,°3,, &°T,); rl'}. Then, by Theorem 3.3(i) above, we
have H=H®=H%. Replace b by b°. Then (C1), (C2) in Theorem 3.3(ii) are rewritten
in a single form as

(C12) there exists ‘a bijection k of I" onto 4 such that, for y<I', put d=x(y)=4,
then, n(r)=n@), T,=Tj and I, and J; are equivalent under T,=Tj after
removing the same finite number (zero for almost all ) of n(y)-sets (=n(d)-
sets) from both of I, I

The condition (Cl1), or |F|=1|F'|, follows from (C12) automatically.

3.5. The property (GRP1) for %A

Now let us prove a property of H=H" in % which consists a principal part of
(GRP1) and plays a crucial role in proving the irreducibility of representations of G
induced from H.

Theorem 3.5. Let H be a standard subgroup of G=S, in A and g=G. If gHg™!
CH, then we have g€ H. In particular, the normalizer Ng(H) of H in G coincides with
H itself.

Proof. Take b={F, (3,, T,); r€l'} B such that H=H". Then gHg '=H*" with
ep={¢F, (83,, T,); r<I'}). Note that, in 8J,={%], .; ac€A,}, ¢J;.a=J;.« for almost
all ac A,. Taking gHg '=H*® as H’, we apply Theorm 3.2. Then the necessary and
sufficient conditions (I1), (I2) for H'CH say that (1) ¢ F=F, and (2) if £/, .%# /;.a\
then ¢/, «=t.°J; x> With some t,&T, and ae@'mr. Since the total number of (7, a)
for which ¢/, «# J, « is finite, we see that g=H. Thus we have proved that gHg™
CH means g=H whence gHg '-=H, and therefore we get Nes(H)=H as a result.

Q.E.D.

Note 3.6. By this theorem, every He¥U satisfies the condition (ii) in (GRP1) in
§1.1.4.

3.6. The properties (GRP1) and (GRP2) for A
Here we prove a property of the set % of subgroups H, which plays an important
role in studying the equivalency among representations of G induced from H’s. Let
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H=H'e% with b={F, (J,, T,); rel'} in B. Then by definition,

(2.21) H=6;X% HP’ HQ, T, H;, T)=DR; T))NCy, .
7€
Let us define subgroups Hp, Hg of H as
(3.22) Hpy=Cp X II' D(J;, T}, He={1} X II' ({1} X&4,) ,
rel’ rel’

which we call the D-part and the &-part of H respectively.

Theorem 3.7. Let H, H' be two standard subgroups in U, and let g=G. Assume
that [H: HNgH'g ' ]<oo and [gH'g™': HNgH’'g ']<oo. Then H=gH'g™".

Proof. Since gH’g™! belongs to U again, we may and do assume from the begin-
ning that g=e, the identity element of G. Let us assume that H'q¢CH. Then, check-
ing carefully each step of the proof of Theorem 3.2, we see that in each step there
exist an infinite number of elements A’ H’ which belong to different right cosets of
H (hence of H'NH). In fact, in the cases of Step 1 to Step 5, there exist infinite
number of such elements of the form 1Xxo in {1} X&z,CH(Jj, THCTHE for some d=d.
In Steps 6 and 7, we get such elements A’ from the D-part Hp of H'. Q.E.D.

The above theorem says that the condition (GRP2) holds for %, and therefore so
does (i) in (GRP1). Thus, together with Theorem 3.5, we get the following

Theorem 3.8. For the set W={H"; 6B} of standard subgroups of G=5., there
hold the conditions (GRP1) and (GRP2) in §1.1.4.

Remark 3.9. When we treat representations of G induced from finite-dimensional
irreducible representations of H<9WU, Theorem 3.8 is sufficient for us because for the
set R, of such representations of H's, there holds the conditions (REP), as is remarked
in §1.1.4, and we can apply Corollary 1.4, getting Theorem 5.1. Note that such a
representation of H reduces to a character on the infinite part H. of H (by Lemma 4.2).

When we study induced representations from infinite-dimensional representations
of H, the situation is not simple. In particular, the condition (REP) does not hold in
general for {x,, 7,}, n;€R. These cases will be studied from §6 on. We prove the
irreducibility in Theorem 7.1 by appealing to the boundedness conditions (B,) and (C,)
to determine the dimension of the space of intertwining operators, and as a result we
know that (REP) holds at least for m,=m,=n. To study the equivalence relation
among the standard induced representations of G, we can not appeal to (REP) but
apply the results in [DG] essentially. Thus we come to our criterion of equivalence
in Theorem 8.9. In between the commutativity of two induced processes (in Theorem
1.9) plays an important role.
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§4. Finite-dimensional representations of He

Let H=H*=% with =3B in (3.1). Take a finite-dimensional, irreducible unitary
representation (=IUR) = of H. Then, according to the direct product decomposition

4.1) H=H/H. with H;=&p, Ho=IljerH,,

where H,=H(J,, T,)=D(J,, T,)N@Arz @Ar(TT)' 7 is a tensor product of representations
mr of & and ©, of H, (y&I'), of which almost all must be one-dimensional (i.e., =,
is a character). We denote this as

4.2) 1= rQ(Qerm,).

Let us study =, of H,, isomorphic to the wreath product &,(T;) of T, with S,
Since &4, =S, we first give the following

Lemma 4.1. A finite-dimensional irreducible representation of .. is necessarily a
character, and 1t is equal to the trivial character 1 or to the sign character sgn: sgn (g)
=1 or —1 according as 0 =&, is even or odd.

Proof. Let E be the kernel of the representation p, which is normal in .. We
see easily that E={1}. For any n, ENG, is normal in &,. Therefore ENG,={1},
A, or S, for n>4, where A, denotes the alternating group of order n. From this,
the non-trivial normal subgroup E should be equal to 9. or &.. Q.E.D.

Now proceed to H,, then we have the following

Lemma 4.2. Let |A,|=c0, and =’ be a Sfinite-dimensional irreducible representation
of H., T,)=D(3,, T;,)X@Arz@w(’]‘,). Then it is necessarily a character, and is given as

43) 7'((ta) ) =Xr,( IT Pa”'(ta))-Yar(0)
aGAT

for (t,,):(ta)aeATED(S,, T,) with t.€Ta=¢a(T,), and 0ES,,, where Xr, and Xa. are
characters of T,CGn( and ©,4,=@., respectively.

Proof. Since the dimension of representation is finite, ='|&4 (T,) is irreducible
for some finite A’C A,. Therefore z’(h) is a scalar operator for any h=&,(T,) with
A’=ANA'. Hence n'(cho™')=n'(¢)n’(h)n’(¢)" is also a scalar operator for any
ae@,i,. On the other hand, @Ar(Tr) is the union of ¢:-&4(Ty)-¢~* over oe@Ar. This
proves that =’ is itself a character.

The expression (4.3) follows from the definition of the product ¢-(t,)-¢7!. Q.E.D.

Thus we have proved the following

Theorem 4.3. Let © be a finite-dimensional irreducible representation of H=H" in
N. Let the canonical decomposition of H be as in (4.1). Then there exist (1) an irre-
ducible representation mp of Sp, and (2) for every yel', a character Xz, of T,C&up
and XAT of 6‘47, such that
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7(7)=n p(T) for €&y,
R((t2) )=, IT go”ta) La(0) T,
for (ta) 0 €H(,, T)=DS,, T)xCs,,

where I denotes the identity operator, and ¢, is as in §2.2.
Conversely any datum {mp, (Xr,, X4,); rel'} gives a finite-dimensional IUR = of H
as above.

§5. Representations of G induced from finite-dimensional IURs of H in U

Let U be as before the set of standard subgroups of G=&,: A={H"; b=B},
where
b={F, ,, T)); rel'}  with J;={/,..; a€A4,},

H*=GpxITjerH,  with H=D(, T,)%S, .

Further let %, be the set of all finite-dimensional IURs of H in 9. Then such a re-
presentation 7=x=(b, Q;) of H=H®c¥ is given as in Theorem 4.3 by a datum

(5'1) Qf:{;'rFr (XTT; XAT); TEP},

where 75 is an IUR of &y, and XTr and XAr are characters of T, and @Arg@” respec-
tively.

As is remarked in §1.1.4, the condition (REP) holds for $i,. Further we see from
Theorem 3.8 that the set of subgroups U satisfies the conditions (GRP1)-(GRP2).
Hence we can apply Corollary 1.4 and get the following

Theorme 5.1. Let U be the set of standard subgroups of G=6.., and R, the set of
finite-dimensional IURs of HE .

(i) Induced representations p(b, Q,)=Indf=(b, Q) are all irreducible.

(ii) Let p=Ind§r and p’=Ind§ =’ be two such IURs of G. Then they are mutually
equivalent if and only if there exists an xEG such that

(5.2) H'=H* and =n'=rx*®.

Let us rewrite the above conjugacy condition (5.2) by means of data (b, Q) for =
and (8', Q%) for z’, where

0'={F’, (I35 T}, ; 6=d} with Ji=1{J5s; B=Bs},
fo:{ﬂ%") (xlTb) x})’a); 56‘4})

(5.3)

with zz an IUR of &., and Y’T‘% and Xp; characters of T; and &g; respectively.

We apply Theorem 3.3. Since H=H" and H'=HY are conjugate, we have (a)
|F|=|F’|, and (b) a bijection « of I" onto 4 and §&&,, for every yl  such that
n(y)=n(x(7)) and &,°T,=T/,, and that the condition in (C2) in Theorem 3.3(ii) holds.
Moreover, taking into account Note 3.4, we have the following
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Lemma 5.2. (i) Assume that H'=x"'Hx for H', HEN. Take 0'EDB such that
H'=HY, then there exists an appropriate BB giving the subgroup H as H=H® such
that (1) |F|=|F"|, and (2) under a bijection £ of I' onto 4, we have, for ycI and
0=k(7), n(r)=n(0), T,=T;j and I, and Jj; are mutually equivalent under T,=T} after
removing the same finite number (zero for almost all yEI') of ordered n(y)-sets (=n(d)-
sets) from both of J,, Js.

Conversely if b, 'S8 satisfy the above conditions (1) and (2), then we have HY =
x *H® for some x<G.

(ii) Assume H'=x"'Hx and take b, % as above. Then the representations ='(h’)
and w(xh'x~") (k' H') are mutually equivalent if and only if, in the data Q; and QY,
there hold that (1) mr and nfp are mutually equivalent, both considered as representations
of ©y with N=|F|=|F’| canonically, and (2) XT7=X'T5, X4,=Xp; (=1 or sgn) for yel’,
0=£(7).

Note that the statement (1) in (ii) above has well-defined meaning because Sy=
Int (&y) for N=3.

Remark 5.3. To get an IUR p of G=&, of the above type, we can proceed as
follows. First, take a finite symmetric group &y, and any finite or countably infinite
number of finite groups {T,; y<I'}, and consider the restricted direct product group
K=6yXIl1er®«T;), where &.T,) is the wreath product of T, with &.. Second, we
take an IUR ny of &y, and any set {(Xz,, Xw;); v} of pairs of characters of T,
and &.. Then define canonically an IUR of K from them. Third, we take, for every
yel’, a faithful permutation representation of T, viz., an isomorphism 7, of T, into
a finite symmetric group G,¢».

Now, take an injective isomorphism of K into &.=&y by means of the system
{z,; 7€l'} and a two-step partition of N into ordered sets as {F, J,; r&l'}, where
|F|=N, and J,={/,..; a€A,} is an infinite set of ordered n(y)-sets J, . of integers.
Finally the representation of the image HCG of K obtained canonically under this
imbedding is to be induced up to G.

In the succeeding sections, we shall treat the case where the system {Xr,; rel’}
of characters is replaced by any system of IURs {mr; yel'} of finite groups TT.
However, in this case, the condition (REP) does not hold in general, and so the situa-
tion becomes much more complicated.

Remark 5.4. [t is worthwhile to note here the following. The author got a
strong impression, during his study, on certain similarity between the standard sub-
groups H=H?" (whose essential parts are the wreath products of type &.(T)) for G=&.,
on the one hand, and the parabolic subgroups P for a reductive Lie group G° on the
other hand. This impression goes beyond the following rather formal similarities.

(i) FIRST SIMILARITY. In both cases, the normalizer in G or in G° of such a
subgroup coincides with itself, and further there is a similarity about the properties
(GRP1) and (GRP2) in §1.1.4.

(ii) SECOND SIMIRARITY. This concerns the methods of construction of [URs of
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G and G° by induction from these subgroups. On the one hand, H in U is expressed
as

(5.4) H=HpxHg with Hp=&zX II' D(J,, T;), He=1I" @Ar’
rel’ rel

and we take an [UR &p of Hp and a character Xg of Hg, and then construct an IUR p
of G by

(5.5) e=Ind§(£rQXe)) .

On the other hand, let

(5.6) P=LN=LxN with L a Levi subgroup, N the unipotent radical of P,

be a Langlands decomposition of P. Take an IUR &, of L and construct

6.7 p=Indg"(:@1x),

which gives in general an IUR of G°.

(iii) The third point is not a similarity but a contrast between canonical decom-
positions (5.4) and (5.6). Eventhough Hp and Hg correspond to L and N respectively
in the similarity between (5.4) and (5.6), we see that in (5.4) Hp is normal whereas in
(5.6) N is normal.

From these observations, we ask if there is any general characterization of such
subgroups as those in 9, which is comparable to the characterization (or definition)
for parabolic subgroups in a general setting, or to that for Cartan subgroups for any
abstract groups due to Chevalley [2, Chap. VI, §4].

Note 5.5. In Obata’s recent works [16], he utilized subgroups H(#) of &, which
are given as centralizers of special € Aut(&.). These subgroups are more similar to
Cartan subgroups of Chevalley than parabolic subgroups, at a first glance, but they
are also a special subclass of our family 9 of standard subgroups and are essentially
equal to restricted direct products of wreath products @Ar(TT) with T, cyclic and | A, |
=oo, Let A’ be the set of all such H(0)s and R’ that of elementary IURs of H=U".
Then %’ consists of characters and so R'C%,. In this case, the conditions (GRPI1)-
(GRP2) hold for %’, and the condition (REP) holds for %’, and so Corollary 1.4 can be
applied. There does not appear the role of reference vectors.

§6. A family % of irreducible representations of subgroups in U

In §§4-5, we have studied finite-dimensional [IURs of subgroups H in ¥ of G=&,,
and their induced representations. These results are in a sense a preparatory step to
treat infinite-dimensional IURs of standard subgroups H. In this section, we give a
certain family % of factorizable IURs of H=%, which will be utilized to construct
IURs of G. The reason why we take such a family % will be explained at the end
of this section.
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6.1. Standard subgroups of G
Let H=H" be a standard subgroup of G corresponding to b3 :

(6.1) b={F, 3, Tp; rel't  with J;={/,..; ac4,},
(6.2) H=@;XIljerH,,  H,=H(,, TP=D(,, T)xSy,.

Note that b satisfies the conditions (B1)-(B3) in §2.4. Here the finite group 7, is
assumed to be faithfully represented in &,,,. The set J, of ordered n(r)-sets gives
a datum to imbed the wreath product @AT(T,) into G as follows.

For acA,, let J, o=(p1, ps -+, Da) With n=n(y), and let ¢, be the correspondence
of Jya to In=(1, 2, -+, n) such that ¢,(p;)=5 (1=j<n). By means of ¢,, S, and hence
T, is imbedded into &7, , as

(6.3) $a: & DT 2t — @a(t)=ta""ot2ta &7, .

Then by definition,

6.4) D@y, TY=lhes,Ta  With Ta=gu(T}),
giving the canonical imbedding

(6.5) ¢y @ (T)=Da(TI)NSy, —> H,;=D,;, T)xG,4,CG,

and thus H is the image of a saturated (in the sense of (B3)) imbedding ¥'=¢ rQ(Q,er¢;)
into G of a restricted direct product group H given as

(6.6) H=Cy XH;’EF@A;—(TT) with N=|F]|,

where ¢ denotes the natural isomorphism of &y onto &f according to the order in F.
Through this canonical imbedding ¥, IURs of H may be given as those of H when
it is convenient to do so.

6.2. A family % of IURs of subgroups in %
Now let us give a family Ry of IURs of each H=%W. Then a family R is defined
as the union of Ny, over HEA. We give a = in Ry as a factorizable one:

6.7 =1 r@Q(Qrll,),

where 75 is an IUR of &F, and for each yel', II, is an IUR of H,, and b=(b,), b,
V(I,), lIb,|=1, is the reference vector for the (possibly) infinite tensor product of IIs.

In turn, each I, of H, is given by a datum (p’TT, xAr, a(y)) with PrTr an IUR of
T, XAr a character of @Ar and a(r):(a,,a)aﬂr a reference vector. We put

(6.8) HTZH(Qr)"Sbr_l

by transferring through ¢,: @Ar(Tr)_’Hv the IUR II(Q,) of @AT(T,) in § 1.2.3 corre-
sponding to the datum

(6.9) Q,=(Ay, oh, 4, a()  With %=1,

More exactly, for (ty)eear0<D(J,;, TT)N@AT with t,€T., aC—_@Ar,
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(6.10) () 0)=(m(ta)) [ )QAa0)  With 7o (ta))=QEZL mu(ta),

where I, is the operator permuting the factors (of decomposable vectors) on V(z(,,)=
®§g),rV(7ra), and na(ta)zprrr(goa“(ta)). The reference vector a(y) for the infinite tensor
product is given as

(6.11) a(N=(ay.a)aca,  With ¢, EV(7)=V(pL), la;.«ll=1.

In the above sense, each element n in Ry is given by the datum (b, Q) and is
denoted by =(b, Q). Here b in (6.1) determines H=H?" together with the imbedding ¥
of H into &, with image H, and

6.12) Q={zr, (0%, Xay, a(er, b=(b;)er)

determines an IUR of H as in (6.7)-(6.11). The set of all possible @ corresponding to
b is denoted by £(b), whence Ry={n(b, Q); QL(b)}.
The set ® of IURs of H’s in U is given as

(6.13) R=Unexftn={n(b, Q); bEB, Q=Q(b)}.

6.3. On the choice of families % of subgroups and % of IURs
Here we give some remarks on the choice of the families ¥ and %, which evoke
certain open problems.

Remark 6.1. The choice of the family % of standard subgroups comes principally
from the demand for properties (GRP1) and (GRP2). Especially the reason why |A4,|
= for every y=I', and why we take the biggest G but not TSSy for the finite
part, is the following. If we are in the contrary case, then in inducing up to G=8.,,
we have anyhow an intermediate step such as Ind5¥'r with 7 an IUR of 77, a finite
F'DF and a T'C&p.. In such a situation, it is a shortcut to take Sz and an IUR 75
of & from the beginning. Here we also have to take into account Lemma DG3.16.
Moreover it is worthwhile to recall the condition (DIFfin) for irreducibility in Theorem
DG3.6.

Remark 6.2. To construct an IUR = of H in ®, we take for every factor H, of
H=@rXIljerH, a factorizable IlUR 7r<,>=®§g,’lr7ra of D(J,, T,)CH,. The reason why,
is that we know little about infactorizable IUR =, of the restricted direct product
group Hﬁ,eArT «, especially nothing about the stationary subgroup @Ar(ﬂr)C@AT and its
second cohomology group (cf. Appendix in [DG]).

Remark 6.3. For each component H,=D(J,, T,) XS, y of H, we take only one IUR
p%, of T,. Contrary to this, let us take some number of [URs p™ of T, not necssarily
different from each other but indexed by me&l,, and construct a standard IUR of H,
starting from them. This means the following. We divide J, into subsets J™=
{Jr.a; a€A™}, I_Ime,rA'"zA,, and define for each m an elementary IUR of D™=
D™, T,) as
ﬂm((ta>aeAm)=®fx1éAm7ra(ta>
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with 7.(ts)=p™(¢a""(a)) for a= A™ and a reference vector ¢n=(Cm,a)acam. Then de-
fine an IUR =, of D(J,, T,)= ’me,TD"‘ as a tensor product of #™’s with respect to
a reference vector d:(dm)me,r. At last, taking a subgroup ITie ,TGMC@AT(ﬂm) and
its character, we get an IUR of H,=@,(T,) by the standard inducing method in
Theorem DG3.6, that is, we induce an IUR ®$,,e,r(w"®xm) with characters X™ of G m
from the subgroup Hj= 'me,r(D(Sm, T,)x@Am)EH’me,réAm(TT) to H,.

In case |I,| <o, since the role of the reference vector d is superfluous, it is clear
that we can start from the subgroup Hj instead of H,, and take as the starting point
the datum {4™, (™, T,), p"‘}me,r instead of {A,, (3, T,), p™'s}, Ar=Hm€17Am~ Thus
the situation is reduced to our standard case. In this connection, cf. also Theorem
DG3.6 and Examples in § DG3.9.

However, in case |[,|=c0, we see that the role of the reference vector d is
essential in general and can not be neglected. Therefore, repeating this inducing
process, we get, at least formally, an unlimited hierarchy of induced representations
of ., counting the number of accumulation or steps of essential necessity of refer-
ence vectors. In our construction of p(b, @), this accumulation is two-fold: first one
is a(r)ys and second one is b. Whereas in the above discussion the accumulation is
three-fold ¢,’s and d’s (both depending on y<[") and b=(b,)er.

We will return to this point in another occasion.

Another point left to discuss is the possibility to start with not necessarily irre-
ducible, but cyclic, representations p’TT’s.

§7. Irreducible unitary representations of & induced from those in %

7.1. Irreducibility of induced representations
Let H=H?" be a standard subgroup with 6% in (6.1), and n(b, Q)% an IUR of
H with the parameter Q in (6.12). We define a unitary representation of G=8., as

(7.1) p(b, @)=Indf=(b, Q).

Here we give one of our main results as

Theorem 7.1. For any IUR =n(b, Q)ER of an H=H®<W, the induced representation
o6, Q)=Ind§x(b, Q) is always irreducible.

Before proving the theorem we explain the meaning of the set of IURs of G thus
obtained.

Nete 7.2. To get such IURs, we can start with an arbitrary but at most countable
set of finite groups {E,},er, not necessarily mutually non-isomorphic. First take any
faithful permutation representation E,—&,(, for each E,. Then starting from this
datum, we can choose (in many ways) a standard subgroup H=H®’c% as follows.
Take J,=1{J;.«; a€A,}, |A,|=o0, a set of ordered n(r)-sets. We assume that ],.a
(rel’, as A,) are mutually disjoint and F= N\(II,er supp (J,)) is finite, where supp (J,)
:UaeAro_a. Then we get a b8 by b={F, (3,, T,); r['}, and so H=H*=¥, where
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T, is the image of E, in S,.

Now, take a system of IURs p?r of T, and characters XAr-:sgn or 1 of @Ars Gee.
Then they give a datum @Q if we take in addition an IUR #n of &7 and reference
vectors a(y) and (when |['|=oc0) a reference vector b=(b,),er. Thus we get un-
countably many IURs p(b, @) of G starting from an arbitrary set {E,}.

7.2. Proof of Theorem 7.1 (Step 1).

To prove the irreducibility of p(b, Q)=Ind§=(b, @), we apply Theorem 1.2(1). As
we saw in §3.6, the set U of standard subgroups has properties (GRP1) and (GRP2).
Therefore it is enough for the irreducibility that the condition (REP) is satisfied for
r=r(b, Q) with itself. Since the proof here is simple, we do not appeal exactly to
the condition (REP), but rather prove directly that if an L&Hom (z, n*; HNH?*)
satisfies the conditions (B,) and (C,), then L=0, for any representative x&H of
H~NG/H.

To do so, put n’==% H’=H? and apply the conditions (B,) and (C,) in §1.1.4
for the identity element eG, to an L&Hom(w, n’; HNH’). These conditions are
written as

(Be) S LathplP=Mivl*  (h&(HNH)NH),
() SIL*z (hwli=Mllwl*  ("EHNH)NHY),

for veV(n), weV(x’), where M is a positive constant.
For H=H® the subgroup H'=H?® is expressed by Lemma 3.1 as H'=H" with
=B, y=x"!, where

(7.2) o'={F', (J;, T,); rel’} with
F'":yFE{y(l), zEF}, 37/‘2{]7/‘,01; aEA;‘}’ j;’.aEyjr.a'

Note that, since x &G is a finite permutation, there exists a finite subset /7, of I"
such that =3, except for yel",, and further for each y<I’, there exists a finite
subset A, of A, such that J; .=/, . except for acA4,;. Let E be the union of F and
Jr« €L, a€A,,). Then EDF’, and any element me E”’=N\E is invariant under
x~!, and so supp (x"")={meN; x '(m)#m}=supp (x) is contained in E.

Put H”=HNGz. Then H'=H'N\Sg.CHNH’, and n|H”=nr'|H” because x com-
mutes with any heH”. Note that

(7.3) H”=( H H{yx( H H,) with H/=( II'T.)x& ”CH7,

rel’ relr aeA;

where I'"=I'\I",, Aj=AA,;, and To=0u(T,) for a=A}. Further H” contains the
subgroup

(7.4 D'=(1II (II'Ta ))x( H D@, Ty,

7GF1 aEAr

and the D-parts Hp and H}; of H and H’ defined in (3.22) are expressed as
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(7.5) Hp=Hp, X D", Hp=H}XD", with

Hpi=@pX II ( II Ta), Hpi=x"'Hpix=Gp X II ( II x 'Tax).

1€l acay rely acdy

On the other hand, put b”=(b,)er= a”(r):(a,.,a)aeA; for yel',. Then we see
easily that the representation space V(m)=V (7 r)Q(QlerV(II,)) of z is decomposed as

(7.6) V(m)=V.QV” (=V(x')) with
{ V1:V(nF)®(®7ET'1(®a€A7.lV(7ta))) ) dim V1< o,
V= @per (@Y (D@ VT,

recalling V(H,):@gg,;,V(na) in (6.8)-(6.11).
Corresponding to (7.6), both the restrictions #|D” and =’|D” are expressed as

(1.7

(7.8) n(d")=1IyQr(d"), ='(d")=Iy,Qz(d") (d"€D"),

where 7 is an IUR of D” realized on V”.
Take an LeHom (x, n’; HNH’). Then L intertwines =n|D” and zn’|D”, and so
it is expressed according to (7.6) as

(7.9) L=L.®Iy» with an L,eB(V),).

Using this expression, we shall prove that if both the conditions (B,) and (C.) hold
for L+#0, then the element x should belong to H. This is an assertion stronger than
(REP) and proves the irreducibility of Ind§x in Theorem 7.1.

7.3. Proof of Theorem 7.1 (Conditions (B,) and (C,))

Take an x=G. We study (B,) and (C,) for L&Hom (n, n’; HN\H'’) in several cases
step by step. Here for the convenience for later calculations, we use temporarily the
following notation:

gC={g); i=C} (=£C),  gJ=(g(pr), &(p2), -+, &(Ppn)) (=*])

for g&G, a subset C of N, and an ordered n-set J of integers.

Cast 1. Assume that supp (J;,)Nsupp (7. )=supp (I,)x "' supp (I, )# @ for different
v, v’€l’. Then, take a,€A, a,=A, such that f,,alf\x"(j-,/,(..g)f#@. Here we con-
sider the condition (B.). We choose an infinite subset X of @ArC’H which gives a
system of representatives of (HNH')NH such that the partial sum of |Lz(h)v|? over
he 2 in (B,) already does not satisfy the inequality in (B,) if L+0. From the defini-
tion of I'y and A, it is clear that 7, y'el’,, a;€A,,, a;€A,,. So let X consist of
transpositions ¢,=(a;, @) in &, with ac€Ay=ANA,. Then for c_v;t,B, Ga0p =
(a;, B, @) does not belong to H’, whence not to HNH'. In fact, x(J, p)=/..; since
Be A7, and so we have

@1#(-75 ‘o'aaﬁ_l)[jr,almx—l(jr’,az)]:x(jr,ﬁ)r\(x 'oaoﬁ—1 'x_l)(jr',nz)

Zj,,,gﬂ(x-a,.aﬁ"~x“‘)(j7,,,,,2).
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This means that y=x-0.057'-x"" does not belong to H and so c.0p '&x 'Hx=H" as
desired.

Now let us consider the partial sum. We know that L=L,Q1[,. with L,€B(V,).
Assume L=#0. Then there exists a unit decomposable vector v,€V, such that L,v,
+0. Let vl=UF®(®r”erl(®aeAﬂva)) with vpeV(np), va<V (m,). Fix an integer N>0.
Take a subset Yy of N-elements of ZC@AT and choose a decomposable v”&V” whose
component in V(np)-——V(p’Tr) is just equal to valeV(nal)-:V(pTTr) for every os=2y.
Then for v=v,Qv”"V(x), we have n(gg)v=v for any os=2y, and so

2 MLathwlPz Z (L @Iva(ewPz 2 I(Lw)@v”|?
he(HnH'W\II ol opeEXyN

=N-[I L[l 1P =(N- | L) ] .

Since N-|L,v,||>*>c0 as N—oo, the condition (B,) does not hold for L =0.

CasE 2. Assume that supp (I)NF’=supp (J)Nx'F=@ for some ysI'. In this
case too, we consider the condition (B,). The argument goes on the same line as in
Case 1, and thus we see that any non-zero L=Hom (x, n’; HNH’) does not satisfy

(Be).

Cast 3. Assume that FNsupp (37)=FNx~"' supp (I, )# @ for some 7’<[". In this
case, we consider the condition (C.). Accordingly we replace H by H’ in the argu-
ment in Case 2, and arrive at the similar conclusion.

From Cases 1~3, we see that it is ncessary that x leaves each F, supp(3J,) (r&!’)
stable, for L+0 to satisfy (B.) and (C,).

CASE 4. Assume that j-,,a,f‘\j;_(,z:#Qj, j-,,al¢];,a25x“(j,,,a2). Let 2(:6,17, be as
in Case 1 the set of g,=(a),, @) with acAf=ANA,. Note that x7*(J,..)=], . for
any a<Af. Then, applying x-0,057" to both sides of the above two equations, we
get for y=x-0,057"-x7},

jr./i(\y(jr.az):#@v jr.ﬂ;&y(jr,ag)-

This means that y does not belong to [/, and so X={o,; a=A{} is a system of re-
presentatives of (HNH’)\NH. Starting from this point the argument for the condition
(B.) is the same as that in Case 1.

Thus we have shown that x should satisfy that x(]—,_a)=]_7. 7,<a)=17(j,,,,) (acA,)
for some n€64H,CS.. In this situation, we have for every a€4, a permutation
£.E€8, ) such that

(7.10) x(/;’.a):$:|‘°.jr.n(a);

where &-J is defined in (2.6) for £, and J an ordered n-set. From the definition,
we have &o(c /)=0(&-]) for £=6,. &S.. In particular, (7.10) is equivalent to

(711) Sa_l“.]r.a:x-l(.[r.:y(a))‘

CASE 5. Assume that &, &T,CS, for some yel" and a;=A4,,. We consider
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again the condition (B,).

For any ac A=A NA;;, we have yp(a)=a and §,=1. Let 2C®Ar be as in Case
1: Y={o.=(ay, a); a=Ay}. Let us prove that X gives a system of representatives
of (HNH')NH. We apply y=x-0,05""x7" (04, 63€2) to J, yeap, then by (7.11),

y(]y n(al)):(x ‘ anaﬁ-l)(&arl"j;x al)zéarl"«x : Uaaﬁ_l)(jr.al))
:éal_l°(x '.]r.ﬁ)zsazl°.]r. 8

because 0(/J;,«)=J« s> Dy definition of the action of 0ES,, in §2.2, and x(J,.3)=/,.5
since B€ A=A \A;.. The fact that y(J; ywp)=E8a7'°J; g With &,,&T,, means that
ye&H, whence .05 '¢H'=x"'Hx* Thus any ¢., cpc2 represent different classes
in (HNH')NH. (These calculations can be much visualized by means of the matrix
expression in §2.2 of elements in H,.)

From this point on, the argument about the condition (B,) is the same as in Case 1.

Thus, by Cases 1~5, we see finally that for any x&G not in H itself, any non-
zero LeHom (z, =% ; HNH*) does not satisfy (B,) or (C,). Hence we get for p=Ind§nr,

dim Homg(p, p)=dim Homy(z, 7)=1.

This proves that p is irreducible, and the proof of Theorem 7.1 is now complete.

§8. Equivalence relations among standard irreducible unitary representations of S,
Let p(b, Q) and p(b’, Q') be two standard IURs of G=@&.. given as
@8.1) o6, @)=Ind%em (b, Q), o6, QN)=Ind%yn(t', Q").
Here (b, Q) and (0, Q') are respectively
82 { b=1{F, 3, T rel}  with 3,={J,.a; a€4,},
Q={rmr, (0T, X4, a(yer, b=©)er};
| b={F', Qs Tp; o4}  with J3={J35; BEBs},

(8.3)
| Q' =tz (02, Lay @' @Nics, b'=(bh)scs},
J

with {F, J,.«; 7=, a€ A}, {F', J}5;0€4, BEB,}, two-step partitions of N.

We study here a necessary and sufficient conditions for unitary equivalence p(b, Q)
=p(b’, Q'), and give it in Theorem 8.9 as our final main result. We see that, apart
from elementary equivalences coming from inner automorphisms of &., there exist
non-elementary equivalences. The latter corresponds to the similar equivalence rela-
tions between standard IURs of wreath product groups S4(T), studied in [DG, §§4-8].

8.1. The boundedness conditions (B.) and (C.)
Put z,==n(b, Q), m,=x(’, Q’), and

8.4) Hi=H*=GyxII' H,, H,=HY"=6; X II' H}, with
rel’ oed

H=HQ; T)=D;, T)xG4, Hi=HQ4 Te)=DQj T5)X s, .
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As we know, the study of Homg(p,, p.) for p,~=lnd,G,j7rj, j=1, 2, is reduced to the
study of LeHom (), =,*; HiNH,") which satisfies the boundedness conditions (B,)
and (C.).. Here x&G varies over representatives of H\\G/H..

Note that if we replace (7., Hs) by (7%, H,*), the condition (B;) (resp. (C;)) turns
out to be the condition (B,) (resp. (C.)) corresponding to the identity element x=e.
On the other hand, we know that x *HYx=H" with "=y, y=x"!, given as

(8.5) I)IIZ{F”’ (3{?’) Té)&e./l} with

Fr=vF, J§={J§.s; BEBs}, J§s="J3,
so that

(8.6) H,*=6prX H‘; HY with H{=D(§, T5) X Sg;.
we

In this way, we see that our study is essentially reduced to discuss the conditions
(Be) and (C,) in case x=e.

8.2. First step to apply the boundedness conditions
Let us now study in what situation there can exist a non-zero L =Hom (xy, 7, ;

H,NH,) satisfying (B.) and (C,). First consider (B,) and denote by I(u,) the sum for
u,€V(x,) appearing in it:

8.7 I(u,)= = I Laey(houa®.

hECH AHO\H,

Fix a yel' and consider the y-component H,=H(3,, T,)=D(,, T,)%@,,. For a
subset A’ of A, consider, through the isomorphism ¢,: &, (T,)—H,, the following
subgroup of H,:

8.8 Hiy=¢ (84 (T))=Dy xSy with D4 =¢(D4(T),)).

Let I4(u,) be a partial sum of I(u,) for which h, runs over H, modulo H,N\H, from
the left. Then [(u,)=14(u,) and

(8.9) To(u)= > | Lzy(huq]®.

hMEW ' nHO\H 4'

Further fix an element ¢ =&, and consider a partial sum I ,(u;) for which h,e
Dy -a. Note that the relation d-e~d’-¢ (d, d’€D,) modulo Hy-N\H, from the left,
is equivalent to d~d’ modulo DsNH, Put T=D, and S=D,NH,CT. Then
14, ,(u;) is expressed as

(8.10) Ty s(u)= 2 | Lait-o)ui?®.
teS\T
Applying Lemma 1.12 we get the following

Lemma 8.1. Suppose A’CA, be finite. Then, for any cES,.
Tar,o(u)=14, (uy),

where e denotes the identity element in ©4. Further
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sup I, (u)Z|L|*.
luist

Proof. Let p be the IUR of T=(T,)* acting on V,=RaecsV(p.) with pazprrr.
Then, since A’ is finite, the space V(x,), considered as a T-module, is expressed as
V,QW, with W, the tensor product of other factors of V(x;). Further let U be the
restriction of m,(¢) on V,, then 7, (¢)=UQ®Iw, By Lemma 1.12,

Iy o(u)= 3 ILe@Uul*= X [ Lp@ullP=Z|L]*.
teS\T teS\T

Using this lemma, we obtain the following criterion for vanishing of an L&
Hom (z,, n,; HiN\H,) which satisfies (B,).

Lemma 8.2. Let yeI'. Assume that there exists an infinite subset 2 of S.4, such
that, for different o, 0’€2, any elements d-o and d'-¢’ with d, d'E D4, =¢(Dua(T)),
are not mutually equivalent modulo H,NH, from the left. Then an L=Hom (r,, n,;
H\N\H,) is zero if it satisfies the condition (B,).

Proof. Let A’ be a finite subset of A, and put Y, =3"&,. We apply Lemma
8.1. First, for u,€V(xm,),
Iu)zly(u)z 3 Ta,o(u)= [ Ear | Lar e(uy).

gely’
Then M=sup{l(u,); |u:l|€£1} =24 |-|L|%. Since |24 |—o as A'—A, we get L=0.
Q.E.D.

8.3. Relations between two subgroups H, and H,
Let us now apply the criterion in Lemma 8.2. To do so, we construct an infinite
subset ZC@Ar satisfying the condition there, according to the cases.

CAsE 1. Assume that there exist (7, a;) and (d, 8,) such that
jT'almjé'ﬁl-_#@ and jT-“l:Djé'ﬁV

Put C=]} 4, then every element in H, sends C to one of J; 5, BEB;, in total. Take
an infinite subset A; of A, such that j,,J\Cz@ for any a=A;. Put g.=(a,, a),
the transposition of a;, and a. Then, for different «, a’< Aj, the element y=0,0, "'
=(ay, a’, a)e@A,QHi does not belong to H,. In fact, yj,_al:j—,_a, and y fixes every
element in C\J, ., #@, and so yCNC+¢g but yC+C. Hence g, and o, represent
different classes in (H,N\H,)\NH,;. Here ae@Ar is imbedded into D(J,, TT)NGZAICHI as
1Xo. Thus 2={0.; ac A}} gives an infinite system of representatives of (H;N\H,)\NH,.
Further take d, d'eDArc,Hl. Then, since (d-0.)d' 64, )'=d-y-d’"!, we see that
d-Ga*d -0, if ata’.

CASE 2. Assume that some j,,al meets F’:j,,almF’;& @. Put C=F’, then every
element in H, sends C onto C. Similarly as in Case 1, put A;={a€A4,; ]r,alf\CiQS}
and Y={o,; a=A}}. Then this gives an infinite subset of ©Ar with the desired pro-
perty.
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According to Cases 1 and 2, we come to the situation where every ja_,q is con-
tained in some of j-r,a and FOF’. Now take into account the condition (C,) and a
version of Lemma 8.2. Then every J; . should be equal to some j§ g.

CASE 3. Assume that, for two different d,, 0,4, we have j-,,ajcsupp (35,) with
a;E4,, j=1, 2. In this case, we may assume that A;={a€A4,; [, .Nsupp (I5)=3}
is infinite. Note that every element in H, leaves the set supp (J3,) stable. Then we
see that X ={o.=(a;, a); a= A}} gives an infinite subset of @"rC’H‘ having the desired
property for the condition (B,).

Lemma 8.3. Assume that a non-zero L<Hom (my, my; HiNH,) satisfies the condi-
tions (B,) and (C.). Then, for any y<I, there exists a unique < 4 such that every j,_a,
a&A,, is equal to some jé_p, BB,

Thus, as a first consequence of the boundedness conditions, we obtain

Theorem 8.4. Let H=H® H,=H" with b in (8.2) and ' in(8.3), and, for i=1, 2,
let m; be an IUR of H; given above. Assume that there exists a non-zero LEHom (xy, w5}
H\N\H,) which satisfies both the conditions (B,) and (C,). Then b and % satisfy the fol-
lowing : F=F', and there exists a bijective correspondence r between I’ and 4 such that,

for 0=k(7),
(8.11) j,_azjé_,g for any a€ A, with some B€B;,

giving a bijection a—f of A, onto Bs.

8.4. More explicit relations between H, and H,

We consider the situation where a non-zero L=Hom (%, #,; H/N\H,) satisfies the
conditions (B,) and (C,). By Theorem 8.4, we can identify 4 with I" through & and,
for each y=I', B., with A, through (8.11). Then the data (b/, Q') for (m,, H,) is
rewritten as follows:

(8.12) b={F, &, T;rel) with Ji={Ji..; ac4,}
in such a way that J}.=], . and
(8.13) Q'={xr, (03], Xa» ' (Myer. 0'=0er}.
By the definition in §6.1, we have
(8.14) Hy=¢(Ca(Ty),  Hi=9¢ySa,T7),

where the imbeddings ¢, and ¢; into Sc,C8 with C,=supp (J,)=supp (J;) are deter-
mined respectively by the families of ordered n(y)-sets J,={/..,; a=A4;} and Jj=
{Jar; a€A,}. Further H;=H® and H,=H"Y are given respectively as the images of

(8.15) H=8yX1II' G4(T,), H'=8xyxXII' 84 (T},
el 7 rer 7

with N=|F|, through the imbeddings into &,
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(8.16) V=0 rQQrered;), V'=¢rQ(RDreres)

where ¢ is the natural isomorphism of Gy onto &p.

For the moment we restrict ourselves to the y-factors and clarify the difference
between two imbeddings ¢, and ¢; and so on. Let o,, be a unique element in S,
such that 6./, «=/}.« and that ¢,.p=p for any other pGN\j,_(,, and denote by o,
the product of ¢,, over a=A,. Then o, is not necessarily in . but in the bigger
group Sy of all permutations of N, which is isomorphic to Aut(S.).

Note that ¢, in (6.5) can be extended naturally to an imbedding of Y:-_:@Ar(@n):)
6A7,(T,) into 3., and similarly for ¢);, where n=n(y). Then by (6.3)-(6.4), we have
for y&vy,

(8.17) ()=, P(y) 0,7 =) P X)),

where ¢(g,) denotes the automorphism of S, induced by ¢,. In particular, we have
the same image ¢,(Y)=¢¥).

The above relation can be rewritten with an automorphism of ¥ as follows. Let
&« be an element of &, such that

(8,18) ‘Era"jr,a:];.ﬂ’

and consider é,z(&,a)aar as an element of the direct product E:HaeAr'Ea with £,=6,
(as4,). Every element € of £ acts on Y as «(€)y=EyE' (y€Y). We assert that

(8.19) GN=(PredE)N)=¢(E, 198 (veD).

In fact, in the notations in (2.1) and (2.6), we have for €&, and [J.=(p1, D2 ==, Dn),
EoJa=(Pe100s P10 = Per1n) =Pal€7 ) s

and therefore o,,=¢.(§,5'). Hence (8.19) follows from (8.17).

Lemma 8.5. (i) The subgroups H, and H} are both contained in ¢(Y)=¢Y) and
(8.20) &, (H)=84(T)), (/)f’(H;)Zf“@A,(Té)é .

(ii) An element tXaE@Ar(T,) with t:(ta)aeArv te€T, and 0EB8y4, belongs to
¢, (H,NH;) if and only if
(8.21) €T, N Tio-1r (AEA,).

Now put for every £é€8,, A={acA,; &.=£}. Then A,=Il:es,4, is a parti-

tion of A,. Our aim at this step is to prove the relation (8.22) in the following

Proposition 8.6. Assume there exisis a non-zero L&Hom (rty, m,; HiNH,) satisfying
(Be) and (C.). Then we may assume that the data for m, and =, are given by (b, Q) in
(8.2) and (¢, Q') in(8.12)-(8.13). Fixyel'. If& nE6,, n=n(y), satisfy |A,l=|4,,!
=o0, then
(8.22) T#T,=TiqT,.

The proof of this proposition continues until §8.9.
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At first, we consider subgroups of Y=©A7(@5n) as
Y =Tltee,B4,(Gn), Vi=Tltes,84,(T;),
(8.23) Y=Tltes,84,(TF)  with Tf=¢§"T}%,
ZzzneesngA7e(T§)C@Ar(T;) .

Then Y,C¢,"'(H,), Y.C¢,"(H;), and Y NY.C¢, '(H,NH;) by Lemma 8.5(ii). More-
over we have ¢(Y,)=¢xZ,), since Z,=«(£)Y,, and

(Y )=Ilees, H (e, TH), O Z )=Tlees, H (Jfe, T),
with Je={],.«; @€ A}, Jje=1{J}.«; aE A}, because &I, :=Jje.
$Y)=gi(Y) ©4,4(G0)
H, $(Y o) H;

\ / \/ gAre(Tr) CH e(T;e)
GV SV =442 N/

\ / &4, (T,NTH)
$(Y\NY,)CH,NH; =@, (TN, (T
Diagram 8.1. Inclusion Relations Diagram 8.2. &-components of Y,’s

8.5. Applications of results in [DG]

We can reduce the present situation to the case of infinite wreath product groups
studied in [DG, §7] as follows.

(1) Assume there exists a non-zero L<=Hom (x,, m,; H,N\H,) which satisfies the
boundedness conditions (B,) and (C,) for H,, H, and H,"\H,. Then, for any rel’, we
have a non-zero element L'eHom (I1,, II;; H,N\H;) satisfying the conditions (B,) and
(C) for H,, H; and H,NH;, where II,=I1I(Q,)°¢,”" of H, in (6.8)~(6.9) is the y-com-
ponent of (m,, H,), and II; is that of (&, H,).

(2) In Diagram 8.1, restricting II, from H, to ¢/Y,), and II; from H; to ¢(V,),
we get a non-zero element in Hom (X1, |¢(Y 1), II}|¢(Y.); ¢, (Y 1NY,)) satisfying (B.)
and (C,) for ¢(Y1), ¢(Y,) and ¢(Y' \NY ).

(3) Pull back the above relations to Y, Y, and Y,N\Y, through ¢.”!, and take its
&-component for each £€8&, with A,#@. Then we get a non-zero element

(8.24) Le€Hom (myg, mog; Sa (T )NG4, (TH))

satisfying (B,) and (C.) for &,(T)), @Are(T;f) and &4 (T,NT}). Here =i; and 7y
denote respectively &-components of the pull-backs I7,°¢, 'Y, and IIje¢p. |V,

Now let us study the situation arrived in (3) above, and apply the results in § DG7.
First we specify from what data the representations 7z, and =, of wreath product
groups ©S4,(T;) and ©.4.(T*) are determined. Put 0r=07, p;:pT’g, and define an IUR

¢ of T4 by
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(8.25) pif(s)=py(&sE™)  (s&Ti).

Further put a,5=(ar,,,.)ae,4re, aﬁ:fa;-a)“ﬂre' and X‘rezx"rl@"ﬁ’ XQTG:XQTI@ATG. Then
mie and m,e are determined respectively by the data

(8.26) (o T Xape ae), (07, TH), Xlap ate),
where a,; is the reference vector for the tensor product
®zreedrepa on ®Z§AT$V¢1 with Pa=pPy Va:V(Pa)y

and aj¢ is the similar one.

Assume |A,;|=occ. Then we can apply Theorem DG7.8 (cf. Theorem 1.10) and
obtain an explicit expression for L. in (8.24). It is proved there that L. is unique up
to scalar multiples. To apply Theorem DG7.8, we put in it

(8.27) A:ATE’ T—_—@n, Tl:TT’ T2=T;e, 7[1—:7715, 7[2_—_71'25.

Then we get the following results.
(I) There exist a unique (up to equivalence) IUR z¢ of T, =T,NT;* and a refer-
ence vector Cs’:(cfa)aEATEJ cea €V (7e), llceall=1, such that

(8.28) o,=Ind(re; T 1T, p}fglﬂd (te; T 1 T#);
(8.28") A= Ki(Ind (¢cg; Tepp) 1 T,)), arpe=Ky(Ind (cg; Teey 1 T§e)) ,

where K;, i=1, 2, are respectively the tensor products over a&A,; of unitary inter-
twining operators for the equivalences in (8.28). Moreover we have XAre:xlf‘re‘

(I) Let J¢ be a unitary T,-isomorphism of the zg-part of V(p,) onto that of
V(p;*), and extend it trivially as a partial isometry. Then there exist (la)ae,,re, A.&=C,
|2.!=1, and a constant d such that

(8.29) L$:d$'®n€n4r5(/2a.]a) with Jo=J .

8.6. Interpretation of the preceeding results
For simplification of notations, we put

Y5:@Are(@n)' Y15:@Are(Ty), Yz,t:@Are(T;)y
Ze'_—DAre(@n); ZIE:DAre(Tr)r Zz,==DA,5(T§) ,

where DArs(S)zl"[;eAﬁSa with S,=S. Then, since YeZZe”@Arey Yie=Z::x8,
have

e we

y'if\YeE Zif\Zf’ (YlngZS)\Yisg(Zlef\de)\Zie .

Interpreting in the notation in (8.27), we know by Theorem 1.7 (cf. Theorem
DC4.2) that the representations

Pi=Indyéri;  (i=1,2)

are both irreducible, and hence dim Hom (P, P; Y¢)<1. Through standard discus-
sions, we know by Theorem 1.10 (cf. Theorem DGA4.5) that the result (I) above gives
a sufficient condition for P.=P,: (and gives easily a necessary and sufficient one) and
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that the result (II) gives explicitly a non-zero intertwining operator K; for the equi-
valence P.=P,..

Let us recall from §1.1 how K, is determined from L.€Hom (7, moe; Y1:NY5) in
(8.29). The representation space V(P;), i=1 or 2, is the space of V(m)-valued func-
tions on Y, such that

fh)=m:h)f(3)  (hEY 4 yEY ),
If IP=5yeriewel FOIP< 00 .

The action of y,€Y, on f is given by Pi(¥0)f(¥)=f(yy,). The opertor K. is written
with a kernel, denoted again by the same symbol, as

(8.31) (K X3)=ZyreripweKey, y0f(3')  (¥€Y),

and the kernel itself is given as

(8.30)

(8.32) Ke(y, y’)zﬂ'ze(/’lz)"LE°ﬁ'15(h1) if yy/—l:h2h1 with hieyif,
(8.32") Ky, ¥)=0 otherwise.

Note that f&V(P;) is uniquely determined by its restriction on Z,. Hence we
may and do consider V(Py) consisting of functions on Z.. Then the kernel itself is
given on Z;XZ, and the summation in (8.31) is actually over Z;;\Z,. Put kg(z)=
K(z, ¢) for z€Z,. Then Kz, 2')=ke(zz’""). It follows from (8.29) and (8.32)-(8.32")
the following

Lmma 8.7. For z=(2a)aes,:EZ¢,

(8.33) ke(2)=d¢* Qaca,ckalza) ,

where d¢ is a constant and k.(-) on &, is given by

(8.34) ka(§7'206210)= 0 (224)°(Ra | ©2)° 0(212)  for 212 €T, 2:a€Ty,
(8.34") ka(2a)=0  outside T{#T,=& (T}ET,).

8.7. Twsits by £¢€8,
By Theorem 1.9 (cf. Theorem DG3.13), P,e=Indy{,x.; is given by the datum

(Are, Ind (075 T4 1 @), Xy, Ind (a7e; T4 1€5))  with
Ind (a),'e; T7"$ T @n):(lnd (aJ”.a ; 7"6 T @n))aeAré fOI' a;ez(a;’,a)aeAr& .

In this datum, Ind(p;*; T 1©,) is equivalent to Ind (p;; T} 1 6,,)=Indf,"p;, because
(o, T3%) is a twist of (p}, T;) by £EG,. ’

Let us give an equivalence map explicitly. Similarly as in (8.30), an element ¢=
V(Indf;‘p;) is given as a V(p;)-valued function on &,.

Lemma 8.8. For goEV(Indf;'p,’), put

(8.35) (Deo)(s)=g¢(£s) . (SESy).
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Then @ gives a natural &,-isomorphism of IndS?p; with Ind(pf*; T 1 S.,).
T
8.8. Equivalence relation for 7-parts

To study the relation between &, &€&, such that |A,|=]|A4,,|=oc, we should
study the situation for y-parts in §8.5(1). For Y:@Ar(@")’ we consider subgroups

Z=D4(Cn), Yi=¢, (H)=Cu(T)), Zi=D4(T)),
Yi=¢, (Hp=u(§) (©4,(T7), Zé=t(5)"(DA,(T})) .
Take IURs T1(Q,) of Y7 and I1(Q3)-¢(€) of Y} and consider their induced representations
Pi=Ind¥7 I1(Q)), Pi=Ind¥;(I1(Q})-e(£)).

Then they are both irreducible and mutually equivalent because of the existence of
LreHom (II,, II}; H,NH}) (consider rather its ¢, '-version).
The space V(P]) consists of V(J1(Q,))-valued functions f on Y such that

F)=UIQ)r)f(y)  (hEY], yEY),
1/ 1*=Zyer wll (DI <oo,

Noting that f is uniquely determined by f|Z and replacing f by f|Z, we may and
do consider V(P?) as a space of functions on Z satisfying

f(h)=(TI(Q)XM)Nf(2) (heZ], 2€2),

and the L%condition on ZI\NZ (=2YI\Y). Moreover, let z,&Z and 0EG,, then

(8.36) Pi(z0)f(2)=f(zz0),  PUa)f(2)=I1(Q,)a))f(2°),
With 2°=(2sca>)acs,, and for a decomposable element f=Ques, S a» faEV(Ind‘?;‘p,),
8.37) Pi0)f=Qacs,8«  With ga=f0-1ca>-

Note that here we have taken into account Theorem 1.9 (cf. Theorem DG3.13).
Similarly we can write down P} as follows. The space V(P}) consists of functions
f on Z with values in V(II(Q})-e(€))=V (II(Q})) satisfying

fEhE-2)=(TI(Q(h)f(2)  (heDu(Ty), 2€Z),
and the L:-condition on Z}\Z. Further, for z,Z and ¢€8 A
(8.38) Plzo)f(2)=f(zz0),  Piao)f(2)=(I1(Q;)Xa))f(2"),

with 2’ =(Zw)acty Za=Ea Ca(arZocar In particular, for a decomposable [=Ques,fas
fo€V(nd (ppfe; (T1f* 1 8a)),

(8.39) PY0) [ =Qaca,8a  With galza)=fo-1cax(§o-1¢)) "6 a2a) .
Let us prove the second formula in (8.38):
PYo)f(2)=f(z-a)=f(0-27)
=f(¢ 10 -E 872 )=(II(Q}) o) f(§(§2)").
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As remarked before, P! and P} are mutually equivalent and the intertwining
operator K7 between them is described by a kernel K7(z, z’), z, z2€Z, determined
from L7 similarly as K. from L. in §8.6. Take 0ES,, in particular, then

(8.40) Pi(o) KT=K7-Pl(0).

Applying (8.37), (8.39) and the results in §8.6 on K, we can prove (8.22) in Proposi-
tion 8.6.

8.9. Proof of Proposition 8.6

Assume that |A.|=|A4,,|=c for two different &, =&, Then we have the
intertwining operators K; and K, for A,-part and A;,-part, that is, for the repre-
sentations of Y, and Y,. Put B=A,\(4,JA,;). Then the irreducibility for ¥, and
Y, tells us that K7 can be expressed as a tensor product K'=K.QK,QK} with B-
factor K} of K7 according to Y XY ,X&5S,)CY. Furthermore, by the results in
§8.6, K; and K, are factorized as

K$:d$'®a€44r5]{ay Kr:drj'®a€AT,lKa ’

where K, has the kernel K.(z., z,)=Fka(2a2h™?), Za, ZxEZ.=CS,, and k.(z,)=0 outside
£ T16.T, (=§'T1ET, or n~'TiqT, according as a€ A, or ac A,,).

Let us now apply (8.40) to a transposition o =(a,, 8,) With a,= A, BoEA;,. Take
as f€V(P]) an element of the form

f:fao®fﬂo®f0! C:Ar\{am ﬁo}:

with a-components f, for a=a,, §, and C-component fc. Accordingly, we decompose
K7 as K1=K, Q@Kg,QKE By (8.37) and (8.39), we get

(K7 P{(o)f =8R8 Q(KEfc),  (PYa)K")f =g Qe Q(KEfc),
where
Z80(2e))=(Kayf 8)(2ay),  852(28,)=(Kpg,fa )28,);

88(22)=(Kp,f g )07 624y),  8FN(28)=(Kayfag)E'n2p,) -
Therefore (8.40) for o=(a,, fB,) is equivalent to
(8.41) (Kap)($)=(Kp, X1 &s)  (sE€EGn)
for gaeV(Ind?;‘p,). Hence, with a constant d,

de 3 ko (ss'TN(s)= X kg (nTiEss"TNe(s").
$'ET\Gy s'eTr\Gn
On the other hand, we know by Lemma 8.7 that k. (s) is zero outside & Y(T7£T,),
and similarly kg (n~'¢s) is zero outside (y~')™'- 9~ TynT,=& (TyyT,). Thus we should
have T7&T,=TyT, as asserted in Proposition 8.6.

8.10. Generation of unitary equivalence in the set of standard IURs
From our study until now, we can deduce three operations on the set of data
(b, Q) with b€B and Q=Q(b) for standard IURs of G=E&,., and also two criterions
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for unitary equivalences. These five operations and criterions will generate altogether
all the unitary equivalences in the set of standard IURs of G.

In our terminology, an operation on a datum (b, @) means a specified replacement
of some parts of the datum which again gives a datum corresponding to a standard
IUR equivalent to the original p(b, Q).

(OPERATION 1) In (b, Q) in (8.2) or rather in @, we admit repetitions of the fol-
lowing replacements :
(li) =r by zp such that np=np;

(lii) b by b'=(bj)yer such that b'=b;

(Liii) (0%, a(7)) by (p7], a’'(y)), where p7l=zph, and @'(r)=(M;a; a)acs, With a
unitary MrEHomr,(Prr,» p’T;) and a(r):(ar_a)aar (the reference vector b
should be replaced accordingly).

Note that here we have taken into account Moore’s criterion for equivalence of

tensor products of IURs.

(EQUIVALENCE 1) Let x&G. For (n, H) with HE% and =R an IUR of H, put
m*(h)=n(xhx') for he H*=x"'Hx. Then

Ind¢r=IndG.7*.

Note that the replacement of (z, H) by (z%, H*) can be easily written down by
means of the datum (b, Q). Cf. also Lemma 5.2.

(OPERATION 2) For every rel’, take t,€T,C8ny for acA,. Then, in (b, Q),
replace J,, a(y) and also b by

Ji={J1.a; a€E A} with J7a=ta°Jr.a,

a’(N=(a3.a)ees,  With aj a=pr,(ta)tr.a,

b'=(bprer  with bj=( & pr(a))b;.
ag4y

(OPERATION 3) For every rel’, take §,€8,, and replace J;, T, and ,o’Tr respec-
tively by
={&Jr.a; @€ A}, Tj=T,7 and pi7=(pl)7.

T

Note that Operations 2 and 3 are, so to speak, normalizations in the set of data
(6, Q) or equivalence relations in it to reduce the degree of freedom of choosing (b, Q)
for essentially the same (x, H), HE¥U and =% of H. In fact, in each case, even-
though ¢;:¢T°‘(é)-ly é:(ta)aeAr or é:(sa)aeAr with &azérr the group Hr:¢'r(@AT(Tr))
coincides with (/f}(@AT(T;)), and its representations to be induced up are mutually equi-
valent in Operation 2 and are the same in Operation 3. We can see the meanings of
these operations also from the discussions in §2.3, especially from Lemmas 2.1 and
2.4. See also Theorem 3.3.

The following equivalence criterion gives a quite new feature to our study, which
has first been encountered in the case of infinite wreath product groups (cf. Theorem
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1.10 or Theorem DG4.5).

(EQUIVALENCE 2) For two data (b, Q) and (b’, Q’), introduce the relation consist-
ing of the following:
(2i) v'="b, and np=np (F'=F);
(2ii) for every rel’, put S,=T,NTj then there exist an IUR 7z, of S, and a
reference vector c(r)z(c,a)a.EA7, ¢ €V (7)), llezall=1, such that

(8.42) ok, =Ind§z,, p;;zlndg’;r, ,
a(N=(Ko(Ind¥ cradacs, @' (N=(KA(IAS 0N )aen, ,

where K, (resp. K,) denotes a fixed T,- (resp. T}-) isomorphism for (8.42);

(2iii) for every yel, let Hyy=¢ (&S Ar(ST)) and define its standard IUR z,, from the
datum ((7;, S,), XAT, ¢(7), then there exists a unit vector e¢,&V(m,,) such
that

b=(K(Indj? eer,  b'=(K{(Indg! e)rer
where Kr=¢’r°(®aeA7Ka)°¢'r_l, K;:¢r°(®aeATKZ)°¢'r-l7

Note that in (2iii) we take into account Theorem 1.9, and ¢;=¢; coming from
b'=5 in (2i).

8.11. Unitary equivalences in the set of standard IURs
We can give finally one of our main results, the most important one.

Theorem 8.9. In the set of all standard IURs p(b, Q)=Ind%en(b, Q) the relation of
unitary equivalence is generated by Operations 1, 2 and 3, and Equivalences 1 and 2.

Proof. We give here a sketch of our proof since some parts of it are a kind of
repetitions of discussions in §§ DC4-DGS8 in the case of infinite wreath product groups
studied in detail in [DG] and also since another essential part of it has already been
given in Proposition 8.6.

Assume p(b, Q)= p(t’, Q’). Then the proof goes along the following line.

(i) We apply in §8.1 Equivalence 1 and reduce the discussion to the case of the
boundedness conditions (B,) and (C,) for x=e.

(i) In Proposition 8.6, we get TiT,=TjnT, if |A;el=|A;,l=co. Fix such a &
and represent &,, in (8.18) as &,,=t,ét, with t,€T}, t.=T;. Again applying Equi-
valence 1 if necessary, we may replace a finite number of &,,’s appropriately and
hence may assume that the above expression is possible for any acA,.

(iii) We apply Operation 2 twice: once for (b, Q) and (ia)aeA, and once for (b, Q')
in (8.12)-(8.13) and (t;“‘)aeAT.

(iv) Thus we come to the case where A;.=A; for some £&,,. Then we can
apply Operation 3 and then arrive to the case é=e (for each y<I"), and hence to b=,

(v) Under the condition (2i) in Equivalence 2, we can apply the results given in
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§ DG4 for infinite wreath product groups (cf. Theorem 1.10). Then we get (2ii) and
(2iii). Note that the condition (2iii) says that the reference vectors b and b’ are
mutually equivalent in the sense formulated in Definition 4.6’ in [DG]. Thus we have
arrived at Equivalence 2.

The converse way is easy to follow, that is, we see easily that Operations 1-3
and Equivalences 1-2 give rise to unitary equivalences between standard IURs. Q.E.D.

8.12. Final remarks

Remark 8.10. Restrict ourselves to the set R, of finite-dimensional IURs of sub-
groups in A. Then Equivalence 2 has no place to apply since there appear only
characters p%.’s in this case, which can not be obtained as induced representations.
Further the reference vectors play no role. Operations 2 and 3 have no essential
meaning because the subgroups H, and H; there coincide with each other. Thus the
only thing essential is Equivalence 1 as we saw in Theorem 5.1.

Remark 8.11. In the case of infinite wreath product group & 4(7T") studied in [DG],
we have formulated the result so as to exclude Operation 2 from the biginning, and
moreover Operation 3 is almost trivial. However Equivalences 1 and 2 both play
essential roles (cf. Theorems DG4.2, DG4.5 and DGA4.7).

Remark 8.12. The families % and R for G=8,=8y are invariant under Aut(G)
=8y, the group of all permutations on N. Since the equivalence relation in the
family of all standard IURs of G is completely known in Theorem 8.9, we know how
the outer automorphisms of G act on the family.

Remark 8.13. Our method here consists of (a) saturated imbeddings of wreath
product groups and (b) inducing up their standard [URs. This method can be applied
to other types of infinite discrete groups such as GL(wo, F,) or SL(co, F)).

Appendix. On the equivalence for the tensor products of representations

Let A be a set of indices and, for each a=A, G, be a topological group and K,
its open compact subgroup. Let m, be a continuous irreducible unitary representation
(=IUR) of G, which has a non-zero K,-invariant vector. Put V,=V(x,) and let a=
(a4)aca be a reference vector consisting of K,-invariant a,€V,, |a.|=1, and consider
the tensor product of x,’s with respect to a:

1°=Q%ec4V on Ve=QR:%Va.

This is an IUR of the restricted direct product G, =IIseca(Gq, Ka) of (Ga)acs With
respect to (K,)ees (for the definition, cf. [14]). This contains the case of discrete
groups where we take K, as the trivial subgroup consisting of the identity element.

We give here a simple proof of the following criterion for mutual equivalence
due to C.C. Moore [14].
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Theorem Al. Let a=(aa)acsa and b=(ba)acs be two reference vectors with K,-
invariant Gq, ba, and let {n® V°} and {n®, V°} be the tensor products of m., a= A, with
respect to them respectively. Then n°=z (unitary equivalent) if and only if a=
(Moore-equivalent), i.e.,

(A1) Saea(l—1[<aa, ba|)<oo.
Proof. For any subset BC A, put
GB:HLGB(Gm [{a)y aB:(aa)aer VgB:®ngVm ﬂgB:®ng7ra ,

Then =x® is an IUR of G on V3. Consider a vector in Vi® given by az=Qa.cpla.
Under the condition (Al), the vector a, can be considered as a decomposable element
in V°, and similarly for b, and V2 This proves the “if” part of the theorem.

Now let us prove the “only if” part. Assume that n%=z®. Take a non-zero L&
Hom (z%, =°; G,). For any finite subset F of A, put 7;,=QuerTa, Vr=QerV and
B=A\F, then

~ a ~ aB., b~ b b~ 1]
n'a:ﬂ-'F@ﬂBBr Va'——-Vrﬂ@VBBy 7T=7f1«*®7TBB, V=VF®VBB’

From the irreducibility of = on V5, we see easily that L can be expressed as L=
Iy, QL with an LzsHom (n3%, % Gp), where Iy, denotes the identity operator on
V. Put w=La, then w+0, and for any FC A, w can be expressed as

(A2) w=a,Qxg with xz=LzagcSV3E.

On the other hand, it follows from the definition of tensor product space V° that
every vector in it can be approximated by elements of the form yr®bs, where FC A
is finite and yr=Vyp, B=A\F. Hence, for any ¢>0, we find a finite FCA and a
yrEV r such that

(A3) lw—yrQbsll<e.
By (A2)-(A3), we get
e 2lla r@x5—y rQbal*=lwl*+yrl*—2Re (Kar, yr>Xx5, bs)).

Therefore, if e<|w|, then {xp, bpd+#0. In turn, for any finite F'C B, we have xz=
apQxp with B’=B\F’, and so

Kxp, bp>=(1leer<ta, bad){xp, bs>.

Since |[<xg, bpd|Z|xpll=|w|, the product [lT.ez|{as bs>| should converge. Hence
we have S.ep(l—|<aq, b.>]|)<oo, which is equivalent to the condition (Al) in the
theorem.

Added in Proof. Reference [8] has appeared in Japan. J. Math., 16 (1990), 197-
268.
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