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Introduction

The scattering cross section is directly related to experimental observations
in  laboratories a n d  is  o n e  o f  th e  m ost im portant quantities in  scattering the-
ory . T here  are many works on the semi-classical analysis for scattering matrices
of 2-body system s. For example, such a  problem has been studied for scattering
amplitudes in the works [14, 18, 21] and for total scattering cross sections in the
works [7, 13, 16, 19, 20]. I n  t h e  p re se n t w o rk , w e  s tu d y  t h e  semi-classical
asymptotic behavior o f to ta l scattering cross sections w ith 2-body initial states
for 3-body system s. Such an initial state is of m ost practical interest. In fact,
for many-body scattering systems, k-body initial states w ith k  > 3  are  not easy
to realize through actual physical experim ents. There seem s to be only a  few
works on the analysis for scattering matrices of many-body system s. In  a  series
of works [3, 4, 5], the following properties of total scattering cross sections have
been studied in detail: (1) finiteness of total scattering cross sections; (2) continuity
a s  a  function of energy; (3) behavior at high and low  energies. The asymptotic
behavior in the semi-classical limit has not been discussed in detail in these works.

Throughout the entire discussion, the constant h, 0 < h  «  1, denotes a  small
param eter corresponding to th e  P la n c k  c o n s ta n t. W e require  severa l basic
notations and definitions in many-body scattering theory to define precisely the
total scattering cross section in question. We here state our main theorem some-
w hat loosely. The precise form ulation of the m ain result is given a s  Theorem
1.1 in section 1.

Consider a  system consisting of three particles moving in the 3-dimensional
space R 3  through real pair potentials V; k , 1 < j  <  k  < 3. W e  d en o te  b y  m , 1  <
j  3, the mass of the j-th particle and by r;  e R 3 i ts  position vector. A partition
of {1, 2, 3} into nonempty disjoint subsets is called a cluster decomposition. We
use the letter a or b to denote such a cluster decom position. The Jacobi coordi-
nates (y a , za ) e R 3  ' 2  associated with given 2-cluster decomposition a = {1, (j, k)}
with j  < k  are  defined as

Received October 19, 1990



534 Hiroshi T  Ito  and Hideo Tamura

m.r • + mk rk(0.1) y a = —  r, za = r i J  J

MM • k

and also, after separating the center of mass motion, the free Hamiltonian H o (h)
is represented in  terms of these coordinates a s  follows:

1
(0.2) Ho(h) =  

2 N a

h2 A y  —  
1

2 n a

h2 A z

where the  reduced masses N a a n d  Pla a r e  defined through the relations

1 1
(0.3) —  = +   1  ,

1 1 1
=  +  ,

N a m i  m kn a  M i +  M k  ni,

while A), a n d  Az  d e n o te  the Laplace operator w ith respect t o  the variables y a

and za ,  respectively. The total Hamiltonian H(h) is defined by adding to H o (h)
the  sum  of pair potentials;

(0.4) H(h) =  1/0(11) + E vik(r; - rk) •

A ll the relative coordinates ri  — rk a r e  represented a s  a  linear combination of
the Jacobi coordinates (y a , za )  and hence the Hamiltonian H(h) can be regarded
a s  a n  operator acting on the space L 2 (R6 ). W e  assume a ll the  pair potentials
Vi k (r), r e R 3 , to  decay like  0( rl - P) as Ir —> co for some p > 5/2.

L et a = (j, k)} be  again  a 2-cluster decom position. As a 2-body initial
state, we now consider th e  sta te  in  w hich at tim e t =  — co, the j-th and k-th
particles form a  bound state at energy 1Œ(h) a n d  th e  3 rd  particle labelled by I
comes into the scatterer from the long distance a t  relative energy 2 — 2a (h) and
a t  incident direction a) e S 2 ,  S2 b e in g  the 2-dimensional unit sphere. W e also
assume tha t the  to ta l energy 2 > 0 is restricted to a positive energy range and
tha t the  binding energy .1.„(h) < 0 is strictly negative uniformly in  h. Then, for
such a 2-body initial state, the  to ta l scattering cross section ac,(2, o); h) can be
defined for a.e. (A, co) e (0, co) x S 2 • I t  sh o u ld  b e  n o te d  th a t the exceptional set
of (2, co) for which a0 (1, co; h) is not finite may depend on the parameter h. Such
a n  exceptional set is expected to be empty, b u t it seem s that this fact has not
yet proved even for the class of finite-range interactions. Thus we consider the
to ta l scattering cross secion ca (1, co; h) a s  a  function of (A, co) in D'((0, co) x S 2 )
(in  th e  distributional sense) and study its asym ptotic behavior a s  h 0. T h e
m ain result is , somewhat loosely speaking, that under th e  assumptions above,
ec,(2, co; h) behaves like

o-Œ(2, co; h) h- 2 1 ( P - 1 )

a s  h 0 in D '((0, co) x S 2 ). H e re  w e  sh o u ld  note  tha t the  above decaying as-
sum ption is rather strong to deal w ith to ta l scattering cross sections. In fact,
we can show tha t acc (2, co; h) is finite for a.e. (A, co) e (0, co) x S 2 under the weak
decaying assumption with p > 2.
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For 2-body scattering systems, a  similar result has been already obtained
by several authors [13, 16, 19, 20] under th e  weak decaying assumption with
p >  2. If, in  particular, the  to ta l energy > 0 is restric ted  to  a  non-trapping
energy range, then the above result has been also proved for (A, co) e (0, co) fixed
in the 2-body case ([13, 19]).

During the last decade, the many-body scattering theory has made a major
progress by the remarkable works [6, 10, 11, 15]. The proof of the result above
is based  o n  th e  two fundamental facts in  the  spec tra l theory for many-body
Schrbdinger opera to rs . O ne  is  th e  principle o f  limiting absorption proved by
M ourre [10] a n d  th e  o th e r  is  th e  asymptotic completeness o f  wave operators
proved by E n ss  [6 ]. These results have been extended to N-body systems by
[11] (limiting absorption principle) and by  [15] (asymptotic completeness). The
principle of limiting absorption guarantees, without assuming the absence of zero
resonance energy, that the  lim its a s  IC -■ O  of the  resolvents

R .  + i0; H(h))= lim R(A  ± ix; H(h))
K-00

with R(A + ix; H(h)) = (H(h) — ). T- bc) - 1  exist in an appropriate weighted L2  space
topology. This enables us to represent scattering amplitudes with 2-body initial
states in  terms of R .  + i0; H(h)). O n the other hand, the asymptotic complete-
ness enables u s  t o  re la te  to ta l scattering cross sections to forward scattering
amplitudes. This relation is called the optical theorem . The proof of the main
theorem  is done by approxim ating th e  resolvents R(A  + i0; H(h)) through the
time-dependent representation formula of resolvents.

§ 1 .  Total scattering cross sections

In  this section we define the total scattering cross section and formulate the
main theorem precisely.

We start by making the assumption on the pair potentials 
" k '

 1 k 3.
W e assume Vik (r), r e R 3 ,  to  have the following decaying property:
(V)p 1 k (r) is  a  real C2 -smooth function and

5 r2 1 'ik011 Ca <r>- ( P + d ial) , 0 lad < 2

for some p >  5/2 and  d , 0 < d < 1, where

<r> _  (1 +  1r1 2) 112

This assum ption can be som ew hat relaxed. F o r  details, see Rem ark 1.2 after
Theorem 1.1. The constants p  and  d  a re  used throughout w ith th e  meanings
ascribed above. Under assumption (V)p ,  the  Hamiltonian H(h) formally defined
by (0.4) admits a unique self-adjoint realization in  L 2 (e )  and we denote by the
same notation H(h) th is self-adjoint realization.

Let a = ( j, k)}  be a 2-cluster decomposition and le t (y a , za ) e R '  be the
Jacobi coordinates associated with a. In  addition  to  H o (h) a n d  H(h), w e use
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the cluster Hamiltonian Ha (h) defined by

(1.1) Ha(h) = H o (h) + Vi k (ya ) .

The operator Ha (h) acts on  the  space L 2 (R 6 ). This space can be viewed as the
tensor product

L2(R6 ) L2 ,  .-.3 ;ti( dy a ) L 2 (1V; dz a )

and hence Ha (h) has the  following decomposition:

Ha (h) = Ha(h)® Id + Id ® Ta (h) ,

Id  being the identity operator, where

(1.2) 110(h) =
1

2 N a
h24 + V ik(Y .)

is the 2-body subsystem Hamiltonian for the pair (j, k) acting on L 2 (1e; dy a ) and

Ta (h) =
1

2

h '
n a

OE

acting on L 2 (Ie; dz a ) is the kinetic operator of the center of mass motion of the
clusters in a. We further define the intercluster potential /a a s

(1.3) /a(ya, za ) = H(h) — HOE(h) .

L et Ha(h) be  a s  above. U nder assum ption (V ) , this operator has only a
finite number of (non-positive) bound sta te  energies. W e denote  by da(h) the
number of such bound state energies with repetition according to the multiplicities.
A  pa ir  a  =  (a, j )  with 1 < j  <  da(h) is called a  2-body channel associated with
a. For such a  channel a , we here introduce the following notations: (0) the j-th
e igenva lue  A Ç (h) 0  o f H a(h); (1) t h e  norm alized eigenstate tPa  = tfra (yOE: h) G
L 2 (IV; dy a ) associated with A a =  Aa (h), Ha(h)tlfa O a ;  ( 2 )  the channel Hamiltonian

(1.4) Ha(h) = Ta (h) + AOE

ac ting  on  L 2 (IV; dz a ); (3 ) the  channel identification operator Ja : 1, 2 (R 3 ; dz a ) —)
O R ' )  d e f in e d  b y  J o  =  c i u ;  ( 4 )  t h e  ch an n e l w av e  o p e ra to r  W a ±(h):
L 2 (R3 ; dz a )

 
L 2 (R6 ) defined by

(1.5) Wa±(h) = s — lim exp (ih - l tH(h)).10 exp ( — tHa (h)) .
t-±oo

If a = {1, 2, 3} is a 3-cluster decomposition, then a has only one channel. W e
call such a  sing le  channel a  3-body channe l. F or the  3 -body  channel a ,  we
define th e  channel Hamiltonian Ha (h) as  th e  free  Hamiltonian  H 0 (h) and the
channel wave operator Wa ±(h): L2(1e) 2 ( - 6 ) by (1.5) with JOE = Id.

W e know (for example, see [12]) that under assumption (V ),,, the  channel
wave operators, including a 3-body channel case, really exist and that their ranges
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are mutually orthogonal;

Range W (h) 1 Range W fl±(h) ,c c 0 f 3 .

The channel wave operators a re  said to be asymptotically complete, if

E ()Range VVa
- (h) = E ()Range WOE"' "(h) ,

where the  sum m ation is taken over all the  channels a. It is also know n ([6])
that under assumption (V),„ the channel wave operators are asymptotically com-
plete. In fact, this result holds true under the weaker decaying assumption with
p>  1.

W e now  proceed to  the spectral representation fo r channel Hamiltonians.
L e t  a  b e  a  2 -b o d y  channel associated with a  a n d  le t  11„(h) b e  th e  channel
Hamiltonian defined by (1.4). We define the generalized eigenfunction cp„ of Ha (h)
by

(1.6) cpa(za; A, co, h) = exp (ih- 1 (2na (A — 1a (h))) 1 1 2 <za , o»)

for (A, co) e (Aa (h), cc) x  S 2 ,  w here <  , >  denotes the  scalar product in R 3 . L e t

=  L 2 ((22 (h), co); L 2 (S 2 )) .

We also define the  unitary operator Fa (h): L 2  (R 3 ; dza ) X a by

(1.7) (Fa(h)f)(A, co) = c 2 (2, h) I rpa (za ; A, co, h)f(z a )dza

with the normalization constant

ca = (27-ch)-312ny2(2na(1 _ AOE(tim is

where the integration with n o  dom ain attached is taken over the  whole space.
This abbreviation is used throughout. The mapping Fa (h) defined above yields
the spectral representation for Ha (h) in  the  sense that Ha (h) is transformed into
the multiplication by  A in  th e  space  X „ . In  the case of 3-body channel cc, we
can also construct a  similar representation for Ha (h) = H o (h) in  th e  space

X 0 =  L 2 ((0, co); L2 (E 5 ))

where E5  i s  the 5-dimensional ellipsoid defined by

E5 = 1(P
, q) R3x2. 

2 N a

11112 +   =  1}
• 2n„

1 1

with th e  reduced masses Na a n d  na defined by (0.3) and  also th e  space L 2 (E 5 )
is defined with respect to  the Lebesgue measure with a  suitably chosen normaliza-
tion co n stan t. W e do  not require the explicit expression for such a constant in
the discussion below.

From now on, we fix a  2-cluster decomposition a = {l, 
( j ,

 k)}  with j  <  k  and
consider, as an  in itia l state, a 2-body channel a  associated with a. The initial

(1.8)
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2-body channel ot m ay change with parameter h. L et /3 b e  a 2-body channel
associated with 2-cluster decomposition b. Then we define the scattering operator
Sa _p (h): L2 (IV ; dza ) L 2 (10; dzb ) for scattering from the initial state a  to  the final
one f3 a s  follows:

S0 (h) = Wp
+ (h)*W„-  (h) .

If fl is a 3-body channel, then S , p (h) is defined as an  operator from O W  ; dza )
in to  L2 (R6 ). By definition, it follows immediately that th e  scattering operator
S0 (h) intertwines the  channel Hamiltonians Ha (h) and  H p (h) in  th e  sense that

(1.9) exp (- tHfl (h))S, fl (h) = S_(h) exp (- t1-1„(h))

and also, by the asymptotic completeness of channel wave operators, we obtain
the relation

(1.10) E sOE_.,(hrsc,_,30) = Id

as  an  operator acting on L 2 (/23 ; dz a ). This relation plays an im portant role in
the  study on  the  semi-classical behavior of to tal scattering cross sections.

W e proceed to the  definition of to ta l scattering cross sections with 2-body
initial states. A s an  in itia l state, we again consider the 2-body channel a  as
above which is associated with a. We define the  operator TOE_,p (h) by

(1.11) T„,i3(h) = S0 _1 (h) -  ba p Id

c5 the K ronecker delta notation. As is easily seen, this operator also has
the same intertwining property as in (1.9). Hence, by the spectral representation
constructed above, we can represent TOE_p (h) a s  a  decomposable operator

(1.12) T-p(h) =  {1 -p(2 ; h)}

fo r A e (20 (h), cc), 2 m ax  (12 (h), Ap (h)). T he operator 7 , p (2; h) is defined as
a n  opera tor from  L 2 (S2 )  in to  L 2 (S2 )  o r  L 2 (E5 ), E 5 b e in g  d e f in e d  b y  (1.8),
according as f3 is a 2-body channel or a 3-body ch an n e l. For example, 1„„(2; h):
L 2 ( s 2) L 2 ( s 2)

 
is defined through the  relation

(FOE(h) 7 7Œ-2(h)f )(a, co) = (TŒ-.0(2 ; h)(F.(h)f )(A, • ))(co)

W e will show  in the next section th a t  T„ p (A; h) is  of Hilbert-Schmidt class for
a.e. 2  > 0.

W e  d e n o te  b y  T...13(0, co; A, h ), (2, co) e (0, co) x S 2 ,  th e  integral kernel of
Ta _p (2; h), where 8 ranges over S2 o r  E 5 , according as )6' is a 2-body channel or
a 3-body channel. Then the scattering amplitude fa _,p (co -> 8; 2, h) for scattering
from the initial state a  to  the final one fi a t energy  A is represented as

(1.13) f0...13(o) -> 0; 1, h) = - 2nih(2na (A - 22 (h))) - 1 1 2 1„ p (0, co; 2, h) .

For the representation formula above, see the book [2] (p. 627). We now define
the total scattering cross section a0 (2, co; h) for scattering initiated in the 2-body
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channel a  at energy ,1 and  a t  incident direction w  by

(1.14) o-a(A, co; h) = f  if „, p (co —> 0; A, h)I2 d0

for a.e. (A, co) e (0, co) x S 2 . A s stated in Introduction, it should be noted that
o-

a (A, co; h) is defined only for a.e. (A, co) and that the exceptional set may depend
on  the  parameter h.

Before formulating the m ain theorem, we further introduce a  new notation.
L et 17,0  d e n o te  the  2-dimensional hyperplane (impact plane) orthogonal t o  the
direction co. W e  w r ite  za e R 3 a s  za  = u + xa) with u e Ha,  and x = <za , co> e
The variables u e Ha ,  a re  called the impact parameters.

Theorem 1.1. Let the notations be as abov e. In  addition to (V),, with p > 5/2,
assume that the binding energy Aœ (h) associated w ith the 2-body  initial channel a
satisfies

Aa(h) < —A

f o r some A , > 0  uniformly in  h. T hen, as a function of (A , co) e (0, co) x S 2 ,  the
total scattering cross section o-„(A, co; h) obeys the following asymptotic formula as
h 0  in D'((0, cc) x S 2 ):

a  4 I=4 {  121,1OE(A)h C  /a (0, u + xco)dx du + o(h - 2 1 ( P - 1 ) )

where

(1.15)

 

2(A —  ), (h))
na

is the relative velocity  along the incident direction co o f  the  incoming particle and
l a (ya , za ) is the intercluster potential defined by (1.3) for the 2-body cluster decompo-
sition a  with which the initial state a  is associated.

W e here make some comments on  the  theorem above.

Remark 1.2. In  assumption (V),„ the pair potential Vi k (r), r E R 3 , is assumed
to  be  a  C2-smooth function over the whole space R 3 . In  proving the theorem,
it suffices to assume th a t  Vik i s  a  C2-smooth function in  {r e 1 r  >  R I  for
some R  »  1 large enough and also the theorem can be extended to an appropriate
class of pair potentials with local singularities. W e d o  not discuss about such
an extension in detail here.

Remark 1.3. T he  leading term  in  th e  asymptotic formula above has the
order comparable to O (hm ) w ith m = 2/(p — 1). In  fact, if /a (0, za ), z  e R 3 ,  be-
haves like

z) = 0(zA z1)1zr° + o(lzrP) , co ,
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with 0 (0  0) e C 2 (S2 ), then we can see by taking the spherical coordinates in  IT,
that

(la = CrOtta(2 r nh—m ( 1 +  o (1 )),h  —> 0 ,

with some o-
0  > 0 ([ 1 9]) .

§ 2. Optical theorem

Throughout the  entire discussion below, we always assume a ll the assump-
tions o f  Theorem 1.1 to  be satisfied, although all th e  results obtained in the
present section can be proved to hold true under the weaker decaying assumption
w ith p > 2. It seem s to be difficult to treat directly th e  to ta l scattering cross
section defined by (1.14). The first step toward the  proof of the m ain theorem
is to  rewrite this quantity by use of the representation formula called the optical
theorem . The aim  here is to form ulate this relation.

A s is well-known, the  principle of limiting absorption plays a  basic  role in
the  stationary scattering theory. W e begin by m aking a  brief review o f  some
im portant spectral properties of the  3-body Schrödinger operator H(h), which
are  required to formulate the  optical theorem . Let 4 ( e )  be  the  weighted L2

space defined by

O R ')  = L2 (1e, <ya , za>2 vd.Yaciza)
with

<ya, z a >  = ( 1 +  1Y012 + lz 012 )112

T h e n  H (h) h a s  th e  following spectral properties: (1 ) H (h ) h a s  no positive
eigenvalues; (2) The limits R(.1 + i0; H(h)), A > 0, of R(A + tic; H(h)) as K 0 exist
a s  a n  operator from  L ( R 6 )  in to  L ( R 6 )  fo r a n y  y >  1/2 and have the local
Holder continuity as a  function of A in the uniform operator topology. Property
(1) has been proved by [8 ]  and  (2) b y  [1, 10, 11, 17]. Indeed, these properties
have been verified under much weaker decaying assumptions of pair potentials,
including the  N-body systems.

W e keep the  same notations as in  the previous sections. L et 22 (h) be  the
binding energy of the 2-body initial state a  associated with a = {l, (j, k)}. This
is defined as a non-positive eigenvalue of the 2-body subsystem Hamiltonian

1H °(h) —  
2 N a

h2 Ay  + Vik(Ya)

acting on L 2 (1V; dy a ). By assumption, 22 (h) < — Ao  < 0 uniformly in h and hence
we can easily see that the normalized eigenstate tp„ = 0 ( y ; h) associated with the
eigenvalue 22 (h) satisfies

(2.1) (1 + lyal)2 N  tk.(ya; h)I 2 dY0 CN

for any N »  1  uniformly in  h.
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T he analysis in  th is  section is based o n  th e  following proposition on the
representation formula of scattering am plitudes. The proof can be done in almost
the  sam e w ay a s  in  th e  2 -b o d y  c a se . F o r  a  proof, see, fo r  example, Ito [9]
(Proposition 2.4).

Proposition 2.1. A ssum e all th e  assumptions o f  Theorem 1.1. Denote by
(  , ) 0  t h e  L 2  scalar product in  L 2 (1 e ) .  L e t  cpc,(za ; A , co, h) be th e  generalized
eigenfunction defined by (1.6) and write

(2.2) eŒ(w) = 111 .(Y a; h) 0 4(z; A, a), h) .

Then the  operator TOE, OE(A; h): (S 2 ) —■ L2 (S2 )  is  of Hilbert-Schmidt class fo r  all
> 0  and it has the integral kernel

(2.3) a); A, h) = c 00E GOE(0, co; A, h)

with

coOE -= (27r) - 2 ina (2na (A — AOE(h))) 1 1 2 h- 3

where

GŒ = ((— Ia  + Ia R(2 i0; H(h))1a )eOE(co), eŒ(0))0

with the intercluster potential la (y a , za ) defined by (1.3). In particular, the scattering
amplitude f OE,(co —> 0; A, h) f or scattering from the initial direction co to the f inal
one 0  at energy A  is represented as

(2.4) fOE,(co 0; A, h) = (270 - 1  na h- 2 GOE(0, co; A, h)

We here make some comments on the proposition a b o v e . If ,6 is  a 2-body
channel with strictly negative binding energy, then we can prove that TOE_1 (2; h):
L 2 (S2 ) L 2 (S2 ) is also of Hilbert-Schmidt class for all A > 0  and that it has the
integral kernel represented by a formula similar to (2.3). However, it seems that
such a  nice representation formula has not yet obtained if ,6 is a 2-body channel
w ith zero  binding energy o r  a  3 -b o d y  channe l. W e  know  tha t H(h) h a s  no
positive eigenvalues and th a t R (1 ± 10; H(h)); 1 ,2 (R 6 ) —> L2_ v (R 6  ), y  >  1/2, is well-
defined for all A > 0, bu t it does not immediately from these facts that for such
a  channel fl, TOE_,p (A; h) is of Hilbert-Schmidt class for all A  >  0 . To prove this, we
have to study in detail the limits as K -* 0 of such operators as V, R(.1. iK; H(h))V,,
with pair potentials Va a n d  Vb . This study has been done by use of the Faddeev
equation method ([2, 5]) and we require the additional assumption that all 2-body
subsystem Hamiltonians h av e  n o  ze ro  resonance energies. Thus this m ethod
does not directly apply to the semi-classical problems with parameter h and also
this makes difficult the semi-classical analysis for scattering matrices with energy
and incident direction fixed in many-body scattering systems.

By making use of the above proposition, we first show th a t TOE_1 (A; h) is  of
Hilbert-Schmidt class fo r  a.e. A > 0, even if  )6  is  a  2 -body  channel w ith zero
binding energy or a  3-body channel.
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Proposition 2.2. Under the same assumptions as in  Theorem 1.1, the operator
T "(A ; h) is of Hilbert-Schmidt class f o r a.e. 2  > O.

Pro o f  W e denote  by  < , > fl t h e  L2 sca la r p roduct in  L 2  (S2 )  o r  L 2 (E5 ),
E5  being defined by (1.8), according as )3 is a 2-body or a 3-body channe l. Let
fek l , be a  complete orthonormal system in L2 (S2 ) and let g(A) be a  real smooth
function with compact support in (0, oo). We first note tha t by  Proposition 2.1,
the  operator

Re Ta ,„(A; h) = RTŒ,(A ; h) + TOE_(A; h)*)

is  of trace class for a ll A > 0 as  an  operator acting on L2 (S2 ).
Now, recall the relation (1.10), which follows from the asymptotic complete-

ness of channel wave operators. Then, by definition (1.11), we obtain

(2.5) E T„,,(2;  h)*T , f l (A; h) = —2 Re TŒ _Œ(2; h)

for a.e. A > 0. This relation yields that

E f g(A )<T(,1; h)e k , T„, f l (A; h)ek >f i cIA
fl k = 1

= —2 g ( 2 ) 2  <Re Ta „(A; h)ek , ek >c i cIA ,
k =1

which proves the proposition.

The goal here is to prove the following proposition called the optical theorem
which is obtained a s  a  consequence o f the  asymptotic completeness o f channel
wave operators.

Proposition 2.3. Under the same assumptions as  in  Theorem 1.1, one has

(2.6) (7„(2, a); h) = 4742n,c (A — A,c (h))) - 1 1 2 h Im f (co co; A, h)

in D'((0, co) x S 2 )  as  a function of (A, co), where

Im f„,,,(co —> co; A, h) = (27r) - l na h- 2  Im (R(A + i0; H(h))1a e„(co), la e,(co)), .

Proof . L e t g(A, co) b e  a  real sm ooth  function w ith  com pact support in
(0, oo) x S 2 . W e denote by gA the m ultiplication operator by g(2, co) acting on
L 2( s 2..) Then, by (2.5), w e have

fg(2, co) 2 cra (2, co; h)cicodA

= —2(27 )2 h2 f(2n„(.1 — 2 c,(h))) - 1  Trace (gA R e TŒ,(A; h)g,)clA

= 47th
 J

f g(A, a)) 2 (2na (A — Aa (h))) - 1 1 2  Im f„,(co —■ a); A, h)dcocIA

This proves the proposition.
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§ 3 .  Basic representation formula

For notational brevity, we fix the 2-cluster decomposition a = 11, (2, 3)1 with
which the 2-body initial channel a is associated and write the Jacobi coordinates
as

y = y a  = r 2  — r 3  9 z  =  z a  = r

We further write

m2 r  +  m3 r3

m2 +  m3

ea  = e a (y, z; 2, co, h) = i/'Œ(y; h)(:) (pa (z; 2, co, h) .

The quantity which we analyze in  the  present section is

Q = 1m (R(2 + i0; H(h))1a ea , Ia ea )0

which goes into th e  representation formula (2.6). The second step tow ard the
proof of the main theorem is to write this quantity in a more convenient form.

Throughout the  proof, we fix the constant y as

1
(3.1)

P —
and take fl as

(3.2) # = Y( 1 + (5) >
for some ô > 0, .5 being chosen small enough in the discussion below. W e now
introduce a  non-negative smooth partition of unity {x }3=1, x =  xi (z; h), over R'
with the following properties: (x .0) = 1; (X. 1 )  X i has support in  {z e R3 :
zI < 2h- 7 } a n d  x i  =  1 o n  lz e R3 :1z1 /C I ;  (x . 2) x2  h a s  support in

(3.3) Bo = {z e R3 : h " < z  <  2h- fi}

a n d  x2 =  1  o n  {z e R 3 : 211-
7 5_ 1z1 h -

13}; ( x .3 )  x3 h a s  s u p p o r t  in  lz e R3 :
> h - fil and  x3 = 1 o n  lz e R3 : 1z1 2h-11; (x .4) F o r any multi-index a,

la'z'xi (z; h)l CŒ(z> -121 , 1 j 3

uniformly in  h.
L e t  Ha (h) b e  th e  c lu s te r  H am iltonian defined by (1.1). T h e n  w e  have

Ha (h)ea = ilea . We now write

R(2 + i0; H(h))Ia ea  = )( l ea  + V .

As is easily seen, the  remainder term y  above m ust satisfy the  equation

(H(h) — 2)v = [x i , H o (h)]ea  + (X2 + x 3 )Ia ea

where [  9 ]  denotes the commutator re la tion . Define 01 = Oi (y, z; 2, to, h), 1 j
2, by

01 = [xi, 110(h)]e. + x2P2e.
(3.4)

02 = X2(1. — 1,(,) )ea  +  x 3 la ea  ,
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where

(3.5) I1 (z) = Ia (Y, z)ly =o •

Then

R(A + 10; H(h))1„e„ = x i e„ + R(A + 10; H(h))0;

A similar representation is obtained for R(A — i0; H(h))10„ also. H ence the quan-
tity  Q  under consideration is written as

Q = Im X ie.)o + Im (R(A  + i0; H(h))0i , 0,10  .
j=1 j,k =1

B y partial integration, th e  first term  o n  th e  right side vanishes a n d  hence it
follows from Proposition 2.3 that

(3.6) o-Œ(A, co; h) =  2 ( ) - 1 11- 1 Im  (R (A  + 1 0 ; H (h ))0 J , 0 1- k,0
j,k =1

where ita,(2) is defined by (1.15). This representation formula plays an important
role in  proving the m ain theorem.

By relation (3.6), the proof is now reduced to evaluating the terms (R(A + i0;
H(h))0i , 0,10 , 1 j ,  k  2. The remaining sections are devoted to evaluating these
terms. Roughly speaking, the leading term of the asymptotic formula in Theorem
1.1 comes from the  term  (R(A + 10; H(h))0 1 , 0 1 )0 .

§ 4 .  Remainder estimate

In this section we evaluate the above remainder terms with pairs (j, k) = (1, 2),
(2, I) and (2, 2).

Lemma 4 .1 .  L et y  be as in  (3.1). Then one has
(1) Im I(R(A + 10; H(h))0 1 , 02 )0  + (R(A  + 10; H(h))0 2 , 0,1 0 1 = o(h 1 - 2 Y),
(2) Im (R(A  + i0; H(h))0 2 , 02 )0  = o(h 1 - 2 '),

as h -+0  in  D'((0, co) x S 2 ).

Pro o f . W e prove th e  statem ent (1) only. T he  sam e argument applies to
(2 ) a lso . The proof is based on the formula

d
(4.1)

d A

E(
1

A; H(h)) = —
2 i n

(R(A + i0; H(h)) — R(A — i0; H(h))) , A > 0 ,

where E(A; H(h)) denotes the spectral resolution associated with H(h).
Let g(A, w) be  a  real smooth function with compact support in (0, cc) x S 2

and define the  integral .11 (o); h) by

= f  g(A , co) 1m 1(R(A + 10; H(h))0 1 , 0 2 )0  + (R(A  + i0; H(h))0 2 , 01)0}dL
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To prove (1), it suffices to show that

545

(4.2) J1 (co; h) = o(h 1 - 2 Y) , h -* 0 ,

uniformly in  co e S2• By formula (4.1), this integral is rewritten as

. I , = ir
.3

f g(A, co){(E'().; H(h))0 1 , 02)0 + (E' (2; H(h))0 2 , 000  }d2
o

with E ';  H(h)) = (d/d/1)E(A; H(h)). Let II ' II 0 denote the L 2

L 2 (R6 ). Then we integrate by parts in  A to obtain that
norm in

Ji = 0 (1)(111911113110 2110 + 110111011.002110 + 110211011001110)•

W e evaluate the  L 2 n o r m  o f the  term s 01 a n d  OA .  L et Bo  be defined
by (3.3). Recall the notation z = u + xco with u e A n and  x = <z, co> e R 1 . Since
0, has support in  Bo  a s  a  function of z, we have

1011 c (Izl + 11- ' ) - P1)1/.(y;h)1 •

Therefore it follows that

(4.3) IlOillo = 0(11Y(P - 3 / 2 ) ) =  001 1 - 7 / 2 ) ,

(4.4) IlMillo = o(h - 1 )11x01110 = 0(h- 3 7 / 2 ).

Next we evaluate th e  L 2 n o rm  of the  terms 02 a n d  0,102. By assumption
(V) p a n d  (2.1), we have

(4.5) 1102110 = 0(117(4-3/2)) + 0(h/3(p-3/2) -,
) =  0 (h 1 - Y / 2 )

for any p, p < p  < p  + d , d  being a s  in  (V)p . Similarly we obtain

(4.6) 11802110 = o(h 3 2 )•

The strong decaying assumption with p > 5/2 is used to evaluate the  L2 norm
of the terms 0,01 a n d  0,02 . The estimates (4.3) - (4.6) prove (4.2) and the proof
is com ple te . E

§ 5 .  Term with small impact parameter

W e decompose th e  te rm  01 in to  tw o  te rm s w ith  sm a ll and large impact
parameters u e He° . In  this section we analyze the term with small impact param-
eter.

The term  01 defined by (3.4) takes the form

01 = f(z; h)e„

where f  has support in  By fi and  satisfies the  estimate

(5.1) 'W I C,(1z1+ 11- ') - P , 0 lad _<_ 2 ,
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uniformly in  h. The explicit representation for f(z; h) is not required throughout
the discussion in the present section. In  addition to  the constants y and fl, we
here introduce another constant K  as

(5.2) K  = y(1 — 6) < y

for the same 6 > 0  a s  in  (3.2). As is stated above, we decompose 01 a s

(5.3) 0, = 0 +  0 1 , = fi,(z; h)e c, + fi (z; h)e„

where L and f i have the following properties: (1) A s a function of u E 17., .1; has
support in lu e lui < 217'1 and f i h as  support in 1u e /7: l ui > 11 1; (2) Both
the functions L and f, are  supported in  By /3 a n d  satisfy the  estimate (5.1).

The aim  here is to  prove the following

Lemma 5.1. L et y be as in  (3.1) and let 0 ,  and 0  be as above. Then one
has

(1) Im {(R(1 + 10; H(h))0 1 „ 0,0 0  + (R( )  + i0; H(h))0 1 1 , , ) 0 1 = o(h 1 - 2 7 ),
(2) Im + 10; H(h))0„, -- o(h 1 - 2 Y),ls,o 

as h- 0 i n  D'((0, cc) x  S 2 ).

Proof. The lemma is proved in  th e  same way a s  in  th e  proof o f Lemma
4.1. W e prove the  statement (1) only.

Let g(A, co) be again a  real smooth function with compact support in (0, cc) x
S2 . We define the integral J 2 (a); h) as in the proof of Lemma 4.1. Then we have

J2 = O( 1)(110 ls110111 11I10 1101s110 11a20 1/110 + 1101/11011Mis110)

w h e re  '110 again denotes the  L2 n o rm  in  L 2 (R6 ).
W e now evaluate the  L2  n o rm  of the  above term s. W e first note th a t as

a  function of x = <z, co> E R I , 0 „ and  0, 1 a r e  supported in

= E R I : xi < 2 h }  .

Since 0, s h a s  support in  { u e lui < 2h - "},  w e have

0 is  ô = 0(h -
2 ”) f (1x1+ ICY)- 2 Pdx,

which shows that

(5.4) lie ' silo = 0(h 2 )— .)

Similarly we have

i O i i  = 0(h- 2 - 2 ") f <x>2 0.xi h-1-2PdX

and  hence

(5.5) 110A = 0(h0P-312)-1—.)
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We also have

(5.6)

and

which yields that

(5.7)

0
(

11 A P  - 3 / 2 ) )

=  0(1-2) 
J r

 <x>2(1x1 + 11- 7 ) - 2 P + 2 dX

110,1011110 = 0 (hY(P- 2 )- 1 - /3/2 )

It follows immediately from (5.4) and (5.6) that

110 1.,11 0 II 0 1/110 = o(h1 2 )

By (5.4) and (5.7), we have

110 1511011a),0 1/110 = h1 - 2 v0(11")

with

v = y(2p — 1/2) — 2 — — 16/2 = 4/2 > 0

and also, by (5.5) and (5.6), we have

Old 0110 ,10 1A 0 = h1 - 2 Y0(h")

with

v = y(2p — 1) — 2 — K  = by > 0 .

These estimates prove that

J 2 (co; h) = o(h 1 - 2 Y ) , h 0 ,

uniformly in  co E 5 2 a n d  th e  proof is complete.

§ 6. Term with large impact parameter

By Lemmas 4.1 a n d  5.1, only th e  term (R(A + i0; H(h))0 11 , 111 ,o  makes a
contribution to  the leading term of the semi-classical asymptotic formula for the
to ta l scattering cross secton co; h). T he aim  o f  this section is to analyze
this term with large im pact parameter u e H .  T h e  analysis is based on the
time-dependent representation formula of resolvent;

(6.1) R(A + i0; H(h)) = ih 1 exp (ih- 1  tA) exp ( — tH(h))dt

M ore precisely, we have to write

lim exp ( — /Ci te) exp (i11- 1  tA) exp ( — ih'tH(h))dt
4 0  0
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F or notational brevity, we proceed with the formal representation formula (6.1),
because the  rigorous justification can be easily done.

Let g(A, (o) be a  real smooth function with compact support in (0, co) x S2

and  define the  integral J 0 (o); h) as

(6.2) J  =  f g(A, co)(R(A + i0; H(h))0 11 , i do dA

By (6.1), this is rewritten as

Jo =  i h  f co)d). f exp tA)(exp (— ih - l tH(h))0 11 , 0 11 )0 dt .

Let fi be  a s  in  (3.2). W e now  fix  t as

(6.3)t  =  Nh - f l

for N »  1  large enough and  decompose the  integral above into two parts;

.0 op
J 0  = ih - 1  I  g(fl., co)d.1.{ f ...dt + I  ...dt}  .

o o t

W e denote by J(co; h) and  4(o); h) the  first and second integrals o n  th e  right
side, respectively.

Lemma 6.1.
.1 (o); h) = o(h l -  2 7 ) , h 0 ,

uniformly in a) e S2 .

Proof . Recall the  form of Ol i ; Oi i  = f,(z; h)e cc . By use of the relation

exp (ih't.1) = —  2h t- 2 101 exp (ih - l tA) ,

w e in teg ra te  by  p a r t s  in  A , s o  th a t  th e  integral J4 under consideration is
represented a s  a  linear combination of such integrals as

h f gd f t'  exp (ih - l t2)(exp (— ih 'tH (h))f i OreOE, fi a'lleOE)o dt

with k + m  + n = 2. We evaluate the L 2 no rm  of xmAeG, with 0 < m < 2. Since
J i h a s  support in By p  a n d  satisfies (5.1), these terms obey the following estimates:
If p > m  + 3/2, then

11x7fieŒllo = 007(P — m - 3 /2 ) )

and if p  m  +  3/2, then w e can take e, 1 > e>  — p + m + 3/2, so that

11xmfie.110 = 0(11- f l ')11xm <z› - Viec,110 = 0(11")
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with

v =  — E(13 — y) + y(p — m — 3/2) .

This proves the  le m m a . 0

N ext w e consider th e  integral 4(a); h ). W e study th is in tegral by  con-
structing an approximate representation for exp (— iii - l tH(h))0 i , with t, 0 < t T.

Let p oe =  /La ()) be defined by (1.15). Then we define v = v(t, z; co, h) by

(6.4)y  =  f i (z — u„cot; h) exp —  ih- 1 .1,?(z  —  p a w(t — s))ds) .

After an  elementary bu t somewhat tedious computation, we see that yea  satisfies
the equation

— H(h) + il)ve„ = r ,

where r(t) = r(t, y,z; A,  co, h) is written as r  =  r, + r,  with

r — h2 (t1
"
y)e

a(6.5) 2n

r, = (1 1,;(z) — .1a (y, z))ye„ .

Therefore, by Duhamel's principle, we have

exp (ih - l tA) exp ( — tH(h))0„

= yea  + ih - 1 e x p  (i17- 1 (t — s)A) exp ( — — s)H(h))r(s)ds .

Thus the integral 4(w ; h) under consideration behaves like

.3 t
(6.6) .1,1, = ih - 1  f  g(A , co)d.l. j.  (v , P z dt + 0(h - 2 )011110 f f 11 1- (s)liodsdt

o o o o

as h —■ 0, w h e re  (  , )z  denotes the L 2 scalar product in  O W ;  dz).

Lemma 6.2.

CO

.1 (co, h) = ih - 1 g ( A ,  (I )dA (y, f i )a dt + o(h 1 - 2 ') , hO ,

uniform ly  in  co e S 2 .

P ro o f .  We evaluate the L 2  no rm  of the remainder term r(s) with 0 < s < T.

Since f,  is supported in

A  =  e >

r i (s) and r2 (s) defined by (6.5) have also support in  A  a s  a  function of u e
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Therefore we obtain

= 0 01 4 1  f < 0 - 2 P +  'du + 0(h 2 ) f  <u> - 4 P+ 3 du + 0(1) f  <u> - 6 P+5 du
A A A

This yields that

ri (0110 = k (3 P  - 7 / 2 ) )
uniformly in  s > O. S im ila rly , w e  use the assumption (V ), to obtain that

11r2K io = 0 (12K  +# - 3 1 2 ) )
for any p < y  < p + d. Since

= 0 (V P - 3 '2 ) ),

the second term on the right side of (6.6) is of order (0(hv) + 0(h'))h i
-

2 1 , where

= 21,  — 3 — 2/3 + y(p —  3/2) + K(3p — 7/2) = {(p —  2) — 36(p —  1/2)}y

and

v' = 2y — 3 — 2,6 + y(p —  3/2) + K (p  + —  3/2) = {(y —  p) —  (5(p + +  1/2)}y

Thus w e can take (5 in  (3.2) so  sm all tha t v > 0 a n d  V > O. This proves the
lemma. 0

By assumption, A,c (h) < — 10  uniformly in h and hence it follows by definition
(1.15) that

= > ,/2,1 0 /na .

Since f i is supported in  Ix =  <z, co> e <  2101 a s  a  function of x, we can
take N  in  (6.3) so  large th a t (y, f1)z = 0  for t > T. Hence we have by Lemmas
6.1 and  6.2 that

(6.7) Jo(co; h) = f  g(.1 , (o)d). f  (y, A dt + o(h 1
- 2 Y) , h — > O,

uniformly in  w e S2 .

§ 7 .  Calculation of leading term

In  this section we calculate explicitly the  leading term of the  semi-classical
asymptotic formula for the total scattering cross section act (A, co; h) and complete
the  proof of the m ain theorem.

The next lemma, together with relation (3.6), completes the proof of Theorem

Lemma 7.1.

Im (R(.1 + i0; H(h))0 11 , i d o  = 1(0 (A, co; h) + o(h 1 - 2 Y) , h —› O,
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in D'((0, a)) x S 2 ), where

1(7.1) Au + xw)dx}  du=

Œ
( 2 ) h  

/ 7 .

 s i n '  

{{2Œ h /

with 1.1„(.1) defined by (1.15).

Proof . The proof is divided into several steps.
(1) L e t J o (co; h ) be defined by (6.2). T o p rove  th e  lemma, it suffices to

show that

(7.2) Im  J = g(2, co)k o (A, co; h)d,1 + o(h 1 2 )

uniformly in  co e 5 2 . N ote tha t go., co) is real-valued. B y (6.7), Im  Jo (co; h) be-
haves like

(7.3) Im J o = co)(1,1 J Re (y, fdz d t + 0 (h ' 2 1 ) .

Thus the  proof is reduced to calculating the  term  on  the  right side.
(2) Define the  differential operator

1A (h) = K w , Fz )  +

w ith uc, = p c,(2). T he  operator A (h) adm its a unique self-adjoint realization in
L 2 (R 3 ; dz). W e denote  by  th e  sam e notation A (h) th is  self-adjoint realization
and by

G, = exp (— itA(h)) , t E R 1

the  unitary group generated by A (h ). Then the solution w(t, z; h) = (G,w o )(z; h)
to  the evolution equation

i w — A(h)w = O,w ( 0 ,  z) = w o  E 1, 2 (R 3 ; dz)

is explicitly represented by formula (6.4) with f , = wo ;

Gov° = w o (z — exp (— Ia°(z — tt„ca(t — s))ds)

According to this notation, we may write y  a s  y = G, f,.
Now, recall the  decomposition

= f(z ; h)e„ = fs (z; h)e„ + fl (z; h)ea, ,

where f s is supported in tu E Ho,: ju < 2 h }} as a function of u. As is easily seen,

(G, fs , f ) z dt = o(112-2')
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and

1. (G, fl , fs )z dt = o(h 2 - 2 ') .

Therefore it follows from (7.3) that

(7.4) Im J o = h 1 g(A, w)(1,1 Re (G, f, f)z dt + o(h 1 - 2 , ) .

(3) W e a re  now  in  a  p o s it io n  to  requ ire  th e  explicit representation for
= f(z; h)ez . Define f o  = f o (z; h) as

and f i  = fi (z; h), 1 j  3, as

Then, by definition,

and  also it follows that

fo = 17.> Xi

= x i (z; h)I(z) .

3
i t

(
i

)  (Z) = f i (z; h)
=1

f (z; h) = f o (z; h) + f2 (z; h) + remainder term .

The remainder term above is supported in  {z e R 3 : h "  < 1z1 < 2h"} and  obeys
the bound 0(h)<z>- P- 1 . Hence this term can be proved to make no contribution
to  the  leading term.

The next lemma plays a  basic role in  calculating the  leading term.

Lemma 7.2.

(1) G,fo dt = ix , + h 1  J0 0

(2) G_,fo dt = — ix ,  + h G_,f,dt

P r o o f .  W e prove (1) only. By definition,

— f i = — hA(h)x,

and hence

d
G,(fo  —  f1) = —

t  
G al

This proves the relation (1) immediately.
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Since (ix,, =  0  b y  partial integration, Lemma 7.2, together with (7.4),
implies that

(7.5) Im J o  = g(.1, co)61,1 Re (Gf ( f i  + f2), f , + fA dt + o(h 1 - 2 7 ) .

(4) The next lemma is easy to prove.

Lemma 7.3.

(1) (G1f3, fi )z dt = o(h 2 - 2 1 ), 1 j 3 .

(2) Re (G,fi , f3 )dt = o(h 2 - 2 Y), 1 j 3.

Pro o f . Since If21 C(1z1 + h- v)- P and If3Iz  I + h - P)- P by definition, re-
lations (1) and (2) can be easily proved for the cases j  = 2 and j  =  3 . In  th e
case j  =  1 , w e  u se  L em m a 7 .2 . I f  w e take  account o f  th e  bound Ifo <
C(lz I + ICY)- P, relations (1) and (2) can be similarly proved for the case j  = 1 also.

The lemma above, together with relation (7.5), yields that

1m J, = h 1 g(2, co)cbl. Re (GX , In z dt + o(h 1 - 2 7 ) .

(5) The proof of the lemma is completed in  this s te p . We calculate the
integral

... ...
L o  = h - 1  R e (  f  G i e d t ,  l ) z  = Im(iti - 1  f Gi l,?dt,

o o
Lemma 7.4. W rite z e IV  as  z  = u + xco with u e 17. and x = <z, co> E 121 .

Then one has

x
ih - 1  Ç G, Idt = 1 —  exp (— i 4,°(u + sw)ds) .

Jo h  _co

Proo f . Define

F(t, z; h) = exp (_ih 1 ft /Az — pc,co(t — s))ds) .
Then we have

d
—
d t

F =
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and  also

F(oo, z; h) = exp (— i t ic c h f e (u  +  sw)ds)
1 

by making a simple change of variables. Hence the lemma follows at once.

By Lemma 7.4, we obtain that

L , = f t ) (u + xco) sin {—L i
 x

.  /Au + sw)ds} dxdu

=  i t a h f Txd [cos {14- 1
Œh. f x

.  P2(u + sco)ds}idxdu
i i

This show s that Lo = k0 (A, co; h), Icc,  being defined by (7.1), a n d  completes the
proof of Lemma 7.1. 111

The proof of the m ain theorem is now complete.
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