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Introduction.

F o r  a  s e t  I ,  we denote by S i  th e  group of all finite permutations on I. In this
paper, we study irreducible unitary representations (=IURs) o f  th e  infinite symmetric
group S N , denoted also by Sc... We consider it as an  infinite discrete group, of non
type I, and apply our results in  the  previous paper [DG] (= [8 ]), getting a big family
of completely new type of IURs.

Representations o f  th e  infinite symmetric group have  been studied from many
standpoints. All th e  indecomposable positive-definite class functions (o r  characters)
have already been determined by Thoma [21]. They a re  also studied recently by
Vershik and Kerov from different poin ts of view ([9], [22 ], [2 3 ]) .  When we intro-
duce a certain non-discrete topology in  S o., it becomes of type I a n d  its  IURs can be
completely determined as shown by Lieberman ([11], [12]). Cf. also O'lshanskii [17]
from this point of view . W e have also other works ([3], [5], [7] etc.), rather operator
algebra theoretic.

Very recently a  new type of IURs has been constructed by Obata [16]. Discus-
sions with him on his study and on Saito's [18] a re  o n e  o f  our motivations of the
present work, and discussions with Hashizume on his work [6 ] were also inspiring.

I n  our previous paper [DG], we studied a  general theory of representations of
infinite discrete groups, and applied it to wreath product groups SA(T)=DA(T)x SA of
a  group T  with the permutation group S A , where DA(T)=ILEATa, T a = T  (a E A), is
th e  restricted d ire c t p ro d u c t. We consider a  fam ily 91(SA (T )) of subgroups of the
form H-=ILErSA T(T 7 ), where A = I I , E r A ,  is  a partition  of A  and T r 's  are subgroups
of T .  Further consider a  fam ily 31 of IURs of H coming naturally from characters
X, of SA r,  IURs pri , r  o f  Tr a n d  reference vectors to form tensor products, and put
51.(s A (T ) )= v o 1 i, (H E- 91( A (T ))). Then, in case I T  < c 0, t h e  induced representations

IncIZA(T)r, H91( A (T)), 7V 01HCM(SA(T))

give alw ays IURs o f  S A (T ) i f  I r i l 5 1  w ith  r f =irEF ; A 1 1 < co } and IndF,

T
prr r  is

irreducible for TEP i . Moreover the  equivalence relations among these IURs are also
completely determined.

F o r  our study o n  th e  infinite symmetric group G = S N  in  th e  present paper, we
Received August 30, 1989
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apply fully these results. Start with a  se t Ar an d  a  finite group T r ,  then the  wreath
product ,t7(T 1)  is imbedded into G  a s  follows. F ir s t  t a k e  a  faithful permutation
representation of Tr a n d  im bed it into th e  symmetric group S n  ( 7 )  o f  degree n(r).
Second, take a  se t ,ar =1,Jr ,„ ; aOEAr } of ordered n(r)-sets J r ,„ parametrized by aOEAr .
Here an ordered n(r)-set is an  ordered se t o f n(r) different elements in  N  Then, for
J ,

-=
(P1, P2, POI n=-- n(7), put j r ,a =

 , r 1, 2 ,  P.1 th e  underlying subset and de-
fine a  map ea fro m  j r ,a  o n to  11, 2, ••• , n1 as ta(P.,)=.i, 1 j n .  Further define an
isomorphism S n —S7r , a b y  a ,-->eVoaoca . Assume that j r ,a 's  a r e  mutually disjoint for
ar, w e  g e t a n  imbedding Or ; S i t r (T r )--*SN --.=G .  Such subgroups of G are  called o f
wreath product type. W e consider a  family 91 of subgroups o f  G  obtained as images
of "saturated" imbeddings ONO(Orersbr) of groups of type

SN X  Ite rS A T (T r) with 00 >N ( r O E F ) ,

where ON: N
—

>S N  and Or 's should satisfy certain conditions (cf. (B1)-(B3) in  § 2.4).
For every HEW, we consider a  family R H  of its IURs obtained similarly as above,

and put 91=UHEp3tH. Then the induced representations

Ind7r, HE W, 7rERi/C91

are the principal object of our study. We prove that they are all irreducible (Theorem
7.1) and also determine completely the equivalence relation among them (Theorem 8.9).
A s in the case of the wreath product A (T ), we have an interesting equivalence rela-
tion (Equivalence 2 in  § 8.11) other than the  usual one (Equivalence 1 loc. cit.) coming
from inner automorphisms o f  G .  W e no te  that our method here is quite different
from other ones and gives us a  completely new b ig  fam ily o f  IURs which we call
standard together with subgroups i n  W .  Furthermore th e  approaches through AF-
algebras a s  in  [1] and [19] can not give us such results eventhough they are  powerful
to study factor representations.

As an important step to arrive at our final results, we prove in  § 3 that th e  con-
ditions (GRP1)-(GRP2) (c f . § 1.1.4) hold f o r  th e  fam ily 91 o f s tan d a rd  subgroups.
Further we study how far the condition (REP) (cf. § 1.1.4) holds fo r  th e  fam ily 91 of
IURs of subgroups in  W . L e t Olf  be the family of all finite-dimensional IURs of HEW,
then 9If C 9 1  and (R E P ) holds f o r  i t .  Hence we can prove by Theorem 1.2 that the
induced representations IndYi n , HEW, rE9iH n9 if, a re  all irreducible an d  th e  equi-
valence relations among them a r e  a l l  elem entary , i. e., coming from inner automor-
phisms of G  (Theorem 5.1). All the IURs of G constructed so far were in  this family.

This paper is organized as follows. I n  § 1, we summarize th e  results in [DG]
necessary to this paper and also give a  general lemma for applying the boundedness
conditions (B i ) and (C i ) (for the definition, see §1.3). In  § 2, we study the  properties
of subgroups of wreath product type, and in § 3, using these results, we study standard
subgroups o f  G  a n d  prove that W satisfies the conditions (GRP1)-(GRP2). In  §§ 4-5,
we treat completely the  inducing up of finite-dimensional IURs. In § 6, th e  fam ily 91
o f  IURs of standard  subgroups is introduced and studied. In § 7, th e  irreducibility
o f  th e  induced representations In d r, HEW, rE31 H C 9 1 , is  established. In §8 , th e
equivalence relations among them are completely analyzed. T h e  m a in  tool in  these



Infinite symmetric group 497

sections, §§ 7-8, is the  boundedness conditions (Br ) and (C i ), a n d  th e  results in  [DG]
are essentially applied in  § 8. We add as Appendix a simple proof of Moore's criterion
for the unitary equivalence between tensor products of IURs.

CONVENTION. To refer Theorem 1.1 or § 1.1 in  [D G ], we sometimes refer it as
Theorem DG1.1 o r §DG1.1 for brevity.

Acknowledgements. T he author expresses h is  heartful thanks to Professor N.
Obata f o r  th e  frequent and fruitful discussions and also to Professors N . Tatsuuma,
K . Nishiyama, H. Yamashita, H. Furutsu and  K . Suto f o r  their helpful discussions.
His thanks also g o  to Professors G. Schiffmann and M . Duflo for their helps to his
study when he stayed in France.

§ 1 . Fundamental tools and methods

We summarize here the results in  th e  previous paper [DG ] a n d  give a  general
lemma, which are necessary in  this p ap e r. A t th e  same time, we prepare some nota-
tions and tools for later use.

1.1. Induced representations for discrete groups

1.1.1. Induced representations. Let G  be a  discrete group a n d  H  its subgroup.
Take a  unitary representation Tr of H on a Hilbert space V ( r ) .  We realize the induced
representation Ur = In d 7  o f  G  a s  follows. The H ilbert space SC(Ur )  for U - is  the
space of V(7r)-valued functions on G  such that

f (hg)= -4r(h)f (g) (h  E  H , g E  G ) ,
(1.1)

Ilf211=EgEm\all f (g)II 2  < c o  ,

where th e  summation runs over a section of H \G  in  G .  (The convenient notation
gE_II\G will be used throughout this paper.) T he  operator U (g 0 )  for g o E G  is given
by

(1.2) (g 0).1c (g )=  f(g g 0) ( g  G)

We introduce the notion of induced vectors. F or a  vector vE V(7r), define an  f E
,C U ,) such that f (e )= v  and f (g )= 0  outside of H .  Here e denotes th e  u n it  element
of G .  This f  is called the induced vector of y and is denoted by Indy.

The set of all induced vectors in  JC(U,r)  is cyclic in the sense that the G-invariant
subspace containg it is everywhere dense.

1.1.2. Intertwining operators for induced representations. L e t  H i ,  H , be two
subgroups of G , and r i  a  unitary representation of H , for i=1 , 2 . P ut U =Ind ,r,,,
a n d  le t  HomG (U,, U„)=Hom (U ,,, U ,; G ) b e th e  space of intertwining operators of
Ur ,  w ith  U r 2 . T h en , every TEHomG(Ur i , U „,) is  g iv en  b y  a  kernel K ( g  g  g-2, -1, 22

g i G , with values in  B (V (z ,), V(z2)), the  space of bounded linear operators of V(Tri)
into V(7r2 ), as
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(1.3) (T  f )(g) ,  E  K ( g , g ') f ( g ') (f  E‘gC(U, i )) ,

and  the  kernel satisfies the conditions

(A) K (h2g2, h1g1)=72(h2)K (g2, g1)71(h1) - 1 ( h i E H i ,  g i EG i ) ,

(B) E IIK(g, )z)11 2 -5_MIlv112( e E G , v E V ( 7 1 ) ) ,
9E112 \ G

(C) E g)*w112-.SMIlw112( C E G , w E V ( r 2 ) ) ,
gEHoG

(D) K (g2g , g1g)=K (g2 , g1 ) (g 2 , g i, g E G ) ,

w here M  is  a positive constant. The conditions (B) and (C) guarantee the  boundedness
o f th e  operator defined under (A ) b y  the  right hand side o f  (1.3).

Conversely we know by M ackey [13] that every kernel function K  satisfying (A)-
(D) defines a n  intertw ining operator T  EHomG(Us „  U 2 )  b y  (1.3) if  dim HomG(U-„ U22)
<00, a n d  th a t, in  general, dim HomG(U-,„ U 2 )  is  equal to  th e  d im en sio n  o f  th e  space
o f  kernel functions satisfying (A)-(D).

1.1.3. Boundedness conditions. L e t  K  b e  t h e  k e rn e l o f  a  TEHomG(U-„ U- 2 ).
T hen it is de term ined  by  k ( g ) = K ( g ,  e ) .  T h e  functions k  satisfies

k (h2gh1)=72(h2)k (g)z 1(h1) (h z E H i ,  g E G ) .

F o r x E G ,  w e p u t z g =x g x - ' ( g E G ) , 1 1 2 x =x - '112 x  and

(1.4) ( 7 2x )( 0 - 7r2(x h) (11 112X )•

T h en  L = k ( x )  belongs to Hom (7 1, 74-2 s ; H 1 n1-12 x ) , th a t is,

(1.5) Lo7ri(h)-=(772x)(h).L (h E llin H 2 x )  •

F urther L  determines K (g 2 , g1) for g2g1- 1 e.H2 xH1 . R ew riting the conditions (B)
and (C) fo r  th is p a r t o f  K ,  w e g e t th e  following two conditions for L :  there  ex ists a
positive constant M  such  tha t fo r ve- V(z i ) a n d  w EV (72),

(B i ) E  IIL 7r,(hi)v112 MIlv112( h 1 E ( H 1 n x - i H 24\111),
111

(Ci ) E  L * 72(h2)wil z _ 1l1'II w112(h 2 E (H 2 n x H 1 x - 9\112).h2

Conversely there holds th e  following

Lemma 1.1 [131. For an x E G ,  put

(1.8) ds=dim IL EHom 7r22; H 1 n 1 -12 x ) ; L  satisfies (13s ) and (C,D)}.

For a complete system X  of  representatives o f  H 2 \ G I H 1 ,  we have

(1.7) dim HomG(Uz „ U ,) =E x E x d x

In the sequel, we call the conditions (B i ) a n d  (Cs )  th e  boundedness conditions.
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1 .1 .4 .  Irreducibility and equivalence relations. Let 91 be  a  fam ily  o f  subgroups

of G .  Consider the following two conditions on 91.
(GRP1) Let HEW  and g E G .  ( i )  If  [H: H n g H g - 1 ]< c o ,  th e n  H c g H g - 1 . (ii) If

H c g H g ',  then  gE H .
(GRP2) Let H i , 112 E91, and g E G .  I f  [H i : H in g H 2 g - 1 ]< o o  a n d  [gH 2 g - 1 : Hin

g l l 2 g - ']<0 9 , then  H i =g f l,g - i.
Under the condition (ii) in  (GRP1), the normalizer N G (H ) of H  in  G  is equal to  H

itself. W e  note th a t (GRP1) is  devided into (i) and (ii) for later convenience.
Let 91 be a  fam ily of irreducible unitary representations (=IURs) o f  groups in  91.

For a  pair {7r1 , 7 2 } o f  elements in R , w e  consider the  following condition.
(R E P ) L e t zci  b e  a n  IUR o f  Hz 91 f o r  i=1, 2. S uppose , fo r an  x E G , L E

Hom (7r i , rex; H inH ,x ) satisfies (13 i )  and (Ci ). T h e n  L=0  unless

(1.8) [Hi: H 1 n x - 1 H 2 x ]< c o  a n d  [I-12 : x llix - 1 (1H2]<00

W e say  tha t (REP) holds for 31 if  it holds for any  pair 71 ,

Theorem 1.2  [DG, T h . 1 .10 ]. (i) Assume th at  91 satisf ies (GRP1). Let 7rE31 be
an IU R  o f H E W . If the condition (REP) holds for r 1 = r 2 =-7, then the induced repre-
sentation U,=Ind?gr is irreducible.

(ii) A ssum e that 91 satisf ies (GRP1)-(GEP2). L et r i Œal be an IU R  of  H i E91 for
i=1, 2. I f  the condition (REP) holds fo r  any  pairing frci , r i l  (i, j=1, 2), then U,=-
Inn i ni  are irreducible, and they are mutually equivalent if and only  if ,  f o r an  x E G ,

(1.9) H1=H2x, and 2r,-.7r2 x  for H r -- - - H2x  •

(iii) A ssume that (GRP1)-(GRP2) hold fo r  91 and (REP) holds fo r  91. Then the in-
duced representations o f rE D I are all irreducible, and the conclusion in (ii) holds for any
pair 71, 7r2 c---,9I.

W e call elementary the equivalence relation U 1 U 2 i f  it com es from  the relation
(1.9).

Remark 1.3. L e t X f  b e  th e  su b se t o f  X  consisting of x  for w hich (1.8) holds.
Then, under the condition (REP), w e have

(1.10) dim HomG(Ux i , LL:2 )=E  xexf  dim Hom (7r1, 7r 2 ; H i n i L s ) •

W e  k n o w  f ro m  [10] th a t  for any  pair of finite-dimensional IURs 7 1 o f  any sub-
groups H , (i=1, 2), there holds the condition (REP). H ence w e get the  following

Corollary 1 . 4 .  Assume (GRP1)-(GRP2) hold for 91, and Ft consists o f  finite-dimen-
sional IU R s . T hen the condition (REP) holds fo r  91. Hence the induced representations
U ,, 7re31, are all irreducible, and the equivalence relations am ong them  are all ele-
mentary.

Remark 1 .5 .  For G = S ,, the  infinite symmetric group, Obata's case  in  [16] and
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our simple case in  §4 can be controlled by this corollary (c f. Remark 1.8). However,
in  our general case, the situation is not so simple that it cannot be controlled only by
the  above criterions, and  we have non-elementary equivalence re la tion  essentially (cf.

§8.10 and also Theorem 1.9).

1 .2 .  Wreath product groups and their representations

1 .2 .1 .  Wreath products. F o r  a  s e t  I ,  we denote by S i  t h e  group o f all finite
permutations on I. A  perm utation a  is called f inite if  it leaves invarian t almost all
elements in  I ,  o r  a (i)= i except a  finite number of i I. I f  J  is a  subset o f  I ,  S ,  is
canonically imbedded into S i .

L et Ga  (aE  A) be a  family o f discrete groups with a n  in d e x  s e t  A .  Then the
restricted d ire c t  product ILEAG a is defined a s  t h e  subgroup o f th e  d irec t product
H„ E A G„ consisting o f  g = (g a )a E A  w ith  g„,=e, fo r almost all a E A , where ea  denotes
the  un it element o f Ga .

L et T  be a  discrete group and define the wreath product S A (T )  o f  T  with S A  (cf.
[20, Chap. 2, §101) as

(1.19) SA(T)=-DA(T)x S A , DA(T)=ILEAT« with Ta=--- - T  (a A ),

fo r which the  product is given by

(1.12) a • (ta )„ E A  • a'=(t)aEA with ra =t,-1 ( ,,) ( 0 .  E S A ,  ta T a )  •

A n element crE S A  which is imbedded into S A (T ), is denoted again by a  o r  sometimes
by 1 x a  to avoid the confusion.

IURs o f  a  wreath product group S A (T )  were studied i n  detail in  [D G ], a n d  th e
results necessary i n  this paper a re  summarized below, except some detailed accounts
on  intertwining operators [DG, § 7].

1 .2 .2 .  Representations of a restricted direct product group. First consider re-
presentations o f  a  restricted direct product GA=ILŒAGa of discrete groups. A  unitary
representation (=UR) of G A  is called factorizable if  it is equivalent to a  d irec t product
O c e g r .  o f  U R s 7r, o f  Ga  w ith  respect to a  reference vector a --=(a0,,EA. Here r a=
0EA7r,,, is defined a s  follows. T h e  representation space V ( r )  is  the  tensor product
0`,I,EAVa=0.EA{V., a a }  of V a = V (ra ) with respect to the reference vector a=(a0aEA.
aaEV(rOE), Ilaall=1, and

(1.13) Tra(g)=0EAr.(g.) for g =
(g a),,EAC-

-'
 G A  •

(For infinite tensor products of H ilbert spaces, c f . [4 ], [1 5 ] o r  §D G 2 .) T h is  repre-
sentation is irreducible if  an d  only if  so is every rca  o f  Ga .

Consider v-=(va).EA w ith va  eV,,, Ilva 11=1, a n d  a  formal vector ® A c A v „ .  Then it
can be considered to belong to 0 ,̀,tE A V a  i f  a n d  only if

(1.14) .E.EA11—<va• aa>I <co

where K., •>  denotes t h e  inner product o n  V a . We call this relation the Neumann-



Infinite symmetric group 501

equivalence and denote it as v a. We consider another weaker relation

(1.15) E.EA(1— a.> I)<00

and call it the Moore-equivalence and denote it as v  a.
We know from [14 , Th. 5 ]  the following equivalence criterion (see Appendix, for

a  proof).

Lemma 1 .6 .  L e t & c A ira  and Oz",,,or'„ be two f actoriz able  representations of  G A Z

M E A G  a ,  where 7ra ,  e a a re IU R s o f G a  (c reA ), a=(a« )« E A , a.E - V(7ra), and b =
(ba)aEA , ba EV (7ea ), 1 0 (4 = 1 .  Then they are  mutually equivalent if and only if 7r,, -="ec.,
f o r every a e A  and

(1.16) az-='(Kab«)«eA ,

where Ka is a unitary intertwining operator of  7r/a with 7ra .

We say for (1.16) that a  and b  are Moore-equivalent in an extended sense. But we
should note that this time there essentially enter representations of groups, or Ka  E
Horn ( e a , T a ;   Ga ).

1 .2 .3 . IU R s of a  wreath product group '-■",i ( T ) .  L et T  b e a  finite group. We
consider IURs of the wreath product S A (T )= D A (T ))< IA , which come from factorizable
URs of DA (T )  or its subgroups.

For a UR 7c. of D A (T )-= ILE A L , with T a -=T  ( ae - A ) ,  we put

(1.17) ( 7)(t)=7r(a-1ta) (t EDA (T))

a n d  A(7c)= iac= ; c7c-- 7r1 the stationary subgroup of 2r. The reason why we restrict
ourselves here to the case of fac to rizab le  r , is that, for infactorizable r ,  we know
almost nothing a b o u t A (7r) and intertwining operators for o- E A (7 r).

First take a UR p r  o f T  and consider a  factorizable UR 7 a  = O ccLvEA2r with t a  PT
(ae- A ) w ith  respect to  a  reference vector a =(aa)aGA, aa E V (ra )= V (p r ),
Then, for 7r= r a ,  we h a v e  A (7r) ----- A. More exactly a n  intertwining operator / ,  of
c7r w ith  7  is  g iven  a s  follows. F o r  a  decomposable vector v = 0 , , A va  in  V (7 )=

(Oc EAV,,,, V a =V (p r) , put

(1.18) 1,,v=0,,,Av:, with v 'a =v ,- i ( a )  ( a e A ) .

Then / , , ,= Id e  ( a ,  cr' e S A )  and

(1.19) I a 0( 6 7r)(t)=7r(t). I (t e DA (T ) , E e A -=A (7 r))  •

Take now a  character X  of S A  (X = 1  or sgn) and put

(1.20) 1 1 (t a)=(7r(t)I ,) • X(0) (t D A (T ), a ESA) •

Then 11=11(7r, X ) gives a  U R  o f  A (T ) ,  which is determ ined by the datum Q
{A, ton  X , a=( a a)aEA }1 and is also denoted by H (Q ) .  I f  p r  is irreducible, then so is
I I ( Q ) .  T h is type o f IURs a re  called elementary, and w e call 11(Q) a  WP-induced
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representation o f p r .
Generalizing this process, we obtain IURs of A (T ) which will be called standard.

A standard representation p(Q) is determined by a  datum

(1.21) Q={(Ar, prr r , Xr )rE r, (o(r)) TEry (br )rer} ,

where (A r )rEr is a partition of A , T r a subgroup of T, prr r  an IUR of T r, Zr a  character
of S A r , and

(1.22)
br O 0 1Va, 1161 11=1 (rE P ).

a(7)=(a.).EA 1, aaEV. , --17 ( iorr1), Ilcia11=- 1 (a E Ar ) ,

To give p(Q), first consider elementary IURs H(Q 7) o f  S A r ( T r )  w ith  d a ta  Qr ----=
lA r , prr r , Zr , a(î)} . T h e n ,  consider a  subgroup of A (T ) given as

(1.23) H=H(Q)AVErSAr(Tr)

and an IUR of H  through a  tensor product

(1.24) 7c(Q)-=-0Nr11(Q1) with respect to b, --(b r )y r ,

and finally induce it up from H  to S A (T) :

(1.25) P(Q)-=Ind (r(Q); HT  - A(T)).

Now we assume A  is  countably infinite, and further restrict ourselves only to the
case which will be necessary in  this paper. Put

(1.26) Ff =17E1'; lA r l <001, r-=-17' r; 1 , 4 71= 00 1,

where 1241 1 denotes the cardinal number of Ar . Consider the following condition on Q:

(Q1) Irfl=ir\rool<1.

Then we have

Theorem 1.7 (cf. Th. DG4.2). L et T  be a f inite group and S A (T ) the wreath pro-
duct g ro u p . T hen th e  induced representation p(Q ) o f  SA (T ) is irreducible for Q in
(1.21) satisfy ing the condition (Q1), i f  IndTr prry  is irreducible for r Er f .

Remark 1.8. In  re la tion  to Theorem 1.2, w e rem ark here the following. Put
G= .- A (T ) and let W be the set of subgroups H  in (1.23) o f G  for which the condition
(Q1) holds a n d  T r = T  f o r  rE r f . Then we can prove that the conditions (GRP1)-
(GRP2) hold for 91 (cf. Theorem DG3.2 for (GRP1)). Further, le t  Wf  b e  th e  se t o f
finite-dimensional IURs o f  HE 9.1 ( a  special subclass o f 7r(Q)'s). Then the condition
(REP) holds for 91f.

1.2.4. Commutativity o f  two kinds o f  inducing processes. L e t T  b e  a  group
and S its subgroup. Consider wreath product groups S A (S) and S A (T ) .  Then we have
two kinds o f  inducing S  T  a n d  A (S) I SA(T) of representations. We give here a
certain commutativity of these inducing processes.

Let us start with a  datum
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R= {A, ps , X, a=(a.).EA}

for an elementary representation of S A (S).
On the one hand, pu t fiT=Ines'ps, and let et,„ ,---Ind 7

s'a a EV (fir) b e  the induced vec-
tor o f aaEV(ps). T hen di=(da)aEA is a  reference vector for (17 a)crEA w ith  Va=V(fir).
W e  d e n o te  a  a lso  b y  In d a  in  ab u se  o f  n o ta tio n . Thus w e get a  new datum for

A (T )  as

(1.27) {A, fi r , X, al w ith fir=Incgp, Ci=Ind 7
s'a ,

and correspondingly an  elementary representation p(P ) o f  A (T ) .  On the other hand,
w e have the induced representation Ind (p(R); A(S) T  A (T )).

A s the commutativity of inducing processes (WP-inducing and usual inducing), we
mean the following

Theorem 1.9 (cf. Th. DG3.13). Let R be a datum fo r  an elementary representation
o f  A (S). Then the two representations p (P ) and Ind (p(R); A(S) T  A (T ) )  o f  -

A (T)
are canonically equivalent to each other.

A  similar assertion holds for standard representations o f  A (S ) a n d  A (T).

1 .2 .5 . Equivalence relations between standard representations. Take two standard
representation p(Q,), p(Q 2)  of S A (T ), and let the corresponding data be

(1.28)
(21= { (A ,, torTi r , Zi r ) r . r ,  (a1(7))7Er, (b17 )1e1l,

Q2= {(B Z2a)zE4, (a2(6))se4, (b2a)ae4},

where, in particular, (A r)r e r  and (B3)6E 4 are partitions of A , and T 11 a n d  T 2 6 are sub-
groups of T.

For an e le m e n t  of A ,  w e call an  adjustment o f Q2 b y  the  following datum :

(1.29) cQ2= {(C (B6), to 28 , X6)3E4, (a2(3))6Ei, (b2a)6E41.

Then p(Q2 )  is equivalent to p (Q2) in a trivial fashion.

Theorem 1.10 (cf. Th. DG4.5). Assume that two data (21 and Q 2  satisfy the condi-
tion (Q1), i.e., IF f l :< 1 ,  1 4 f  _51, and that both p ( Q )  and p(Q2) are irreducible. T h e n
they are mutually equivalent if and only if the following three conditions hold.

(EQU1) Replacing Q2 by its adjustment by an element in S A  i f  necessary, we have
a  1 -1  correspondence K  o f  1" onto 4 such that A 1 =- B ( 1 ) fo r  re r .  Further Xr =X, ( r )

fo r  rE F , and

(1.30) Ina' u p 'T o  In d  i,',6 pq, 2 6 fo r  r er f  and 3=-- x(r).

(EQU2) For rE T ., put T2,=T2,( 7 ) and T 07 =-T 11 n T 2 1 . Then , for every r 1",,,„,
there exist an IUR p'r o r o f  T o r  and a reference vector a0(7)=-- (a0a).EA1 , ac,, V(p rro r ),
11a0.11=1, such that fo r  j=1 , 2,

(1.31) 4 1 7 Ind ( p 7; 7 ; T 0 7 T J r ) ,

and ai (r ) is Moore-equivalent to Ind (a0(7); To r T T i r )  in the extended sense.
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(EQU3) Replace 6-=-1c(r) by  r and Put

Qjr L'4 r' prT  i r , )(J r , a 1(7)}, 0,< j 2 ,

w ith  Xo r =Xi r (---,127) and consider IU R s H (Q 1)  o f  Hi r =S A T(T i r ). Then there exists a
unit vector b01 EV (11(Q00) fo r  every T e r ., such that (bir )r Er c,,, j = 1, 2 ,  are respectively
Moore-equivalent in the extended sense to

(5.0rErc., with 6J, =Ind (b., ; H 0 1  t H 51 )

with respect to 11(Q 1)  and Ind (H(Q07); Hor  I H i d.

Here n o te  that under the condition (EQU2) the IUR 11(Q57 )  is equivalent to the
induced one Ind (H(Qor); H o , 1151 )  for 1 =1, 2 , by Theorem 1.9.

Remark 1 .1 1 . T he intertwining operators for the equivalence p(Q1) -=' p(Q2), unique
up to scalar multiples, can be easily written down using the explicit form of non-zero
LEJ-lom (7(Q1), 7r(Q2); H1nH2) satisfying the boundedness conditions (B,) and (C,),
given in  Theorem DG7.8, where H.,=H(Q .,), j= 1 ,  2 .  This explicit form of intertwinig
operators plays an im portant role in  our later discussions on the unitary equivalence
among the standard IURs of CS. (cf. § 8), however we do not reproduce it here since
we need still some more notations for that.

1.3. A  general lemma for the study o f intertwining operators
W e give a  general lemma which will play an im portant role for studying the

boundedness conditions (B i ), (C i ), and then in  §  8  th e  equivalence relations between
standard IURs constructed in § 7.

Let T  be a  finite group, S  its subgroup, and p  an IUR of T .  Put V i =V (p )  and
consider a  unitary S-module V , .  T ake a  complex H ilbert space TV,, and consider
trivially V I EW, as a  T -m odule. Now take an L c-:Homs(VIOW I , V2) and evaluate the
following sum for u, V,OW, :

(1.32) J(ui)= E IlLp(t)u111 2 —  , , E  I IL 0)111112 •ctE s\T  

1 
tE7'

Detailed evaluations of this kind of sums were necessary to prove th e  results in
[DG] on irreducibility and equivalence relations for standard IURs of a wreath product
group -

A ( T )  (c f . Theorem 1.10 just above). Here we restrict ourselves to give a
simple result as follows.

Lemma 1.12. Let U  be any  isom etric linear operator o f V ' into V 1 and  extend it
naturally  to V  ,OW , as such an operator. T hen J(Uni)--=.1(ui) for u 1 V 1ØW 1. F u rt h e r

(1.33) sup f (ui) --a II I ,  112 •
Ilu i 1151

P ro o f . T ake a CO N S {v5 ; 1_< j<d(p),=-dim p} o f  V ,. T h en  a unit vector u , is
expressed a s  u ,= E i vi ®w ;  w ith  wJ E W , such that 741 2 = 1 . B y a  s im p le  calcula-
tion, we get



Infinite symmetric group 505

E IlLp(t)uill 2 =  E  IlL(VtOW/)11 2 .te r d(p),.,j
From this the first equality follows immediately.

F o r  (1.33), it is  enough  to  use certain generalizations of Lemma DG5.6 (ii) and
Lemma DG5.7. Q. E. D.

§ 2. Certain subgroups o f  G=S co

2.1. Permutation groups and wreath products
Let I  be a  s e t .  A n  element .5rES / can be represented by a  m atrix M (a ) with

suffices /x/ as follows: the  components of M (a ) are equal to 1 at (a (i), i ) ,  ie I ,  and
zero elsewhere. By definition, (aa')(i)=a(a/(i)), a, c 'e f ,  and so we have 111(aa9=
M (o- )M (a ') i n  t h e  usual multiplication ru le  of matrices. P u t  G = SN  w ith  N =
{1, 2, 3, •••}, the set of all natural numbers. We denote G also by S o„, frequently.

Let T  be a  finite group a n d  A (T )  th e  wreath product o f  T  w ith  A  g iven  in
(1.11)-(1.12). We define certain types of subgroups of G by imbeddig the  wreath pro-
duct groups and taking their restricted direct products.

The results on IURs of the  wreath product groups in [DG] will be applied to con-
struct a  new type of IURs of the  groups in  later sections.

2.2. Imbedding o f the  wreath product groups into G
An ordered set j=(pi, P2, • • •  po of different n integers p J E N  is called an ordered

n-set. W e denote by j r t h e  underlying s e t  {p„ P2, Of J .  Now let an be a
family of infinite number o f  ordered n-sets J a ( a e A )  such that L 's  are disjoint
m utually. Take a  subgroup T „  of S„..= N n  w ith  Nr,=---  {1, 2, ••• , n}. L e t  ca b e  the
order-preserving correspondence between J ,  a n d  / =(1, 2, ••• , n) such that ta(P.7)---- /
(1 .7. ..<n). Using this c„, we imbed T „  into S j a  a s

(2.1) sp. : spa (t) ,-= ea -  'oto c c, F ,

o r  ç o , , ( t ) P J = P t ( . , )  f o r  j „ , --(p„  P2, '•• P O .  Denote by T ,. the image wa (T , , )E , -
/
-
a c G

of T n .
For a given (& , T„), we define a  subgroup D(a„, T„) a n d  M a n ,  TO  o f  G  as

follows :
T „)=MEAT a with T a =çca (T„),

(2.2)
H ( ,,,  T „)--= D(&, T „)>a S A  ,

where D(a',,, T„)>(1 A  denotes a  semidirect product of D(5„, T O  and SA such that. for
(ta),,EA T„) and a E SA,

(2.3) a-l•(ta)•a--=.(t'a) with wa
- 1 (C„) , -(ço„ ( „) ) - 1 (t, ( „) ) GT,, .

W e know that H(2„, T ,,) is canonically isomorphic to the  wreath product SA(Tn)=--
DA (T n ) x Z-A . In other words, the  datum a n = { J a  a E .,4 } gives a n  imbedding of the
wreath product SA(7',„) into G .  We call this type of subgroups o f G of wreath pro-
duct type.
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Every element (s a )•a= --(sa)Xo• in H(3., SODH(`,.3., TO  can be represented by an
A XA -matrix  M„((s a )• a ) whose entry at (a(a), a ) fo r  a c A  is  .§'a=çoa - 1 (sa )E T .c -_ ,,
identified with its matrix M(s a ),  and is zero elsewhere. T h en , a s  is easily seen,

(2.4) Mn(h1h2)-=Mn(h1)Mn(h2) (h1, h2EH(27,, T .)).

N ote that, to arrive  at subgroups of type  H(2 n , TO, we can start with a  wreath
product group S A (T )  with a n  arbitrary finite group T  a n d  a  countably infinite index
se t A .  Take any faithful perm utation representation o f  T  into S n . L et T 7,  be the
im age of T  in  S „ and  take in addition, then we get a  subgroup H(an, T n )2-_:- SA(T).

2.3 . Properties o f  subgroups o f  G  o f  wreath product type
We remark certain properties o f this type  o f subgroups.

Lemma 2.1. Take a e m ,  and put

(2.5) e.2„,{eoja; atEA}, e , , T 7i =e•T n • '  ,

where, fo r  Ly=cpi, P 2 ,  • • •  PO,

(2.6) e°Ja--(p;-1(i), .N - i ( n ) ) •

Then H ( , e. TO.

Note 2 .2 . When T 7,=- „, the  orders in J ' s  a re  superfluous in  th e  sense that the
imbedded subgroup 1/(3•7„  SO  is determ ined only by th e  family o f non-ordered sets

; a e- Al. H owever th e  orders a re  not superfluous in the sense that th e  imbed-
dings o f S A (T n )  into G, determined by various an 's with th e  same underlying are
in  general not conjugate under Int (G ) .  T h is  fact is essential when we induce a n  IUR
o f H(.1„ T n )  from that o f S A (T )  through th e  imbedding SA(Tn)—>H(Z's ,,, T )C G , and
then induce it up from H(,;17„  T O  to  G  (see la tte r  sec tio n s) . Thus we should keep
not only non-ordered k  b u t also ordered an even when 7' n=

N ote 2.3 . From Lemma 2.1, we see that fo r  some fixed a o c A ,  we may fix with-
out loss o f  generality th e  order i n  TCr0

=-
. , 1 5  , 2 ,  • • • once for all, for instance, as

P1<P2< ••• <P a . However we do not d o  so  f o r  t h e  sake o f  convenience (see, for
example, Lemma 3.1). W e n o te  further that i f  n=1, then necessarily T n .= {1 }, and
so H(Zs'n, T.)=Sc with C=supp (a.)CAT, the union of :fa (am A).

L et 3'„,={,r; AEB ) be another family o f ordered m-sets. Then we say that 2„
is  a  refinement of i f  m =N n  with a n  integer N ,  a n d  every ..// i s  a  u n io n  o f  N
number o f  j a , a E A .  Further we say that 37, is equivalent to a'n, under T n OE 7,  if
(1) ,„,= { Ja  ; a Al coincides with (in particular, m =n), an d  (2) fo r every a , there
exists S ET  7,  such that

S a c "

where p E B  is determined by a as
T h e  meaning o f  these definitions can be seen from th e  following lemmas.
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Lemma 2.4. L e t  H =H (an, T a ),r , n )  w ith  2.= {Ja ; a -OE AI , Z:5;n=
PE B I, and T n , T;), subgroups o f  7„ respectively.

( 0  Assume that Then 2„ contains a refinement of X,„ and so  m=Nn for
some integer N , and supp (2„)Dsupp

(ii) L et in=n and suppose supo (Zs'n)=- suPP caço. Then H 'cH  i f  and only  i f  there
exists a ec , „ such that e.T;i c T ,„  and $.2'n is equivalent to I t  under T .

P ro o f .  (1) Assume th a t  I I 'c H .  T h e n , fo r  a c , A  and 13E-B, 14 contains l a in
to ta l o r  h a s  no intersection w ith i t :  46D:fa  o r  J 4 n J a = 0 .  Therefore every f ig is  a
union of some number of l a ,  a E A .  Let this number be N , then m=Nn.

(ii) Assume m=n and supp (a a )=supp (T i n ). T h e n  w e  c a n  u se  th e  same set of
indices A  for 2 „ and 2',„ and w e have, for every a c A , a  unique 72,ES a  su c h  th a t
J.' -- -- 77,0.1a. Let us express an element h ' in  I-17 -=H(2;„ T'n )  according to the  decom-
position analogous to (2.2) b u t fo r  2'„. Let çoia  : be analogous to çoa . Then,
for 2'„,

h ',(t,)•o-' w ith Ca=ço'a(r0, or«Ern,

Since I I(a ;z , T O C II(„  S- n )= H (& , f l),  the element h ' has also an expression for Zs'n
according to (2.2) as an  element o f H(2„, en ). Let it be  as, for

h' <--> (t a )•0- w ith ta=y0a(7,), Va c n ,  C E A .

Then we have a = a ' and

(2.7) ra=nar'al9,(a)-1 (aEA ).

T herefore , to  have  H 'c H , it  is  n e c e ssa ry  and  sufficient that 72a T;07, ( a) - 1 c T „  for
aEA, o - E A . Put e=r2 a 0  fo r  a  fixed ao EA, then e„=-72a7), 0

- 1 =72ae- 1  i s  in  T n  f o r  any
ac—A. H e n c e  77a=eae w ith ea ( T n  f o r  a  fixed ee n .  This m e a n s  th a t 02'n is equi-
valent to „1„ under T .

Moreover we have

T„DY)aT;o7n.ca) - 1 = a e T e - 1 0.(a) - 1 =-- a (°T ;i ) (a ) - 1  •

Hence T„De.T 'n . This completes the proof of the  lemma. Q. E. D.

In general, when a  necessary and sufficient condition for H 'c H , i s  a  little
more complicated than above a s  seen below.

Lemma 2 .5 . L e t H=- H ( , H '— H ( ,  T 'n ,) b e  a s  in  Lem m a 2.4. Suppose
supp ( )=supp (2',n ). Then, H 'EH  if and only if the following two conditions (J1) and
(J2) hold.

(J1) „ln  i s  a refinement of x „ ,  in Particular, m-=Nn w ith an integer N.
(J2) For every pc- B, l e t  A(p) , {a E A ; j a E lh } .  Fix  a num bering a  Acv_1, _2, aN

o f elements in A (p ) and define an ordered m-set Pp as

(*) ( J a v  J a 2 y y J a N )  y

and put ,a'n .=---{Jy3 ; Is E B } .  Then there exists a E m satisfy ing
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(J2i) e . ,5 " .  is equiv alent to 2 ? , ,  under T (m )=T .>IS N , where T(m) is canonically
imbedded into according to (*), and e0,5;„ is as in  Lemma 2.1, and

(J2ii) e.T',,,,cT (m ) w ith e.T e•T;„.e - i.

P ro o f . From Lemma 2.4(i), we m ay assume from the beginning that (J1 ) holds.
Now let D° (resp. H°) be the subgroup of H  consisting o f  all elements which leave
every subset P c N  stab le for 13E B  (resp. which permute subsets ph, pE13). It is
not difficult to see that Ir= D(27., T (m )), and then we get H° = D° >ti B =H(n, T (m )).

Therefore, H 'c H  is equivalent to FP cH° . Now apply Lemma 2.4(ii) to H '=
1--(a;„, T ;.) and H °=H (n , T (m )), then we get the desired result. Q. E. D.

Moreover we have the following

Lemma 2 .6 .  Let 11=HC5'., T .) w ith  2 .= U. ;  a E A I be  a s  in  Lemma 2.4. Then
f or gE G ,

g H g -2 =H (g 2 ., .) w ith g2.= { g J a  ;  aEAI,
where

g  a=(g(P1), g(P2), ••• g(Pu)) f o r J,=(pi, P2, ••• P O .

P ro o f . Take a E A ,  and  let J,=(Pi, P2, , P .), g i r c,=-(41, 42, 4.). Put 1.(P;)
e'.(4.;)=i (1 5  j For any tE T n c „ ,  y o , (0 = t a

- '0 tota  acts on p;  a s  soa (t)(p ; ) =
P2 ( , ) . On the other hand, g•yoa ( t ) • g ' acts on q;  as

(g.ya„(t)•g")(q ; )=(g.T a (t))(p i )=g(p t c » )=q t ( , ) .

This proves that, through e , w e  have also the group T .  as  th e  canonical subgroup
acting on g j T h is ,  in  tu r n ,  proves our assertion. Q. E. D.

It follows from Lemmas 2.4 and 2.6 the following important property of these
subgroups.

Proposition 2 .7 .  Let H=.11. (2„, T .) be as in  Lemma 2.4. I f  g E G  satisf ies gH g'
CH, then gHg - 1 =II, th at is , g  belongs to the normalizer NG(H) of H in G. M oreover,
if  n i a ;  a-a- A l is a partition of  N , then N 0 (H)=H.

P ro o f . Since gIIR - '=H (g a,,,T .)  is contained in H = H ( . ,  T O , and since gja=Ja
for almost all aE A , we get supp (Zs'„)=supp and so w e see from Lemma 2.4 that
g 2 7 , is equivalent to ,;'s„ under T .  Hence we get gHg - 1 =-H.

Now assume that 2 7, is a partition of N  and take a  gE N G (H ) .  Then, since gk
- ---7(g2„) - = k ,  we see that gEH(T'Nn, f l ) .  Define (YE A  b y  g j . -- 4 .(a ),  and :s'a E S „ by

Then the matrix M ( g )  for g  is given by these data , that is,
components a re  &- a  a t  (a(a), a ) for aE A , and zero elsewhere. Since crES A c H, we
get g '=g a" E N G (H).

On the other hand, M .(g') is a blockwise diagonal matrix with diagonal components
Ka  a t  ( a ,  a ) .  Take -z-E A c..1-1 and consider e rg ' - 'E H .  Then its m atrix M .(g 'rg '")
has components s',.( „ ) &',- 1 E T „ a t  (r(a), a ) and zero e lsew here . Note that there exists
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a  f in ite  su b se t A f  o f  A  su ch  th a t ga =1 i f  cui.A f . T ake  1-G A  su c h  th a t  r(a)E A f

fo r any  ceE2=11 . T h en  fo r ac-:A f ,  -- r ( a ) - a  1 - - L - 1 O E T rz y  t h a t  is, L E T ,  T h is  proves
th a t g 'E H = H ( ,T „)  and so  is  g=g 'a. Q.E.D.

N ote 2.8. B y Proposition 2.7, w e see  th a t H  satisfies the condition
if  a, is  a  pa rtition  o f N

(ii) in  (GRP1)

2.4. Standard  subgroups o f  G
Now take  h= {F, car, TO; TEF}  w ith  an  index  se t P , finite o r  infinite,
(B1) F is  a  finite subset o f  N;
(B2) fo r every T e r', there  corresponds 00>n(1)1, and ar =  j r ,„ ; a ,c-A r l  a n  in-

finite se t o f  ordered n(7)-sets J r ,„, and  T , a  subgroup o f  @ . ( 1 );
(B3) {F, J , ; r E F ,  aE A d  is  a  partition  o f N
For th is  se t b, we define a  subgroup H =H  o f  G  a s  follows:

(2.8) H=I-P=H f 110„,

where

(2.9) Hf =S F , I L = 1 -te rH 1w i t h  117 =HGa7 ,

Here 117 =H(a 7 , T 7) - S A 1 (T r ) is g iven  a s  in  §2.2 f o r  (sa, T O  w ith  n=n(7).
W e call H f  and H„, the  finite an d  th e  infinite p a rt o f  H  respectively.

Furtherm ore w e call standard t h i s  type  o f subgroups o f  G , a n d  denote by Q3 the
fam ily  o f  a l l  s u c h  b th a t sa tis fy  (BI), (B2) and (B3) above, and  b y  91 th e  se t o f  all
standard subgroups: 9X= H ' ; hE01.

In  th e  follow ing, w e study th e  se t o f  representations o f  G  obtained by inducing
up  IURs o f H  in t ,  t h u s  g e t t in g  a  b ig  family o f  new  IURs o f  G .  F o r this purpose,
w e g ive  in  th e  nex t section some im portant properties o f  these subgroups, w hich are
similar a s  those fo r H (2., T . )  given in  §2.3. F rom  th is  s tudy , w e  can  see  tha t the
conditions (GRP1) and (GRP2) hold fo r our set of standard  subgroups 94.

N otation 2.9. W e have introduced the following notations w hich w ill be utilized
frequently in  th e  s e q u e l. Let J-=(Pi, P 2 ,  • • •  PO be a n  ordered se t  o f  natural numbers
and  T  a  subgroup o f  S n . T h e n , fo r  a  eE„,

°./.=---(Pe-1(l), Pe-1(2), ..• P E - 1 0 0 ) , e.T =e•T •e-' ,
and  fo r gES„.„

g ( P 2 ) ,  • • •  g ( P . ) ) .

U nder this notation, for J„ in  an and  eES„, w e  h a v e  ../.,=(pa(E - 1 )./,.

§ 3 .  Properties o f  s ta n d a rd  subgroups o f  G

In  th is section, we investigate some properties of subgroups H  in  94, and  establish
the  cond itions (GRPI) a n d  (GRP2) fo r  91, w hich w ill be necessary to  study the  irre-
ducibility an d  th e  equivalence re la tion  of the  representations o f  G  induced from those

such that
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of H I.

3.1. The conjugate o f  H  under gEG
T o begin  w ith , w e rem ark  th e  following elementary f a c t ,  a  straightforward gen-

eralization o f Lemma 2.6. Recall that a  datum  bE93 is  o f  th e  form

(3.1) b= {F, TT); rEr}, ar -= {J ; aEA T I,

w here T 1 i s  a  finite group faithfully represented in each L., a  i s  an  ordered n(r)-
se t and  so I 4..1=n(1), and I A r l =00.

Lemma 3.1. L et H=H 6 c9 I with bcE i n  (3.1). Fo r an y  g c G , the group glig - 1

belongs again to 91 and corresponds to a datum  g b c i ,  i.e ., gHg - 1 =H g b. Here

(3.2)b =  { F ,  ( g a
r , T d;

w ith g ig(i); iE FI ,  g J ; aE1(11 }.

Let N  d e n o te  th e  group o f  a ll permutations on N  T hen  th e  above lemma holds
also fo r any  g c -

N . Further w e know  that Aut

3.2. Conditions f o r  the inclusion  H ' CH
N ow  consider th e  re la tio n s  be tw een  tw o  subgroups H=11 6 , H'=.11 6  i n  21 with

b, b'E•93 in  (3.1) and

(3.3) b'= IF ',T i ) ;  6 E JI, PEBal.

F irst w e  g ive  a  necessary and sufficient condition for the inclusion H 'c H .  T o  do
so , w e introduce som e definitions. Put

(3.4) {F, rEF} w ith  .ar = { 4 ;

w h e re  L ,„ deno tes t h e  underlying s e t  o f  J r ,„, and
partition of N  fo r b. W e  s a y  that b i s  a  refinement
hold th e  following two conditions (R1), (R2).

(R1) (i) F— F'; o r  ( i i ) F = 0  and
ap GA r , and in  addition p= 1 i f  n(r)>1.

(R2) I f  supp ( r )D F ', put A ° —A1\ a 1, a2, •• , ap } w ith  a i , a2, •-• , a n c k  such
th a t  F '=U i , i „ j r ,a ,, a n d  o therw ise  p u t  A?,  A r .  (N ote  th a t  A?,* A , fo r a t m o st one
1c7.-F . )  T hen  there  ex ist (1) a partition of each A ; a s  .A---. U A ?: and (2) a partition
o f  each II?: as

A = U AÇQ9) (l9eL35),
fi

such  that, pu tting  r E r  ; A I* 01, w e have  fo r every  pEB 6,

(3.5) h ,p= U  U ir ,. (rE r6, a -OEARA))

and th a t  1A;!(/3) I =N(T, 3), independent of 19EB.
To visualize these relations, let us illustrate the inclusion of j r ,,, ( a c k )  into h,fi

call I-)  th e  underlying two-step
o f  b '= {F ', ; 3E4 } i f  there

. fo r  some TE-F and a l , a 2 ,  • • •
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(i3(..B3). In  the figure below, ri runs over r e .

Figure  3.1.

h, fi (length— n(6))

J„,,„'s (a E  A us)) (c e A2(i3 ))
(each length=n(n)) (each length= n(12 ))

#  o f Jr i ,a 's=N (r i , 6) #  of J1 2 ,a'5=N(12, 6)

N o te  th a t  A;', (resp. ARp)) i s  th e  p a rt o f  A , corresponding to B 0 (resp. I3E/3 0 ),
and  tha t n(6)=E 1Er aN (7" 6 )n(T), and  s o  r 3 i s  a  fin ite  s e t ,  a n d  IA = 13 61= 00 for
r e r a . T h e  meaning o f  this definition will be clarified just below.

Theorem  3.2. L et H=11b, H'=1-Ib be in  91 w ith  b, b'c-3 i n  (3.1), (3.3) respec-
tively. T h e n  H ' is contained in  H  if  and  only if  th e  follow ing tw o conditions (I1), (12)
hold.

(I1 ) b. is a ref inem ent o f  b'.
(12) Fix  5 E d  and a num bering I i ,  12, ••• , Y ., m= of elements in T o. T h e n

there exists an element ea E S 7,0 ) satis f y in g  the conditions (12i)-(12iii) below. Pu t f or
j3  B5,

(3.6) Jg.19=(P131, rp2 , JP')
where, f o r each rET 3, f ix ing a num bering a i (1 _ i N(r, 6)) of elements in  AR/3),

ri3=(./r.a 17 Jr.ay) w ith  N =N (, 6)

(cf . Figure 3.1). Then 23= {n ; PE 1 3 6 }  is an infinite set of  ordered n(6)-sets.
(12i) e0.c, l k = { f r J p  ;  pEB,} is equivalent to zs'g under

T(3)= H  ( ( r r i )N iXSN,),isism

where N i =N (r i , 6) and T(ô) is canonically  imbedded into S n o , according to
(3.6)-(3.6').

(I2ii) e3 .7. cT(6), where e , .T = e 3T 5e , - 1 by definition.
(12iii) I f 4 ,, w ith rE r, aE li r ,  then T r =S n ( r ) .

3.3. P roof o f  Theorem 3.2
T h e  sufficiency of the conditions (I1)-(12) can be seen without difficulty. So let us

prove the  necessity . F irst put

(3.7) 1■1,,=-U (a.111), N = U J  p (P OE Ba) •
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STEP 1. Assume that F' *  F. Then F\F'# o r  F'\F .# VS. F ir s t  assume F\F'
# 0 .  Then ( F \ F ' ) r ' J , p 0 r / = Ø  f o r  some ô and 130 E./33. P u t E={pEB3; (F\F')nh,p

0 }. Since E  is finite, we have aES B5 such that a ( E ) n E = 0 .  Then 1Xc7ESB aC
11(% , T )cH ' sends ( F \F ') n h 0 into L3,13 which has no intersection with F\F' nor
with F .  T h is  m eans that (lx(r)FcrF, and so 1Xo. H . Hence H 'cril because lx
EH'. Thus it should hold that F\F'---=0  or Fc F'.

Now assume that FcF', Fr/=Ø  a n d  F '\ F # 0 . Then we have a a such that
cr(F'\F)nF* ,25, whence a(F)*  F. This means that 1Xo- EH' does not belong to H.
Hence it should hold that F =F ' or F = 0 ,  if  H 'cH .

STEP 2. Consider th e  c a se  where F = 0 ,  F ' * 0 .  Assume that, for some J r ,,„
I î , a ( F '* ø  an d  i,,,,,nh,A#0 with a  pE/35. Then w e can find uESB a such that
lxcrEH' sends ,h,,9 (Djn a • h ,p ) into h . a ( A )  which is disjoint with j r ,a . Since lx °-
leaves j r „ n F ' invariant, 1 x6rEH a n d  so  H '($11 . T hus w e see  that F'Dj,„„ if
F in j r ,a # 0, whence F ' is  the union of j r .a cF '.

Since S F , i l l  X S  F , C 11 / , the inclusion H 'c H  means that {1 } x  F , c H .  This
occurs only when F' = jr ,a w ith  T r =S,, ( ,) a n d  aGA T,  or with n(1)=1
a n d  a i , a2, ••• , a p e A r . T hus w e have  proved in  particular that the conditions (R1)
and (I2iii) hold.

STEP 3. Assume that for some jr .a , .7,,,anh,,,9,#0 f o r  two different 31, 62 G4,
where 13i eB a1 (i=1, 2). Take a  crESL  w ith  L=B 31 such  that a(P1)=- P satisfies that
j r ,.(lh i .19= 0 .  Then 1x cr EH' does not belong to H, because any element gGH sends
in  to ta l :in «  o n to  i n a , f o r  some a' G A r ,  whereas, under 1Xcr, jr .an h 2.,s2 * 0  is left
invariant and j r ,„n h i ,p, is  sent into h,,,, ( pi ) =.h i ,A which is disjoint with j r ,a . Thus
it follows that T h e r e f o r e ,  w h e n  H 'c H , there exists, for an y  J r ,  a unique
3E4 such that inaCUpEsah•P•

STEP 4. Assume th at fo r  some Jr.«, J ,a (\ J ,p # ø  f o r  two different /31, /32 E/35.
T ake a GS 8 5 su ch  th a t c( 2 )= 2 a n d  th at 6(430=48 satisfies j r ,an i = 0 .  Then,
under 1Xcrel-P , j r ,anh.p, is left invariant, whereas j r „anh,p, i s  sent into h..0 1)
=h,p which is disjoint with In a . S o  w e  see  th a t 1Xa EH whence H'crli, similarly
a s  in  Step 3. T hus w e have  proved that for every Jr ,„ there exists a unique
such that j r ,„Ch,p.

STEP 5. Fix re  F  and let j 1,a0 Ch, i90 fo r  some a o GA r , i3 0G133. Put

(3.7) lif(P)=ItTEAr; N(r, 3 ; 3)=1 A (P) I.

Then we shall prove that N(r, 3; p)=N(r, 3; Po) fo r  every pEB6. A ssum e the con-
tr a ry : fo r  some PEBa, mr, ; a; no). T ake  o- ES B a w h ich  sen d s po to
A :  c(3 0)= j3. Then 1 x o.E H ' sends h.p o  t o L , , , 0 0 - = h s .  O n  t h e  other hand, the
numbers of elements in .4,90 and  in  ,h,,8 coming from Arr are different from each other.
Indeed, they a re  respectively equal to n(7)N (r , o; P o) and n(r)N(7, a ; ig). Therefore,
under 1Xcr, N r nh ,p 0 can  not be sent to Nr nh,s bijectively. T h is  means that 1 x
EE H , whence H'ct.H. Thus, i f  H 'c H ,  w e  have N (7, 3; P=N (T , a; 130) ( --1V(T, 3)



p= U UJr.ar «
(yEr3, a E 211(48)) .

n(3)=E 7 nOON(T, 3) (7Er a) •

(3.10)

Note that

(3.11)
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(put)) for any i61EB a.
Now put

(3.8) ./%7=U AR 9) ( p  B o ).
fi

Then we get a partition 11 =- UaE jAf. o f AT fo r  w hich  Afd=c>9 or 0, and in turn, for
non-empty .4  (3.8) gives its partition into infinite number of subsets 416;(13) with ex-
actly N ( ï , 5) elements. Thus we have proved that the condition (R2) holds.

STEP 6. Fix dEzi and p0 EB3, and put

(3.9) r a=irEr AR190)#0}.

Then, for any AE/33, we have

Now fix numberings Ti, Ti, • •• m = l [ ',  of elements of T e ,  and a l , a2, ••• 7 aN,
N =N (r, 3), of elements of A ( I30)  for each rE F6 . Define

(3.12) Jg. 0 - -- (J'A, 7 ; 4 9  •

where, for every TEF 5,

(3.13) .5 0 — (fr,a1 ,  J 7 , a2' •  Jr , aN )  •

Then there exists a unique eaES720) such that

(3.14) 63° h. Po=ig, Po •

We know from Lemma 2.1 that H(a'3 , T )=H (epa'5, ac , T D .  O n  th e  other hand,
take an a rb itra ry  E/33, and then a ES B a  such that a(130)-=18. Then the  element 1 x
in H (3 , 7. )=11(e3.3 , eg .T )cH t sends ea.,A,p0 onto ea .J ih , ( po ) = e p h , , s  preserving the
orders in both of them. Since H 'c H  by assumption, 1 x a  must send each set of ele-
ments j r ,a  i n  n,p 0 =es..A ,p 0

 bijectively onto a  s e t  j r ,a
, i n  e a o h , p .  This makes us

possible to define a  numbering a, a, ••• , a'N  i n  Aki3) corresponding to a„ a 2, ••• , aN
in A 490)  by

(3.15) (1 x a)(4.. 3 )=.12, ,a; 3)).

Now put for pEB 6,

(3.16) Jg. p=(.0, J ,  •  •  •  ,  Jrp) , m= al,

where, for every rEP6,

(3.16') J r ,a ?  ' • ' N=N(r, 3),

and put ag={ j g ,p ;  i3EB,} an  infinite set of ordered n(6)-sets.
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T h e  re la tio n  (3.15) m eans that there exists a n  s(r, P, i) S .(, )  such  that, in
(1 x (7)/2, h = (1 x a )( e5 o h ,p o )= a . h ,  p and  in J , p ,  IS=  (go), we have

(1 X a ) J r ,,,, = s ( r ,  p , i ) . J r ,„ ;( e le m e n tw is e )  .

Since lx c E H 'c H  by assumption, we get s(r, p, i)ET r . Put

s (p )= (s ( r i , s(r2, p ) ,  • • •  ,  s ( r m ,  p ))
with

s(ri, p)---(s( r »  p ,  1), s(r i , p, 2), ••• , s(r i , A, iv i ))E A N Tk

where T k = T r i , N i = N (r i , 6). Then we have proved that

(3.17) erh.p=s(/9).Jg.p •

T h is  m eans that °,1:3 is equivalent to 33= p ; B1 under

(3.18) T'(6)=(Tr1)N1x(T7,2)N2X •-• x(T r . ) N m ,

with AT.,= N ( r „  5 ) .  T h is  group T '(5 ) is imbedded canonically into S a o) according to
(3.16)-(3.16').

If  we take an  arbitrary numbering a, a, •-• , a'N , o f elements in  A (p ),  then the
relation (3.15) does not necessarily hold , and  therefore ea° X -3 is equivalent to X; under
the  bigger group

(3.19) T ( ô ) =  l i i  ( ( T r i )N 1 >ISN,) r ( 6 ) ,i v .s m

where T (6 ) is imbedded into S 7,( 3 )  according to (3.16)-(3.16'). T h is  gives the condition
(I2i) in  th e  theorem.

STEP 7. We see a s  in  Lemma 2.1 that H'=1-11 '  is also expressed a s  .1-P ° with

(e6*.a, eS ° TD; 6E 4 1.
T h e n , since H 'cH = 1 --P , w e see from  (3.16)-(3.17) an d  th e  last statement in  Step 6
that the condition (I2ii) holds :

(3.20) epT:3c T (â ).

Thus th e  proof o f  th e  necessity is now complete, and  so is th e  proof o f Theorem
3.2.

3 .4 .  Conjugacy between standard subgroups
We can deduce from Lemma 3.1 a n d  Theorem 3.2 a  property o f our parametriza-

tion by 113 of standard subgroups and  a  conjugacy criterion fo r  these subgroups.

Theorem 3 . 3 .  L e t H = T P , H '= 1-P" be two subgroups in  9I with b, b'E3 in  (3.1),
(3.3).

(i) H = H ' if  and only  if  the following conditions (El) and (E2) hold for b, b' :
(El) F = F ';
(E2) there ex ist (1 ) a bijection o f  P  onto 4 ,  and (2) f o r every r E F ,  an element
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er E , , ( , ) ,  such that n(1)=n(5) with 5 =r(r)E 4  and er oT r = n  and that er 02,
is equivalent to j under er oT r =7 '.

(ii) H is conjugate to H ' under G if and only if th e  following conditions (Cl) and
(C2) hold fo r  b and b' :

(Cl) I =  F ' ;
(C 2 ) there exists (1) a bijection r  o f P  onto 4 , and (2) for every rE P ,  an element

er E , , ( , ) ,  such that n(r)=n(6) with 3=r(r) and er oT,,T, fo r  7E 1 ' except a
finite number o f r, and that, fo r exceptional 7, after removing the same finite
number of ordered n(r)-sets (here n(r)=n(6)) from each o f er oar and ,;s5 ' ,  they
are equivalent to each other under

Note 3 .4 .  Put b°=1F, eroTr); r e - F 1 .  Then, by Theorem 3.3(i) above, we
have H=1/ ° =H 6° . Replace b by b°. Then (Cl), (C 2) in Theorem 3.3(ii) are rewritten
in a single form as

(C12) there exists 'a bijection K ,  o f P  onto 4 such that, fo r  rœ [',  put 3=-r(r),4 ,
then, n(r)=n(3), and 2, and a r e  equivalent under a f t e r
removing the same finite number (zero for almost all r) o f  n(r)-sets (=n(ö)

-sets) from both o f a r,

The condition (Cl), or IF =  F' I, follows from (C12) automatically.

3 .5 . The property (GRP1) fo r  91
Now le t  u s  prove a  property of H=Hb in  91 which consists a principal part of

(GRP1) and plays a  crucial role in proving the irreducibility o f  representations o f  G
induced from H.

Theorem 3 .5 .  Let H  be a standard subgroup o f G= 0„ in 91 and gc-E-G. I f  gH g - '
C H , then we have g e H .  In particular, the normalizer N 0 (H ) of H  in  G  coincides with
H  itself.

P ro o f . Take b= {F, T1); T e r }  E-Ti such that H =1 1 '.  Then gHg - '=H gb with
gb={gF, (g3r , T 1) ; r e F l .  Note that, in  ga,==fgh,a; for almost
all ezE il r . Taking gHg - '=H g b as H ', we apply Theorm  3.2. Then the necessary and
sufficient conditions 0 4  ( 1 2 )  fo r I l i c H  say  th a t (1 ) gF=F, and (2) if  gj r ,„* J r ,
then gf,,, a =t„.J r ,a ( a )  with some ta  T r and a ErZAT . Since the total number of (r, a)
for which gJr ,a * J „  is finite, we see that g E -H . Thus w e have proved that gHg - '
E H  means g E H  whence gHg - ' , H , and therefore we get  N 0 (H )=H  as a  result.

Q.E.D.

Note 3 .6 .  By this theorem, every HEW satisfies the condition (ii) in (GRP1) in
§ 1.1.4.

3 .6 .  The properties (GRP1) and (GRP2) for 91
Here we prove a  property of the set 91 of subgroups H, which plays an important

role in  studying the equivalency among representations of G  induced from H 's .  Let
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H=IPE9X with b= IF, (ar, T 1 ) ;  r e r }  in  0 .  Then by definition,

(2.21) F X IF H( 1, T 7 ), H(a 1 , TO= D( 1 , T r ) xi .
TE!'

L et us define subgroups H D , H E  o f H  as

(3.22) H p = S F  X f r  D(a1 , T 1), H e =  X ({1} X SAr ) ,
7E1' 7E1'

which we call th e  D -p a r t  a n d  th e  -part o f H  respectively.

Theorem 3 .7 . L e t  H , H ' be two standard subgroups in 91, and let g E G . Assume
that [H : HngH'g - '1<co and [gH'g - ':  H n g H 'g ']< 0 0 . Then H-=gl

P ro o f . Since gH'g - '  belongs to VI again, we may and do assum e from th e  begin-
ning that g=e, the  identity element o f  G .  Let us assum e that H ' cl:H .  T h en , check-
ing carefully each step o f  th e  proof o f Theorem 3.2, we see that i n  each step there
exist a n  infinite number o f elements h 'EH ' which belong to different right cosets of
H  (hence of r\ H ). In  fa c t , in  th e  c a se s  o f  Step 1 to Step 5, there exist infinite
number o f such elements o f th e  form I x a  in  {1} xsB,crica, fo r some 6E4.
In Steps 6 and 7, we get such elements h ' from the  D -part H'D  o f  H'. Q. E. D.

T h e  above theorem says that the condition (GRP2) holds fo r  91, and therefore so
does (i) in  (GRP1). Thus, together with Theorem 3.5, we get th e  following

Theorem 3 .8 . For the set 9.1={H'; be- 1 of  standard subgroups of G= .Z,o, there
hold the conditions (GRP1) and (GRP2) in  § 1.1.4.

Remark 3.9. When we treat representations o f  G induced from finite-dimensional
irreducible representations o f  HEW, Theorem 3.8 is sufficient fo r u s  because for the
se t Rf  o f  such representations of H's, there holds the conditions (REP), as is remarked
in  § 1.1.4, a n d  we can apply Corollary 1.4, getting Theorem 5.1. Note that such a
representation o f H  reduces to a  character on the infinite part H . of H (by Lemma 4.2).

When we study induced representations from infinite-dimensional representations
o f H , the situation is not s im p le . In  particular, the condition (REP) does not hold in
general fo r  fr„ 772 1, 7 1 E91. These cases will be studied from §6 o n .  We prove the
irreducibility in  Theorem 7.1 by appealing to th e  boundedness conditions (Bs) and (Cs)
to determine the dim ension of the space o f  intertwining operators, an d  a s  a  result we
know that (R EP) ho lds at least f o r  7,=-7r2 =7r. To study th e  equivalence relation
among the standard induced representations o f  G , w e can not appeal to  (REP) but
apply th e  results in  [D G ] essentially. Thus we come to our criterion o f equivalence
in  Theorem 8.9. In  between th e  commutativity of two induced processes (in  Theorem
1.9) plays an im portant role.
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§ 4 . Finite-dimensional representations o f HG9,1

Let H=1-1 6 E91 with b E 3  in  (3.1). Take a  finite-dimensional, irreducible unitary
representation (=IUR) r  of H .  Then, according to the direct product decomposition

(4.1) H-=-11111, with Hf = S F , 1-/c0=FL E rH 7 ,

where 1/7 =H (3 7 , T 7) =D (3 7, T 7 ))4S.4 7 _'SA7(T 7), 7r is a tensor product of representations
77 F  O f S  F. and 7r7 o f  117 ( r E r ) ,  of which almost all m ust be one-dimensional (i. e.,
is a  character). We denote this as

(4.2) r FO (O r E r 7 r) •

Let us study 777 o f  I-17 ,  isomorphic to the wreath product SA7 (T 7 )  o f T r with
Since we first give the  following

Lemma 4 .1 . A  f inite-dimensional irreducible representation o f  S „  is necessarily a
character, and it is equal to the triv ial character 1 or to the sign character sgn : sgn (a)
=1 or —1 according as a E S_ is even or odd.

P ro o f . L et E  be the kernel of the representation p , which is normal in `-& .  We
see easily that E *  {1 } .  F o r  an y  n , E nS n i s  normal in S .. T h erefo re  EnSn={1 },
9-In or ,S7, for n > 4 , where 917, denotes the alternating group of order n. From this,
the non-trivial normal subgroup E  should be equal to 91,„, or S oo . Q .  E .  D .

Now proceed to 11,, then we have the following

Lemma 4 .2 . Let 1217 1==o°, and 77'  be a finite-dimensional irreducible representation
o f  H (k  T 7)=-- D(2 7, T r) >4 Then it is necessarily a character, and is given as

(4.3) 77'((t (7)= 4 7(  11 ço„ - i(t«))•XA
r
( u )a c A

r

f o r  (t n) — (t a ) crEA,E. D A , T , )  w ith  t„E-T„=q)„(T r ), and a E S A r ,  where XTr and ZA
characters of T r E n ( r )  and respectively.respectively.

Pro o f . Since the  d im ension of representation is finite, e  S A
, (T r )  is irreducible

for some finite A ' c k .  Therefore e (h )  is a  scalar operator fo r any /2. S A ,(T 7)  with
A" -=-AT\ A'. Hence 7r/(aha - 1 ) , e (a )e (h )7 r/ (a )i is  a lso  a  scalar operator f o r  any

ES A r . On the other hand, SAT(T r )  is  the union of a • '1,) • o-  - 1  over C E A 7 . T h i s
proves that 77' is itself a  character.

The expression (4.3) follows from the definition of the product a • ( t „ )• a '.  Q.E.D.

Thus we have proved the  following

Theorem 4 .3 . Let 77: be a f inite-dimensional irreducible representation of H= [J  in
I. L e t  t h e  canonical decomposition o f  H  be as in (4.1). Then there ex ist (1) an irre-

ducible representation 77F of  and (2) for ev ery  rE -P , a character Xrr O f  7 '  rC S n ( r )
and Xii r o f  3 4 r, such that

are
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27 (r)=-7Fer) for

n((t,)•0')=ZT 1 (a F i r çoa'(ta))-ZA 1 (a)• I

fo r  (t a )•ac-H (2 1 , T 1 )=D (2 1 , T r) >a ,

w here I denotes the identity  operator, and w a  i s  as in § 2.2.
Conversely any datum 17F, (X T,I L T) ;  T E P }  g iv es  a f inite-dimensional IUR 77 of H

as above.

§ 5 . Representations of G  induced from finite-dimensional IURs of H  in

L et 91 b e  a s  before the set of standard subgroups of G = K : 91= {H 6 ; 6 93 },
where

b={F, T r); rEFI with ar = Ur .„ ; aEAr l,

rib=e F x TEErH, with H 1 =D (2 7 , T r) >4 .r1 7. •

Further let R f  be the set of all finite-dimensional IURs o f H  in  91. Then such a  re-
presentation 7r=7r(b, Q f )  of H=1-16 G91 is given as in Theorem 4.3 by a datum

(5.1) f  =  c F, (XT; , ZA,.); rErl,
where 7 7 F  i s  an IUR of F ,  and XTr and XA ; are characters of T r and A 8 O respec-
tively.

As is remarked in  § 1.1.4, the condition (REP) holds for DIf . Further we see from
Theorem 3.8 th a t th e  se t o f subgroups 91 satisfies the conditions (GRP1)-(GRP2).
Hence we can apply Corollary 1.4 and get the following

Theorme 5.1. Let 9I be the set of standard subgroups of G -=- -- Soo, and a l f  the set of
f inite-dimensional IURs o f HE VI.

(i) Induced representations ,o(f), Qf )=Ine7(b,  Q )  are all irreducible.
(ii) Let p=- Ind.V,7 and p '= Inn ,7 ' be two such IURs o f G . T h en  th ey  are mutually

equivalent if and only  if  there ex ists an x G  such that

(5.2) H '=-1 1 x  and 77/77X .

Let us rewrite the above conjugacy condition (5.2) by means of data (b, Q f )  for 77
and (6', Q'f )  for 77', where

(5.3)
T D ; 5E41 with 2;={ j p  ;

Q'f= rBa); 6E-4k

with Ir'F , a n  IUR of and and X;3 5 characters of P e a n d  B ,5. respectively.
W e apply Theorem  3.3. Since H = I P  and H '=H b ' are conjugate, we have (a)

IF = F ',  a n d  (b) a bijection ic of onto J and e„,„ for every r c r  such that
n(r)=n(K (r)) and er oT r =T ; ( ,) , and that the condition in (C2) in Theorem 3.3(ii) holds.
Moreover, taking into account Note 3.4, w e have the following
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Lemma 5.2 . (i) Assume that H ' =x - '1 Ix f o r  H ',  H E W . T a k e  b 'E 3  such that
H'=1-1 ',  then there exists an appropriate bE0 giving the subgroup H as H = Il b such
that (1) IF1=1 P I ,  and (2) under a bijection o f  P  o n to  Z1, we have, f o r  r e r  and
3=K(r), n(r)=n(3), T 1= 7 1  and a, and a r e  mutually equivalent under T r = T i'; after
removing the same finite number (zero for almost all TE P ) of ordered n ( Î ) - s e t s  (=n (ö)

-sets) from both o f a r , •

Conversely i f  b, b 'EO  satisfy the above conditions (1) and (2 ), then we have I I '  ,--
x - 1 -H6x fo r  some xEG.

(ii) Assume H '= x - ifix  and take b , b ' as above. T h e n  the representations 7'(h')
and 7r(xh' x - 1 ) (h 'E H ') are mutually equivalent if and only if , in  the data Q f  and Q'f ,
there hold that (1) r F  and 76 , a re  mutually equivalent, both considered as representations
of S. N with N = IF I= IF 'l  canonically, and (2) XT r = tr h , XA T =X 'B ,  ( = 1  or sgn) fo r  rET,
6=K(i).

N o te  that t h e  statement (1) in  (ii) above has well-defined meaning because SN.='.
Int ( N ) fo r N_>_3.

Remark 5.3 . T o  ge t a n  IUR p  o f  G=a„, o f th e  above type , we can proceed as
follows. First, take a  finite symmetric group S N , and any finite o r  countably infinite
number o f finite groups T 1 ;  ?'E P}, a n d  consider th e  restricted d ire c t  product group
Kr-- S N  X M erS -(T r ), where is the wreath product of T 1 w ith  S . .  Second, we
take a n  IU R  71N  o f  SN, and  any s e t  {(XTr  X., T ); ?EP}  o f  p a ir s  o f  characters of
and  S.. Then define canonically a n  IUR of K  from them. Third, we take , fo r every
rEr, a  faithful permutation representation o f  T r  v iz ., a n  isomorphism r ,  o f T , into
a  finite symmetric group 7 z ( r ) .

N o w , take a n  in je c tiv e  isomorphism o f K  into S o0 = S N  by means o f th e  system
Ir r ; TEP } an d  a  two-step partition  of N  into ordered s e t s  a s  {F, ar ; GP}, where
F—N, a n d  3'7=-U T ..; 6YEA 1 l  is  a n  infinite se t o f  ordered n(7)-sets J r ,„  o f  integers.

F inally t h e  representation o f  th e  im a g e  H G  o f K  obtained canonically under this
imbedding is to be induced up to G.

In  the  succeeding sections, we shall treat th e  case  where th e  system {XTT ; TEri
o f  characters is replaced by any system  o f  IURs {7r T 1 ; rEF} o f finite groups T r .
However, in  this case, the condition (REP) does not hold in  general, and  so th e  situa-
tion becomes much m ore complicated.

Remark 5.4 . It is w orthw hile to  n o te  here t h e  following. T h e  author got a
strong impression, during his study, on certa in  similarity between th e  s ta n d a rd  sub-
groups H=Hb (whose essential parts are the wreath products of type S oo(T )) fo r G---- S 00

on the  one hand, and  the  parabolic subgroups P  fo r  a  reductive L ie  group G ° on the
other hand. T his im pression  goes beyond th e  following rather formal similarities.

(i) FIRST SIMILARITY. I n  both c a s e s , th e  normalizer i n  G  o r  in  G° o f such a
subgroup coincides with itself, and  further there is a  sim ilarity a b o u t  th e  properties
(GRP1) and (GRP2) in  § 1.1.4.

(ii) SECOND S IM IR AR =. T h is  concerns th e  methods of construc tion  o f IURs of
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G and  G° by induction from these subgroups. O n the one hand, H in  91 is expressed
as

(5.4) H=HD x He with HD=SF X 111' D( 1, T r ), H e= 1-1' A 1 y
TEPT E r

and  we take a n  IUR eD  O f  H D  an d  a  character Xe  o f  He ,  and  then construct a n  IUR p
o f  G by

(5.5) p=Inn(eD O Xe)) •

O n the  other hand, let

(5.6) LN= L x N  with L  a L evi subgroup, N  th e  unipotent radical of P,

be a  Langlands decomposition o f  P. Take a n  IUR eL  o f  L  and  construct

(5.7) p --= In e ( e L 0 1N)

which gives in  general a n  IUR o f  G°.
(iii) T h e  third point is not a  similarity b u t a  contrast between canonical decom-

positions (5.4) and (5.6). Eventhough H D  and He  correspond to L  and N  respectively
in  th e  similarity between (5.4) and (5.6), we see that in  (5.4) H D  is  normal whereas in
(5.6) N  is normal.

From these observations, we ask if  there is any general characterization o f  such
subgroups a s  those i n  91, which is comparable to th e  characterization (or definition)
fo r parabolic subgroups in  a  general setting, o r  to that fo r C artan  subgroups fo r any
abstract groups due to Chevalley [2, Chap. VI, §

Note 5.5. In  Obata's recent works [16], he utilized subgroups H(0) o f a., which
are  given a s  centralizers o f  special OE Aut ( 0, ). These subgroups are m ore similar to
C artan  subgroups o f  Chevalley than parabolic subgroups, at a  first glance, b u t they
a re  also a  special subclass o f our family 91 of standard subgroups a n d  a re  essentially
equal to restricted direct products o f wreath products SA1(T 1) with T r cyclic a n d  A»
= co . L et 9.1' be th e  se t o f  all such H(0)'s and M' that o f elementary IURs o f  HEIV.
Then M' consists o f characters and so 91/c Mf . I n  th is case, the conditions (GRP1)-
(GRP2) hold fo r 91', and the condition (REP) holds fo r  a l', and so Corollary 1.4 can be
applied. There does not appear th e  role o f reference vectors.

§ 6 . A family M of irreducible representations o f  subgroups in 91

In  §§ 4-5, we have studied finite-dimensional IURs o f subgroups H in  91 o f  G
and  their induced representations. These results a re  in  a  sense a  preparatory step to
treat infinite-dimensional IURs o f s tan d ard  subgroups H .  In  this section, we give a
certain family M o f  factorizable IURs o f  HEW, which will be utilized to construct
IURs o f  G .  T h e  reason why we take such a  family M will be explained at the end
o f this section.
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6.1. Standard subgroups o f G
Let H =1 1  be a standard subgroup of G corresponding to b :

(6.1) (27., T r ) ; r e F I with 2,- , ---{Jr ,„ ; ae A r },

(6.2) H =S F X IL E rH 7 , H7 = H(2,, T 1)-. .D (2 1, T r ) xi Ar .

N ote  that b  satisfies the conditions (B1)-(B3) i n  § 2.4. Here the  finite group T r is
assumed to be faithfully represented in 7,( T ) . The set 2 , o f  ordered n(r) - sets gives
a  datum to imbed the  wreath product SA7(T 1)  into G as follows.

For ae A r ,  let y.a
=

(P ly  P27 PO with n=n(T), and let ca  b e  the  correspondence
of J r ,„ to /„=(1, 2, ••• , n) such that c a ( p ) = j  ( 1 j n ) .  By means of ca , S .  and hence
T r is imbedded into as

(6.3) wa : S„DT 7.D. t çPa(t)=- a -  1 .t ° C a  C- a  .

Then by definition,

(6.4) D( 7, T r )=TLEA r T . with T e,=so,,(T r ),

giving the canonical imbedding

(6.5) 95r: SA 7(T r )=DA 7(T r ) S A1,--->11,=Dca r , T r ) >4 S A r cG ,

and thus H is the image of a saturated (in the sense of (B3)) imbedding Y. =0FO(O 7Er07 )
into G of a  restricted direct product group H given as

(6.6) H.,= NX ILErSA r(Tr) with N=1

where O F  denotes the  natural isomorphism of N  onto S F  according to the order in F.
Through this canonical imbedding Y. , IURs of H may be given as those of H when

it is convenient to do so.

6.2. A  fam ily 91 o f IURs o f subgroups in 91
Now let us give a  family alH of IURs of each H I .  T h e n  a  family at is defined

as the union of 31H  over HEW . W e give a  7  in IRH a s  a  factorizable one :

(6.7) r FO(V'Er HT) y

where 71-F  is  an  IUR of and for each 7EF, 117 is  an  IUR of 11,, and b=(b r ), b r e
V(117), V ) 7I1=1 , is the reference vector for the (possibly) infinite tensor product of H r 's.

In  tu rn , each 117 o f  117 is given by a  datum (orr y , X.47 , a(7)) with prr r  a n  IUR of
T,, X A T  a  character of S A r a n d  a(r)=-- (a 7 ,a).EA7 a  reference v e c to r . We put

(6.8) -Ur= H(Qr)°Sbr- 1

by transferring through O r : S A 7 (7' 7 )-4 -4 , th e  IUR 17(Q7 )  of ,17(7' 7 )  in  § 1.2.3 corre-
sponding to the datum

(6.9) Qr=(A r, p 7 ,  X 7, a(r)) with Xr =- XAr .

More exactly, for (t a )„, A •cr D(2 7 , T T)>4SA1 w ith  ta  T a ,  Gre i r y
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(6.10) //,((t.)• 6 )•= ( 7 r(7)((t. a )) • I,)®X A7.(a) with 7( r )((ta))=- 0 0 ,7 « ( t . )

where I ,  is  the  operator permuting the factors (of decomposable vectors) on V(7r ( 1 ) ) ,

and rca (t0 = p 1
7%1(so„ - 1 (t a )). The reference vector a(7) for the infinite tensor

product is given as

(6.11) a(r)=(ar,.).EAT with ar ,„ EV(7a)=V(P rrd, Ila 1,a11=1

I n  th e  above sense, each element 7E• in  91H  is given by the datum (b, Q) and is
denoted by z(b, Q ).  Here b in  (6.1) determines H=1P together with the imbedding Y .

of H into S. w ith image H, and

(6.12) Q= (PrTrI XA TI  a(r))T E T , b -=(b 7)7E r}

determines an IUR of H as in  (6.7)-(6.11). The set of all possible Q corresponding to
b is denoted by 0(b), whence 91H= DO, Q ); Qe 0 (b)}•

T he se t 31 of IURs of H's in  91 is given as

(6.13) =U H ew31H ={70, Q ); bEO, QEC(b)}.

6.3. O n the choice o f  families 91 o f  subgroups and M. o f  IURs
Here we give some remarks on the choice of the  families 91 a n d  91, which evoke

certain open problems.

Remark 6.1. T he choice of the family 91 of standard subgroups comes principally
from the demand for properties (GRP1) and  (GRP2). Especially the reason why I A r l
=co for every rEr, and why we take th e  biggest S F  b u t  not T S . F

, fo r  th e  finite
part, is  the following. If  we are in  the contrary case, then in  inducing up to G=S.,
we have anyhow an  intermediate step such as Ind7f r w ith r  an  IUR o f  T ',  a  finite
F 'D F  and a T 'c S F

, . In  such a situation, it is a shortcut to take S F
, a n d  a n  IUR 7F ,

of Sp , from the beginning. Here we also have to take into account Lemma DG3.16.
Moreover it is worthwhile to recall the condition (DIFfin) for irreducibility in  Theorem
DG3.6.

Remark 6.2. To construct an  IUR r  of H in 31, w e take fo r  every factor 111 of
H=S F  XIV E rH, a  factorizable IUR 7r( r )=OV,I rra of D( 1, T r )c H r . The reason why,
is  th at w e kn o w  little  about infactorizable IUR r ,  of the  restricted direct product
group I L E ATT a , especially nothing about the stationary subgroup eArordcsA and its
second cohomology group (cf. Appendix in  [DG]).

Remark 6.3. For each component .111=-D( 1, x CS' A r  o f H, we take only one IUR
prr r  o f  T 1. Contrary to this, let us take some number of IURs pm  o f T 1 not necssarily
different from each other but indexed by m / 1, and construct a standard IUR o f Hp

starting from them. T h is  means th e  follow ing. W e divide a,. into subsets 3m=
{J r , . ;  a e Am }, Ilmei r Am = k ,  a n d  define f o r  each m a n  elementary IUR of D =
D(3m, T 1) as

m7 ( ( ta)ae A m ) -= - V a lgAm 7r „(t a)
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with n. „(ta)=p m (y0, - 1 (ta)) for a Ani and a reference vector c m = (c . , . ) .E A ..  Then de-
fine an IUR r ( r )  o f  D(ar , T r )=1T,„E i r Dm a s  a  tensor product o f 7Cm ' s  w ith  respect to
a  reference vector d--- -- (d m )m E i r . A t la s t, taking a  subgroup T h E i 1 SA.CSA 1(7c( ,) ) and
its character, w e get a n  IU R  o f  117 :1---_' A r(T r )  b y  the standard inducing method in
Theorem DG3.6, that is, we induce an  IUR (3) (71..ei r (2cm ®Xm ) with characters X" o f SA7Th
from the subgroup 11";—=ll'm e i r (D(am, T r ))“', ” (z--1 m(T r )  to H r .

In case I I» <00, since the  role of the reference vector d is superfluous, it is clear
that we can start from the subgroup H instead of H ,  a n d  take as the  starting point
the datum {Am, (am, T r ), pm} m E i r  instead of {Ar , Gar , T i ) ,  pm 's} , A r =11„,E i r A m . Thus
the situation is reduced to our standard  case . In  th is connection, cf. also Theorem
DG3.6 and Examples in  §DG3.9.

However, i n  c a s e  /r 1= co , w e see  th at th e  role o f  th e  reference vector d is
essential in  general a n d  can not be neglected. Therefore, repeating this inducing
process, we get, at least form ally, an  unlimited hierarchy of induced representations
o f  S., counting th e  number of accumulation or steps of essential necessity of refer-
ence vectors. In our construction of p(b, Q), this accumulation is two-fold :  first one
i s  a(r)'s  and second one is  b. Whereas in  the above discussion the accumulation is
three-fold c m 's  and d's (both depending on rE F ) and b=(b r ),Er.

We will return to this point in another occasion.
Another point left to discuss is the  possibility to start with not necessarily irre-

ducible, but cyclic, representations prr r 's.

§ 7. Irreducible unitary representations o f  S  induced from those in  T

7.1 . Irreducibility o f induced representations
Let H =11' be a standard subgroup with b l  i n  (6.1), and 7c(b, Q)E9i. a n  IUR of

H with the parameter Q  in (6.12). We define a  unitary representation of G=CS'. as

(7.1) p(b, Q)=Indr(b, Q).

Here we give one of our main results as

Theorem 7.1 . For any  IUR  z(b, Q)Egt of an H =H 1'e:91, the induced representation
Q)=InGir(b, Q) is always irreducible.

Before proving the  theorem we explain the  meaning of the set of IURs of G thus
obtained.

Nete 7.2. To get such IURs, we can start with an arbitrary but at most countable
set of finite groups {Ed r c r , not necessarily mutually non-isomorphic. First take any
faithful permutation representation E r — '„ ( r )  f o r  each E r . Then starting from this
datum, we can choose ( in  m any w ays) a standard subgroup H=1--PE  VT as follows.
Take 31 =1j 1 ,„; aE A r l, 124,1=-- co, a  se t o f  ordered n(r)-sets. W e assum e that I r a
(TEP, aGA r ) are mutually disjoint and F- N\(J_i r c r, supp cad) is finite, where supp (ar)
=ua.A r j r ,a. Then we get a  b E 0  by b={F , (ar , T r ); rE F I, and so H=1--PE91, where
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T r is  the  im age of E , in „(,).
Now, take a  system o f  IURs 4 r  o f  T r a n d  characters ZA T

-=sgn o r  1 o f  SAr f:=- 3..
Then they give a  datum Q  if  we take in  addition an IUR 77 p o f S p  and  reference
vectors a (r) a n d  (w h en  P1-=00) a  reference vector b=(b,),E r. Thus we get un-
countably many IURs p(b, Q) o f  G  starting from an  arbitrary set {E r .

7.2. Proof o f Theorem 7.1 (Step 1).
To prove th e  irreducibility o f p(b, Q)=Ind?,7r(b, Q ), we apply Theorem 1.2(i). As

we saw in  §3.6, th e  se t  91 o f s tan d ard  subgroups has properties (GRP1) and (GRP2).
Therefore it is enough fo r  th e  irreducibility that the condition (REP) is satisfied for
7r=7(6, Q ) with itself. S in c e  th e  proof here is simple, we do  not appeal exactly to
th e  co n d itio n  (R E P ), b u t rather prove directly that i f  a n  LEHom z r  ;  HnHx)
satisfies the  cond itions (Bi )  a n d  (Cr ), then L = 0 , f o r  any representative x€E1-1 of
H\G /H.

T o  d o  so , p u t  i t 7 t X, H ',H x ,  and apply the conditions (Be) and (Ce ) in  § 1.1.4
fo r  th e  identity element e c G ,  to  a n  L E H o m (r , ; H n H 9 . These conditions are
written as

(Be) IlL7(h)v1125_MlIvr (h&-.(Hr)1/9\H),

(Ce ) >1.] I L*7C(W)Wd2-5.11/11WP (h'E(Hr)H9\1/9,
h'

fo r vcV (r ), w eV (e ), where M  is a positive constant.
F o r  H = IP ,  t h e  subgroup H '= H x  is expressed by Lemma 3.1 a s  H'=11 . '" with

b r = b 0 ,  y= x - 1 ,  where

(7.2) {F', (J,% Tr ); r e T } with

F' , YF-= {y(i); iE F } , acEATI,

Note that, since .x(-=- G  is a  finite permutation, there exists a  finite subset r , of
such that Z's;.= 2 ,  except f o r  r e P i ,  a n d  further fo r each rcT r

i there exists a  finite
subset A n  o f  A r such that J;.,„=J r ,a except for a cA r i . L e t E  be the  union of F and
j r ,  ( r c r  1, aE Then E D F ', and any element m E E "= N \ E  is  invarian t under
x - 1 , and so supp(x - 1 )-{m (7-_-N; x - 1 (m) ml=supp(x) is contained in  E.

P u t H "= H n -
E . Then H "=H 'f1SE , c:Hr\H', an d  7r IH"=e1H" because x com-

mutes with any h c H " .  N ote that

(7.3) H "= (  H  Hnx( a Hr ) with HÇ'=( ff' 7' ,r )>4S A .c H r ,
rEri Ter, trE A ;,' r

where I'll = r\ l" „  AÇI=A,.\A,. 1,  and  T a =gc,„(T a )  fo r a-(E,L1;1. Further H "  contains the
subgroup

(7.4) H  ( H' T„))X( H' D( 1 , T r )),
rer i tTEA;r e f ' ,

and the D -parts HD a n d  i r r, o f  H  and H ' defined in  (3.22) a re  expressed as



Infinite symmetric group 525

(7.5) HD=HD, x D", 111=H/D 1 x D " , with

HD1=SFX H  (  r f  T a ) ,  H /Di=x - '11Dix=S F , x H  ( 1-1 x 'T a x ).
rE r i  aE A r i r E r i  . e A r i

O n  th e  other h a n d , p u t  b"=(bd r e i- ,  an (7)=(a 1 ,a)11E,;. f o r  rE F 1. Then we see
easily that th e  representation space V(7r)-- ---V(7rF)0(0i,E rV (ild ) o f  7r is decomposed as

(7.6) V (7 )=V1O V" (=V (7 ')) with

1 V i=V (7cF)0(0,er i (0,,, EA2 ,V(7r,))) , dim Vi<oo ,

V "= (® r r , (0 a::::;Y(Ir,,,, ))0 (O r r ' ,V(H T ))

recalling V(H T)=0:2 r V(Ir a )  in  (6.8)-(6.11).
Corresponding to (7.6), both the restrictions it I D " an d  7r'I D " a re  expressed as

(7.8) 7r(d")=.-/v1 a z (d "), e (d ")-= I v 1 (31-(d") (d "e D "),

where z is a n  IUR o f  D " realized o n  V".
Take a n  LcHorn (7r, I r ';  H n H ') .  Then L  intertwines 7r1D " a n d  7 r' D "  and  so

it is expressed according to (7.6) as

(7.9) L =L iol,„ with a n  LicB(Vi).

Using this expression, we shall prove that if  both the conditions (Be ) and  (Ce )  hold
fo r  L#0 , then the  element x  should belong to H .  T h is  is an assertion stronger than
(REP) and proves th e  irreducibility of In d ic  in  Theorem 7.1.

7.3. Proof of Theorem 7.1 (Conditions (Be )  and (Ce))
Take a n  x E G .  We study (B,) and (C,) for LEHom (7r, r '  H n H ')  in  several cases

step by s t e p .  Here fo r  th e  convenience fo r later calculations, we use  temporarily the
following notation:

g C = Ig (i); (-=- C), gJ= (g (p i ), g(p,), ••• , g(p, i )) (=9,1)

fo r g e G , a  subset C o f  N , an d  an  ordered n-set J  o f  integers.

CASE 1. Assume that supp Cadnsupp (3; , ) ---=supp (2 1 )(1x - 1  supp (a r ,).= 0 for different
r, T h e n , take a i e A r , a 2 e A r ,  such that j,,,,, i nx - 1 (4 „ 2 ) -# 0 .  Here we con-
sider the condition (Be). We choose a n  infinite subset 2 ' o f  S A r c_Ji which gives a
system o f representatives o f  (H nH 9\H  such that th e  p a rtia l sum o f  j,7r(h)v11

2  over
h E Z  in (B,) already does not satisfy th e  inequality in  (13,) i f  L # 0 .  From the  defini-
tion o f  r, a n d  2'11 1, it is clear that r, rE ri, aIG A 1 1, a,cA 1 1 . S o  le t  I  consist of
transpositions îa -= (a ,, a )  i n  SA T w i t h  a e il;!--- A r \A T i . Then fo r  a # p ,  o-„up - 1 =-
(a 1, p, a )  does not belong to H ', whence not to H n H '.  In  fac t, x ( j 1 )=L, fi since
pEA;,', and so we have

0#(x•a «ap - ' ) I i r .a,nx - 1 (.1, , , „ , ) ]= x ( j r ,p)n(X • r • X - 1 )( 4 , , a  2 )

=jr•fin(x • • X - 1 )( 4 '  a 2)  •

(7.7)
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T h is  means that y=x•a„o- p- Lx - i does not belong to H a n d  so a a o.
13- 1 Ex - lH x= H ' as

desired.
Now le t u s  consider the  partia l sum. We know that L = L i O/ v ,, with L i E B (V i ).

A ssum e L * 0 .  Then there exists a  u n it  decomposable vector vi EV i such that Livi
L et v i = v F O ( O r e r i ( O . E A T i v „ ) )  with vF k-EV(7 F ), v a E V (r a ). Fix a n  integer N>0.

Take a  su b se t N  o f N-elements o f E c S A r  a n d  choose a decomposable v"E V " whose
component i n  17(7r ,3 )-=V (prT 7 )  is just equal to  v„ i EV(7r a  i ) =-17 (pr7  I )  for every apEE N .
Then fo r v=v1Ov"EV(7r), we have 7r(ap)v=v fo r any apEE N ,  and so

E 11L7r(h)v112E 11(LiO/v ,)7r(a)v112 _._ E 11(Livi)ev"11 2

he ( 11
'  ) \11 EZ o 73E2' N

•  MI. 17 11112111 )" = ( N 1112); 11V112 •

Since N • 11 L 1112 -- 00 as N — >oo, the condition (Be ) does not hold for L 0.

CASE 2. Assume that supp Cadr\F'=-- supp (a r )n x 'F #  0  f o r  some T E P . In  this
case too, we consider the condition (Be ). T h e  argument goes o n  th e  same line a s  in
C a se  1 ,  a n d  thus we see that any non-zero LEHom Or, ; Ji ( x ') does not satisfy
(Be ).

CASE 3. Assume that Fr\supp( )= F n x - ' supp (a r )#  0  fo r  some 7' E F .  In  this
case, we consider the condition (C,). Accordingly we replace H  b y  H ' in  t h e  argu-
ment in Case 2 , and  arrive  a t the  similar conclusion.

From Cases 1 - 3 ,  we see that it is ncessary that x  leaves each F, supp ( r )  (Ter')
stab le , for L # 0  to satisfy (B e ) and (Ce).

CASE 4. A ssum e that L.a i rd,a,#0, L e t E c S , 17 b e  as
in C ase 1 th e  se t o f  a a = (a i , a ) w ith aE24;1 -=.4 1 \ Ar i . N o te  th a t x - 1 ( j 1 , a ) = 4 , .  f o r
an y  a E- 24.51. T h e n , applying x . aaap to  both  sides o f  th e  above two equations, we
get fo r  y=x•a„cfp - i•x - 1 ,

fin y (J 1 . )4- 0,
T h is  means that y does not belong to 11, and  so X=- {cr„ ; aE is  a  system o f  re-
presentatives o f (H n H ')\ H . Starting from this point the argum ent for the condition
(B ,) is th e  same a s  that in  C ase 1.

Thus we have shown that x  should satisfy that x (L ,„ )= 4 ( a ) =72(j1 ,a )  (crE264)
fo r  some 77E S A1c .H ,.c co o . In  this situation, we have for every aEA T a  perm utation
ea E  n ( r ) such that

(7.10) x(J 7 2 (a ) ;

where o j  is defined in  (2.6) for eE 'Z T,  and J  a n  ordered n-set. From th e  definition,
we have eo(a J) , (7( 0,J) fo r  e E S ,. c rE -a „ . In  particular, (7.10) is equivalent to

(7.11) ea-  J x - 1 (1 r , ,i (.)) •

CASE 5. A ssum e that e,,1EET 1cs„( 0  f o r  some 7 E P  and  a t E il r i . We consider
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again the condition (Be ).
For any aEA;1=A 7\A 1 i ,  we have (a)=a and e a = 1 . Let 27ce A 7 b e  as in Case

1: „ = - - ( a i ,  a); a E A n . Let us prove that I  gives a  system o f  representatives
of (HnF11 )\ H .  We apply y=x•Gr a up - '•x - ' (cr„, c & X) to  j",„ “„,), then by (7.11),

Y(J r . ca,))=(x •  na 13- 1 )(ea -
i

i ° r . a d = e a l l °((X • 0  0 " 13- 1 )(.1 r,a i ))

= ea 1 O(X • p)=e,,1 1 ° J r , 9

because al I ) I- a, (a) by definition of the action of crE e A r  in  § 2.2, and x(J r ,p)=J 1,p
since S E N = A T A I . T he fac t th a t Y(Jr.,7(.0)=«1 10Jr, p with ec r i E Tr , means that
yEEH, whence c a a,3 - iEEH'=x - 1 H x  Thus any aa ,  u p E Z  represent different classes
in  (H n l-P )\ H .  (These calculations can be much visualized by means of the matrix
expression in § 2.2 of elements in HO

From this point on, the argument about the condition (Be ) is the same as in Case 1.
T hus, by Cases 1, -5, we see finally that for any x G  not in H itself, any non-

zero LEHom r, 7rx ; HnHx) does not satisfy (Be) or (Ce). Hence we get for p=Inc1r,

dim HomG (p, p) , dim HomH (7, 2r)=1.

This proves that p  is irreducible, and the proof of Theorem 7.1 is now complete.

§ 8. Equivalence relations among standard irreducible unitary representations of S ço

Let p(b, Q) and 0(b', Q ') be two standard IURs o f G=S o. given as

(8.1) p(b, Q)=--- Ing,gr(b, Q), p(b', V )= I r ig 7 ( 6 ', Q').

Here (b, Q) and (e', Q ')  are respectively

b=1F, (ar, T r); TEP}w i t h  r =  {J r .  a E A r } ,
(8.2)

Q=17 r, (prT r , X A ,, a(r)),er, b=(b,),Erl

h'.= IF', (,4  T D ; 3,/11 with Zq-=- W ,p ; iS E{ BBI,

Q '= i r ,  (t9T,;3, 43, a'(6))e4, b' -=(b)ae4} ,

with IF, j r ,„; T.E.r, aEA,I, {F', h. is ; 6 4, 18EB a  } , two-step partitions of N
We study here a  necessary and sufficient conditions for unitary equivalence p(b, Q)

p(b', Q'), and give it in Theorem 8.9 a s  our final main result. W e see that, apart
from elementary equivalences coming from inner automorphisms of S.°, there exist
non-elementary equivalences. The latter corresponds to the similar equivalence rela-
tions between standard IURs of wreath product groups eA (T), studied in [DG, §§ 4-8].

8.1. The boundedness conditions (B r ) and (Ci)
Put ri=r(b, Q), z2=z7(6', Q '), and

(8.4) H' H , 11.
2 =H b ' x  H' 111'" with

r e r  7( l e d

11, =H (3 1, D(ar, T r) >4 11:7=-Hcx,, D (2, >1 eB, •

(8.3)
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A s we know, the study of Hom ( p2) for 1,-1, 2, is reduced to the
study o f  LEHom (7c 1, r ;  H1nH2 1 )  which satisfies th e  boundedness conditions (Bx)
and (Cx ).. Here x EG  varies over representatives of Ii1\G/H2.

Note that if  we replace (r2, 1/2) by (721 , 1-121 ), the condition (131 ) (resP. (Cx)) turns
o u t  to  b e  the condition (Be ) (resp. (C 1 ) )  corresponding to the  identity element x =e .
On the other hand, we know that xr- 1 1P' x=Hb" with b"-= 1, b', y =x - i , given as

(8.5)b " =  { F "  (a ,Ç!, T)o E j } with

ag = ; Jg,A=YUD
so that

(8.6) I-12x = S F x Hg
W ed

with Hg=-D(ag, T '3)>1 esa •

In this way, we see that our study is essentially reduced to discuss the conditions
(Be ) and (C1 ) in case x =e .

8.2 . First step to apply the  boundedness conditions
L e t  u s  now study in  what situation there can exist a non-zero LEHom( r2 ;

H 1 n H 2 )  satisfying (B e ) and (Ce ). First consider (B e ) and denote by I(u 1 )  th e  sum for
u1 EV(7 1) appearing in  it :

(8.7) /(1./1)= E L7ri(hi)ui 11 2 .
hle( 11 1(111 2)\11 1

Fix a  rE P  and  consider th e  1-component H 7 =H ( 7 , T r )=D (2,, T r )>IS Ar . For a
subset A ' o f  .117 , consider, through th e  isomorphism Or : .,17 (7' 1 )—>H, the  following
subgroup of H r :

(8.8) H  —  T( S A, ( 7 '
 7.)) —  D  >I e i p w ith DA' —Or( D  Af(T r)) •

Let /A
, (u i ) be a partial sum of 1(u 1)  for which h i runs over HA' modulo H i n H , from

the left. T h en  1(u 1 )>JA , (u i) and

(8.9) /.1,(u1)= II L7L- 1(hi)ii111 2

h , c (H A , (■112)\HA'

Further fix an element CE- A '  and consider a partial sum 'A '. ,(u,) fo r  which hiE
D  •  a .  Note that the relation d •a--d t•o . (d, d 'E D A ,)  modulo HA , n112 fro m  the  left,
is equivalent to d - - d ' modulo DA .n1/2 . P u t  T =D A

, a n d  S =D A .n H 2 E T .  Then
, 1 ( 1 1 )  is expressed as

(8.10) /A.,,(ui) -=  E  II L;ri(t • u)uill 2

te s\T

Applying Lemma 1.12 we get th e  following

Lemma 8.1 . Suppose A 'c A T be finite. T hen, for any  aEeA , .

where e  denotes the identity element in SA '. Fu rth e r
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SUD /iv, e (u i); L r •

P ro o f . L et p be th e  IUR o f  T.-_--;(TdA ' a c t in g  o n  V1=0,icii , V(pa) with pa=P rTT .
T hen , since A ' is finite, th e  space V(rc i ), considered a s  a  T-module, is expressed as
V i e W , with IV1 t h e  tensor product o f other fac tors of V(r i ). Further le t  U be the
restriction of 71(a) o n  V,, then r i (o- )=UO/ w i . By Lemma 1.12,

IA ' (u )= E L p(t)U  uir = E
tES\T teS\T

Using this lemma, we obtain t h e  following criterion f o r  vanishing o f  a n  LE-
Horn (ri, r2; H1(i1-12) which satisfies (Be).

Lemma 8 .2 . Let I E r . Assume that there ex ists an inf inite subset I  o f SA7  such
that, fo r  dif ferent a, a 'e -E , any elements d•a and d 'a ' w ith  d, d'EDA 1 =0 1 (DA1(T 1 )),
are not m utually  equiv alent modulo H1nH2 f ro m  the left. T h e n  an LEHorn (71, 72;
H1 nH 2 ) is zero if it satisf ies the condition (Be).

P ro o f . L et A ' be a  finite subset o f  A , a n d  p u t  .1',1, =E rleA , . We apply Lemma
8.1. First, fo r  u1EV(71),

/(u 1 ) /A
, (u 1 ) _ E I * IA' ,e ( 1 1 ) .

E TA'

Then ill>sup {gu i); Mud —_ 1 } >= ZA. , 1;11L112. Since I .EA, 1-00 a s  A'—>A, we get L=0.
Q. E. D.

8.3. R elations between two subgroups H i  a n d  H2

L et us now apply th e  criterion in  Lemma 8.2 . To do so, we construct a n  infinite
subset E c S A T  satisfying the condition there, according to the cases.

C A S E  1. Assume that there exist (r, a1 ) and (3, 13 ) such that

j r ,a i nh,/3 1
-# 0  and

P u t C=h, i91, then every element in  H2 sends C to one of ,h,p, i3 ./36, in  t o t a l .  Take
a n  infinite subset .24.;. o f  A i such  that  1 1 ,a n C = 0 , f o r  any aE A Ç . P u t aa=(a1,61),
the transposition of a , and a .  T h en , fo r  different a, a'EJ4, th e  element y=a.aa , - I

=(a 1, a', a)ESA r c- H i does not belong to H2 . In  fac t, y jr ,a i = jr ,a
, a n d  y  fixes every

element i n  C\j r .„ i 0 ,  and  so y C n C * 0  b u t y C C .  Hence a „ and C a ' represent
different classes in (1--I 1nH 2 )\H 1. Here aEr A r  is imbedded into D A , T O  >4 Z A ,c H i a s

x a . T h us 2'=- {a„ ; a../4;,} gives an infinite system of representatives o f (H1(11-12)\1/1.
Further take d, d'ED A r c_>11,. T h e n , since (d a )(d'• Cra , )  =  d • y • we see that
d•o- ,„11-cl'•aa

, i f  a *a '.

C A S E  2. Assume that some l i a i
 meets F ':  j r ,ai rlF/# 0 .  P u t C = F ', then every

element in  H 2  sends C onto C .  Similarly as in Case 1, p u t A5, = {aEA r  ; i r ,a ,n c#
and  E ,--- {a„ ; ac.,.=4-}. Then this gives a n  infinite subset o f  S A r  w ith  th e  desired pro-
perty.
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According to Cases 1 and 2, we come to the situation where every .7,, p  is con-
tained in some of j r ,a and  F D P .  Now take into account the condition (Ce ) and a
version of Lemma 8.2. Then every J r  a  should be equal to some J.

CASE 3. Assume that, for two different 3,, 3,c 4,  w e have j r ,a j csupp (,%,) with
a,E241, = 1 ,  2 .  In this case, we may assume that 24; = 1c rE A, ; j„,„nsupp (k )= 01
is infin ite. Note that every element in 112 leaves the set supp ( )  stab le . Then we
see that f-={0; ‘,=.(a„ a );  aE A 1  gives an infinite subset o f  ,11 c,1-i, having the desired
property for the condition (Be).

Lemma 8.3. Assume that a non-zero L a- Hom (7r1, 712; H1nH2) satisfies th e  condi-
tions (132) and (C2 ). T hen, f or any T E r,  there exists a  unique 3E 4 such that every
aE A r ,  is equal to some :hp, 13E13 6 .

Thus, as a first consequence of the boundedness conditions, we obtain

Theorem 8.4. L et H 1 =11', H2 — H  w ith  b in  (8.2) and b' in (8.3), and, for 2,
le t 7ri  be an  IUR  of H i  given above. Assume that there exists a non-zero LEHom (n i , 712;
H 1 n H 2 )  which satisfies both the conditions (Be ) and (C2 ). Then b and b' satisfy the fol-
lowing: F =F ',  and there exists a  bijective correspondence lc between r  and 4 such that,
fo r  5=x(r),

(8.11) J1,a-=.4,3 f o r any crE A , with some iCiE-Ba,

giving a bijection ce,— p of A, onto B .

8.4. More explicit relations between H1 an d  112

We consider the situation where a non-zero L EHom (ri, 712; H1nH2) satisfies the
conditions (132)  and (C2). By Theorem 8.4, w e can identify 4 w ith  r through and,
for each TET, /3, (7.) w ith  A , through (8.11). Then the data  (V, Q ')  fo r (72 , H 2 )  is
rewritten as follows :

(8.12) b'= {F, ( ,  TÇ,); 7 E T ) with Zs'5;.= {,P,, a ; a

in such a  way that L. a = jr ,a  and

(8.13) Q ' = { 76 , (p , rA 1 , ar(r)) ;.er, b '= ( N ) Te rl

By the definition in § 6.1, we have

(8.14) 1-1,--=0,.( A1(Tr)), Hi-=0;-(SA 1 (T;)),

where the imbeddings 0 1 and 0,', into ec r CS., with Cr =supp (ad=suPP (a) are deter-
mined respectively by the families o f  ordered n(1)-sets a r = fi r e, r ; aEA r i and

T a . r  a G A T I. Further H 1 =-1 / and H 2 —H" a re  given respectively as the images of

(8.15) H=S N  x H '=S N x S  A .7;-),
7 E " TE['

with N = F ,  through the imbeddings into eo.,
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(8.16) W-=-0F0(O1erçb1), =gbFO(Orer0) •

where çbF  is  th e  natural isomorphism o f  S N  o n to  F .
F or the  m om ent we restrict ourselves to th e  r-factors a n d  clarify th e  difference

between two imbeddings Or a n d  (p; and  so o n . L e t  o b e  a  u n iq u e  element in  e c e

such that and  that ar t,p -=p fo r  any other pEN\,/,,„, a n d  denote by a r

th e  product o f  ara  over a cA r . Then ar is not necessarily in  So. b u t  in  th e  bigger
group S-

N  o f  all perm utations of N, which is isomorphic to Aut
Note that Or i n  (6.5) can be extended naturally to a n  imbedding o f  1/. . SA r (S„)

SA; (T r ) in to  S ., and  similarly for Or, where )2=---n (r). T hen by (6.3)-(6.4), w e  have
fo r  y (EY ,

(8.17) 0 ;(Y )=  r • OT(Y)* 0 . 7- 1 = ( e ( u r ) . 07 )(Y )

where c ( o )  denotes th e  automorphism o f S. induced by c r . In  particular, we have
th e  same image O1(Y)-- 9N(Y).

T h e  above relation can be rewritten with a n  automorphism o f  Y  a s  follows. Let
$ 2.»  be an  element o f  S T, such that

(8,18) 7.ct 7, a
=

 j ',c r

and consider ).,Ta,aEAr as an element of the direct product E=ILEA TE . w ith  E = n
(ac-A r ). Every elem ent o f  E acts o n  Y  a s  c( - )y = 6 - '  (y  E Y ). We assert that

(8.19) SN(Y)=(01.6(1)-1)(Y)-----01(1-1A:.1) (y BY) •

In  fac t, in  the  no ta tions in  (2.1) and (2.6), we have for eES T, and P 2 ,  • • •  PA,

e o .L = c p , - i ( l ) , ••• , pe-i,„))= -1 ,.(e- w a  ,

and  therefore ra ( 1) a(e 7 a l ) .  Hence (8.19) follows from (8.17).

Lemma 8.5 . (i) The subgroups H7 and H  are both contained in  01(1')=-- 0 (Y ) and

(8.20) Or-l(Hr)=SAT(Td , OT
- 1 (fl"0-= - 1 SAI,(TO •

(ii) A n elem ent t XaES A r (T r ) w ith  t - = ( t a ) a E A T ,  t E T ,  an d  a E A r , belongs to
Or

- 1 (11r n H )  if  and  only if

(8.21) ta. T,(me,--1TÇÇo.-1(a) (aGA r ).

Now p u t  f o r  every eES TT, A71 = la e A 1 ; er .= - 1 .  Then A1 =-117 e sn A l  is a  parti-
tion o f A , .  O ur aim at this step is to prove the relation (8.22) in  th e  following

Proposition 8 .6 . Assume there exists a non-zero LE_H0m(7r i , 7r2 ; H1 nH 2 ) satisfying
(132 ) and (C2 ). Then we may assume that the data for 7r1 an d  7r2 a re  given by  (b, Q) in
(8.2) and (tV, Q') in (8.12)-(8.13). F ix  7 E ['. I f , n="n(T), satisfy  I A rd=1.141
=00, then

(8.22) TT7=T72T7.

T h e  proof o f  this proposition continues until § 8.9.
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A t first, we consider subgroups o f Y = S A1 (S 7,) as

Yo=11eEe r, Are (Sn), Y 1=f1,te ,-..-7,SAre (T r ),

(8.23) Y2=ILEaneArE(TÇ.e) with T;L- r--e - 7;,e ,

Z2=liees„SA,(TOCS A r(T;) .

Then Y1CO3-- 1 (1 4), Y2CSb y
- 1 (1 / ) ,  a n d  Y 1rlY 2C(P1' (H 1nH;-) by Lemma 8.5(ii). More-

over we have O 1 ( Y 2 ) = 0 ; • ( Z 2 ) ,  since Z z =t( - )Y 2,  and

01.( 7 2)=IleEs„H( , T ) , s N , (Z2)=IleEs„H(ah, ,

with are=;  a E A rd  ah—{P,,a; a cA r } , because eoah—ah.

07( 7  )=SMY

I
HrO r ( )  0)

Or(Y OT( T  2)=. 2)

SATE(Sn)

/ \
S4 e( TT) SAre( T )

\  /
S A re(T rnT ;.)

O1 ( Y1n17 2)C l irn H ; =-- SA re(T,)()SA Te(T;.)

Diagram 8.1 . Inclusion Relations Diagram 8.2. e-components o f  Y,'s

8 .5 . A pplications of results in [DG]
We can reduce th e  present situation to the  case  of infinite wreath product groups

studied in  [D G , § 7] a s  follows.
(1) Assume there exists a non-zero  LeHom(ni, 7r2; H 1n H 2) which satisfies the

boundedness conditions (Be ) and  (C1) fo r 111, H 2  and  H1n H 2. T hen , fo r any 7GP, we
have a non-zero element LreHom (11,, ; 111n1 -1 0  satisfying the conditions (Be ) and
(Ce )  fo r H,, 11;, and  Hr n H ;,  where //1 =/7(C) 1)001 - 1  o f  H, in  (6.8)-(6.9) is  th e  7-com-
ponent o f (r 1, H1), an d  /7; is that o f (r2, H2).

(2) In  Diagram 8.1, restricting H  from H, to 01(Y1), and  11, from H to çli,(Y2),
w e  g e t a  n o n -ze ro  element in Hom (//; 10,.(37 1), 77;10; ( '2 ); sb1(Y1nY2)) s a t i s f y in g  (Be)
and (C1 ) for 01(17 1), O1(Y2) and o1or1('Y2).

(3 )  Pull back th e  above relations to Y 1, Y 2  and Y 1 nY 2 through Or - 1 ,  and  take its
e-component fo r each e s„ with A , 7 = Ø .  T hen  w e get a non-zero element

(8.24) L Hom (71e, 7r2 ; . . l re(T r )nsA wT;-'))

satisfying (131)  a n d  (C1 ) f o r  SAT (T ; ), eAre( T )  a n d  SA2,e (T ; r 1 7 ) .  Here an d  712
denote respectively e-components o f th e  pull-backs /7; o0 ; '  Y i a n d  /7;00, - 1 1)7 2.

Now le t u s  study the situation arrived in  (3) above, and apply the results in  §DG7.
First we specify from what da ta  the  representations ari e  a n d  7r2e o f  wreath product
groups e A ,E(T T) and  S k (T;E) are determined. Put p,=prr r , p;-= tor'),- , and define a n  IUR
p;.e o f  7';- by
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(8.25) f' (s)= p;-(ese - 1 ) (s E Tçe) .

Further p u t  are =(a r , )a , aeA r e ,  a h
=

(a , cr)oteA r$ ,  and XAr e =XAr SA re , rAre =rA r IeAT,. T h e n
7r1; and 72e a r e  determined respectively by the data

(8.26) ((p,, T r ), XAr$ , a r e), ((0 ,  ;-e), n re , ah)
where a r e  is  th e  reference vector fo r  th e  tensor product

OWArepa on VgA reVa with p a = pr , V a=V(p.),

and  a;e is  th e  similar one.
A ssum e O rel =00 . Then we can apply Theorem DG7.8 (cf. Theorem 1.10) and

obtain a n  explicit expression for Le  i n  (8.24). It is proved there that L e is  unique up
to scalar m u ltip le s . To apply Theorem DG7.8, we p u t in  it

(8.27) A ,A re , T Ti=Tr, 772 = r 2 $ •

Then we get th e  following results.
(I) There exist a unique (up to equivalence) IUR r e o f  T (e) = T rnT;e a n d  a  refer-

ence vector c =(ce.)«cA re, cea V(TO, 11-=1, such that

(8.28) p1Ind (re ; T ( )  T r ), ioÇ•e--' Ind (y e ; T (e ) 7 -‘e);

(8.28') Ki(Ind (ce ; T (e) ) T»), (ce ; T (e ) I  T;e))

where K t ,  i=1, 2, a re  respectively th e  tensor products over a A re o f  unitary inter-
twining operators fo r the  equivalences in  (8.28). Moreover we have XAle =X'A;e .

(II) L e t  J (D b e  a  unitary T (e) -isomorphism o f th e  re-part o f  V(p r ) onto that of
V (0 ) ,  and extend it trivially as a  partia l isometry. Then there exist (2a )aC,•12$• flaE C  •

1 dIce1 =1, and a  constant d e such that

(8.29) LE=c/e•OnA1e(2aJA) w ith  n
=-

J (e )  •

8.6. Interpretation of the preceeding results
For simplification of notations, we put

YC=SA rgS n), YI;= .3A1$(T r ), Y 2.-= 3 ,17e(T Ç ) ,

Z--,DAre(S7,), DATE(T;') r

where DAre(S)=ILEA reSa with S = S .  T h en , s in ce  Y e=Z e >aSA rv  Y ie = Z ie C3Are , we
have

ien Y2,i) (Z ien Z2e) Z ie .

Interpreting in  th e  n o ta t io n  in  (8.27), we know by Theorem 1.7 (cf. Theorem
DC4.2) that th e  representations

P,=Ind yY eie r ze( i = 1 ,  2)

a r e  both irreducible, a n d  hence dim Hom (P4, P2 ; e )-<  1. Through standard discus-
sions, we know by Theorem 1.10 (cf. Theorem DG4.5) that th e  result (I)  above gives
a  sufficient condition for /3

1e P2e (a n d  gives easily a  necessary and  sufficient one) and
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that the result (II) gives explicitly a non-zero intertwining operator Ke f o r  t h e  equi-
valence P1 P 2 .

Let us recall from §1 .1  how Ke is determined from LeEHom 7r2;; 37 1.;(1Y2e) in
(8 .29 ). The representation space  V (P ) , i= 1  or 2 , is  the  space of V(7r ie )-valued func-
tions on Ye such that

f(hY )== lri(h )f(Y ) y EYE),
(8.30)

Ilf112 -=. EvEy i ffdf(y)11 2 <oe

The action of y oEY E o n  f  is given by Pie(Yo)f (3)=f (.Y.Y0). The opertor K e  is w ritten
w ith a  kernel, denoted again by the same symbol, as

(8.31) (K ef)(y )=Ey•EyiffeK e(y , y ')f(y ') (y E  Ye),

and the kernel itself is given as

(8.32) Ke(y, Y9=r2e(h2)0Leor1ghi) i f  yy' - ' =h2h1 w ith  hiE Y q,

(8.32') Ke(y, y ')=0 otherwise.

N ote  th a t  f E V (P i e )  is uniquely determined by its restriction on Ze . Hence we
may and do consider V (P h )  consisting o f  functions on Z .  T h e n  the kernel itself is
g iven  o n  Ze xZ e,  a n d  th e  summation in (8.31) is actually over Z i e \Z e . Put k ( z )=
K e (z, e ) for zEZ e. Then K e (z, z9=k e (zz' 1 ). It follow s from  (8.29) and (8.32)-(8.32')
the  following

Lm m a 8.7 . For z = (z a )a e A r e Z e ,

(8.33) ke(z)z=de•O,EA;Eka(za),

where d e  is  a constant and k a ( ) on S T, is given by

(8.34) ka(-1z,,,ezi0-=P;,(z2,)°(2a1(E))°P7(21a) f o r z i a e T T, z 2a e T ;

(8.34') ka(za)=0 outside T;ET 1 ( T ;eT 7).

8 .7 . T w sits by  eE sn
By Theorem 1.9 (cf. Theorem DG3.13), P2E=Indr,10-2e is given by the datum

(A Te , Ind (p ;- ; T;• T S 'n ), Z A r y  Ind (ah ; 
T C  T SO) with

Ind (ah ;  T E
 I s n ) , (Ind(a;, a ; T;e — fo r a; e =(a ;, a,aE A g •  •

I n  this datum , Ind (0 ;  T ; "  Î e n )  is equivalent to Ind (p ;; T ) = - I n d p ,  because
(f4,e, 7';•) is  a  tw ist o f (p ;, T ;) by eES7i.

Let us give an  equivalence map explicitly. Similarly as in  (8.30), an  element çor..1-
V (Inde npr') is given a s  a  V( to)-va lued  function on (an.

•

Lemma 8 .8 .  For goeV (Ind 19;), put

(8.35) ( Oeyo)(s),yo(es) (s E'L -
72) .
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Then t e gives a natural S n -isomorphism o f  Ind to; with Ind ; T  TT r
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8.8. Equivalence relation fo r r-parts
T o  s tu d y  the  re la tion  betw een e, E  S . such  tha t I A7721 = 0 0 , we should

study the situation for 7-parts in  § 8.5(1). For Y-=SA,(Sn), we consider subgroups

Z= DA T(S . ) ,  Y ri=0 7
-1 (110=SA 1(T 1), Z 1= D A r (T 7) ,

r2=O r
- W O =  e( -)-1 (S Ar (T ;-)), Z Ar(T

Take IURs 11(Q ) of YI and II(Q;.).c() of )7 7," and consider their induced representations

PI=Indr/11(Q,), P=Indrr,(11(Q;).c(e)) .

Then they are both irreducible and mutually equivalent because of the existence of
LreHom (Hy, H ;  Hï n.H) (consider rather its O r

-  i-version).
The space V (Pri )  consists o f V(//(Q))-valued functions f  on Y  such that

f (h Y )=( 1 1 (Q r )(12))f (37) (h EY 1, y  EY )

If\ y l l f ( y ) 1 1 2 < 0 0

Noting that f  is uniquely determined by f 1 Z  and replacing f  b y  f  I Z, w e  m a y  and
do consider V (P ) as a  space o f functions on Z  satisfying

f  (hz )=(H(Q r )(h))f(z) (h EZ1, 2EZ),

and the P-condition on Z N Z  ( Y \ Y ) .  Moreover, le t zo E Z  and a ES AT,  then

(8.36) Pri(zo)i(z)=-f (zzo), Pi(a)f (z )=(1 1 (Q 7)(a))f (e )

w ith z'=(zo(.)).ŒA T, and for a  decomposable element f =0,,EA rf  f  “ V (Ind7rn 0 r ),

(8.37) Pi(a)f  =0 .eA r g a w ith ga= f

Note that here w e have taken into account Theorem 1.9 (cf. Theorem DG3.13).
Similarly we can write down Pr, as fo llow s. The space V  (P) consists of functions

f  on Z  w ith values in V  (11(Q)0 e())-=V  (11(Q)) satisfying

f ( h • z)-=( 1 1 (Q)(h))f  (z ) (h EDA r ( T ; ) ,  Z E Z ) ,

and the P-condition on Z N Z .  Further, for zo e Z  and (rES.47,

(8.38) n z o )f (z )= f (zz 0), P;(6).f (z)=(17(Q;)(0 . ))f (z')

w ith  zi=--- (4 ) Z/a= e a - le a (a )Z a (a )•  In  p a r tic u la r , fo r  a  decomposable f  =,""K"),,,,YEA r f

f aE V(Ind ((POE" ; (T Oe a T 7z)),

(8.39) P((r)f -=0..EA r g w ith g a (z a )= f  c-i(n)((Ec-i(a))'eaza)

Let us prove the second formula in  (8.38):

Pr2(a)f (z) ,  f (z • a)= f  (a • z")

= f 0 "É. • --1'".z ")=(//(Q0(0'))f (---'(z )")
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A s remarked before, P '; and P  a re  mutually equivalent and the intertwining
operator K r between them  is described by a  kernel K r(z , z '), z , z 'eZ , determined
from Lr similarly as Ke from Le  in  § 8 .6 .  Take a E S A r in particular, then

(8.40) P (a ).K r=K roPTI(a).

Applying (8.37), (8.39) and the results in  §8.6 on K e , we can prove (8.22) in  Proposi-
tion 8.6.

8 .9 .  Proof of Proposition 8.6
Assume t h a t  A 1el =1A 1 =00  fo r two different Ç, iiES7,. Then we have the

intertwining operators Ke and K , 2 fo r Are-part and 11172-part, that is , fo r th e  repre
sentations of Ye and Y  v . Put B=A r \(A r e lJA,,7). Then the irreducibility for Ye and
Y  te lls  u s  that K r  can be expressed as a  tensor product K r=K e 0 K 770 K ir3 w ith  B-
factor KL of K r according to Y e x 17 ,7 X  SE (en )cY . Furthermore, by the results in
§8.6, K e and K , 2 a re  factorized as

Ke =d e •GLEA7 JG , K r-= d ,2• OoteA r ,7K a

where K a  has the kernel K a (za , z'a)=ka(zaz ia- 1 ), za, z'aEZa=e„, and ka (z„)=0 outside
ea - 1 T ( = - 7 ; ,U , ,  or 77- 7427', according as a / l r e or a Arii).

Let us now apply (8.40) to a transposition o. =(tro, po) with et,EA re , 130 A 1 ,7. Take
as f  E V (P )  an element of the form

f = f a oOf  fi o e f c , = A T \ {a ., 19.},

with a-components f , ,  fo r a = a o, Po, and C-component f C.
 Accordingly, we decompose

K T  as Kr=Ko,00Kg 0O K &  By (8.37) and (8.39), we get

(Kr. P ri(a))f = g 0 g ( p l O ( K I • f  c), (P ja )° K 1 ) f --- --g40g(40(KU c)
where

e ,;(z a0 )= (K„ of t io )(z„,), gA;(zp o)=-(Kp of a o )(2p0);

g. (za0 ) , (Kp 0f po)(n - l z„o ), g (
i3

2,;(z,so )--=(Ka o f a 0 )(e - ')7zie0 )

Therefore (8.40) for q =-( a 0 , i80)  is equivalent to

(8.41) (K„0(p)(s)=--(Kp0ça)(7-1s)

for çoeV(Inc17,7p 1). Hence, with a constant d,

d. E ka o (ss' - ')çp(s') ,  E k 0(n'ess'')Ço(s 1 ).
s•Grr\ e„ s•Err\en

On the other hand, we know by Lemma 8.7 that k a  o(s ) is zero outside - 1 (T;e7' 7),
and similarly kp0(72- 1 es) is zero outside (77- le) - ' • 22- 1 7';)2T1 = - !(T;,)2Tr ). Thus we should
have T ;e T ,= -T n T , as asserted in Proposition 8.6.

8 .1 0 . Generation of unitary equivalence in the set of standard IURs
From our study until now, we can deduce three operations on the set of data

(b, Q) with b E 3  and QESZ/(0) for standard IURs o f G=e., and also two criterions
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for unitary equivalences. These five operations and criterions will generate altogether
all the unitary equivalences in the set of standard IURs o f G.

In our terminology, an  operation on a  datum (b, Q) means a  specified replacement
o f  some p a rts  o f  th e  datum which again gives a  datum corresponding to a standard
IUR equivalent to the original p(b, Q).

(OPERATION 1 )  In (b, Q) in  (8 .2 ) o r rather in  Q, we admit repetitions of the fol-
lowing replacements :

( 1 0  7F  by 7c'F  such that 2c rF ;
(lii) b by b '= (b ) 1E r, such that bie -'1);

(liii) (P rTy ,  a (7 ) )  b y  ( p ,  a '(Y )), where p',,Tr --.4prr r ,  a n d  a'(1) (M r a7.a)acA,, with a
unitary /1//1EHomr 1(p r

r1 , p irr,) a n d  a(Y)=(a r , ) a E A ,  ( th e  reference vector ba , 

should be replaced accordingly).
N ote th at here  w e have taken into account Moore's criterion for equivalence of

tensor products of IURs.

(EQUIVALENCE 1 )  Let x E G .  For (7r, H ) with HE91 and rm R  a n  IUR of H , put
irx(h)=7(xhx - ' )  fo r h E lls = x - 'H x .  Then

Ind Ind j a, r ' .

Note that the replacement of (7r, H ) by ( , T X ,  H x ) can be easily written down by
means of the datum (b, Q ) .  C f. also Lemma 5.2.

(OPERATION 2 )  F o r  every T E P , take ta E T ,c S „ ( r )
 for ae.A r . Then, in (b, Q),

replace .5,, a(7) and also b by

{J;-,« ; a E A d with J ;, ,  = t a 'f r ,  ,

a i (7)=(ai-,a).EA 1w i t h  a;, ,,,,,=p rr,
r (ta)a r ,a

b '= (b ) rE r with b;-= ( torT,.(ta))br .

(O PERA TIO N  3 )  For every rGr, ta k e  r e S „ ( r ) and replace 2
1
, 7'1 a n d  pr7,1 respec-

tively by

2;-=fer*Jr.a; a E A r l , 7 ';.-=- V r  a n d  p' 
T T

 =.(prTr)er

Note that Operations 2 and 3  are , so to speak, normalizations in  the  se t o f da ta
(b, Q) or equivalence relations in it to reduce the degree of freedom of choosing (b, Q)
f o r  essentially th e  same (7r, H ), HEW and 7rE91 of H .  In  fact, in  each case, even-
though 0;.=O1oc() - 1 ,  • •=•-(ta),aeAr o r  =(ea),,,EAT w i t h  a =e r ,  the group Hr

.=O r( Ar (T r ))
coincides with O r ( S A J r ) ) ,  a n d  its representations to be induced up are  mutually equi-
valent in Operation 2  and are the same in  Operation 3. We can see the  meanings of
these operations also from the discussions in §  2 .3 , especially from Lemmas 2 .1  and
2.4. See also Theorem 3.3.

The following equivalence criterion gives a quite new feature to our study, which
has first been encountered in the case of infinite wreath product groups (cf. Theorem
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1.10 or Theorem DG4.5).

(EQUIVALENCE 2 )  For two data (6, Q) and (6', Q'), introduce the relation consist-
ing of the following :

(21) b '= b , and 7'F = r F  (F '= F );
(2ii) f o r  every T e r ,  p u t  Sr = T r n T ;,, then there exist a n  IUR r i  o f  S r and a

reference vector c(r)=(c r ,)aEAr , E Very), C ra = 1 , such that

(8.42) pT=Ind Ts r
1,7 , p IndT 1 ,

a (7 )-(K a (Ind74c 1)ra,,aEAry a, (7) - - (K(Ind r4 c  ) )ra ,,aE A r

where K , (resp. K O  denotes a  fixed T r - (resp. T H  isomorphism for (8.42);
(2iii) for e v e r y  E r , le t Hor =O r (SAr (Si )) and define its standard IU R  or from the

datum ((r i , S r), XAr , c (7 )),  then there exists a  u n it  vector er EV(rc or )  such
that

b--'(Kr(Inclirrirorer))7er, b' -. - (IfÇ(Ind2 r er )) r e r

where K1=o1.(0.EA 1 K ) . o 1 - 1, 1“-=0,0(0„EA T KOosbr - 1 ,

Note that in  (2iii) we take into account Theorem 1 .9 , a n d  ÇN=Or coming from
6'.=b in  (2i).

8 .1 1 .  Unitary equivalences in the set of standard IURs
We can give finally one of our main results, the most important one.

Theorem 8.9. In the set of  all standard IURs p(b, Q)=Ind i r
G br(b, Q) the relation of

unitary equivalence is generated by Operations  1 , 2  and 3 , and Equivalences 1 and 2.

P ro o f . We give here a sketch of our proof since some parts o f it  are  a  kind of
repetitions of discussions in §§DC4-DG8 in the case of infinite wreath product groups
studied in  detail in [DG] and also since another essential part o f it has already been
given in Proposition 8.6.

Assume p(b, Q ') .  Then the proof goes along the  following line.
(i) We apply in  § 8.1 Equivalence 1 and reduce the discussion to  the case of the

boundedness conditions (Be) and (Ce) for x=e.
(ii) In Proposition 8 .6 , w e get T;ET 1 =T72T i  i f  I Are = I Ar ,r 1= 0 0 . Fix such a  E

a n d  represent E r ,  i n  (8.18) a s  Er ,-=t'a et, with tf„G TÇ, ta ET r . Again applying Equi-
valence 1  i f  necessary, we m ay rep lace  a  finite number of Era 's appropriately and
hence may assume that the above expression is possible for any a EA r .

(iii) We apply Operation 2  twice :  once for (b, Q) and (ta  )a E A r and once for (6', Q')
in  (8.12)-(8.13) and (ra- 1 ).EA1.

(iv) Thus we come to the case where 241 =A 1 fo r  some E E  „ (, ).  Then we can
apply Operation 3 and then arrive to the case E=e (for each T E r ) ,  and hence to 6=6'.

( v )  Under the condition (2i) in  Equivalence 2 , we can apply the results given in



Infinite symmetric group  539

§DG4 for infinite wreath product groups (cf. Theorem 1.10). Then we get (2ii) and
(2iii). Note th a t the condition (2iii) says th a t the reference vectors b  and b ' are
mutually equivalent in the sense formulated in Definition 4.6' in  [D G ]. Thus we have
arrived at Equivalence 2.

The converse w ay is easy to  fo llow , that is , we see easily that Operations 1-3
and Equivalences 1-2 give rise to unitary equivalences between standard IURs. Q.E.D.

8.12. Final remarks

Remark 8.10. Restrict ourselves to the set 9 i f  of finite-dimensional IURs of sub-
groups in  91. Then Equivalence 2  h as no place to apply since there appear only
characters prr r 's in this case, which can not be obtained a s  induced representations.
Further the reference vectors p lay  n o  role. O perations 2 and 3 have no essential
meaning because the subgroups H r and I I ; there coincide with each other. Thus the
only thing essential is Equivalence 1 as we saw in Theorem 5.1.

Remark 8.11. In the case of infinite wreath product group S A (T )  studied in [DG],
we have formulated the result so as to exclude Operation 2 from the biginning, and
moreover Operation 3  is alm ost trivial. However Equivalences 1  and 2 both play
essential roles (cf. Theorems DG4.2, DG4.5 and DG4.7).

Remark 8.12. The families 91 and Ft for G = S . -- S N  are invariant under Aut (G)
= -8 N ,  the group o f a l l  permutations on N  Since the equivalence relation in the
family of all standard IURs of G is completely known in Theorem 8.9, we know how
the outer automorphisms of G act on the family.

Remark 8.13. Our method here consists o f (a ) saturated imbeddings of wreath
product groups and (b) inducing up their standard IURs. This method can be applied
to other types of infinite discrete groups such as GL(09, F q ) or SL(00, Fq ).

Appendix. On the equivalence for the tensor products of representations

Let A  be a set of indices and, for each a E A , G a b e  a  topological group and K a

its open compact subgroup. Let r a b e  a  continuous irreducible unitary representation
(=IUR) of G a  which has a non-zero Ka -invariant vector. Put V a =V(7r a )  and let a=
(aa),,EA be a  reference vector consisting of Ka -invariant a a  E V .,  a4 = 1 , and consider
the tensor product of r a 's with respect to a:

7ra=-O cctxeA V , on Va=aL, A V„ .

T his i s  an  IUR o f th e  restricted direct product G A = M eA (G ., K a) of  (Ga),,EA with
respect to ( K a ),,EA (for the definition, c f . [141). T his contains the case  o f discrete
groups where we take Ka  as the trivial subgroup consisting of the identity element.

W e g ive here a sim ple proof of the following criterion for mutual equivalence
due to C.C. Moore [14].
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T heorem  A l. L e t  a-=(aaLEA and b = ( b ) a 4  be tw o ref erence v ectors w ith K a -
invariant a t,, b a , and le t  Ira, V al and o r b ,  T M  be the tensor products o f  r a ,  a E A , with
respect to them respectively. T h e n  ra b (unitary  equiv alent) if  and only  if
(Moore-equivalent), i.e.,

(Al) EacA(1 - 1<aa, bal)<0 0 .

P ro o f . For any subset B c A ,  put

GB=MEB(Ga, K a ) ,  as—(a0.EB, VI3E -0 2 B -F a , 7 73B  — 0213 7  a

Then 7B"  is  a n  IUR o f  GB  o n  V Ba B
 

Consider a  vector in  V P  g iven  by a B = 0 « e B a a •
Under the condition (A l), th e  vector 04  can be considered a s  a  decomposable element
in  V b ,  and  sim ilarly fo r  1)4  and  V .  T h i s  proves th e  " if"  p a rt o f  th e  theorem.

Now le t u s  prove th e  "only if"  p a r t . A ssu m e  that 7ra---- r b . Take a non-zero L E
Hom (pr", 7 5 ; G 4). F o r any finite subset F  o f  A , p u t 7rF — GLEFTra y  V F — OcrEFV a  and
B = A \ F , then

Ir a 7 rF O IrBaB, V V F O V B aj3 T7b TT A-m7
V V Fk& V bBB

From th e  irreducibility o f  rcr  o n  V F ,   w e  se e  e a s ily  th a t L  can be expressed a s  1,--=-

I v F O L B  w ith  a n  .L,, Hom(IrLE,  B B ) ,  where /v p , denotes th e  identity operator on
V 1 .  P u t w =La n ,  then w and  fo r any FDA , w  can be expressed as

(A2) w=apOxB w ith xB=LBaBE- VBa B  •

O n the  other hand, it follows from the  definition o f  tensor product space V b that
every vector in  it can be approximated by elements o f  th e  form y FObB, where F c A
is  f in ite  a n d  y F EV F ,  B = A \ F .  Hence, f o r  a n y  s>0, we find a  finite F c A  and a
Y F E V F  such that

(A3) 11W F®.B1I<E

By (A2)-(A3), we get

62 --- 11(1F®x Bœ y F&B112 -11w112 +11y FI12 -2  Re (<(1F, y F><xB, 12B>) •

Therefore, i f  s<11w11, then <x B , bB > # 0 . In  tu rn , fo r  any fin ite F 'c B ,  w e have x
a F ,O x B ,  w ith B' , B \ F ', and so

<xB, 6>=(11aEF , <aa, ba>)-<xB , , b13'›

S in ce  1<x.8, , /213'>1 ==--:- 11 X  '3 ' 11=  w II, the product .1Iaesl<aa, ba>I should converge. Hence
w e have ErrEB (

1—
 1 <aely b ,> )< œ , w h ich  is  eq u iva len t to  th e  condition (A l)  in  th e

theorem.

A dded in  Proof. Reference [8 ] has appeared in  Japan . J. M ath., 16 (1990), 197-
268.
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