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Introduction

The scattering cross section is directly related to experimental observations
in laboratories and is one of the most important quantities in scattering the-
ory. There are many works on the semi-classical analysis for scattering matrices
of 2-body systems. For example, such a problem has been studied for scattering
amplitudes in the works [14, 18, 21] and for total scattering cross sections in the
works [7,13,16,19,20]. In the present work, we study the semi-classical
asymptotic behavior of total scattering cross sections with 2-body initial states
for 3-body systems. Such an initial state is of most practical interest. In fact,
for many-body scattering systems, k-body initial states with k > 3 are not easy
to realize through actual physical experiments. There seems to be only a few
works on the analysis for scattering matrices of many-body systems. In a series
of works [3, 4, 5], the following properties of total scattering cross sections have
been studied in detail: (1) finiteness of total scattering cross sections; (2) continuity
as a function of energy; (3) behavior at high and low energies. The asymptotic
behavior in the semi-classical limit has not been discussed in detail in these works.

Throughout the entire discussion, the constant h, 0 < h « 1, denotes a small
parameter corresponding to the Planck constant. We require several basic
notations and definitions in many-body scattering theory to define precisely the
total scattering cross section in question. We here state our main theorem some-
what loosely. The precise formulation of the main result is given as Theorem
1.1 in section 1.

Consider a system consisting of three particles moving in the 3-dimensional
space R* through real pair potentials ¥}, 1 <j <k <3. We denote by m;, 1<
Jj <3, the mass of the j-th particle and by r; € R? its position vector. A partition
of {1,2, 3} into nonempty disjoint subsets is called a cluster decomposition. We
use the letter a or b to denote such a cluster decomposition. The Jacobi coordi-
nates (y,, z,) € R®*? associated with given 2-cluster decomposition a = {I,(j, k)}
with j < k are defined as
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and also, after separating the center of mass motion, the free Hamiltonian H(h)
is represented in terms of these coordinates as follows:

02 Holh) = —5ihid, — -

2
2N, 2nah 4.

where the reduced masses N, and n, are defined through the relations
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while 4, and 4, denote the Laplace operator with respect to the variables y,
and z,, respectively. The total Hamiltonian H(h) is defined by adding to H,(h)
the sum of pair potentials;

0.4) Hh)=Hoh+ Y Vilry—r).
15j<k<3

All the relative coordinates r; —r, are represented as a linear combination of
the Jacobi coordinates (y,, z,) and hence the Hamiltonian H(h) can be regarded
as an operator acting on the space L?(R®). We assume all the pair potentials
Vi), re R3, to decay like O(|r|™?) as |r| » oo for some p > 5/2.

Let a = {l,(j, k)} be again a 2-cluster decomposition. As a 2-body initial
state, we now consider the state in which at time t = —oo, the j-th and k-th
particles form a bound state at energy A,(h) and the 3rd particle labelled by !
comes into the scatterer from the long distance at relative energy A — 4,(h) and
at incident direction w e S?, §? being the 2-dimensional unit sphere. We also
assume that the total energy 4 > 0 is restricted to a positive energy range and
that the binding energy A,(h) <O is strictly negative uniformly in h. Then, for
such a 2-body initial state, the total scattering cross section g,(4, w;h) can be
defined for a.e. (A, w) € (0, o) x S2. It should be noted that the exceptional set
of (4, w) for which ¢,(4, w; h) is not finite may depend on the parameter h. Such
an exceptional set is expected to be empty, but it seems that this fact has not
yet proved even for the class of finite-range interactions. Thus we consider the
total scattering cross secion a,(4, ; h) as a function of (4, w) in D'((0, o0) x S?)
(in the distributional sense) and study its asymptotic behavior as h—> 0. The
main result is, somewhat loosely speaking, that under the assumptions above,
0,(4, w; h) behaves like

0,(A, w; h) ~ =21

as h—0 in D'((0, ) x S?). Here we should note that the above decaying as-
sumption is rather strong to deal with total scattering cross sections. In fact,
we can show that a,(4, w; h) is finite for a.e. (4, w) € (0, ) x S? under the weak
decaying assumption with p > 2.
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For 2-body scattering systems, a similar result has been already obtained
by several authors [13, 16, 19,20] under the weak decaying assumption with
p>2. If, in particular, the total energy A > 0 is restricted to a non-trapping
energy range, then the above result has been also proved for (4, w) € (0, o0) fixed
in the 2-body case ([13, 19]).

During the last decade, the many-body scattering theory has made a major
progress by the remarkable works [6, 10, 11, 15]. The proof of the result above
is based on the two fundamental facts in the spectral theory for many-body
Schrodinger operators. One is the principle of limiting absorption proved by
Mourre [10] and the other is the asymptotic completeness of wave operators
proved by Enss [6]. These results have been extended to N-body systems by
[11] (limiting absorption principle) and by [15] (asymptotic completeness). The
principle of limiting absorption guarantees, without assuming the absence of zero
resonance energy, that the limits as x - 0 of the resolvents

R(A + i0; H(h)) = lim R(4 + ix; H(h))
x—0
with R(A + ix; H(h)) = (H(h) — A ¥ ix)™! exist in an appropriate weighted L2 space
topology. This enables us to represent scattering amplitudes with 2-body initial
states in terms of R(A + i0; H(h)). On the other hand, the asymptotic complete-
ness enables us to relate total scattering cross sections to forward scattering
amplitudes. This relation is called the optical theorem. The proof of the main
theorem is done by approximating the resolvents R(A + i0; H(h)) through the
time-dependent representation formula of resolvents.

§1. Total scattering cross sections

In this section we define the total scattering cross section and formulate the
main theorem precisely.

We start by making the assumption on the pair potentials Vj,, 1 <j <k <3.
We assume V,(r), r€ R to have the following decaying property:
(V), Vulr) is a real C2-smooth function and

107V < Cry~e ™l 0 < |af <2
for some p > 5/2 and d, 0 <d < 1, where
> = (14 |r2)2

This assumption can be somewhat relaxed. For details, see Remark 1.2 after
Theorem 1.1. The constants p and d are used throughout with the meanings
ascribed above. Under assumption (V),, the Hamiltonian H(h) formally defined
by (0.4) admits a unique self-adjoint realization in L2(R®) and we denote by the
same notation H(h) this self-adjoint realization.

Let a = {l, (j, k)} be a 2-cluster decomposition and let (y,, z,) € R*>** be the
Jacobi coordinates associated with a. In addition to Hy(h) and H(h), we use



536 Hiroshi T. Ito and Hideo Tamura
the cluster Hamiltonian H,(h) defined by
(1.1) H,(h) = Ho(h) + Vi(ya) -

The operator H,(h) acts on the space L%(R®). This space can be viewed as the
tensor product

L*(R®) = L*(R*; dy,) ® L*(R?; dz,)
and hence H,(h) has the following decomposition:
Hy(h) = H'h)®@Id + 1d® T,(h),
Id being the identity operator, where

1

(1.2) Ho(h) = — 5

thy + ij(ya)
is the 2-body subsystem Hamiltonian for the pair (j, k) acting on L?(R?; dy,) and

1
T,(h) = —5—h*4,
2n,
acting on L2(R3;dz,) is the kinetic operator of the center of mass motion of the
clusters in a. We further define the intercluster potential I, as

(1‘3) Ia(ya’ za) = H(h) - Ha(h) .

Let H°Ch) be as above. Under assumption (V),, this operator has only a
finite number of (non-positive) bound state energies. We denote by d°(h) the
number of such bound state energies with repetition according to the multiplicities.
A pair o =(a,j) with 1 <j<d%h) is called a 2-body channel associated with
a. For such a channel «, we here introduce the following notations: (0) the j-th
eigenvalue A,(h) <0 of H%h), (1) the normalized eigenstate Y, =y, (v, h)e
L?(R3; dy,) associated with A, = A,(h), H*(h){, = 4,¥,; (2) the channel Hamiltonian

(1.4) H,(h) = Ty(h) + 4,

acting on L2(R3;dz,); (3) the channel identification operator J,: L*(R?; dz,) —
L*(R®) defined by Ju=1y,®u; (4) the channel wave operator W,*(h):
L*(R3;dz,) —» L*(R®) defined by

(1.5) W, (h) = s — lim exp (ih"*tH(h))J, exp (—ih'tH,(h)).
t—=to

If a = {1,2,3} is a 3-cluster decomposition, then a has only one channel. We
call such a single channel a 3-body channel. For the 3-body channel o, we
define the channel Hamiltonian H,(h) as the free Hamiltonian Hy(h) and the
channel wave operator W,*(h): L2(R®) - L*(R®) by (1.5) with J, = Id.

We know (for example, see [12]) that under assumption (V),, the channel
wave operators, including a 3-body channel case, really exist and that their ranges
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are mutually orthogonal;
Range W,t(h) L Range Wj(h), a#p.
The channel wave operators are said to be asymptotically complete, if

Y. @Range W, (h) =Y. @Range W,*(h),

where the summation is taken over all the channels a. It is also known ([6])
that under assumption (V),, the channel wave operators are asymptotically com-
plete. In fact, this result holds true under the weaker decaying assumption with
p> 1

We now proceed to the spectral representation for channel Hamiltonians.
Let « be a 2-body channel associated with a and let H,(h) be the channel
Hamiltonian defined by (1.4). We define the generalized eigenfunction ¢, of H,(h)
by

(1.6) @ul24; 4 @, h) = exp (ih™} (2n,(2 — A,(h)))"*<z,, @)

for (4, w) € (A(h), ©) x §2, where { , > denotes the scalar product in R®. Let
X, = L*((44(h), 0); L*(5%)) .

We also define the unitary operator F,(h): L*(R?;dz,) - X, by

(1.7) (F (WS4 w) = c,(4, h) j P43 4 0, W)f(2,)dz,

with the normalization constant
o = (2mh)>2n2(2n (A — A (W)™,

where the integration with no domain attached is taken over the whole space.
This abbreviation is used throughout. The mapping F,(h) defined above yields
the spectral representation for H,(h) in the sense that H,(h) is transformed into
the multiplication by 4 in the space X,. In the case of 3-body channel «, we
can also construct a similar representation for H,(h) = Hy(h) in the space

Xo = L*((0, o), L*(E®)),

where E° is the 5-dimensional ellipsoid defined by

1 1
5 _ 3x2. 2 2 _
(18) E {(p, )R g lpl + 514 1}

a

with the reduced masses N, and n, defined by (0.3) and also the space L*(E®)
is defined with respect to the Lebesgue measure with a suitably chosen normaliza-
tion constant. We do not require the explicit expression for such a constant in
the discussion below.

From now on, we fix a 2-cluster decomposition a = {I, (j, k)} with j <k and
consider, as an initial state, a 2-body channel a associated with a. The initial
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2-body channel « may change with parameter h. Let f be a 2-body channel
associated with 2-cluster decomposition b. Then we define the scattering operator
Sa~g(h): LX(R?; dz,) > L*(R?; dz,) for scattering from the initial state a to the final
one f as follows:

Sumplh) = W5t (W, (h) .

If B is a 3-body channel, then S,_,(h) is defined as an operator from L*(R?;dz,)
into L2%(R®). By definition, it follows immediately that the scattering operator
S,-p(h) intertwines the channel Hamiltonians H,(h) and Hpg(h) in the sense that

(1.9) exp (— ih™ tH y(h))S,.5(h) = S,5(h) exp (—ih™"tH,(h))

and also, by the asymptotic completeness of channel wave operators, we obtain
the relation

(1.10) Y. S,5(h)*S, () = 1d
B

as an operator acting on L2(R3;dz,). This relation plays an important role in
the study on the semi-classical behavior of total scattering cross sections.

We proceed to the definition of total scattering cross sections with 2-body
initial states. As an initial state, we again consider the 2-body channel a as
above which is associated with a. We define the operator T,_z(h) by

(L11) Tyop(h) = S,-p(h) = S,p1d.,

d,p being the Kronecker delta notation. As is easily seen, this operator also has
the same intertwining property as in (1.9). Hence, by the spectral representation
constructed above, we can represent T,_,(h) as a decomposable operator

(L12) Toogh) = {Tomp(%s b))

for A€ (A,4(h), ), 4,5 = max (A4(h), Ag(h)). The operator T,.4(4; h) is defined as
an operator from L2(S?) into L*(S?) or L?*(E®), E° being defined by (1.8),
according as f is a 2-body channel or a 3-body channel. For example, T,_,(4; h):
L?(S?) - L%(S?) is defined through the relation

(Fa(B) T a(W) ) (A, ) = (T,o5(4; ) (F, (W) (A, ) (@) .

We will show in the next section that T,_,4(4; h) is of Hilbert-Schmidt class for
ae. A>0.

We denote by T,_,4(0, w; 4, h), (4, w)e(0, ) x S2, the integral kernel of
T,..4(4; h), where 6 ranges over S? or E®, according as § is a 2-body channel or
a 3-body channel. Then the scattering amplitude f,_z(w — 0; 4, h) for scattering
from the initial state o to the final one f at energy A is represented as

(1.13) Srple = 0; 4, h) = —2mih(2n,(4 — Ag(M)) 2T, 5(6, w; A, h) .

For the representation formula above, see the book [2] (p. 627). We now define
the total scattering cross section o,(4, w; h) for scattering initiated in the 2-body
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channel o at energy A and at incident direction w by
(1.14) o, (A, w; h) =Y, Jxlfu_.ﬁ(w — 0; A, h)|?do
B

for a.e. (A, w)e (0, ©) x S2. As stated in Introduction, it should be noted that
6,(A, w; h) is defined only for a.e. (4, ®) and that the exceptional set may depend
on the parameter h.

Before formulating the main theorem, we further introduce a new notation.
Let IT, denote the 2-dimensional hyperplane (impact plane) orthogonal to the
direction w. We write z, € R as z, = u + xw with ue 1, and x = {z,, v) € R.
The variables u € IT, are called the impact parameters.

Theorem 1.1. Let the notations be as above. In addition to (V), with p > 5/2,
assume that the binding energy A,(h) associated with the 2-body initial channel o
satisfies

Aa(h) < — 4o

for some 1, >0 uniformly in h. Then, as a function of (A, w)e€ (0, ©) x S?, the
total scattering cross section o,(A, w; h) obeys the following asymptotic formula as
h—>0 in D'((0, o) x S?):

1
o, =4 sin? {—— Jla 0,u+ xw dx}du + o(h™ =1y
J 25 2w | ) ()

where

2(A — Au(m)

(1.15) Ha(A) = "

is the relative velocity along the incident direction w of the incoming particle and
L(y,, z,) is the intercluster potential defined by (1.3) for the 2-body cluster decompo-
sition a with which the initial state o is associated.

We here make some comments on the theorem above.

Remark 1.2. In assumption (V),, the pair potential V,(r), r € R? is assumed
to be a C2-smooth function over the whole space R3. In proving the theorem,
it suffices to assume that V, is a C?-smooth function in {re R*:|r| > R} for
some R > 1 large enough and also the theorem can be extended to an appropriate
class of pair potentials with local singularities. We do not discuss about such
an extension in detail here.

Remark 1.3. The leading term in the asymptotic formula above has the
order comparable to O(h™™) with m = 2/(p — 1). In fact, if (0, z,), z € R3, be-
haves like

L0, 2) = &(z/|z])|2]"" + o(|z]""), |zl > o0,
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with @(# 0) e C%(S?), then we can see by taking the spherical coordinates in /7,
that

Oy = Oofta(A)"h"™(1 + o(1)), h-0,
with some g, > 0 ([19]).

§2. Optical theorem

Throughout the entire discussion below, we always assume all the assump-
tions of Theorem 1.1 to be satisfied, although all the results obtained in the
present section can be proved to hold true under the weaker decaying assumption
with p > 2. It seems to be difficult to treat directly the total scattering cross
section defined by (1.14). The first step toward the proof of the main theorem
is to rewrite this quantity by use of the representation formula called the optical
theorem. The aim here is to formulate this relation.

As is well-known, the principle of limiting absorption plays a basic role in
the stationary scattering theory. We begin by making a brief review of some
important spectral properties of the 3-body Schrédinger operator H(h), which
are required to formulate the optical theorem. Let L2(R®) be the weighted L?
space defined by

L%(R®) = L*(R®; < y,, 2,0**dy,dz,)
with
s Zay = (1 + |yal* + 2422

Then H(h) has the following spectral properties: (1) H(h) has no positive
eigenvalues; (2) The limits R(A + i0; H(h)), A > 0, of R(4 + ix; H(h)) as k — 0 exist
as an operator from L2(R®) into L2,(R®) for any v > 1/2 and have the local
Holder continuity as a function of A in the uniform operator topology. Property
(1) has been proved by [8] and (2) by [1, 10, 11,17]. Indeed, these properties
have been verified under much weaker decaying assumptions of pair potentials,
including the N-body systems.

We keep the same notations as in the previous sections. Let 1,(h) be the
binding energy of the 2-body initial state o associated with a = {I,(j, k)}. This
is defined as a non-positive eigenvalue of the 2-body subsystem Hamiltonian

Ho(h) = ——

2Na thy + I/jk(ya)

acting on L?(R3;dy,). By assumption, 4,(h) < —A, < 0 uniformly in h and hence

we can easily see that the normalized eigenstate Y, = y,(y,; h) associated with the
eigenvalue 4,(h) satisfies

2.1 f(l + 192N [Wo(ya; B)I2dy, < Cy

for any N > 1 uniformly in h.
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The analysis in this section is based on the following proposition on the
representation formula of scattering amplitudes. The proof can be done in almost
the same way as in the 2-body case. For a proof, see, for example, Ito [9]
(Proposition 2.4).

Proposition 2.1. Assume all the assumptions of Theorem 1.1. Denote by
(, )o the L? scalar product in L*(R®). Let @,(z,; 4, w,h) be the generalized
eigenfunction defined by (1.6) and write

22 €(®) = Yo(¥ai 1) ® @,(2,: 4, @, h) .

Then the operator T,_,(A; h): L>(S?) — L*(S?) is of Hilbert-Schmidt class for all
A >0 and it has the integral kernel

(2.3) T,..(0, w; 4, h) = ¢0,G,(0, w; 4, h)
with
Cox = (2m) 7 2in, (2ng(A — A,(m)2h73
where
G, = (=1, + LR(A + i0; H(h))],)e,(), €,(6))o

with the intercluster potential 1,(y,, z,) defined by (1.3). In particular, the scattering
amplitude f,_,(w — 6; A, h) for scattering from the initial direction w to the final
one 6 at energy A is represented as

(24) fraal@ = 0; A, h) = 2r)"*n,h™2G,(0, w; A, h)

We here make some comments on the proposition above. If f is a 2-body
channel with strictly negative binding energy, then we can prove that T,_4(4; h):
L?(S?) — L?*(S?) is also of Hilbert-Schmidt class for all 2 > 0 and that it has the
integral kernel represented by a formula similar to (2.3). However, it seems that
such a nice representation formula has not yet obtained if f is a 2-body channel
with zero binding energy or a 3-body channel. We know that H(h) has no
positive eigenvalues and that R(A + i0; H(h)): L2(R®) - L2 (R®), v > 1/2, is well-
defined for all 4 > 0, but it does not immediately from these facts that for such
a channel B, T,_z(4; h) is of Hilbert-Schmidt class for all > 0. To prove this, we
have to study in detail the limits as k — 0 of such operators as V,R(4 + ik; H(h))V,
with pair potentials V, and V,. This study has been done by use of the Faddeev
equation method ([2, 5]) and we require the additional assumption that all 2-body
subsystem Hamiltonians have no zero resonance energies. Thus this method
does not directly apply to the semi-classical problems with parameter h and also
this makes difficult the semi-classical analysis for scattering matrices with energy
and incident direction fixed in many-body scattering systems.

By making use of the above proposition, we first show that T,_,(4; h) is of
Hilbert-Schmidt class for a.e. 4 >0, even if f is a 2-body channel with zero
binding energy or a 3-body channel.
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Proposition 2.2. Under the same assumptions as in Theorem 1.1, the operator
T,~4(4; h) is of Hilbert-Schmidt class for a.e. A>0.

Proof. We denote by < , »; the L? scalar product in L?(S?) or L*(E®),
E® being defined by (1.8), according as 8 is a 2-body or a 3-body channel. Let
{e,}_, be a complete orthonormal system in L?*(S?) and let g(4) be a real smooth
function with compact support in (0, c0). We first note that by Proposition 2.1,
the operator

Re T, (4 h) = 3(Tooa(A; h) + T,o0(4; b))

is of trace class for all A >0 as an operator acting on LZ%(S?).
Now, recall the relation (1.10), which follows from the asymptotic complete-
ness of channel wave operators. Then, by definition (1.11), we obtain

(2.5) S Tyoop(&s ¥ Top(hs h) = —2 Re T, (% h)
B

for a.e. A>0. This relation yields that

P jg(a)za“,ﬂ,;u; My, Tomglhs W)eypdi

=-2 i jg(if(Re T,~o(4; h)ey, €,dA
k=1

which proves the proposition. [J

The goal here is to prove the following proposition called the optical theorem
which is obtained as a consequence of the asymptotic completeness of channel
wave operators.

Proposition 2.3. Under the same assumptions as in Theorem 1.1, one has
(2:6) 0,(A, w; h) = 4n(2ny(A — A,(h)) " Ph Im f, (0w - w; 4, h)
in D'((0, ) x S?) as a function of (A, w), where
Im f,_ (0 — w; A h) = 2n) 'n,h™2 Im (R(A + i0; H(h)) e, (w), L e (@), -

Proof. Let g(A, w) be a real smooth function with compact support in
(0, ©) x S2. We denote by g, the multiplication operator by g(4, w) acting on
L?(S?). Then, by (2.5), we have

JTQ(L w)?0,(4, w; h)dwdi
= —2(2m)*h? J(zna('1 — A (h))™* Trace (g, Re T,_,(4; h)g,)dA

= 4rnh jjg(l, )2 (2n,(A — A (h) 2 Im f,_ (0 = w; A, h)dwdA .

This proves the proposition. [
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§3. Basic representation formula

For notational brevity, we fix the 2-cluster decomposition a = {1, (2, 3)} with
which the 2-body initial channel « is associated and write the Jacobi coordinates
as

myry + msrs

y= =r,—7r Z2=2,=5n
Ya 2 3> a m2+m3

We further write
e, = €,(¥,2: 4, 0, h) = Y, (y; h) ® @,(z; 4, , h) .
The quantity which we analyze in the present section is
Q = Im (R(% + i0; H(W)Le,, Ley)o »

which goes into the representation formula (2.6). The second step toward the
proof of the main theorem is to write this quantity in a more convenient form.
Throughout the proof, we fix the constant y as

(3.1) Y=

and take f§ as
(32) B=y1+0)>y

for some 6 > 0, 6 being chosen small enough in the discussion below. We now
introduce a non-negative smooth partition of unity {y;}>_,, x; = x;(z; h), over R?
with the following properties: (x.0) Y-, x;=1; (x.1) x, has support in {z € R*:
|zl <2h™*} and x, =1 on {ze R3 |z| <h™'}; (x.2) x, has support in

(3.3) By ={zeR%h7 <|z| <2h7#)

and y,=1 on {zeR*2h7"<|z|<h™*}; (x.3) x3 has support in {zeR*
|zl >h7#} and y; =1 on {ze R3: |z| > 2h7#}; (x.4) For any multi-index «,

0225z W < C2>7™™, 1<j<3,

uniformly in h.
Let H,(h) be the cluster Hamiltonian defined by (1.1). Then we have
H,(h)e, = Ae,. We now write

R(A +i0; H(h))I e, = x e, + v.
As is easily seen, the remainder term v above must satisfy the equation
(H(h) - A)U = [Xl’ HO(h)]ea + (XZ + X3)]aea 5

where [ , ] denotes the commutator relation. Define 0; = 0,(y, z; 4, w, h), 1 <j <
2, by

01 = [Xl’ HO(h)]ea + X21¢?ea s

92 = XZ(Ia - It?)ea + XSIaea g

(3.4)
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where

(3'5) It?(z) = Ia(y’ z)|y=0 .
Then

2
R(A + i0; H(h) e, = x1e, + Y. R(A + i0; H(h))6; .
j=1

A similar representation is obtained for R(4 — i0; H(h))l,e, also. Hence the quan-
tity Q under consideration is written as

2 2
0= Zl Im (8}, xy€,)0 + lem(RA+lO H(h))6;, 0,), -
Jj= Jik
By partial integration, the first term on the right side vanishes and hence it
follows from Proposition 2.3 that

(ng [

(3.6) (4, @5 h) = 2p, () h7

J»

Im (R(A + i0; H(h))8;, 0,)0 ,

=

=1

where p,(4) is defined by (1.15). This representation formula plays an important
role in proving the main theorem.

By relation (3.6), the proof is now reduced to evaluating the terms (R(4 + i0;
H(h))6;, 6,)0, 1 <j, k <2. The remaining sections are devoted to evaluating these
terms. Roughly speaking, the leading term of the asymptotic formula in Theorem
1.1 comes from the term (R(A + i0; H(h))8,, 6,),.

§4. Remainder estimate

In this section we evaluate the above remainder terms with pairs (j, k) = (1, 2),
(2,1) and (2, 2).

Lemma 4.1. Let y be as in (3.1). Then one has
(1) Im {(R(A+ i0; H(h)8,, 6,)o + (R(A + i0; H(h))B,, 6,)o} = o(h'™?),
(2) Im(R(A + i0; H(h))0,, 0,), = o(h'™?"),

as h—0 in D'((0, ) x §3).

Proof. We prove the statement (1) only. The same argument applies to
(2) also. The proof is based on the formula
d
4.1) ﬂE( H(h) = (R(l + i0; H(h)) — R(4 — i0; H(h))), A>0,
where E(A; H(h)) denotes the spectral resolution associated with H(h).
Let g(4, w) be a real smooth function with compact support in (0, c0) x S?
and define the integral J,(w; h) by

J, = Jw g(4, ) Im {(R(4 + i0; H(h))0,, 6,)o + (R(A + i0; H(h))8,, 0,)o}dA .

0
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To prove (1), it suffices to show that
(4.2) Jy(w;h) = oh'"?),  h-0,
uniformly in w € . By formula (4.1), this integral is rewritten as

Ji=mn J g(4, w){(E'(/li H(h)8,, 8,)0 + (E'(4; H(h))0,, 91)0}‘”

0o

with  E'(A; H(h)) = (d/dA)E(A; H(h)). Let ||, denote the L?> norn in
L?(R®). Then we integrate by parts in A to obtain that

Jy=0M)(10,01102ll0 + 1011161102020 + 1162116110261 1l0) -

We evaluate the L? norm of the terms 6, and 0,6,. Let B,, be defined
by (3.3). Recall the notation z = u + xw with u e IT, and x = {z, w) € R'. Since
6, has support in B,; as a function of z, we have

16,1 < C(lzl + h7) 2 [y (y; W) .
Therefore it follows that
(4.3) 18110 = O(R"*~32) = O(h'™?),
(4.4) 10:6,ll0 = O(h™")1Ix0, /|0 = O(h™>"2).

Next we evaluate the L? norm of the terms 6, and 9,0,. By assumption
(V), and (2.1), we have

(#3) 182110 = O™ ~3®) 4+ O(#~32) = o(h'~7?)
for any pu, p<p<p+d, d being as in (V),. Similarly we obtain
(4.6) 10,0210 = o(h™3"2).

The strong decaying assumption with p > 5/2 is used to evaluate the L? norm
of the terms 0,0, and 9,0,. The estimates (4.3) ~ (4.6) prove (4.2) and the proof
is complete. [J

§5. Term with small impact parameter

We decompose the term 6, into two terms with small and large impact

parameters u € IT,. In this section we analyze the term with small impact param-
eter.

The term 6, defined by (3.4) takes the form
8, = f(z; h)e, ,
where f has support in B,; and satisfies the estimate

(.1 10:f1 < Gllzl + )%, 0<la|<2,
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uniformly in h. The explicit representation for f(z; h) is not required throughout
the discussion in the present section. In addition to the constants y and f, we
here introduce another constant k as

(5.2) k=y1-8)<y
for the same 6 > 0 as in (3.2). As is stated above, we decompose 6, as
(5.3) 0, =0, + 0, = fi(z; he, + fi(z; h)e, ,

where f, and f, have the following properties: (1) As a function of u e I, f; has
support in {u € IT,: |u| < 2h™*} and f; has support in {u € IT,;: |u| > h™*}; (2) Both
the functions f; and f, are supported in B,, and satisfy the estimate (5.1).

The aim here is to prove the following

Lemma 5.1. Let y be as in (3.1) and let 0,; and 0,, be as above. Then one
has

(1) Im {(R(A+ i0; H(h))0y,, 01))0 + (R(A + i0; H(h))0,,, 0,)0} = o(h'™??),
(2) Im(R(A+ i0; H(h))8,,, 6,,)o = o(h'~?),
as h—0 in D'((0, o) x S?).

Proof. The lemma is proved in the same way as in the proof of Lemma
4.1. We prove the statement (1) only.

Let g(4, w) be again a real smooth function with compact support in (0, c0) x
S2.  We define the integral J,(w; h) as in the proof of Lemma 4.1. Then we have

J2 =0 (10:4ll01101:ll0 + 101510 102611ll0 + 1181:ll01102615ll0)

where |||, again denotes the L? norm in L*(RS).
We now evaluate the L? norm of the above terms. We first note that as
a function of x = (z, ®) € R}, 6, and 0,, are supported in

I'={xeR|x| <2h™#}.

Since 0, has support in {ue IT,: |u| < 2h™*}, we have
16,4113 = O(h—ZK)J (Ix| + h77)"%%dx ,
r

which shows that
(5.4) 10,10 = O(h"P~127x),

Similarly we have
10,0115 = O(h™272) j <xY*(|x| + h77)"%0dx
r

and hence

(5.5) 10:61llo = O(RY®~¥D717x)
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We also have
(5.6) 181110 = O(R?P=32)

and
100,113 = O(h_z)j xD*(|x| + hY) 2% 2dx
r

which yields that
(5.7 0:01llp = O(h?®~D~17612)
It follows immediately from (5.4) and (5.6) that
16150101110 = o(h*=27).
By (5.4) and (5.7), we have
1014li01102611ll0 = B*~2O(h”)
with
v=y2p—1/2) -2 —x—p2=6y/2>0
and also, by (5.5) and (5.6), we have
181110110201ll0 = ' ~2?O(h")
with
v=y2p—-1)—-2—-Kk=06y>0.
These estimates prove that
Jy(w;h)y=o0h'"?), h-0,

uniformly in w € S? and the proof is complete. []

§6. Term with large impact parameter

By Lemmas 4.1 and 5.1, only the term (R(4 + i0; H(h))0,,, 6,,) makes a
contribution to the leading term of the semi-classical asymptotic formula for the
total scattering cross secton a,(4, w;h). The aim of this section is to analyze
this term with large impact parameter u e Il,. The analysis is based on the
time-dependent representation formula of resolvent;

(6.1) R(4 + i0; H(h)) = i} J exp (ih™'tA) exp (—ih™'tH(h))dt .
V]
More precisely, we have to write

ih! limj exp (—h~'te) exp (ih~'tA) exp (—ih 'tH(h))dt .

ed0 Jo
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For notational brevity, we proceed with the formal representation formula (6.1),
because the rigorous justification can be easily done.

Let g(4, w) be a real smooth function with compact support in (0, ) x S
and define the integral J,(w; h) as

(6.2) Jo = J g(4, w)(R(A + i0; H(h))B,), 6,,)0dA

0
By (6.1), this is rewritten as

Jo=ih7! J g4, w)dlf exp (ih~'tA)(exp (—ih~'tH(h))0,,, 0,,)odt .

0 0
Let § be as in (3.2). We now fix t as
(6.3) 1= Nh*

for N » 1 large enough and decompose the integral above into two parts;

J0=ih“j g(A,w)di{j "'dt+J ...dz}.
0 0 T

We denote by Ji(w; h) and J3(w; h) the first and second integrals on the right
side, respectively.

Lemma 6.1.
Ji(w; h) = o(h*™%7), h—-0,
uniformly in w e S
Proof. Recall the form of 6,,; 6, = fi(z; h)e,. By use of the relation
exp (ih™'tAd) = —h?t~20% exp (ih~'t4),

we integrate by parts in A, so that the integral J3 under consideration is
represented as a linear combination of such integrals as

h J okgdA J t™2 exp (ih *td)(exp (—ih~'tH(h))f,07e,, fi05e,)odt
0 T

with k + m + n =2. We evaluate the L? norm of x™fie, with 0 <m < 2. Since
f, has support in B, and satisfies (5.1), these terms obey the following estimates:
If p>m+ 3/2, then

Ix"fiello = O(h™e™=3%)
and if p < m + 3/2, then we can take ¢, | > &> —p + m + 3/2, so that
Ix™fieallo = Oh™P%) | x"<z) " fre,llo = O(h)
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with

v=—ef—+rp—m-3/2).
This proves the lemma. [
Next we consider the integral Ji(w;h). We study this integral by con-

structing an approximate representation for exp (—ih 'tH(h))0,, with t,0 <t < 1.
Let u, = p,(4) be defined by (1.15). Then we define v = v(t, z; 4, w, h) by
t

(6.4) v = fi(z — uwt; h) exp (—ih'l f

0

1%(z — po(t — s))ds) .

After an elementary but somewhat tedious computation, we see that ve, satisfies
the equation

(iho, — H(h) + Ave, =,
where r(t) = r(t, y,z; 4, o, h) is written as r =r; + r, with
L)
r, = —h*(4,v)e, ,
(6.5) 2n,
r, = (14?(2) - Ia(y, Z))Uea .
Therefore, by Duhamel’s principle, we have

exp (ih~'tA) exp (—ih~'tH(h))0,,

= ve, + ih™! Jl exp (ih"1(t — s)4) exp (—ih™'(t — s)H(h))r(s)ds .

0o

Thus the integral Ji(w; h) under consideration behaves like

o)

6.6) JY=int f

0

g(4, w)dlj (v, f).dt + O(h_z)”ou"oj f r(s)llodsdt
0 0JO

as h— 0, where ( , ), denotes the L? scalar product in L*(R?;dz).

Lemma 6.2.

o T

g(4, w)di f (v, f}),dt + o(h'™%), h—-0,

0

Ji(w, h) =ih™! J‘

0

uniformly in w e S2.

Proof. We evaluate the L? norm of the remainder term r(s) with 0 <s <.
Since f; is supported in

A={uell, |ul>h>™},

r.i(s) and r,(s) defined by (6.5) have also support in A as a function of ue II,.
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Therefore we obtain

7 ($)I13 = O(h*) f Uy du + O(h?) f Uy *3du + 0(1)[ Cuy™so*3du .
4 y y

This yields that
I71(8)llo = O(h*C2~712)
uniformly in s> 0. Similarly, we use the assumption (¥), to obtain that
Ira(s)llp = O(R*P*=32))
for any u, p<pu<p+d. Since
161,llo = O(h7* =32,
the second term on the right side of (6.6) is of order (O(h*) + O(h*))h'~?", where
v=2y=3-2B+y(p—3/2)+xkBp —T7/2) = {(p —2) — 3(p — 1/2)}y
and
V=2 =3-28+9(p—=3/2)+k(p+u—3/2)={(u—p)—d(p+p+1/2)}y.

Thus we can take ¢ in (3.2) so small that v>0 and v > 0. This proves the
lemma. O

By assumption, 4,(h) < — A, uniformly in & and hence it follows by definition

(1.15) that
Uy = /ia(}-) > AY, 2/10/71‘, .

Since f; is supported in {x = {z, w) € R*: |x| < 2h™#} as a function of x, we can
take N in (6.3) so large that (v, f;), =0 for t > 1. Hence we have by Lemmas
6.1 and 6.2 that

67)  Jolw; h) = ih™! r g(A, w)di f "o f).dt +oh'"?),  h-0,
0 0

uniformly in o e S2.

§7. Calculation of leading term

In this section we calculate explicitly the leading term of the semi-classical
asymptotic formula for the total scattering cross section ¢,(4, w; h) and complete
the proof of the main theorem.

The next lemma, together with relation (3.6), completes the proof of Theorem
1.1,

Lemma 7.1.

Im (R(A + i0; H(h))8,,, 0,,)o = ko(4, w; h) + o(h'~??), h—0,
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in D'((0, o) x S?), where

_ : 1 0
(.1 ko = 2u(A)h j”w sin? {m ‘[I,, (u+ xw)dx} du
with pu,(A) defined by (1.15).

Proof. The proof is divided into several steps.
(1) Let Jo(w; h) be defined by (6.2). To prove the lemma, it suffices to
show that

(7.2) ImJ, = f (4, w)ko(A, w; )dA + o(h=27)
0

uniformly in w € S%.  Note that g(4, w) is real-valued. By (6.7), Im Jo(a)‘; h) be-
haves like

0 e o)

g(4, w)dA f Re (v, f)),dt + o(h! ™27,

0

(13) ImJy=h! j

0

Thus the proof is reduced to calculating the term on the right side.
(2) Define the differential operator

A(h) = u, <w, %Vz> + k70

with u, = p,(4). The operator A(h) admits a unique self-adjoint realization in
L*(R? dz). We denote by the same notation A(h) this self-adjoint realization
and by

G, = exp (—itA(h), teR',

the unitary group generated by A(h). Then the solution w(t, z; h) = (G,w)(z; h)
to the evolution equation

iow— A(hw =0, w(0, z) = wy € L?(R3; dz)

is explicitly represented by formula (6.4) with f, = wy;

t
G,wo = wo(z — p,wt) exp (—ih‘l f I°(z — poo(t — s))ds) .
0

According to this notation, we may write v as v = G, f,.
Now, recall the decomposition

91 = f(z; h)ea = fs(z, h)ea + .fl(z; h)ea s

where f; is supported in {u € I1,: |u| < 2h™*} as a function of u. As is easily seen,

Jw (G.f, f).dt = o(h*~2")

0
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and

J (G fi, f,).dt = o(h*~%7).

0

Therefore it follows from (7.3) that

(7.4) ImJg=h" J

0

g(4, w)dA Jw Re (G.f, f),dt + o(h'™?").

0

(3) We are now in a position to require the explicit representation for
0, = f(z; h)e,. Define f, = fo(z; h) as

Jo = ihuLw, V> 1,
and f;j= fi(z;h), 1 <j<3, as
fi= 1z WI2().
Then, by definition,
3
HOEDW/CE)
i=
and also it follows that
f(z; h) = fo(z; h) + f2(z; h) + remainder term .

The remainder term above is supported in {ze R*: h™7 <|z| <2h™’} and obeys
the bound O(h)<{z)>™~'. Hence this term can be proved to make no contribution
to the leading term.

The next lemma plays a basic role in calculating the leading term.

Lemma 7.2.
(1) h™! J G fodt =iy, + h™! J G, frdt.
0 0
) h™! j G_ fodt = —ix; + h7! j G_ fidt.
0 0

Proof. We prove (1) only. By definition,
fo—fi = —hAh),

and hence

., d
Gz(fo '_fl) = _’hzi_tGrXI .

This proves the relation (1) immediately. [
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Since (iy;, fo). =0 by partial integration, Lemma 7.2, together with (7.4),
implies that

0

(.3 ImJo=h" j 9(d, w)dA r Re (G(fy + fo) fi + fo):dt + o).
0

0

(4) The next lemma is easy to prove.

Lemma 7.3.

(1) Jm Re (G, f3, fj).dt = o(h*™?"), 1 <j < 3.

0

2 J Re (G.f, f3)dt = o(h*™%), 1 <j < 3.
0

Proof. Since |f;] < C(|z| + k™)™ and | f3] < C(|z| + h™#)™* by definition, re-

lations (1) and (2) can be easily proved for the cases j=2 and j=3. In the

case j=1, we use Lemma 7.2. If we take account of the bound |fy|<

C(|z| + h™?)7*, relations (1) and (2) can be similarly proved for the case j = 1 also.

O

The lemma above, together with relation (7.5), yields that

Im Jo = h—l J‘ g(l, (l))d). J Re (G‘I‘?, [,?)zdt + o(hl—Zy) .
0 0
(5) The proof of the lemma is completed in this step. We calculate the
integral

Lo = h™" Re( J G,I%dt, 1), = Im(ih™ J G,I%t, I°), .
0

0

Lemma 74. Write ze R?® as z =u + xw with uell, and x = (z, ») € R".
Then one has

ih™1 J G,I%dt =1 — exp <—i

0

! J I,?(u+sw)ds).
Hah ) -

Proof. Define

F(t, z; h) = exp (—ih‘l j 1%(z — pyo(t — s))ds) .
0
Then we have

d -
ZF= —lh IG‘I‘?
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and also

F(o0, z; h) = exp <_iplh J I2(u + sw)ds)

by making a simple change of variables. Hence the lemma follows at once. []

By Lemma 7.4, we obtain that
1 x
J JI.?(“ + xw) sin {— f I°(u + sw)ds} dxdu
1 Bah ) -

d |
— uh fﬂw J Ix [cos {m j_w I+ sw)ds}]dxdu .

Lo

This shows that L, = ko(4, w; h), k, being defined by (7.1), and completes the
proof of Lemma 7.1. O

The proof of the main theorem is now complete.
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