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§1. Introduction

Let & = % (H) be the set of bounded Fredholm operators on a separable
(complex) Hilbert space H of infinite dimension. % is a classifying space for
the complex K-group. A subset & of % consisting of selfadjoint operators
has three components:

(1-1) F=9.UF UZ,.

%, (#_) consists of essentially positive (negative) operators and ﬁ* consists of
others. .9'2 are contractible and &, is a classifying space for K~!-group ([AS]).
Especially we have

(1-2) (%)= L.

An isomorphism of (1-2) is given by, so called, the spectral flow. It is
defined as the number of eigenvalues (with directions) that change signs when
the parameter of a loop in 97'* goes around ([APS1, 2]). This definition is more
clarified by considering a subspace F(0) of 377'*, which has the same homotopy

type with the whole space 57'* and has a spectrally nice property in a sense
((BW1]):

(1-3) F(o0) = {4 6.977'*: Al =1, the essential spectra a,.(A4)
of A are just {—1,1} and other spectra o(A4)\o,(A4)
are the finite number of eigenvalues} .

Let I:[0,1] - F(c0) be a continuous loop, then the graph of the spectrum
of I can be parametrized through a finite monotone sequence of continuous
functions:

(-4 A:[0,1]-[—-1,1] j=1,..., N,

(N is the maximal number of the eigenvalues € a(I(t))\o,(/(t))
with multiplicities of the operator I(t) (0 <t < 1))
1<l <A<l
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and we regard as

—l=-=2_0)= 4, Ansi(t) = Ay ()= =1,

because +1 are eigenvalues with infinite multiplicities.
Since {4(0)}r-; = {A(1)}2=;, there exists a unique integer s € Z (|s| < N) such
that

(1-5) Aees(0) = A4,(1) for any ke Z.

This integer s is the spectral flow of the given loop [, and is invariant for the
homotopy class of I. Spectral flows appear in various contexts ([At], [B], [BW1],
[BW3], [DW1], [DW2], [F], [OF], [T], [VW], [Y] etc.).

The Bott periodicity theorem for complex K-groups says that the spectral
flow and the Fredholm index are equivalent as topological invariants through
the suspension or the desuspension. However it seems for us that there are
analytic difficulties in dealing with the spectral flows arising from the family of
differential operators with different domains of definitions, especially, since we
need continuous loops of bounded operators in a fixed Hilbert space to define
the spectral flow.

Our purpose here is to give a non-trivial example of the spectral flow arising
from a variation of non-local elliptic boundary conditions imposed on a fixed
elliptic differential operator and its spectral flow formula in terms of intersection
numbers between certain singular cycles. Our situation was already suggested
in [B] and [BW3].

Now we can regard that the isomorphism sf: nl(ﬁ*)gz defined by the
spectral flow gives us a cohomology class [sf]e H ‘(,97'*, Z). On the other hand,
let & be the subset of 9’:* consisting of the operators with non-zero kernels. Then
according to the definition of the spectral flow, it may be regarded as the
intersection number of the set & with the loop in the space 9'2*. Obviously
this interpretation may not be rigorous. However,

(1) if the loop is contained in a certain closed oriented manifold M (of
finite dimension), continuously embedded in 57'* with an embedding

(1-6) M-,

and moreover

(2) if the set y~!(Z) represents the Poincaré dual of the cohomology class
y*([sf]) € H'(M, Z), then the spectral flow for the loop coming from M might
be equal to the intersection number of the cycle y~!(Z) with the loop.

Here we say that a subset S of a manifold M represents a homology class,
if there exists a closed manifold Y and a smooth map t: Y - M satisfying,

(@ ©wY)=S

(b) 1t is one to one on an open dense subset Y, of Y, with the open dense
image t(Y,) in S.

(c) rank (dt),=dimY for pe Y,
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Then with a smooth triangulation of Y, S can be seen as a singular cycle
whose homology class is the image of the fundamental class [ Y] under the map 7.

Remark 1.1. Even if we have a map y: M—»ﬁ*, it is not so clear to be
able to find such a manifold Y and a map t for y71(2).

In this paper we will give an embedding of the unitary group y: U(N) —».ﬁ*
for each N satisfying all the above conditions (1), (2) and give a spectral flow
formula in terms of intersection numbers (Theorem 4.2). For that purpose we
will identify the space of unitary matrices with a certain space of non-local
elliptic boundary conditions. The loops of Fredholm operators, then, are ob-
tained as realizations of an elliptic differential operator by varying such boundary
conditions.

In §2, we introduce the space of boundary conditions (see [BW3]) and
construct the map y: U (N)—»gt'*. In §3, we prove the continuity of the map y
and give a spectral flow formula, which is analogous to the formula in [BW3]. In
§4, we show that the set y (%) represents the Poincaré dual of y*([sf])e
HY(U(N), Z) and consequently we have a spectral flow formula in terms of the
intersection number (Theorem 4.2). Also we note a relation of the spectral flow
with the Maslov index as a special case of the theorem 4.2 (Theorem 4.5). Finally
in § 5, we remark how we can obtain a loop in 97'* from two invertible differential
operators with a same principal symbol and show a spectral flow formula, for
the case of ordinary differential operators, in terms of intersection numbers
through monodromy matrices.

§2. A space of elliptic boundary conditions

In this section we construct a continuous map y:li_rP U(N)= U(oo)—»ﬁ*.
For this purpose, we introduce a certain space of non-local elliptic boundary con-
ditions (so called, generalized Atiyah-Patodi-Singer boundary conditions ([BW3],
[DW1])) and identify it with the unitary group U(N). Then the map y is defined
as the realizations of an elliptic differential operator by imposing such boundary
conditions.

Let A be a symmetric, first order elliptic differential operator on a closed
manifold Y. A is acting on a smooth Hermitian vector bundle E. We denote
by L,(Y, E) the Hilbert space of L,-sections of E with the inner product (-, *)y.
We assume that there exists a unitary bundle isomorphism G of E satisfying
following conditons (2-1) ~ (2-3):

-1 G*=-1d
(2-2) GoA=—-—A0G
(2-3) dim Ker ANKer (G — /—1) =dim Ker ANKer (G + ./ —1).

Here G is regarded as a unitary operator on L,(Y, E), and is denoted with
the same symbol.
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Remark 2.1. On any 4k-dim manifold with the signature zero we have
always such an operator. See also [BW3] and [Y] for such examples of the
pair A and G. If Ker 4 =0, then the condition (2-3) is automatically satisfied.

Let E be the pull back of the vector bundle E to the product manifold
X =[0,1] x Y via the projection X — Y, and by (¢, )y the inner product for
sections @, Y e I'(X, E):

(2-4) (@ ¥)x = L (@@, ) (e, )y de.

Now let B be the elliptic differential operator
(2-5) B=G 0 + A4
T \ot

acting on the vector bundle E. We would like to define a map y = yy: U(N) >
ﬁ*(Lz(X, E)) for each N by selfadjoint realizations of B. Note here that the
actions of G and A on I'(X, E) are naturally defined, so we denote them with
the same symbols for the sake of simplicity.

By the conditions (2-1) and (2-2), the operator B is formally symmetric,
namely, for any smooth ¢, ¢ € I'(X\dX, E) with compact supports,

(2-6) (Bg, ¥)x = (4, BY)x .

Again owing to the conditions (2-1) ~ (2-3) we can choose an orthonormal
basis {$,}n=11,42,43,... Oof Ly(Y, E) such that

2-7) ¢, is a smooth eigensection of 4 with the eigenvalue 4, ,
n=+1, +2, +3, ...,

(2-8) 0<id, <<, <5, An=—A_y, n=1,23, ...,

(2-9) Go,=¢_, ., Gop_,=—0¢,, n=1,2 3, ....

Let V(N) be a subspace of L,(Y, E) spanned by {#,},-4. +2,....+x With com-
plex coefficients, and %y the set of N-dim subspaces L of V(N) satisfying
(2-10) L1GL (orthogonal) .

For each L e %y, we denote by m; the orthogonal projection operator in
L,(Y, E) onto the subspace:

(2-11) L+ Y Cé_,.

n2N+1

and also denote by 7, the orthogonal projection operator in L,(Y, E) onto the
subspace

(2-12) Y. C¢, .

These =, and m, are pseudo-differential operators of order zero.
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Now let y; (i =0, 1) be the restriction operator from the first order L,-Sobolev
space Wl(X, E) on X to L,(Y, ElY.»)’ where Y, = {i} x Y Y, Em; E, i=0, 1,
and let D, be the subspace of W!(X, E) such that

(2-13) Dy ={peW'n, oyod) = 0,1, 07,($) = 0} .
Let B, denote the operator B with the domain D;, then we have

Proposition 2.1. For each L € #y, B, is selfadjoint and has compact resolvent
operators.

This proposition is proved by constructing a parametrix for B;. Such a
parametrix is obtained by patching parametrices near boundaries Y; (i=0, 1)
and an interior one. A parametrix near boundary {0} x Y is constructed in the
same way as [APS1, Proposition 2.5], and an interior one is obtained by the
standard way. To construct a parametrix near the boundary {1} x Y, we need
a slight modification from that cited above. Now we describe just it in the
following lemma 2.2 (see [APS1, Proposition 2.5 and Proposition 2.12] for the
full details of the proof of our proposition 2.1).

Let Copmp([0, 00) x Y, E) be the space of smooth sections u of the bundle
E over [0, 00) x Y such that each u vanishes for sufficiently large ¢ > 1, and
for each Le @y, C([0, ) x Y, E;1 — 1) (Coomp([0, ) x Y, E;1—m.)) be the
space of smooth sections u € C*([0, o) x Y, E)(u e Coomp([0, 0) x Y, E)) satisfying
(I —m) o yo(u) = 0.

Lemma 2.2. Let A be the operator as above and let L € By be fixed. Then
there is an operator Q

(2-14) Qp: C2,,,([0, ) x Y, E)—» C*([0, 0) x Y, E; 1 — )
such that

(1) <%+A>QL9=9 for g€ ([0, 0) x Y, E)

(“) QL(% + A>f=f for feczmp([o’ CD) X Y, E, 1 - nL)

(iii) Q. extends to a continuous map from Sobolev spaces W'™! to W}, for
all integers 1=1, 2, 3, ....
(The parametrix near the boundary {1} x Y for the operator B, is obtained easily
from this Q).

Proof. Let 6,, 0,, ..., 8y be an orthonormal basis of L and put 6_, = G(6,)
(k=1,2,...,N). Let A(6) =Y N, a,6;, then AO_,)=—YNX, a,0_;, where the
constant matrix (ay) is symmetric. We expand ge C3,,([0, ©) x Y, E)c
L([0, 00)) ® L,(Y, E) (tensor product of Hilbert spaces) by the orthonormal basis
{3 U {ok}lklsN:

(2-15) g6,y = Y g0+ Y 9000y .
K> N KI<=N
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Now we want to solve the equation B, f =g. This is done by solving the
following equations:

d

(2-16) %'Fikfk:gk |k| > N,

d N

dl:"'i;aikfi:gk»
(2-17)

df_ N

—dt—"—i=lai,‘f_,~=g_k, k=1, ..., N.
Solutions of these equations are given by

t
(2-18) fult) = 7 < f e*g,(s)ds — Ck) . |kI>N,
0
and
fi0) ( ' (91(s) G
(2-19) | =exp(—t(ay) J exp(s(ag)) | : |ds— | : ,
fulo) ) L7 Lan(s) Cx
f-a()) re (9-1(5) C,
(2-20) : = exp (t(ay)) exp (—s(ay)) : ds— | : ,
S-n() ] 7o Lg-n(s) C_y
with suitable constants {C,}%-,. Now if we take
(2-21) C,=0 fork>1,
(2-22) C = j e**g, (s)ds for k< — N,
0
and
C—l ®© g—l(s)
(2-23) = J exp (—s(ay)) : ds,
Cy) *° g-n(s)

then for g € C%,,,([0, ) x Y, E)
(2-24) (QLo)(t, y) = |k|z>:~ S (y) + sz S(®)6.(y)

converges in C®-topology and satisfies (i), (ii) and (iii) (for details see [APSI,
Proposition 2.5]).

Thus we have constructed the parametrix of B;, which implies that B; has
compact resolvent operators. The selfadjointness of B, is proved by noting the
following fact: if we denote by Df,

D ={pe WX, E):(1 —my)op(@) =0, (1 —m)oy(4) =0}
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a *
then G(D,) = D}, which is the domain of <a + A) . They complete the proof

of the proposition 2.1.
Now we identify the space %y with the unitary group U(N) by the following
way. Let U%(N) be a subgroup of the unitary group U(2N) on V(N) such that

(2-25) US(N) = {Ue UQN): Uo G = G o U}

and U§(N) be a subgroup of UY(N), each of which preserves the subspace L,
(=the subspace of V(N) spanned by {#}+-;). Then U®(N) acts on By transitively
and the stationary subgroup at L,is U§ (N) So we have the isomorphism:

(2-26) US(N)/U§(N) = By ,

through the map US(N)> U U(L,) € %By.
Every element U e U%(N) is expressed in the following form (2-28) with
respect to the orthonormal basis {y}fi-; of V(N):

-

1
- _(b—J=14), 1<k<N,
2
2-27) ) V2
i
Llﬁ \/5 &+ —16-1)
e N
U(lp = ; ]kw—J
(2-28) : ’N
U('/jk ; ﬂtwj

-

u 0\ .
Especially with this basis, every element U € U§(N) is of the form ( 0 U> with
UeU(N). So let a =ay: UN)— %y be the isomorphism defined by
(2-29) oy: UN) 3 B

Id 0
U=(“jk)""<0 U>(L+)

N
= the subspace of V(N) spanned by {Z w W + Y } .
=1

=
In the obvious way we can see

(2-30) By < By+r, UN)cUN+I
and have the commutative diagram:

UN) —2 B,

e | 1

UN +1) —— By -
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Let = By: By — #,(Ly(X, E)) be defined by B(B,) = B, o /1 + B}~! = By, then,
finally the map y: li_xp U(N) = U(w0) = Z,(L,(X, E)) is defined by

(2-32) Y(U) = B(Bywy)

for U e U(oo). The proposition 2.1 implies that each operator y(U) is a bounded
selfadjoint Fredholm operator in L,(X, E). We will prove the following theorem
in the next section.

Theorem 2.3. (i) The map y: U (oo)—>577'* is continuous and one to one.
(ii) the map y induces the following isomorphism for each N:

(2-33) 7t T (UN) 3 74(5,).
We have the first spectral flow formula as a corollary of the above theorem.

Theorem 24. For each loop I:[0,1] > U(N) the spectral flow sf{yol} is
given by

iy ol - f det*([do1)

where [dO] is the generator of H'(U(1), Z).

Proof. The proof is obtained by noting that the map det: U(N)— U(1)
induces the isomorphism det*: H'(U(1), Z) =~ H'(U(N), Z).

Remark 2.2. From the proposition 2.1 our operators B, are in the space
@*, the space of selfadjoint operators with compact resolvent operators and
infinite numbers of both positive and negative eigenvalues. Operators in 9?* have
different domains of definitions and necessarily are not bounded. We transform
them to operators in Z,:

(2-34) € 3T->To(J1+TH) ' e%,.

Here arises a problem: Although finite numbers of eigenvalues themselves change
continuously under a fairly week perturbation of operators in ‘Z* (=with respect
to the topology of (g* defined by the generalized convergence (see [K])), we need
the continuity of the above transformation (with a suitable topology of @*),
because the spectral flow has the meaning just for continuous loops in 97'* as a
topological invariant. We can show this only on the subspace U(co) with the
usual topology regarding as a subspace of @* in the above way. This is a
reason why we do not consider the whole space of boundary conditions defined
in [BW3].

Remark 2.3. Our boundary conditions are rewritten as follows: Let E,
be the subbundle of E consisting of i-\/———f eigenspaces of G, and let P be
the operator P: I'(E,)— I'(E_) defined by y,—y_, (k=1,2,3,...). Here {y,}
({¥-x}) is the orthonormal basis of L,(Y, E,)(L,(Y, E_)) defined in (2-27).
Then P is a unitary pseudo-differential operator, since P is the composition of
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operators:

inclusion 2n,—1d

(2-35) I'(E,) — ['(E)

projection

» I'(E_).

» I'(E)
Let U = (u;) € U(N) and define the operator T, on L,(Y, E,) by

TyWi) = Y k>N,

(2-36) N

TyW) = 21 U 1<k<N,
=

Then Po Ty is also pseudo-differential and unitary. Let ¢ = ¢, + ¢_, @€
L,(Y, E), ¢, € Ly(Y, E,), then we have, for fe W!(X, E), f € D,_y-,, if and only if

(2-37) P(yo(f)+) = —v(f)- and  PoTy((r.f)+) = n(f)-.

Boundary conditions of this form were treated in [R].

§3. Proof of Theorem 2.3

In this section we prove the theorem 2.3. First we show (i) of the theorem
2.3. To prove the continuity of the map y it is enough to show the map

US(N)—> By - Z,
U U(L,)— Byg,yo(1 + B, = B'U(L*)

is continuous for each N, since the projection US(N)— 4%, is an open map-
ping. Here L, is the subspace in V(N) spanned by {¢}r-;.

Let B, denote the operator B, , and denote by D, the domain D, of B, ,
then

Proposition 3.1. For any L € By, the operator B, is unitarily equivalent to
B, modulo bounded selfadjoint operators.

Proof. Let UeUY%N) be a unitary transformation of V(N) such that
U(L,) = L, and take a smooth curve {u,}o.,<, in US(N) satisfying

(3-1) ug=1d, u =U,

and we regard that for each te[0,1] u, acts on V(N) as the identity
transformation.

Now by making use of this curve we define a unitary operator U on L,(X, E)
by

(3-2) (U9, y) = u(bt.y),  for g€ Ly(X. E),
and a bounded operator dU on L,(X, E) by
(3-3) @dU@)(t, y) = du,/di(g(t.y), e Ly(X, E).
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Then for each k > 0 the operators U and dU are also continuous as operators
from the Sobolev space W*(X, E) to W*(X, E), and we have

(3-4) UM, =D,, and

(3-5) (0o B oTg)(t,y) = (B.h)(t, y) + (G o U™ 0 dU) (4, y)
+(Go(u'oAdou — ANt y), $eD,.

The last term ofA the right ha£1d side of (3-5) is of the form Id ® {finite rank opera-

tor} on L,(X, E)=L,(0,1)® L,(Y, E). Hence we have shown the proposition.

Proof of (i) of the theorem 2.3. The injectivity of the map y is shown by
noting the facts: (1) the function A+ A(1 + 4%)7'2 is strictly increasing, and (2)
the uniqueness of the spectral measure for a selfadjoint operator.

Now let ¥ € U%(N) be fixed, and % be a neighborhood of V in US(N), which
will be taken so small that each U € % will satisfy the following inequalities: Let
take a family of smooth curves {u(t, U)}o<,<; in US(N) for each U e % satisfying

(3-6) u,U)=1d, u(l,U)y="U,
(3-7 fu(t, V) —u(t, U)| < IV - U],
3-8 d t, V d t, )l <Cy|lV-U
(3-8) Zi_z"(’ )_5“(’ )| <GV -=Ul.

Here the norms of N x N matrices should be suitably taken, and the constant
C, >0 is independent of U € % The family of such curves {u(t, U)},.4 can be
taken by, for example, considering a tubular neighborhood of a fixed smooth
curve joining Id and V. The neighborhood % may depend on this tubular
neighborhood.

By making use of these curves we define unitary operators U and bounded
operators dU on L,(X, E) as the same way as in the proof of the proposition 3.1.

Then we have

V- 0| <|Iv-Ul,
(3-9) V-0 <|IIv-Ul,
lavV —dU| < ¢, |V - U]

Let denote

(3-10) U 'oBy,,oU=8B, +Cy,
where

(3-11) (Cud)(t. y) =<G°u(n u)! o%u(t, U)>¢>(t, ¥)

+ Go(u(t, Uy o Aou(t, Uy — A)é(t, y).
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Now we estimate the norm of the difference of operators (as an operator on
Ly(X, E))

(3-12) By,(1 + Bf )" — Byu,)(1 + Bj,) ™
as follows: First we rewrite this difference (3-12)

= V(B, + Cy)[1 + (By + C)* 1AV — U(B, + Cy)[1 + (B, + Cy)2 1720

3-13) = -0)B: + )1 + (B, + )1V

(3-14) + U(Cy — Cy)[1 + (B, + G172V 1

(3-15) + OBy + Co){[1 + (B, + C)* 172 — [1 + (B, + G172}V
(3-16) + UBs + C)[1 + By + C)* TPV -0,

Owing to (3-6) ~ (3-9) we can get easily the following inequalities:

(3-17) supye« |B+ + Cyllp,.1, < C,  with some C, >0,
(3-18) ICy — Cyllp,.L, < CsllV —UJ|  with some C3>0.
Hence also

(3-19) ICy — Cyll,, <GV = U,

for any U e Here D, has the norm as a subspace of W'(X, E), and I*lp.,L,
denotes the norm of operators from D, to L,(X, E), and so on.
If we have the following inequality

(3-20) IL + (Bs + )12 = [1 + (Bs + Cy)* 1™l p,
<C,V-U|, Ue%, withsome C,>0,

then also the following is clear

(3-21) supyeq I[1 + By + Cy)* 172, p, < +o0.

Hence by (3-13) ~ (3-21) we see the map y: U(oo)—»ﬁ* is continuous, which
proves (i) of the theorem 2.3, and we have the map y,: nl(U(N))anl(ﬁ*) for
each N.

Proof of (3-20). First note that D, is closed as a subspace of W'(X, E). By
the selfadjointness of B, + Cy (or by the existence of a parametrix for the
operator B,) and the inequality (3-18) there exists a constant Cs > 0 such that
for any ue D, and Ue#%

(3-22) lull; < Cs(l(By + Cy)@ll + [lul) ,

where |lu|, is the first order Sobolev norm of ue W!(X, E) and |u| is the
L,-norm. Now we have
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(3-23)  [1+B. +G)PT" -1+ B + G

= LJ (1 + D72~ (Bs + )T = [A— (By + Cy)*]17'}dA
27 Jr

1
= —j (14 7204 — (B, + C,)* 17 [B.(Cy + Cy)
27 )
+(Cy — Cy)B, + C} — C{1[4 — (B, + Cy)*171dA,
where the path I' is taken suitably with |arg A| =0, 0 <6, < E, for |A| > 1.
2
Note that
(3-24) I0A — By + Cu)*17 I, 0, = O(1A7H2)

uniformly with respect to U e on the line |arg 4| =60, |A| » 1, because from
(3-21)

I — By + Cy)*1"ull,
< Cs(I(Bs + Cy)([A — (By + Col*T7 0 + [[A — (B4 + Cy)*1ul)
< Cs(I(Bs + Cy — /D[4 — (B, + Cp)* 17wl
+ JAIDA = (B + o1 7'ull) + O(1AI™) Jull
< Col A7 Jufl .
Hence by substituting (3-24) into (3-23), the left term of (3-20)

1 1
<G f (1 + A2 —— (B, + C))* — (B + Cy)?|| ——1dA|
r N " N

<GlV-U|.

Proof of (ii) of the theorem 2.3. Next we determine the spectral flow of the
100p {Byeyr.)}-n2<0<x2 corresponding to the generator of m,(%,), where

(3-25) 10) = (Z:’:g ;Z’::) cUS(), -m2<0<n2,

and here L, is the subspace of V(1) spanned by ¢;. /(8) acts on L,(Y, E) as follows:
16)(8,) = ¢n. In| >2,

(3-26) I0)(@¢_)=cosO0¢_, +sinf ¢, ,

1(6)(#,) = —sin 6 ¢_, + cos 0 ¢, .
To determine the spectral flow of {Byg..,}, We solve the eigenvalue problem

(3-27) Bigyryf =4, AeR, feW!,



Spectral flow 273
with boundary conditions
(3-28) e ©%(f)=0>
(3-29) Moy, © Y1(f)=0.
We want to determine eigenvalues which are across zero when the parameter 0
moves from —n/2 to n/2. Let fe W!(X, E) satisfy (3-27), then f is smooth on
X\0X =(0,1) x Y. Hence we see that for any smooth ¢ e I'(E) the function
p(t) = (f(, -), #(-))y has the L,-derivative on [0, 1], because of the inequality:

d 2
(3-30) ”% p(t) dt

2 d
dt = f Ub—tf (¢, y)g(y)dy

<Ll

Consequently, if we decompose the eigensection f of (3-27) with conditions (3-28)
and (3-29) into

33)  f=fo+f s, SfoeLODOV(), foeL,0 )RV,
then both f, and f, are in Dy, Moreover we have

(3'32) Bx(a)u“)(fo) = lfo s BI(O)(L,,)(fco) = j‘foo >
since
(3-33) Bz(o)(m)(fo) € L,(0, 1) @ V(1) and Btw)(u)(foo) e L,(0, 1) ® V(l)l .

If f, #0, then A should be constant when the parameter moves. So we can
assume f, =0. Now the problem we want to solve is reduced to the following:

0 2 :
af(" y) dydt‘f J |¢(y)|2dydt < +0 .
0 Y

G<i + A>(a(t)¢-1 + b()¢1) = Ma(t)g-, + b()¢,),  or

ot
b'(t) + A,b(t) = Aa(r),
(3-34) {—a'(t) + Aa(t) = Ab(t),
(3-35) b0)=0, —a(l)sin®+b(1)cosf=0.

If A, =0, then we can easily solve them with solutions for —n/2 < 6 < /2,

(3-36) {a(t) =ccosit, b()=csinit (c#0),

A=0+nn, n=0, +1, +2, ....

Hence we have

(3-37) S {Bioyr)}-riz<osmz = 1 -

Next assume 4, # 0, namely the operator A is invertible. Then we see that

Bygy)f =0, f € Dy
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has the only non-zero solution f{(t, y) = ce*'¢_,(y), when 6 =0, and for other
0<b< g and —g < 6 <0, the operator By, is invertible.

General solutions of (3-34) with (3-35) for |A| < 4, are given by
a(t)\ exb ¢ Ay —4\[a(0)
b)) P2 —2, /o
_ sinh ut (A, —24 a(0)
—[COSI’l,utld"‘—'u—</1 —A,l)]( 0 .

Here A and 0 satisfy the relation

sin 6
cos 6

Esinh u
(3-38) e

’

Ay .
cosh u + —Lsinh p
U

where u=./43 — 12, Hence by the continuity of the simple eigenvalue under
the variation of the parameter #, we can see that the solution curve 4 = A(f) of
(3-38) through A(0) = 0 changes the sign at # = 0 from — to +, when 6 changes
sign from — to +. Consequently in this case we also have

(3-39) sf {Bx(o)m)} =1.
Hence they complete the proof of the theorem 2.3, (ii).

§4. Poincaré dual of y*([sf])

In this section we show the following theorem and its corollary (Theorem
4.2) which gives the second spectral flow formula in terms of the intersection
number cited in the introduction.

Theorem 4.1. Let y = yy be considered on U(N) for a fixed N.
(i) 7y (&) ={UeUN):a(U)NL, #{0}} = {Ue U(N):det (U — 1) = 0}.
(il) y &) can be seen as a codim-one singular cycle in the sense (a), (b)

and (c) of the introduction, and its homology class is the Poincaré dual of the
cohomology class det* ([d0]) € H'(U(N), Z).

Proof. Let L e %y and assume that for some fe D;, f#0,
(4-1) B.(f)=0.

If we expand f as follows;

@2  fey=Y (@), <pk)y¢k(y)+|k|ZN(f(t,‘)-, Gy oY) = fy + fro s

|k|<N

then both fy and f, are in D;. Since (f(0, ‘), @)y =0, k >0, and (f(1, *), @)y =
0, k< —N, we have f,, =0, and f is of the following form:

(4'3) f(t’ J’) = B Z ahe—lk‘(pk(y) ’

N<k<-1
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with (a-,,...,a_y)#(0,0,...,0). By considering the boundary condition

L1fQq,-) (orthogonal)
N
0+#G(f(1,)=—) a,e*p e LNL, .
k=1
So, if L =a(U), Ue U(N), then 0# Y ¥ ¢, € LNL,, if and only if
N
4-4) Y av is an eigenvector of U with the eigenvalue 1,
k=1

which showes (i).

From (i), the proof of (ii) is given by the diagonalization of unitary matrices.
We now sketch the construction of the manifold Y and a map z: Y — U(N) satis-
fying the conditions (a), (b) and (c) in the introduction. Let U; = {U e U(N):
det (U — I) =0} and

#:U(N) x TN "' 5 U(N),
(4-5) U, o U U
0 An

where ;€ C, |4;) = 1. Then Im ¥ = U,, and % descends to 7: (U(N)/T¥) x T¥ ! -
U;. Next, let Sy_, be the (N — 1) symmetric group and identify it with a sub-
group Sy_; of U(N):

4-6) Sy, = {& e UNN): 6 = (:) ;) 8,=(y0,)€UN—1), o sN_l} .

Then Sy_, acts on (U(N)/T¥) x T¥! in the following way:
Sy_1 X (U(N)/T¥) x T¥ ' - (U(N)/T™) x TN !
A, 0 Ay 0
@7 | o [U]L B = | [U67'],9, - o5,
0 An 0 An
This action is free and commutes with the map 7. Also, since the action of
o€ Sy_,on UN)/TY, [U]—[Ué'], preserves and reverses the orientation ac-
cording to the signature of the permutation o, the action (4-7) preserves the

orientation. The resulting quotient manifold (U(N)/TV) x TV"!)/Sy_, and the
map

(4-8) © (UNYTY) x TSy, - U,



276 Kenro Furutani and Nobukazu Otsuki

are those required in the introduction. Let Y, = (U(N)/T") x 9)/Sy_,, where

A 0
@49 9= eTV" 2, #1 and 4 # 4 for i# ]y,
0 Ay

then Y, is open dense in Y, 7 is a one to one immersion on Y,, and ©(Y,) is
open dense in U;. Namely the conditions (a), (b) and (c) in the introduction
are satisfied by this closed orientable manifold Y = (U(N)/T¥) x T¥"')/Sy_,, the
map t and the open dense submanifold Y,.

Now let I be a loop

ei0 0
iny
(4-10) 19) = — 0<0<2n)
0 eimv

in U(N), where 0 < |n;| <m, n;#n; for i # j, and Y X,n, =0. Then this loop
is a generator of n,(U(N)) =~ H,(U(N),Z) =~ Z and intersects transversally with
U, just once at the point

ein

@11) e(Y).
0 el

Hence we can say that y~!(Z) represents a generator of (N? — 1)-dim homology
group of U(N). The orientation of Y is taken so as to be compatible with the

equality Jdet* [d6] = 1. These complete the proof of the theorem 4.1.
1

Theorem 4.2. For a loop | in U(N) the spectral flow of the loop {yol} is
equal to the intersection number of y~'(Z) with | in U(N).

Finally we explain a relation with the Maslov index. Let Vg(N) be the
R-vector space spanned by {#}y<~. then Vi(N) has a symplectic structure
w: w(x, y) = (x, Gy)y for x, y € Vg(N). The inner product (-, *)y, w and the almost
complex structure G on Vg(N) are compatible. We regard Vgx(N) as a complex
vector space by means of this almost complex structure G and denote it by
Ve(N):for z=a + \/——_lb e C and x e Vg(N) z-x = ax + bG(x). Then {@}, is
an orthonormal basis of Vg(N) over C.

Let A(N) denote the space of all Lagrangian subspaces of the symplectic
vector space Vix(N). Let 1€ A(N), then the complexification 1 ® C = jy(4) are
in 8y and also we have a commutative diagram of embeddings:
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AN) —2 @,

w7

AN +1) =22 By,
By considering the fact that j,: A(1) ~ %,, we have

Proposition 4.3. All embeddings of (4-12) induce isomorphisms of their funda-
mental groups.

If we identify A(N)= U(N)/O(N) through the action on A(N) of unitary
transformations of Vg(N) by A U(4) for 1€ A(N) (O(N) is the stationary sub-
group of 4, € A(N), the Lagrangian subspace spanned by {@}i-;), the map j = jy
is written in the form:

Proposition 4.4.
(4-13) in(U(4o)) = «(U'V),

where U = (u;) = (a + / —1by) € U(N) and U(A,) = Lagrangian subspace spanned
by {331 and; + X0 bud— i}

From this proposition we have .# = j¥ o (ay')* o det* ([df]) coincides with
the Maslov class of A(N) (=Keller-Maslov-Arnold characteristic class). Conse-
quently we have

Theorem 4.5. Let I:[0,1] - A(N) be a continuous loop, then the spectral
flow of the family {E,(,)®c} is equal to the Maslov index of the loop I:

(4-14) -?f{gm)@(:} = Lﬁ

Now we reinterpret this in terms of intersection numbers.
Proposition 4.6.
4-15) oy’ o jy(A(N)) = {Ue UN): U ="U}
={U e U(N): U = V'V with some V e U(N)}
={U e U(N): U can be diagonalizable by an orthogonal matrix}
From the theorem 4.1 we have
Proposition 4.7.
(4-16) Jnt ooy o (@) = {Ae AN): AN Ay # {0}} .
(Ao: subspace spanned by {@,}r=1)

This set (yoa~!oj)"Z) is called the Maslov cycle and is known as the
Poincaré dual of the Maslov class ([Ar], [Du]). This also can be shown in the
following way by making use of the theorem 4.1 and above propositions 4.3 ~ 4.6.
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Since the conjugation action of O(N) on U(N) leaves the image of ay! o jy
(={U € U(N): U ='U}) invariant, we have,

Proposition 4.8. Let W=((O(N)/Z}) x T""')/Sy_, be the submanifold of Y=
((UN)/T™) x TN"')/Sy_,, the map p = t|y and the open dense submanifold W, =
YOW of W, then these are required ones in the introduction to say that the
subset (4—16) can be seen as a singular cycle in A(N).

By considering the intersection of p(W) with the loop (4-10) we see that
the subset (4-16) represents the generator of Hyziny2)-1(A(N), Z) =~ Z. Hence
we have

Corollary 4.9. Let I:[0,1] > A(N) be a continuous loop, then

sf {§1<x)®c} equals to the intersection number of the subset (4-16) with the
loop 1.

§5. Another spectral flow formula defined by ordinary differential equations

In this section we show a spectral flow formula for ordinary differential
operators with periodic zeroth order terms. Before going to state the formula
we remark a general problem concerning how non-trivial spectral flow may
arise. Let M be a closed manifold, E a Hermitian vector bundle over M and
D a first order elliptic symmetric differential operator acting on the sections
of E. We assume that D has infinite numbers of both positive and negative
eigenvalues. Let S(E) denote the space of Hermitian bundle maps of E. We
denote by A the operator on L,(M, E) defined by 4 € S(E) for simplicity. Now

S

let Dy=D + A and y: S(E) > Z,(L,(M, E)) be

(5-1) A Do (J1+ D))" =D, .

Let I: 1 =[0, 1] —» S(E) be a smooth loop, then the spectral flow of the loop
of operators {Dy,}o<<: are zero, since S(E) is a vector space. However assume
that for 4 and B e S(E) there exists a unitary bundle map g: E — E such that

(5-2) g 'oDyog =Dy,

namely D, and Dy are unitarily equivalent by the operator g. Then taking a
path joinning g and Id in the group of all unitary transformations of L,(M, E)
we can make the path {5(,_S,A+33}0SS51 into a loop. In [BWI1] the spectral
flow formula for such loops are proved. In this case the unitary map g plays
an important role in the formula.

There is another way of making a loop from a path {D;_y+s5}0<s<: under
the assumptions that both D, and Dy are invertible. In this case, since the space
ﬁ*\ﬁ" has trivial homotopy groups (see Lemma 5.1), we can join D, and Dy by
a path in f*\ﬂ’ and denote by (4, B) a resulting loop. Of course such loops
are all homotopic. It will not be so clear to determine the spectral flow for
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this loop in terms of 4, B and D. In [Y] for 3-dim M this case is treated. He
gives a spectral flow formula in terms of the Maslov index and apply it to
calculations of Floer homology groups.

Lemma 5.1.
(5-3) WFNZ)=0 k=0,1,2, ...
Proof. Let %, = {Ae %, Lea(A) then |A| > ¢} then
()_)055=9‘r*\,@’, #,c%,, e<e.

Hence it is enough to show 7, (%) =0 for any &> 0.
Let £ > 0 be fixed and take a continuous function f(s, t): I x R — R such that

[10.0=1.
f(s, )=t for t|>1, 0<s<,
s, ) <1 for |t|<1, 0<s<,
(5-4) |f(s. )l [t] s
1 e<t,
[0 = 0 lti<e/2
—1 < —e
Let J={JeF,:J?= Id} then we have for ¢>0, &, is a deformation retract

of J, since let G:I x %, — %, be such that G(s, 4) = [ f(s, t)dEA, where {E{} is
the spectral measure of A, then G is continuous (see [AS]) and

= <s<l1
(5-5) {G(S,J) J for JedJ,0<s<1,

G(,A)eJ and GO,A)=A for Ae &,.

Now we prove that J is contractible. Since U = U(H) the group of all
unitary transformations in the Hilbert space H acts on J transitively, it is enough
to show the existance of a local section s:J > U. Now we fix a J,eJ and
identify J =~ U/U,, where U, = {stationary subgroup of J,}. Let n] denote the
projection operator in H onto the subspaces H] = {xe H: Jx = +x} for JeJ
and denote by %, = {J € J: |n] — nl°| < 1}. Then a section s on %, is given by

s(J) = ((ndond + nlon?) o (niend + nlont )*)™ 12 o (nlon] + nlon?).

By calculating s(J)(x,) for each element x, € H] separately, we have s(J)Jos(J)* =
J. Hence U,— U —J is a principal fiber bundle with the contractible fiber and
total space (Kuiper’s theorem), so does the space J. Consequently we showed
the lemma.

Finally we give a spectral flow formula in the second situation for ordinary
differential operators with periodic coefficients in terms of intersection numbers.

Let #, be the space of N x N Hermitian matrices and 4 € C*(S!, #y). A=
A(t) is also regarded as a periodic #y-valued C® function on R with the period



280 Kenro Furutani and Nobukazu Otsuki

1 d
2n. We denote by D, = —— — + A(t) an ordinary differential operator acting
/_1dt

on C*(SY)®CY, and D, = D,(\/1 + D2) € Z,(L,(S') ® C¥). Let ®,(t) be the
fundamental matrix solution of D, with the initial condition @,(0) = Id:

1d

——@, )+ A()P(t) =0, teR,
(5-6) idt

®,0)=1d.

The matrix &,(2n) is called the monodromy matrix for D,. We always consider
that the fundamental solution matrix has the initial value Id, and denote by
m(A) the corresponding monodromy matrix. Here we list fundamental properties
of @,(t), m(A) and related quantities (see [H] for these properties):

(5-7) &,(t) is unitary, for any teR.
(5-8) Let S, € #y be such that m(A4) = exp 2niS,), and put
U(t, S,) = @,(t) exp (—itS,), then
U(t, S,) is unitary and periodic with the period 2n.
(5-9) U(t,Sy) ' eDyo U(t,S,)=D_g, .
(5-10) D, is invertible in L,(S')® CV if and only if
det (m(A4) — Id) # 0, that is, m(A4) ¢ U,
={U e U(N):det (U — 1) =0}.

Now we assume that both D, and Dy for A, Be C®(S!, #,) are inver-
tible on L,(S')® C¥, and for such a pair we denote by I(4, B) a loop made
from the path {Dy;_y4+s5}0<s<: DY joinning Dy and D, with a continuous path
in f"*\fl’. Also we denote by (A4, B) a loop in U(N) made from the path
{m((1 — s)A + sB)}o<s<; by joinning m(B) and m(A) with a curve in U(N)\U,.
Note here that U(N)\U, is diffeomorphic to an affine space through the Cayley
transformation.

Then

Theorem 5.2. Assume that both D, and Dy are invertible, then
sf{I(A, B)} = the intersection number of U, with the loop (A, B).

Proof. First we note that it is possible to make the loop {U(t, Sy)}o<i<2x
in U(N) to be homotopic to the constant map, by exchanging S,, and from
now on we assume that {U(t, S,)} is homotopic to the identity, and denote by
{U(t, S4)}o<i<2m0<s<1 @ C®-homotopy such that

U, S,)=1Id 0<t<2n,
(5-11) u'c,s,)=UwS,) O0<t<2nm,
Us(0,S,)=1d 0<s<l1.
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Then we have that the two paths
{m((1 — s)A + sB)}p<s<1 and {m((1 — 5)S, + sSg)}o<s<1

are homotopic (note that m(4) = m(S,), m(B) = m(Sg)), since in C(S?, #y) two
paths {(1 —s)A + sS,} and

1 d
{\/—_—1 U(t, S~ ;U S)+ Ut S)T AU, SA)}

0<s<1

are homotopic and

m(L Us(t, So)7! % Us(t, S,) + U(t, S,) P A(t)Us(s, SA)>

J-1

= m(A) for 0<s<1.

So the loop {m((1 —s)4 + sS;)}o<s<: is contractible. Also the sames hold
for the case of B. Hence the intersection numbers of U; with paths
{m((1 — $)A + sB)}o<;<; and {m((1 —5)S, + sSg)}o<s<1 are equal. Again, since
D, and 5& can be joined by a path consisting of a unitarily equivalent operators
Dj,, where

-~ 1 d
A= \/——1 Us(t, So)™* T Us(t, Sy) + US(t, S) T A(R)US(t, S,) -
Hence the spectral flows of the loop I(4, B) and I(S,, Sg) are equal. Consequently
the proof is reduced to that of the constant coefficient cases.

Let V (and W)e U(N) be such that

Ay 0 My 0
(5-12) VxS,V = W*SgW =
0 An 0 N

then 5s4 and 5;,.5‘,, (also 553 and 5,,,.58,,,) are joined by a path of unitary
equivalent operators € 3%*\3’ . So

SIS, Sp)} = S {UV*S,V, W*S W)} .

Here note that the assumption that D,(Dg) is invertible is equivalent to say that
A;¢ Z(u; ¢ Z). The spectral flow for the loop I[(V*S,V, W*SgW) are calculated
explicitly by solving the equation:

1 d
(\/—_—la + [(1— 94k + S#k])‘ﬂ =1p.

Namely we have for 4 =4, = (1 — s)4, + s, (mod Z), a simple eigenfunction

(5-13) o(t) = (1= h—smlr
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Summing up, for 4, ue R\Z put

(5-14)

then

#{neZ:ne(l p} if A<y,

N(l’”)={—#{neZ:ne(u,i)} if p<i,

- N
SAV*S VWS W)} = Y Niho ),

which is equal to the intersection number of U; with the loop

(V*S, V, WSy W) = (S, Sg) = fi(A, B) .

They complete the proof of the theorem 5.2.

Remark 5.1. Let A and B be zeroth order selfadjoint pseudo-differential
operators on L,(S')® C¥, and assume that both —id/dt + A and —id/dt + B
are invertible. Then still we have a loop (4, B) in %,(L,(S')® CV) from the
path {—id/dt + (1 — s)A + sB}o<s<,, however we do not know how the spectral
flow of this loop is characterized by A and B.
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