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Summation formulae, automorphic realizations
and a special value of Eisenstein series

By

Yuval Z. FLICKER and ]J.G.M. MARS

Let F be a global field of characteristic other than 2, F, its completion at a place
v, 4 its ring of adeles and ¢: A—»C* a non-trivial additive character which is trivial
on the discrete subgroup F of 4. Let C(F,) be the Schwartz space of F, if v is
archimedean, and the space C2(F,) of locally constant compactly supported C-valued
functions on F, if v is non-archimedean. Let f%<C(F,)) be the characteristic function
of the ring R, of integers of F, in the latter case. Denote by C(A4) the C-span of
Rof e foEC(F,) for all v, f,=f3 for almost all v. Denote by ¢, the component of ¢ at
v, and let d,y be the Haar measure of F, normalized to have the property that the
Fourier transform

fo>Gfr FL0=( L0

is an endomorphism of the vector space C(F,) which satisfies the Fourier inversion
formula (T(F f)(x)=f,(—x). Write F(R.f.) for ®.Ff,. One has the well-known

Poisson summation formula. The distribution D(f)= EFf(x) on C(A) satisfies
IE.

D(f)=D(4 f).

This formula follows easily from the Fourier inversion formula (see, e.g., [L],
XIV, §6, p.291), and has many applications. One of these applications concerns the 8-
(or Weil, oscillator, smallest) representation of the unique central topological two-fold
covering (metaplectic) group

11— {1} — S, —8§,—1, l— {1} — S, —S5,—1
s s

of 5,=SL(2, F,), S4=SL(2, A). As usual (see [K], or [F], [FKS]), the elements of S,
and S, will be described as pairs (g, {), or {s(g), with { in ker p={+1} and g in S,
or S,, and with product rule

Cs(g)t's(g)=LL'Blg. g')s(gg’).

For gz(? 3) in GL(2), put {(g)=(c, d/detg) if cd+0 and ordc is odd, and #(g)=1

Partially supported by Nato grant CRG-900080
Communicated by Prof. K. Ueno, January 22, 1991



716 Yuval Z. Flicker and J.G.M. Mars

otherwise; here (-, ) is the Hilbert symbol. Put

n_(Xe8)  x(gg) a b\\ (¢ c#0,
a(g’g)_( x(g) ’x(g’)detg>’ x((c d))._{ d. e=0.

Then (the restriction to SL(2) of) B(g, g’)=a(g, g g)t(g")tgg’)™" is a two-cocycle of
S, in {+1}, uniquely determined by the choice of the section s to the projection p.
Define a two-cocycle 8, on S, by B,=11,B,.

Let 7,: Fy—C* be the twisted character defined by

ror=1x 18 g 007y / (05 57 )du

(or T{(x)=|x I},/Zggb,,(— %xyz)d,,y/ggbv(—%yz)d,,y) introduced by Weil [We; 1964] (see

also [F], [FKS]). It satisfies 7,(a)7.(b)=7.(ab)a, b),. Then 7,: Fi/Fs*-C* has order
4, and 7,=II,7, is trivial on the subgroup F*A*® of the group A* of ideles. The
representation 6, of S, is defined on the space C(F,) by means of the operators

19 1,
(%qomQMﬁMWQMA

0 —1
(0»(CS( ))fv)(x)zcco(gfv)(_x)»
1 0

0
(&(ZS(G ))fv)(x)=CTv(a)IaI%”fv(aX)
0 a!

(asFy, beF, {e{+1}=Kkerp), where c,=7,(—1)""/* is an eighth root of unity in C
(¢,=1 for almost all v and IT,c,=1). Note that SL(2, F,) is generated by the matrices

((1) _(1)) (é Ii) and that the discrete subgroup S(F)=SL(2, F) of S, injects as a sub-

group of S, by g—t(g)s(g). The representation 6, of S, is defined as the restricted
tensor product 6,=®.,0,. A function h:S,—C is called genuine if h({g)=Ch(g)
({=ker p), and automorphic if h(rg)=h(g)r<S(F)). An S,-module is called automorphic
if it is equivalent to a subquotient of the representation of S, on the space L(S(F)\
S4)gen Of genuine square-integrable complex-valued functions on S(F)\S,, by right
translation. The summation formula implies

Automorphic realization. For each feC(A), the function D (g)=D(0,(g)f) is
automorphic.

Namely D(0.(rg)f)=D(0 ,(g)f) for all 7eS(F), geS,. lt is easy to see that D,
lies in L*S(F)NS )gen, and that the distribution f—D; intertwines the #-representation
(8,4, C(A)) with the regular representation of S, on L*S(F)\NS,).en. I[n particular the
distribution D realizes 6, as an automorphic representation by virtue of the Poisson
summation formula.

We shall now develop a new summation formula, and relate it to the automorphic
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realization of a G L(2)-analogue of 4.

To state the new summation formula, for a finite place v let C(Fy) denote the space
of locally constant C-valued functions f, on F; whose support is bounded in F,, for
which there is a constant A(f,)>0 with the property that f,(x)=|¢|32f,(t*x) is in-
dependent of teFy provided that |t]|,<A(f,) and |x|,<1. Then |-|'*f, extends to
a fundtion on Fy/Fs®. When v is archimedean, C(Fy) consists of smooth functions on
Fy with rapid decay at oo and #—|t|3/2f,(t2x) smooth at t=0. Put f,,o(x)zlti_l:l;nltl,‘,”f,,(tzx).
Denote by wval,: Ff—+Z the normalized additive valuation on F; when v is non-
archimedean. Then |x|,=g;**""*(xF;), where ¢, is the cardinality of the residue
field of R,. Let f$ be the element of C(Fy) whose value at x is zero unless val,(x)
is even and positive, where f3x)=|x|7'* Put C(4*) for the C-span of the functions
f=Rufv, Wwhere f,=f% for almost all v. Put

fol(x)=ITofwox,) and Ff=QKR,F [0,

where

(Ffo)(x)=colo(x)| % WZSF,, |y 1o fo(x Y )X ¥)dvy -

New summation formula. The distribution D(f)=2 3 f(x)+ X 2fo(x) on
C(A*) satisfies D(F f)=D(f). el zerin

Note that given f, there are only finitely many x=F*/F** with f,(x)#0, since
A/ F [Ty F3 MRy is finite (its cardinality is the class number of F), and so is
Ry/Ry® for each v. The rapid decay of f, at o guarantees the convergence of 3 f(x),
xeF~.

The distribution D can be used to construct an operator intertwining a representa-
tion # with a space of automorphic forms. This # will be a representation of a two-
fold topological central covering group

l-—{tl} —H, —H—1, 1|—{tl} —>H,=H, —>1
s s
of the group H,=GL(2, F,) and 7,=GL(2, 4). Up to isomorphism, there are two such
covering groups which are defined by an algebraic morphism of GL(2) into SL(n),
and the unique covering of SL(n) (see [KP], §0). They are determined by the
cohomology class of the two-cocycle B, and B,=II,8, which defines the product on
H, and H,. As in [K], [F], [FKS], we choose that 8 (defined above) which satisfies

ﬂ((g (; ,((C) 3))=(a, d). A two-cocycle B’: Hx H—{+1} which represents the other
cohomology class is given by B(g, g’)=p(g, g’)(det g, det g’). Note that the representa-
tion @, of S, reduces as the direct sum of two irreducible representations 3 and 65y,
on the spaces C(F,)* and C(F,)” of even (fo(—x)=fy(x)) and odd (f(—x)=—f,(x))
functions in C(F,). Denote by Z, and Z, the groups of scalar matrices in H, and H,.
Since Z,=p~'(Z,) is the center of Z,S,=p"'S,Z,), 0F extends to a Z,S,-module by
0:(s(2)) fo=7w2) [+ (2EZ,= F}): note that the extension is well-defined since fo» is even.
The center of H, is Zi=p-(Z2), Zi=1{z*; z=Z,}, and that of H, is Zt=p"Y(Z3).
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The H,-module in question, denoted (again) by 6,, is the induced representation
ind (03 ; H,, Z,S,). Choosing the section p—»(g (1)) to the isomorphism SNH,—F;, g—

det p(g), the space of 6, can be viewed (e.g. on putting f(x, t)=|x|“‘/2f(s(g (1)), t))

as consisting of f,: Fy X F,—C with fo(x, )=|t[}/*fo(x%, 1) (note that f, is even in ?).
Writing f,(x) for fy(x, 1), the group H, acts via

a 0 z 0
(ov(cs(o 1)>fo>(x)=C lals*folax), (0u(C8(0 ))fv)(x)ZC(x: 2)To(2) fo(%),
V4

(6 (Cs(l b))f)(x)-c (5 6%)fum) (0 (c (O Neo=ts
v 01 v =Ly 2 X ) ox), | 6S 1 0)) v)(x)—C( fol(x).

When v is non-archimedean, since C(F,) consists of functions which are constant at
some neighborhood of 0 in Fy, for each x&Fy the function f,(x, t) is constant near
t=0; hence there is A(f,)>0 such that fy(x)=1¢|4/2f,(xt?) is independent of ¢ if |x|,
=<1 and [t|,ZA(f,). Similar comments apply in the archimedean case. Consequently
the H,-module 6, can be realized on the space C(Fy) introduced above.

The representation § of H, is defined as the restricted tensor product 6,=X,0,.
The discrete subgroup H(F)=GL(2, F) of H, embeds as a subgroup of H,. The new
summation formula implies

Automorphic realization. For each fC(A*), the function D (g)=D(04(g)f) is
automorphic.

Namely D(84(7g)f)=D(04(g)f) for all y€H(F), geH,. It is easy to see that D, &
L=L*H(F)Z3\H,) (= space of genuine C-valued functions ¢ on H(F)\H, which
transform under s(Z3%) according to a unitary character, such that |@|® is integrable
on H(F)Z3\H,), and that f—D, intertwines (6, C(4*)) with the representation » of
H, on L by right translation. The space L splits as a direct sum (and integral) of
H ,-modules, and using the trace formula it is shown in [F] that 6, occurs discretely
in (r, L) with multiplicity one. Thus 6, is an automorphic representation, and D yields
the unique-up-to-scalar realization of #, as an automorphic representation, intertwin-
ing C(4*) with L. The analogous multiplicity one result for the S,-module 6, in
LA(S(F)\S ))zexn is proven in Waldspurger [Wa] (see also [GP] where this result of
[Wa] is deduced from the theorem of multiplicity one for H, of [F]). In particular D
is the unique-up-to-scalar operator intertwining (6 ,, C(A)) with (r, LA(S(F)NS4)zen).

Proof of new summation formula. Given f=@Q®f, in C(A*), define fyt, x)=
|x |2 f(tx)teFy, xFy), and f(t, 0):lingf,,(t, x). Put f(t, x)-——Iva,,(t, x) on A*XA.
Then f(t, 0)=f(t), and f satisfies f(t, ax)=|al'?f(ta®, x). Put f¥t, x)=
va(t, W(xy)dy. Then (Ff)t, x)=|x1VN(F fo)tx?) is equal to c ()15 f¥(E, 1x).

For acF* and B=F we have Ffla, B=f(aB? and (Ff)aB?)=(Ff)a, B)=[*a, ap).
Hence for any « in F* we have that
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fla)+ 2 f@p)= I fla, B)
geF* BeF

is equal, by virtue of the Poisson summation formula applied to the function x—fa, x)
on A4, to

3 fHa, B= 3 fHa, af)= S (Ff)a, B= Z (Ff)aB)+(F fa).
BeF B B BeF*

er eF
Summing over a in F*/F*?* we obtain that the expression

2 Sfla)+2 2 fla)= FE 2['REZ‘.FXf(a.['VH-fo(oz)]

aEF* [F*2 aEFX aEFX |FX

is invariant under the replacement of f by Ff, as required.

Our final aim is to show that D(f) is obtained as a special value of a standard
Eisenstein series (defined below), both in the case of S and H.

Evaluation. The value of E(s, g, f) at s=0 and g=id is D(f).

The Evaluation is a Siegel-Weil formula for a quadratic form in one variable.
Such formulae have been obtained by Siegel [S], Weil [We; 1965], Mars [M], Igusa [1],
Rallis [R], and Kudla-Rallis [KR]. In the case of S=SL(2) this Evaluation is due also
to Helminck [H], p. 67, who studied the analytic properties of the Fourier coefficients
of the Eisenstein series, and deduced a functional equation, holomorphy on Re(s)>1,
s#3/2, and the existence of at most a simple pole at s=3/2 (Theorem 16.7, p. 63, and
Theorem 18.2, p. 65). Moreover, [H] computes the residue at s=3/2 (Theorem 17.6,
p. 65). To evaluate the Eisenstein series at s=0, [H] uses (on p. 67) the functional
equation. Our proof, which is based on computing directly the values of the Fourier
series at s=0, is simpler.

Our main interest is in the analogous result for H=GL(2). The result for H, and
the technique, may turn out to be useful in constructing an automorphic embedding of
the model found in [FKS] for the smallest representation of a two- fold covering of
GL@3). The H,module 8, defined above occurs in fact as a module of coinvariants of
the representation studied in [FKS], and the model of @, described here is used there.
For this reason we decided to reprove here the Evaluation for S, in a format which
seems to us to be more convenient for generalization; it is different from [H] in that
we evaluate the Eisenstein series directly at s=0, and we do not use the functional
equation. In any case we deal not only with the non-archimedean places, but also with
the archimedean places. Then we discuss the case of H, in several different ways.

As in [H], in the case of S we work with f=®f,, even f, for all v. The Eisen-
stein series is defined (below) as a series which converges absolutely, uniformly in
compact subsets of Re(s)>3/2. It is well-known that it has analytic continuation to
the entire complex plane, with a functional equation, and the continuation is holomo-
rphic on Re(s)>1/2, except for (at most) a simple pole at s=1. We study the value
at s=0, in the domain of continuation. As in [H], the proof is based on computing
the Fourier expansion of the Eisenstein series along the standard non-trivial parabolic
subgroup. We were motivated to consider the Evaluation by the observation that our
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computations can be adapted to show that E(0, g, f)=E(Q, id, 6(g)f), and that one has
the Evaluation E(0, g, f/)=D(04(g)f)=D,(g). Then the summation formulae follow
from the Evaluation. Indeed, it is clear from the definition of E(s, g, f) that E is
automorphic, namely when the group is S we have E(s, g, f)=£E(s, dg, f) for every &
in S(F)cS,. Hence at s=0 and g=id we obtain Sserf(B)=2per(0(0)f)B) for all

0=S(F). The Poisson summation formula D(F f)=D(f) follows on taking 5:<(1) —(1)>

since then 0(0)f =% f is the Fourier transform of f. The New Summation Formula
similarly follows in the case of H. As noted above, this method of proof may apply
to construct an automorphic embedding of the model found in [FKS] for the smallest
representation of a two-fold covering of GL(3). But this may require some effort, and
we do not foresee ourselves studying this problem in the very near future.

I. Evaluation for S

We begin with the case of the S,-module (6,4, C(A4)). To introduce the Eisenstein
series on S,, recall the Iwasawa decomposition

o 1 = _ at 0
R T o e
0 0 a

1 nyat 0 . . .
If g”(O 1)( 0 a)k” then a(gy,)=1|al,>0 is uniquely determined by g, and so a(g)=

IIa(g,) for any g=(g,) in S,. The functions g—(0(g)f)(0) and g—a(g) are left invariant
v

under the upper-triangular subgrotp P(F) of S(F), viewed as a subgroup of S,. For
every feC(A) put

E(s, g, )= 32 (002)0a(reg)’.
rEP(F\S(F)

Then E(s, g, f) is an automorphic function, equal to E(s, rg, f) for all y&S(F). Note
. . . - t 0
that ¢(g)=(6(g)f)0)a(g)~* is left invariant under N,, and tp(s(o t_|)g)=7’4(t)lt|§,+‘/zgo(g)

(teA4*). Consequently the series defining E(s, g, f) converges abolutely, uniformly in
compact subsets of Re(s)>3/2 and g=S,. It is well-known that it has analytic con-
tinuation as a meromorphic function to the entire complex plane. The proof below
shows that E(s, g, f), g=id, is holomorphic at s=0. The complex parameter s, Re(s)
>0, is used to guarantee the convergence of the infinite products below.

To compute the Fourier expansion of E(s, g, f) at s=0, where g=id, it suffices
to find the Fourier coefficients

1 u ~
E.(s, f)=SAmodFE<s,(0 1), f)¢(au)du

for all @ in F. Here the measure du is taken to assign the compact set Amod F the
volume one. Then
1, a=0,
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5 S i . 0 —1y/1
A set of representatives for the coset space P(F)\S(F) is given by id and (l 0)(0 l{)
ueF. Thus for acF* we have

[ 0 —I\/1 u .
E(s, f)=SAl0(S(1 0)(0 1))]‘}@)”(1, W ~*J(au)du

=[] FO( 513 )dr L, wi-gadu.
Here ||(1, (uoDII=11II(1, uo)lls, where
max (1, |u,l,) if v#co;
I, ul={ A4ups i F=R:
U 1du,it, if F,=C.

The double integral over A converges absolutely on Re(s)>2, and is equal to the Eulerian
product of the local integrals

coa 9=, [, 7 (u(g =)t wis*dudy. (1)

Choose g, F, with val(g,)=—1 (g»' generates the maximal ideal of the local ring
R,), when v is finite. Denote by ¢} a character on F, which is trivial on R, but not
on g,R,. Given ¢, there is an integer ¢(¢,) with </J,,(x)=¢v§’,(xg{;(‘/’v’). Note that vol (R,, dx)
=SR dx is equal to ¢§¥»/%, and ¢(¢p,)=0 for almost all v.

We begin with the following local result.

Proposition 1. (i) For almost all v, the integral (1) is equal to 1+(2a, Gologs°.
(ii) For every place v, the integral (1) has analytic continutation to C, and its value at

s=0 is zero if 2a&F}, and |BI7'(fo(B)+fo—B)) if 2a=p%, BEF;.

First we note the following

Lemma 1. At any finite place v, the integral SF do(ugs I, wllz*du is zero unless
r=0, in which case it is equal o Y

(]5(%)/2 ,lk_:;f:: (1—ggr+va=-oy,
v

Proof. The first claim follows from the fact that S o(ugy)du=0 if r>0. If
u|ysl =
r=0 then the integral of the lemma is equal to s

Slulsqr “(l’ u)”—ldu_i_g ¢0(ug—7‘)q—8(r+l)du

|u|=qT+1

— et s O e
=q 1+(1—¢™")g 71

=g P 1T YL g )

as asserted ; here the index v is omitted to simplify the notations.
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Consequently the integral C,(a, s) of (1) is equal to

qb(¢u)/2 1— q” i( (r+l)(1 l))S
1—gi* o

It follows that there are A,=A(f,, ¢,)>0 such that (1) is zero unless |a|,<A, for all

v; here A,=1 for all v where f,=f3}, ¢»=¢%. Hence in the function field case, for given

f, ¢, there are at most finitely many non-zero E.(s, f). Given a in F*, we have

fo=13 ¢o=¢3, a=R; and 2€R; for almost all v, and then (1) is equal to

fo)dy. )

192 -2ai=gy WV 2,

1—g¢3*
e /L A (r+1)(1-8)
e (R L NN SO LE L OB T Fdy).

1y2-2aiy= o

We conclude at once the following

Lemma 2. Jf f,=f3, ¢o=¢%, lal,=1 and [2|,=1, then (1) is equal to

_1—q* .
1+ 5 if 2acF;%,
B'= — f
or
1 gt =1 Han(g)s* = S if 2ag Fy
v 2algo)qo” T % (gv)(h_ws v

Here Y,, denotes the quadratic character x—(2a, x), of Fy.

Proof. In the first case note that if 2a=p%, |B|,=1, then |y*—2a|,<1 implies

ly—Bl,<lor |y+Bl,<1. Also S 1dyzq{#ﬁ”v’/z(l—q;,‘). In the second case note that
1Y lp=
(2a, go}y=—1 if ¢, is odd and 2 is a non-square unit in F3.

Lemma 2 completes the proof of Proposition 1(i). At any finite v, if 2a& FZ then
only finitely many summands of (1’) are non-zero, hence (1) is o(s); we write o(s) for
a function whose limit at s=0 is zero. If 2a=p% B<F;, to compute the limit at s=0
of (1’) it suffices to take the sum only over »=R for any fixed R. We take R=R(a)

to be sufficiently large. Then each integral in (1’) ranges over the y with |y—p8],or
|y+B1, equal to gz °¥»/|8],. Up to o(s) we obtain

1 qv Pt g1 Bl5 (foB)+fo(— /9))2((]_'—(]1 ey

Then (1), and so also (1), is equal to 2f,(B)IBI5", upto o(s). This completes the proof
of Proposition 1(ii) when v is finite.

Lemma 3. Proposition 1(ii) holds when F,=R.

Proof. The integral (1) is equal to

(s-1/2

SSszv(x)e-zziu((l/z)zﬁ—a)(l+uz)-3/2dudx
2rt/? S

— 1 2
~T(s/2) )r ”(z x “)
Here the equality follows from the well-known identity (see [B], p. 83, (27))

Kaon(22| g x*=a|)f0dz. @)
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Eisenstein series
SR(I-}—xz)“e“"“dx:Zn‘laI“"zf(t)“K,_1/2(2n[al) (aeR).
If a<0, then the integral of (*) over R is an entire function of s, and (ii) follows.

B-8 (= . .
If >0, define >0 by B2=2a. Then So +Sp+a is holomorphic on C, and, using

the power series expansion of K,(z) near z=0, we have

B+d s-1/2
[ (Gata=81) " Kaontal =105

with A(s) holomorphic at s=0. Consequently, up to a function which is holomorphic
at s=0, the integral over R in () is equal twice the integral

n[2cos (zs/2)F((l+s)/2)]"‘(nﬁ)’-lfv(ﬁ)SZiZ |x—B|*'dx,

SZ+:E[2COS (ﬂS/Z)F((1+S)/2)]"1(7r | xZ_ﬁz I /z)x—lfv(x)dx-‘-h(s)

whose residue at s=0 is n~'/*f,(B8)/8; the lemma follows.
Lemma 4. Proposition 1(ii) holds when F,=C.

Proof. The integral (1) is equal to
Sgczfv(x)e—zxitr(u((l/2)x2—a>)(1+uﬂ)-cdudx
iz SC(Zn‘—;—x2~al)s_lK,_,<47r1%xz—a')f,(x)dx. *)

- I(s)
Here the equality follows from the well-known identities (see [B], p. 81, (2), and p. 95,

(51))
S:ne”cos 0d0=2ﬂ]0(2)

and
[ a4+ -trar=(a/20 K, (@)/Ts)  (a>0).

Choose B=C which satisfies 2a=f%. Up to a function holomorphic at s=0, the in-

tegral of (x) is equal to
[y =B K r = D )%
n[2sin (2s)[ ()]~ (| x*— B2] )2 f o(x)d x

~

=Sl1‘—,5[<5

= x(2sin (=) (] CrI B £uB)

|x—B|m-2dx.

=~ mean equality up

Here again we used the power-series expansion of K,(z) at z=0; =
to a function holomorphic at s=0; |-| is the usual absolute value, and dx is the measure
Since

defined by the differential form 2dx AdZ%.
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Slz_ﬂ'@|x—,8|“‘”dx=27r6“/s if Re(s)>0,

the residue at s=0 of the integral in (x) is (4x)-'f,(B)/18|?>. Hence the value at s=0
of (x) is the sum of f,(8)/1B1® and f,(—pB)/1B]% as required.

We can now conclude

Proposition 2. The value of the Fourier coefficient E.(s, f) at s=0 is 2f(B)=
f(B)+f(—P) if 2a=p?, BEF™, and it is zero if 2a=F—F?,

Proof. Note that the I'-function I'(s) satisfies I"(s+1)=s/"(s) and I'(1)=1, and it
is analytic on Re(s)>0. Denote by r, (resp. r,) the number of real (resp. pairs of
complex) embeddings of F. The product

U= I (A—gs*)

converges absolutely, uniformly in compacts of Re(s)>1, has analytic continuation as
a meromorphic function of s on C, and there is a complex number A0 such that {(s)
satisfies the functional equation

C(s)]‘(%)”F(s)'?A’zA“’F(%)”F(l—s)’ZC(l—s).

Since { has a simple pole at s=1, one has

. i £05) T\ )
lim &(s)/8(25)=lim C(l—Zs)( I'(s) ) (r(s/z)

Lemmas 2, 3 and 4 imply that when a=p%/2, B=F*, the Fourier coefficient E.(s, f) is

&) .
2@y vtk (1@ I Cola, ),

where V is a finite set of places such that each vV is finite and has f,=/f3, ¢v=¢5,
lal,=1, |2],=1. At s=0 this is equal to

2erer( L 226 B | Bl=20(B)=F(B+ (= ).

"1
) ___21—rl—r2.

Note that 1T.er|B1»,=1, and f,(B)=1 for v&V.
When 2a = F—F?, define a character X, on A4° by X.()=I112a, t,),. The Euler
product

&, Xa)=TI(1 —Xa(go)gn )™

(product over the set of finite places where X, is unramified) is absolutely convergent,
uniformly in compact subsets of Re(s)>1, and has analytic continuation to the entire
complex plane. Its value at s=1 is a finite non-zero number. Denote by r7=77(a) the
number of real places of F where a<0, namely where X, is quadratic, and by »{ the
number of real places where a>0. From the functional equation satisfied by {(s, X,) it
follows that &(s, X,) has a zero of order rt+r, at s=0, and that {(2s) has a zero of
order 7,+7,—1 there. Lemma 2 implies that when a€ F—F?, we have that
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Eals, )= 1L Coa, $) I (1+2at, g2)og™)

_ &G X
€2s)
Here V is a sufficiently large finite set of places of F, V' is the set of finite v in V
where X, is unramified, and V” is the set of finite v in V where X, is ramified. It
follows that the order of zero of E,(s, f) at s=0 is at least

ri+ro—(ri+r—D+[{veV; 2aEF ]-[{veV’; 2a¢E F3 ]—[V7]=1.

I1 Cyla, s) 1T (1+¢5°QRa, g))™* II (1—g5*)~".
eV eV’ vev”

Here [V] denotes the cardinality of a set V. It follows that the limit of E,(s, f) at
s=0 is zero. The proof of proposition 2 is now complete.

Propoesition 3. The value at s=0 of the Fourier coefficient E.(s, f)at a=0 s f(0).

Proof. The coset of the identity in P(R)\NS(F) yields the contribution f(0) to

Es, f). Any other coset is represented by ((1) _éx(l) l{) and contributes the Eulerian
integral

[ ] o u)ia, wi-dudy. @

To compute the local integral which occurs in this product we use local notations (drop
the index v), put r=c(¢) and write ¢ for ¢°. Since

fetar-1, wi-+du

is zero unless r+2t=0 where, by Lemma 1, ¢"/%(1—g*)(1—g¢+7+2020=9)/(1—q'~*) is ob-
tained, the local integral

Jronfgug i, wi-*dudy

equals
1—¢* )
r/e Tt (1 Q-8 A+T +2L) dv. 2
q tz-zr/z 1“‘]‘_3(1 9 )S|y|=q-‘f(y) Y @)
When r=0 and f=f° is the characteristic function of |y|<1, one obtains
r 1_(]—8 T 1-8+L(1-28)\— 7 l_q_zs
q 1_q1_3(1 (1 )lgo(q q )—(] l_ql_zs .

It is clear that each of the summands in (2°) is o(s). Hence up to o(s) it suffices to
take t=R in (2'); for a sufficiently large R one has f(y)=f(0) on |y|<¢g ® Taking
the sum over t= R it is clear that (2) is o(s). It follows that (2) is equal to

le[V C0, s)vIJVq —g32)(1—gh-2%)!

_m — g% A 1-28\~1
= C(zs) vgcv(o, S)IYG’!;[KOO(l Qv )(1 g» ) .

Here V is a sufficiently large finite set of places. Note that {(2s—1) has a zero of
order #, at s=0. This follows from the functional equation of {(s), since I'(1/2) and
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£(@2) are finite and non-zero, while I'(—1+s) has a simple pole at s=0. Consequently
the order of zero of (2) at s=0 is at least r,—(r,+r,—1)+[V]—[{veV ; v<oo}]=r,+1.
Hence (2) vanishes at s=0, and the proposition follows.

In conclusion, the value of the Fourier expansion X E,(s, f) of E(s, g, f), g=id,
at s=0, is e
EQ.id, )= Z E.(0, N=F0)+2 = f(Ba)= X f(B),
acF aEF*2 BeF
where B, is an element in F* with S3=a. This completes the proof of the Evaluation
in the case of the group S.

As noted above, our computations can be extended to apply with any g in S,, and
yield the Evaluation E(0, g, f)=ﬁ2 (0(g)f)(B). Since E(s, g, f)=E(s, dg, f) for every
eF

0 in S(F)cS,, it follows that ,92 f(ﬁ)zﬂ}](ﬁ(é)f)(ﬂ) for any 6=S(F). The Poisson
34 eF
summation formula is obtained on taking 5=(2 —(1)) since then 6(8)f=9%Ff is the
Fourier transform of f. Moreover, the functional f-—»ﬁz f(B) intertwines 6, with its
eF

model as a discrete series automorphic representation.

II. Evaluation for H

Next we turn to the study of the H,-module (8,, C(4%)). For f=Qfs fo=C(F3),
consider the function f,=&fy, f,,o(x)zltirrgltl,‘,”f.,(ﬁx), on A*; it satisfies [t]Y%fo(tx)
=fo(x). The series

Es, g, i= 2 b 2(0(rg)f)o(x)a(rg)"

yEP (F)\I (F) xEF*|F*

is absolutely convergent, uniformly in compact subsets of Re(s)>3/2. Here P is the
upper triangular parabolic subgroup of . The proof below implies that the analytic
continuation of E(s, g, f) is holomorphic at s=0. We give two proofs for the Evalua-
tion in the case of H. The first is based on reduction to the case of S. At g=id,
one has

Exy(s, id, f)= ;?(0(T)f)o(x)a(7’)“

0 —1\/1 B
2 S+ 2 X (0(( )( ))f) (@), Bl
aEFX |F*? BEF acF* |F*2 1 0/\0 1 0

= 3 [r@ 0o+ 2§, s ng(gape)ae-1a, pi-].

aEF* [FX2

I

The summand in the last sum over a is no other than Es(s, id, f.), Where f,(x)
=f(a, x). By the Evaluation for S we have Es(0, id, f.)= X f(a, B). Taking the
F
sum over a in F*/F** we obtain pe

Ex(, id, f)= plepxzf°(a)+ X 2 fla, = EE L, fola)+2 EEFXf(a),

aEFX |F*2 peF* F*|F

as required.
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The second proof is analogous to that given above for S. It will now be briefly
described. The Fourier expansion of E(s, g, f) at g=id is X E.(s, f), where
acF

/(1 u )
Eds, f)=SAmodFE(s,(0 1), f)¢(ua)du.

The coset of the identity in P(F)NH(F) contributes

2,0 8 flolwadu= B fox)
aEF ZEFX|F*?

AmodF ~ zepx|Fx2
to the Fourier expansion. It remains to consider the contribution of the cosets of

(O _1)<1 u) to E(s, f). It is the sum over x&F*/F** of the Eulerian integral

1 0/\0 1
0 —I1\/1l u
Se(( )( )f) @I, Wi Gua)du. ®
1 0/\0 1/ /.

To compute the local factors of (3), we pass to local notations, i.e. drop the index
v. Since

(0 (((1) _;)(; ZI))Jr‘ )(x)=cr(x) | x| "2S lylef(x yz)sb(x(% uy2+y))dy ,

we have

(0((0 —l)(l “))f) (=ero) |11y 17 £y wny)dy
1 oM\ 1))/ 2 '

Hence the local factor in (3) is

ere) =1 | 1517 (e 2y —a) It wli-tdudy 3

There is A(f, ¢)>0, with A(f°, ¢°)=1, such that (3’) is zero unless |a|<A(f, ¢).
Hence when F is a function field the global integral (3) vanishes for almost all e F*.
It is easy to see that for each of the remaining finitely many a’s, for which (3) may
be non-zero, (3) would vanish for all but finitely many x in F*/F*%,

Proposition 4. If f,=f3, ¢v=¢8, lal,=1, |x|,=1, then (3’) is equal lo

1—g3?
s - )
l+g5*= =g

if 2a/xeF3;?,

or
1-—(];“
l_xzalz((_]v)q;{
is 2a/xEFyE, where Xon,:(¥)=Qa/x, y), is the quadratic character associaled with 2a/x
eF;/F32.

[l wis*du=1-g5' =1+ 101 (g5 =

Proof. This follows at once from Lemma 2.

By Lemma 1, each of the local integrals (3’) at a finite place is equal to
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1_
cgpy/z_— 4 (1+n)(1-8) 1/2 12 2
LA ) 2(1 q Jer(x)| x| Sy2-2a/x|=q-"-<'(¢)/|2:| Iyl f(xy*)dy.

Up to o(s) it suffices to sum only over n=R=R(a, x, f). For a sufficiently large R
we get that each integral is zero unless there is & F* with *=2a/x, and then we
obtain

ZCT(x)IxI‘“[a/xI‘“f(a)l,Bx|“(l—q“)(l—q")(l—q"‘)"nZR(q"‘—q""“),
Up to o(s) this is the same as the analogous sum over n=0, and at s=0 we obtain
2f(@)er(x)la| =M x| 7%,

The analogous result holds in the archimedean cases too.
Returning to the global notations of (3), we conclude

Proposition 5. The Fourier coefficient E.(s, f) is an analylic function of s near
s=0 (which is zero, when F is a function field, for all acF~ with only finitely many
exceptions depending on f and ¢), and its value at s=0 is E,(0, /)=2f(a).

Proof. Since (s)/¢(2s) takes the value 2'-"1"2 at s=0, and {(s, Xza/:z)/C(2s) has a
zero of order 1—r7(a/x) at s=0, as in the case of SL(2) we conclude that given a F”*
the integral (3) is zero at s=0 unless the class of 2a in F*/F*? is represented by x.
Then E.(s, f) is equal to the value of (3) at x=a, and this is 2f(a)+o(s), as required.

Proposition 6. The contribution to E . (s, ), a=0, from the coseis represented by
((1) —(1))((1) 1) s o(s).
Proof. We have to compute the product over v of the local integrals
rC 1) 1y1fGn gy, i dudy.
As noted in the case of SL(2), for almost all v we have |2]|=1, |[x|=1, f=/°", ¢=¢",
c(¢)=0, and the result is

(I=g¢*)/(1—q"*).
In general the local integral is

G| 51— 1= )t B (1—ge 0o |1y y

112=q=n=0(d 2z

Up to o(s) we may take n=R, and when R is sufficiently large, up to o(s) we obtain
TR (A—g ) 1—¢' ) (1—g™) 3, (¢ —g!=++720)

if val(2x)—c(¢) is even, and 0 otherwise. But this expression is o(s). Hence the con-
tribution to E.(s, f) under discussion is the product of a function which vanishes at
s=0 to the order »,+r,, and {(2s—1)/{(2s), which vanishes to the order r,—(r,+7r,—1)
(see proof of Proposition 3).

It follows from Proposition 6 that F£.0, f)= Z‘, fo(x) Using Proposition 5 we
TEFXF*
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conclude that the value of E(s, id, f) at s=0 is

D(fi= X fox)+2 2 f(x),
TEF*[F*2 zEFX

and the proof of the Evaluation for H is complete. As noted above, one can generalize

. 0 —1
our computations to apply to E(s, g, f), s=0, with any g in H,. Since E(s,(1 O)’ f)

=E(s, id, f), this would yield another proof of the new summation formula D(f)=
D(Ff), as well as the automorphic realization of (6,, C(4%)).
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