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BMO extension theorem for relative uniform domains
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Yasuhiro GOTOH

§1. Introduction

Let D be a domain in n-dimensional Euclidean space, and BMO(D) the
space of all functions of (n-dimensional) bounded mean oscillation on D. We
say D has BMO extension property if each BMO(D) function is the restriction
to D of some BMO(R") function.

In 1980, P. Jones [J] showed that a domain D has BMO extension property
if and only if D is a uniform domain (cf. [GO]). For various characterizations
of uniform domain, see [G]. A uniform domain is ‘uniform’ as a subdomain
of R" or R"U{o0}. Here we consider relative uniformness of domains, that is,
a uniformness as a subdomain of other domain, and show that this relative
uniformness and the corresponding relative BMO extension property coincides
with to each other, which is a generalization of Jones’ result (Th. 1.)

Our method is essentially almost the same as the original one of Jones, but
since we must localize his method, and for the completeness, we shall give the
proofs for all our lemmas below.

§2. Notation, preliminary lemmas and main result

Throughout this paper we treat only 2-dimensional case for the simplicity,
since the same argument holds in the case of general dimension. Let D be a
domain lying in R2. We say that a function u e L. (D) is in BMO(D) if

Il = sgpm—(IQ—)L 4(2) — gl dm(z) < oo .
where dm is the two dimensonal Lebesgue measure, uy, = m(Q)™" [oudm and the
supremum is taken for every closed square Q in D whose sides are parallel to
the coodinate axes. Throughout this paper ‘square’ means a closed square
whose sides are parallel to the coordinate axes, ‘dyadic square’ means a square
(k27 (k + 1)2"] x [12",( + 1)2"], k, I, ne Z, [(Q) denotes the side length of a
square Q, tQ, t > 0 denotes the square having the same center as Q and tl(Q)
as its side length, d(-, -) denotes the Euclidean distance, A,, A4,, ... denotes

Received July 8, 1991



172 Yasuhiro Gotoh

positive universal constants, A denotes positive universal constant which may
vary from place to place.

We say that a square Q lying in D is admissible if it satisfies d(Q, D) > 32I/(Q)
and /(D) denotes the set of all admissible squares in D. We say that a sequence
of admissible square Q,, Q,, ..., Q, in D is an admissible chain if it satisfies
the following conditions;

0:NQiw #90, 0<i<n-—-1,
L UlQ) ,

=< <2, 0<i<n-—-1,
27 UQiv1)

and call n its length. For two admissible squares Q, Q' in D we define
0p(Q, Q) =min {n>1|Q0 = Qy,Q;,...,0,=Q’ is an admissible chain}

and the admissible chain which attains above minimum is called geodesic admissi-
ble chain joining Q and Q'. Remark we define §, so that 6,(Q,Q)>1 for
technical reason, J, is not a distance function but triangle inequality holds.
Further for two squares Q, Q' lying in R?, we define

Q)+ Q') + d(Q, Q’))(l + Q) + Q) + d(Q, Q’))
10) Q) ’

¥(Q, Q') = log (1 +

then

Lemma 1. Let Q, Q' be admissible squares in D then

¥(Q, Q) < A,6p(Q. Q).
Conversely if there exists a square Q such that QUQ’ < 0 <20 = D then

0p(Q, Q) < A¥(Q, Q).
Especially, for all squares Q, Q' = R%, we have

ATY(Q, Q) < 02(Q. Q) < A2¥(Q, Q)

Proof. First of all we prove the first inequality. Let Q, Q' € /(D). We
may assume [(Q) <I(Q'). Let Q =0Q,, @4, ..., Q,= Q' be arbitrary admissible
chain joining Q, Q'

(Case 1) d(Q,, Q,)=>1(Q,). In this case it suffices to show that log d(Q,, Q,)/
I(Qo) < An.  And since I(Q;) < 21(Q,), 0 <i < n, it holds that

4iQ0.0) = ¥ V20 < /2 T, 21(Q0) < V/22'(Q0).

(Case 2) d(Qo, Q,) <I(Q,). Then it suffices to show that log /(Q,)/l(Q,) < An,
and since /(Q,) < 2"(Q,) this inequality holds.

Next we will prove the second inequality. We may assume /(Q) < I(Q) +
Q') + d(Q, Q') by replacing Q with some smaller square if necessary. Let 2™ <
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IQ)/I(Q) < 2m*1, 2™ < I(Q)/(Q') < 2™*!, then there exist two chains Q = Q, <
0, cQui1=0, 0 =0ycQyc Qs =0 which are admissible as
chains lying in R% Hence Q =0, 0, ..., Qn. Qi1 Qs Oy oo 01,
Q, = Q' is admissible as a chain lying in R? of length m + m’ + 2. If we decom-
pose each square into 4096 congruent subsquares by dividing its sides into 64
pieces, then each such subsquare is admissible hence we can easily construct an
admissible chain joining Q, Q' whose length is at most 6 + 64(m + m' + 1) + 6,
therefore

0p(Q, Q)< 64m + 64m’ + 76 < A4 {1 +lo giig; +lo gl((g))} AY(Q, Q).
Q.E.D.

Lemma 2 (cf. [S]). There exists a decomposition of D into a family of dyadic
squares (D) = {Q;}, 0, NQ° =0, (i # j), JiQi=D for each a > 2 such that

d(Q;, oD)
as_—l(Qi) <2a+2,
1 _1Q) .
2550y <2 ¥ eNg#o.

Proof. First of all we decompose R? into a family of dyadic square
[k,k+1] x [,1+ 1], k, e Z. If there exists a square Q in this family such
that d(Q, D) < «l(Q), then we decompose Q into 4 congruent subsquares. Let
Q' be one of such subsquares. Then

J2
a@,apy 2@ +571@)
ey - Q)

Hence by repeating above process, we can decompose Q into a family of dyadic
squares Q" which satisfies o < d(Q", dD)/I(Q") < 2a + 2.

Next, suppose there exist a dyadic square Q such that 2a + 2 < d(Q, dD)/I(Q)
then let Q' be the dyadic square containing Q such that I(Q') = 2I(Q). We join
all squares in Q' into one square Q'. Then

d(Q', @D) = d(Q, 3D) — \/2(Q) > (2a + 2 — /2)I(Q) > al(Q') .

Hence by repeating above process we obtain a family of square Q such that
d(Q, oD)
Q)
Finally, for such two squares Q, Q' such that QN Q' # @ we have

<20+4./2<20+2.

a< <20+ 2,

I(Q)) < a™'d(Q, D) < a~*(d(Q, dD) + ﬁl(Q)) < (2 + 2+T\/§> 1(Q) < 4l(Q) .

and so [(Q') < 21(Q). Q.E.D.
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In the following, 2(D) denotes the family obtained by above method with
o = 32, which we call Whitney decomposition of D. Note that if D = D' then
for each Q € 2(D) there exists a square Q' € P(D’) such that Q = Q'. And note
that if Q, Q' € 2(D) satisfy Q'N21Q # @ then [(Q') = I(Q)/2. In fact, if Q" € 2(D)
satisfys 1(Q") < I(Q)/4 then

d(Q, Q") > d(Q, 3D) — d(Q", 3D) — \/21(Q")
> 321(Q) — 66~%I(Q) - él(Q) > 151(Q) .

hence Q"N21Q = 0.
We say that a sequence Qq, Q;, ..., Q,€ 2(D) is a Whitney chain if Q;N
Qi #90. Since 9(D) = (D), every Whitney chain is admissible. We set

Wp(Q, Q') =min {n > 1|Q = Q,, Q,, ..., Q,= Q' is a Whitney chain}

and the Whitney chain which attains above minimum is called geodesic Whitney
chain joining Q@ and Q'. It holds that ,(Q, Q') < Wy(Q,Q'), Q, Q' € 2(D) by
definition. Conversely

Lemma 3. W;(Q, Q) < 4565(Q, Q). Q, Q' € 2(D)

Proof. Let Q=0Q,, Q;, -.., Q,=0Q be a geodegic admissible chain in
D. Let Q € 2(D) be a square such that QﬂQj # 0. Then we have I(Q) > 1(Q,)/4,
hence the number of square 0 € 9(D) satisfying Q NQ; # 0 is at most (4 + 2)* = 36.
It follows that Wj(Q, Q') < 36(n — 1) + 1 < 36n = 365,(Q, Q). Q.E.D.

Let D, be a domain lying in R%2. We say that a domain D, = D, is relative
uniform with respect to D, if it satisfies

0p,(Q, Q) < M5y,(0.Q), Q. Q' esAD,)

for some constant M > 1. And %(D,, M) denotes the set of all subdomains of
D, satisfying this condition. Note that if D, € %(D,, M) and D, € #(D;, M,)
then D, € %D, M,M,). And note that if D, e %[D,, M) and f:D, > D) is a
quasiconformal mapping then f(D,) € #(D3, KM) where K is a constant depending
only on the maximal dilatation of f. (cf. lemma 23.)

We say also a domain D lying in R? is uniform (cf. [G]) if it satisfies

Wp(Q, Q) < My(Q.Q)., Q. Q' €2(D)

for some constant M >0. Lemma 1 and lemma 4 below shows that D is
uniform if and only if it is uniform with respect to RZ.

In the following, B,(M), B,(M), ... denote constants depending only on M,
and B(M) denotes a constant depending only on M which may vary from place
to place. The relative uniformness follows from the following property which is
weaker in appearance than its definition.
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Lemma 4. Let D, be a subdomain of D, such that

Wn,(Q, Q) < Mép,(0.Q). Q Q€D

then

0p,(Q, Q) < AM6p, (0. Q) Q. Q'e (D).

Proof. Let 0, 0’ be squares in 2(D,) which minimize WDI(Q, Q') under the
condition 0NQ # 9, §'NQ’ # 0.
(Case 1) WDl(é, Q') =1. Then there exists a square 0 such that QUQ' < 0c
20 < D, therefore by lemma 1,

0p,(Q, Q) < A2¥(Q, Q') < A, 4,6p,(0, Q)
(Case 2) W, (0, (') >2. Then first of all we will show dp,(Q, Q') > 4 log I(Q)/
1(Q). If I(Q) =1(Q)/4 then this inequality is trivial, hence we may assume /(Q) <
1(0)/4. Since Q'N20 = @, if follows that

dQ,0) 25 I(Q) — Q)= Q).

4=-|~

On the other hand, let Q = Q,, Q4, ..., Q, = Q' be a geodesic admissible chain
in D,. Then

n—1
dQ, Q) < f QW < Y /224(Q) < /22"1(Q)
k=1

Hence /() < A2"1(Q) and so 0p,(Q.Q)=n=>= Alog I(Q)/I(Q). Similarly we have

5,0,0) A“’gztgz 6,(0.0) > A“*z% %.(0: )= 4 l°glig;

And so
0p,(0, Q) < 6p,(Q, 0) + 3y,(0, 0) + 65,(0, Q)

<A+ A4 '°giig) +Alo gQ + My (0, Q)

) Q)
< A+ A5p(Q, Q) + M(8p,(Q, Q) + 65,(Q, Q) + 65,(0', 0)

< AMS,.(0, Q).
Q.ED.

Let Q, Q' be admissible squares in D. We set

©@\(, , @) 5
Wo(0. §) + log (2 + ,(Q)) (2 i )> 60.0)>2.

¥(Q, 0, (0. 0) =1,

5p(Q, Q) =
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where 0, O’ are squares in 2(D) which minimizes W,(Q, ') under the condition
oNnQg #0, 0'NQ #@. (Minimizing condition is not essential) Then above ar-
gument shows that

1., N
790(€.0) <5(Q. Q) < 495(Q. 0.

Now we can state our main theorem.

Theorem 1. Let D, be a domain lying in R2. Then the following three
conditions are equivalent to each other for subdomain D, of D,;

(1) Every BMO(D,) function is the restrinction of some BMO(D,) function.

(2) There exists a constant M > 0 such that

WD,(Q’ Q,) < MéDZ(Q’ Ql) > Q’ Q/ € 9(Dl) .

(3) D, is relative uniform with respect to D,, that is, there exist a constant
M > 1 such that

6p,(Q. Q) < Mép,(0.Q), O QedD,).

The relative BMO extension property is not local property. There exists
two domains D, < D, such that

(1) for every square Q = D, and every u e BMO(D,) , there exists a extension
i of u to Q such that [t o < Allullx, p,

(2) but there exists a BMO(D,) function u which can not be extended to a
BMO(D,) function.

Example 1. Let

1 1
Sn={0<x<;,0<y<1}u{1—;<x<1,0<y<1}

1
U{O<x<l,0<y<r—'},

1 17 3 17
'I:,={;Sx<z,§<y<1}, Un={z<xsl_;s§<y<l}a
1 37
VZ{Zstz,§<y<l}, D} =S,UT,UU,, Dj=D;UV,

then for every square Q = D and every u e BMO(DY) , there exists a extension

A

i of u to Q such that [[d]x,q < Allullx,p;. We set
nx, (xyeSs,,

u(x,y)=<0, (x,»eT,,
n, (x.yeU,,
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then u, e BMO(D}) and |u,|s p;y <1. On the other hand for every extension 4,
of u, to Dj it holds that |4,[« py = co. Hence by linking these domains Dj in a
suitable way, we obtain our requirement.

Note that W, (Q,Q'), Q, Q' € 2(D;) corresponds to the quasi-hyperbolic
metric

|d{]
d({, oD;)

where the infimum is taken for all rectifiable curves y joining z to z’, and
0p,(0, Q). Q, Q' € 9(D,) corresponds to the following metric

d(z, oD,) d(z', 0D,)
d(z, 0D,) d(z’, 6D,)’

kp (z2')= infj
Y

kp,(z,2') + log |z —z'| =2 d(z, 0D,)/2,

jD,,Dz(Z’ z') =

|z —z'| |z — 2’|
1 — ’
log (1 + e 6D1)>< + i, (3D1)> , |z — z'| <d(z, 0D,)/2,
Hence the condition (2) of theorem 1 implies;

kp (z,2") < Kjp,,p,(2, 2') + L, z, ' e D,

§3. Proof of Theorem 1
Lemma 5. Let Q, Q' € /(D) and u a BMO(D) function then

|uQ — qu| < AS"“”*,Déb(Q’ Q).

Proof. Let Q =Q,, @4, ..., Q,= Q' be a geodesic admissible chain in D.
First of all we estimate uy, — up,. We may assume /(Q;4,) < [(Q;), then Q;y; U
Q. < 3Q; = D, hence

i

|up. — | < —1 |u — |d
u < u Usyp.lam
Q; 30; m(Qi) « 3Q;

9
m(3Q;)

Similarly we have |u3p, — ug,, | < 36| uly p, hence

<

j lu — u3Q,-|dm <9ullx,p -
3Q;

n—1 n—1
lug — qu < ‘Zb |“Q,. - “QM| < ._20 45 ||ullx,p = 45”““*,D5D(Q’ Q). QED.

Lemma 6 (cf. [RR], [J]). Let ueL..(D) be a function which belongs to
BMO(Q) for every square Q in D such that d(Q, 0D) > Al(Q) (A > 1) and ||u|, o, < K
then u is in BMO(D) and ||lully p < A¢KA.

Proof. We set [31+ \/_2_] +1=s5s Let Q be arbitrary square in D. We
may assume its center is the origin. We set [(Q)=1 Let Q,, m=1,2, ... be
squares having the origin as its center and /(Q,)= (1 —2™™)l. We deompose
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Q,, m>2 into congruent subsquares with side length 277!/ and 2, denotes
the set of every such subsquare which is not contained in Q,_,. Concerning
Q,, we decompose it into 4 congruent subsquares which we denotes 2,, then
#9,=2""3 — 12, Further we decompose each square of 9, into s* congruent
subsquares by decompose its sides into s pieces, which is denoted by 2,, = {Q,.:},
1<i<s?(2"®—12). Let Q,;NQu#0 then 1/2<1(Q, )/(Qu ) <2 We
may assume /(Q,,;) = l(Q, ). Then Q,;UQ, . < 30, and

d(3Qp.1- 0D) _ d(Qp, D) — /20 (=2
160,.) = Q) R

hence 3Q,,; satisfy the condition of lemma. It follows [uy , —uy | <45K by
the same argument as lemma 5. Let Q, be one of the square in {Q, ;} containing
the origin. Then we can join every square in Q,; to Q, by a chain which
consists of at most ms squares, hence

J; lu — ug,|dm < Zlf (lu —ug, | + lug, , — ug,l)dm

m,i

< Z (m(Qm,i)K + m(Q,,,,,-)45Kms)

Z m(Q,,.;)46Kms

m,

125722727 2. 46Kms - s2(2"*3 — 12)

Ms

m=1

<921%K ) m2™™ < AKI*A

m=1

and so m(Q)™! J lu — ugldm < 2m(Q)™! J lu — ug,|dm < AKA. Q.E.D.
Q

Q
Lemma 7. Let Q, be a square in (D). We set a function Fy € LL.D) as
Sollows;
FQO(X) = Wp(Q, Qo) » xeQeD).
Then Fy, is a BMO(D) function and |Fyllx,p < A7.
Proof. Let Q € &/(D), then the proof of lemma 3 shows that Q intersect at

most 36 squares in 2(D), hence |Fy |« o < 36. Therefore we have |[Fy |l o <
Ag-36-32 by lemma 6. Q.E.D.

Let D, be a subdomain of D,. Assume that every BMO(D,) function is
the restriction to D, of some BMO(D,) function. Then by open mapping theorem
there exists a constant N > 1 such that for every u e BMO(D,), we can find an
extension 4 € BMO(D,) of u satisfying

Il x,p, < Nlulx,p, -

&(D,, N) denotes the set of all subdomains of D, which satisfy above condition.
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Lemma 8. &(D,, N) = %(D,, AgN).

Proof. Let D, € &(D,, N) and fix a square Q, € 2(D,). Let Fy be the func-
tion in lemma 7, then ||Fy [l«,p, < A; by lemma 7. Hence there exists an exten-
sion FQO of Fy, such that ||1~:Q0 l%,p, < A7N by hypothesis. Let Q, € 2(D,) then
lemma 5 shows

Wy (Q1, Qo) — 1 < [(Fy,)o, — (Fo)g,!

< As ||FQ0||*,0251)2(Q1, Qo) < AsA;N6p,(Q4, Qo) »
hence by lemma 4

0p,(0. Q) <24,454,Nbp (2. Q). Q. Q' eA(D,y). QE.D.

Lemma 9. Let Q,, Q,, ..., Q, be a geodesic Whitney chain in D, € %(D,, M)
such that 1(Qo) = 1(Q,) and d(Qo, Q,) = B,(M)I(Q,). Further assume there exists
a square Q such that QuUQ, = O = 20 = D,. Then there exists an integer i such

that 1(Q;) = 21(Q,).

Proof. Let B;(M)>0 be a constant such that t > 2\/§MA_,,A2 log (3 + 1)
holds for every ¢t > B;(M). By lemma 1 and 3,

n= Wy (Qo, Q) < A36p,(Qo, Q,) < MA30p,(Qo, Q) < MA3A,4(Qo, @)

=2MA,A, log <3 + M)

1(Qo)
On the other hand if I(Q;) < I(Q,) for every Q; then

n—1
400, 0 < 3, J21(Q) < n/21(Q,)

hence
d(Qo, Q) < d(Qo, Q,.))
— < /2n <2 /2MA; A, log |3 + ———*
Qo) V/2M A4, log Qo)
which is a contradiction. Hence there exists an integer i such that I(Q;) = 2I(Q,).

Q.E.D.

Lemma 10. Let Q,, Q, ..., Q, be a geodesic Whitney chain in D, € %(D,, M)
such that 1(Q,) = 21(Q,) and 1(Q;) < 1(Q,), 0<i<n—1. Further assume there
exists a square Q such that QoUQ,U---UQ, < Q <20 c D,. Then we have

d(Qo, »)
n < B,(M), ——— == < B3(M).
AM), B S By(M)
Proof. Since 1(Q,-;) = I(Qo), we have d(Qo, Q,-1) < B{(M)I(Q,) by applying
lemma 9 to the geodesic Whitney chain Qq, Q,, ..., Q,_,. Hence

d(Qo, Q,) < d(Qo, Qu1) + +/21(Q,-1) < BIM)I(Q,) -
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Further
n= Wy, (Qo, Q,) < MA3;A4,¥(Qy, Q,)

d(Qo, @,)
1(Qo)

Lemma 11. Let Qy, Q,, ..., Q, be a geodesic Whitney chain in D, € %(D,, M)
such that 1(Q;) <1(Q,), 0 <i<n—1. Further assume there exists a square Q
such that Q,UQ,U---UQ, = Q <20 = D,. Then we have

I (0, 0,
sn 120

Proof. Let 1(Q,) =2"(Q,) and set

< 2MA, A, log (4 + ) =2MA,A,log (4 + B(M)). Q.E.D.

< By(M).

se = min {i|l(Q;) = 2(Qo)}, O<k<m.

By applying lemma 9 to the geodesic Whitney chain @, Q,, .1, .., Q,,., We have

d s X,
Seet — 5 < By(M), % < By(M),
hence
h= "'il (Sx+1 — Sx) < mB,(M) < B(M) log 1(Q,) .
1Q0)
And so

100, 0) < T d(0,,0,.) + T J2(Q,)
< By(M) Y 10,)+ %, V/21Q,)

m—1
< (By(M) +/2) 3 21Qo) < BM)I(Q,) QED.

Lemma 12. Let Qq, Qy, ..., Q, be a geodesic Whitney chain in D, € %(D,, M)
and Q one of the largest square in this chain. Then

log (2 + II(Q)><2 + II(Q)> < Agn.

(Qo) (@)
Further if there exists a square Q such that Q,UQ,U--UQ,c0c20c D, then
Q 10 ~
n < Bg(M) log (2 + I((QQO))) (2 + l((QQ,,))> , d(Qo, 0,) < B;(M)I(Q) .

Proof. The first inequality is trivial since 1/2 < I(Q;,,)/I(Q;) <2. Next as-
sume there exists a square ( such that QoUQ,U--UQ,c0c20c D,. We
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set S={il0<i<n Q)= I(0)}, i, = min §, i, = max S. Lemma 11 shows that

Qi) d(Qo, @i,)
1(Qo) @)

l(Qiz) d(Qiz’ Qn)

i, < By(M)log < By(M).

n—i, < B,(M) log 0" 100 < Bs(M),
and lemma 9 shows that
d(Q; ., 0;
———(?("Q'Q) ) < B,(M).
Hence
iy — iy = Wp (Qi,, Qi,) < MA36p,(Q:, Qi) < MA3;A24(0Q:,, Qi)
= 2M A5 A, log (3 + d(?("'é.Q)'ﬁ)) < 2MA4A, log (3 + B,(M)) < B(M).
And so
n=(n—iy)+ (i, —iy)+i
1(Q, 1O
< B,(M) log l((%’)) + B(M) + B,(M) log %
L9} @)
< B(M)log <2 * 1(Qo)> <2 "))’
further

d(Qo, Q,) < d(Qo, ;) ++/21(Q;,) + d(Q;,, Qi) + /21(Q:,) + d(Qs,. Q)
< By(M)I(Q;) + /21(Q;,) + By(M)I(Q;,) + /2U(Qs,) + Bs(M)I(Q;,)
< B(M)I(Q) . Q.ED.

Corollary 1. Let D € %R? M) and Q, Q' € 2(D). And Q is the largest square
in a ginven geodesic Whitney chain joining Q and Q'. Then

10 10
Bo(M)"'W(Q, @) < log (z + %) (2 + ,%) < A Wp(0, Q).

Lemma 13. Let D, e %(D,, M) and Q, Q' € D(D,). Assume there exists a
square Q such that

~ 1~
QUQ'=Qc60<D,, dQ Q)=,1Q),

Let Q=0Q,, Q,, ..., Q,= Q' be a geodesic Whitney chain in D;. Then there
exists an integer i satisfying

~

Q) = Bs(M)I(Q), Q. <=30.
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Proof. In the case that Q,UQ,U---UQ, 3@, since 2(30) = 60 = D,, lemma
12 shows that there exists an integer i such that

d(Qo. 0.) _ _UD)

Q) ="5 4n 238,00

Next in the case that QoUQ,U---UQ, ¢ 30 then there exists an integer m
such that

QUQ,U-UQ, <30, Qi ¢30
If 1(Q,,) < 1(0)/12 then
1(0) < d(Qo, 330)) < d(Qo, Q) + /210,) + /21(Q11)

< d(Qo. Q,..)+\[l(Q) 2\[1@ d(Qo, Qm) + \[l(Q

hence

2\~
(1 - %) 10) < d(@o. Q).

And so by applying lemma 12 to Q,UQ,U---UQ,, it follows that there exists
an integer i, 0 <i < m such that d(Q,, Q,,) < B;(M)I(Q;) therefore

(1 - 4) 1(Q)

d(Qo, Qm (@
10,) > (Qo. @ )Z > @
B;(M) B,(M) 4B,(M)
It follows that the constant
Bg(M) = min ! !
s 4B,(M)’ 12
satisfys our assertion. Q.E.D.

Let D, € %(D,, M). In the following we set D' = D,\D, and 2(D’') denotes
its Whitney decomposition.

Lemma 14. Let D, € %(D,, M) and Q a square in D,. Then there exists a
square Q’e@(Dl)U@(D’) and a dyadic square Q' such that

Qc0NQ, UQ)=Bs(MIQ)

Proof. We may assume that 2Q < D, by considering (1/2)Q instead of Q if
necessary. Let Q =[a,a+ 1] x [b,b + 1] and set

l 5 1

7 2 7 2
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In the case that Q,° = D,, let Q' be the dyadic square in 2(Q,) containing
the center of Q,. Then

no Lo, 1 (1Q.) ,
l(Q)z6—6d(Q,aQa>z@( = — (@ ))
and so l(Q')zﬁl(Qu) =ﬁl(Q). And since Q,° = D, there exists a square

Q' € 2(D,) containing Q.

We can prove similarly in the case that Q,° = D', Q,° = Dy, Q,° = D', hence
we may assume that Q,°NdD, # @ and Q,°NdD, # @. In this case we can find
two squares Q', € 4(D,), Q'g € 2(D,) such that @', = Q,, @'y = Q5. Hence if we

set 0 =%Q then
Q,UQ,<c0,UQ;c0c60cD,,

2 0~ 1 4
d(Q's Q'p) = d(Qa> Qp) = %I(Q) > ,1Q),

and so lemma 13 implies that there exists a square Q’(=Q’)e 9(D,) such that

0ci0=0, 1@28Mm@="Mi,  QED.

Especially no point of (6D,)N D, is the density point for (6D,)N D,, hence
Corollary 2. Let D, € %(D,, M) then m((éD,)ND,) = 0.

Lemma 15. Let D, € %(D,, M) and 2(D,) contain arbitrary large square,
then for every square Q' € D(D') such that d(Q’, 0D,) = B,,(M)d(Q’, D' N D,) there
exists a square Q € 9(D,) and a square 0 < D, such that

Q) =1Q), d(Q.Q)<B,(MIQ) QUQ<=0c20cD,,
Proof. We set L(M)= max {4B,(M),300} and choose two constants
B,o(M)> 1, B,,(M)> 0 so that
32B,o(M) — 132 — ? > /2L(M),  B;;(M)> /2L(M).

Then
d(Q', 0D,) = B,,(M)d(Q', 0D'N D,) > d(Q’, éD’' N D,)

and so d(Q’, 0D'ND,) = d(Q', dD’). Hence there exists a square Q, € 2(D,) such
that

d(Q', Qo) <2d(Q,0D"),  1(Qo) <UQ),

therefore by lemma 2

d(Q', Qo) < 2d(Q'. 0D') < 132I(Q').
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Let O be a square having the same center z, as Q, and 1(0) = L(M)I(Q'). Then

2
d(zo, (D)) > d((D,)’, Q') — d(Q’, Qo) — %I(Qo)

> <32B10(M) —132 - —?) Q) > §2L(M)I(Q’) = 41(2@) .

hence 20 < D,, further

M 1 ~ ~
EM 1) = 1(0) = dezo. (0Y) < %—I(QoHd(Qo Q) +/2UQ) + d@. (9Y)
< #KQ’) + 1321(Q) + /21(Q') + d(Q', (D))
hence

4@, (0)) > (%M) — 132 ¥) Q) >0

and so Q' = 0. Since 2(D,) contains arbitrary large square there exists a geode-
sic Whitney chain Q,, Q,, ..., @, in D, such that

QO’ Ql""» Qn—lcé’ Qn¢é
We will show that /(Q;) = I(Q’) for some integer i, 0 <i<n— 1. We may assume

1(Q,-1) < 1(Q). Then I(Q,) <I(Q') and so

~ 2
LOD, ) = 119) = a0 00) < L2100) + dQ0: 0u-0) + /20,0 + /3O

52
< ——2\/;1(Q,) + d(Qo, Qn-1)

hence

M) 5
10000 = (M0 2410y = "),

Therefore by applying lemma 12 to Qq, @4, ..., Q,-; < 0 = 20 < D,, there exists
some j, 0 < j<n—1 such that

d(QO’ Qn—l) L(M)

@)=y =aB,00

Q)= Q).

and so there exist some i, 0 <i<n— 1 such that I(Q;) = [(Q').
Moreover since Q'UQ; = 0 we have

d(Q, Q) < /210) < /2L(M)I(Q) < By, (M)I(Q) QED.
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For domains D, € %(D,, M) such that 9(D,) contain arbitrary large square,
we set

2(D'), = {Q € 2(D)|d(Q', 0D;) > Byo(M)d(Q', 0D’ N D)},

(D) = DDN2(D), , D, U e, D=
Qed(D), Qe (D),

And for each Q' € 2(D),, ©1(Q’) denotes one of the square Q in 2(D;) obtained
by above lemma.
Let ue L},.(D,). We extend this function to D,\D; by setting

(2) = uygy » ze Q' € D),
on D,. Note that i is defined almost everywhere on D,\D; by corollary 2.

Lemma 16. Let D, € %(D,, M) and 9D(D,) contain arbitrary large square. Let
ue BMO(D,). Then

lig, — fig,| < By,(M)|ullx,p,0p,(Q2, Q1) 01, Q, € 2D )U2(D), .

Proof. We will prove this lemma only in the case Q,, Q, € 2(D'),, since
we can treat the other case as the same way.
Because of lemma 1 and 15

d
35,(01. 7(01)) < A%(Qy, 7(Q,)) = 24, log <3 N M)

()
<24,log (3 + B;;(M)) < B(M).
Similarly we have 6,,(Q,, 1(Q,)) < B(M), therefore
0p,(1(Q2), ©(@1)) < 6p,(t(Q2), @2) + 6p,(Q3, @1) + 0p,(Q4, 1(@1))
< B(M) + 6p,(Q;, Q1) < B(M)d,,(Q5, Q) -
And so by lemma 5 we have
liig, — fig,| = luxg,) — Uugy| < Asllulx,p,dp,(1(Q2), 1(Q,))

< Aslullx,p, Mép,(t(Q2), ©(Q1)) < Asllullx,p, MB(M)dp,(Q,, Q4)
Q.ED.

Lemma 17. Let D, € %(D,, M) and 2(D,) contain arbitrary large square. Let
Q be a dyadic square such that Q  D,\D; and 2Q = D,. Let ue BMO(D,).
Then

1
—— | i — digldm < By3(M)||ull«,p, -
m(Q) JQ Q 13 *,D
Proof. Let s > 0 be the smallest integer such that 2°B4(M) > 1. We decom-

pose Q into 2% congruent dyadic subsquares by dividing its each side into N = 2°
pieces. Then by lemma 14, at least one of such N? subsquares Q satisfys the
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condition
. ~ 1
ocong, Q=510

for some Q' € 2(D,)UP(D’),. Let {Q; }; -1.2,....n2-1 be the set of all such sub-
squares except for Q. Further, we decompose each Q; into N 2 congruent dyadic
subsquares by dividing its each side into N pieces similarly, and le and Q; €
2(D,)U2(D’), are two squares which satisfy

~ ~ 1
9, <0,NQ,, Q) =xlQ).

Let {Q; ;,}j,=1.2.....n2-1 be the set of all such subsquares of Q; except for QA]-,.
And by repeating this process, we obtain three families of dyadic squares Q; ; ;€
2D)UAD), and Q;;.. ;, Q.. ;. such that

lej2~~~jn—l = U.in Qiniz---jn U Qfljz~-~.in—1 ’
R , R 1
lej!"'jn < Q.iLiZ"'jn n Qilhunin ’ I(Qil.iszn) = Nl(le.iZN'jn) .

Then

1
Z . m(lejZ"~jn) = <1 - F) Z m(anfz-~~J'n~1) =

Jrjz.. Jn Jriz- - dn-1

1 n—1 1\
=(1 _F> ;m(Qj,)=<1 _.Ni) m(Q).

hence, by regarding Q; ;. ; =0, Qj,jz...jn = (Q when n =0, we have
S Qi) =z L M@ ) = wz(1— g ) m@)
P . = — s . . = — —_—— m .
Iy J1J2+odn NZ Wit J1Ja.edn N2 N2

Therefore

n=0 jijz2...Jn

Hence the family {QAjl ir...iny make a decomposition of Q.
Here we will show that |ig — —ig . | <B(M)|ulxp,.
(Case 1) Qjij,ues © Diseioss When Qjj € Z(Dy) then

Qj;]'z---fnU lejZ"'jn—l < Q}ljz-“jn—l < 2Q-;.1j2"'jn-l < Dl
hence by lemma 5 and 1
|aQ~j.j,.“j,, - aéj,j,.,.j,,_,l = A5”u”*,Dlébx(th-nin’ lejZ"'jn—l)

< AsAylulls,p,¥(Qjss...500 Cirineins) < Allullnep, -
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And when Q; ;. ; € 9D(D'), then 4 is a constant function on Q;; ; hence
it follows that |4y~ —dg  |=0.

(Case 2) Q}lil"'jn—l < Qfljz--'jn—l' hen Q.}Ijznnin < Qj1j2-~~fn—x’ hence
Q.;lfz-n.inUQ}ljz--Jnﬂ < lejZ"'jn—l < Q < 2Q < D2 :
i, € (D) then

J

When Q; ;.

\ag, ., — Bg,,..| = lug,, , —ug, |

; J
<— |u uQ’ Idm
HI(QJ'U':...jn) [ N

1
SN“%— Iu—uQ, |deN4||u||*D )
m(Qj,jz...j,,) Qe vz dn .

And when Q; ;. ;€ 2(D’), then ldg,, ., — g, . |=0. Therefore we have
|aQ}-iz~-~1n - aQ}.Jz...J..l < N* ”u"*-Dl

in either case. Similarly we obtain

coidn

It follows that

|qu.);~»4iu - uQI.}z»~«J...| = |uQ‘J|J:-~i.. - uQ}.Jz..J,I + luQJ'.isz.. U

+ IuQ}.Jz‘.J.... - uQAJ.Jz»-J...nl

< B(M)|lul«,p, -

And so
n
ldg —tig,, ,|< ,Zl 186, = 80y, | S MBM)ullx p, -
hence
[ e}
i — uQIdm < Z ; Z R N (la — uQAj.h.‘.f.l + ]aQ!|J;»--Jn - uél)dm
0 n=0 jijz...jn Q]IJx~-~]n

<Y Y (e, +nBODulap)m(@; . ,)

n=0 jijz...dn

00

1 1y
< Y. nB(M)|ulp, m(l - m) m(Q) < B(M)|ulls,p,m(Q)
Q.E.D.
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Lemma 18. Let ue L},(Q) satisfy the following condition;
—lrj lu —uyldm <K, Q' €2),
m(Q') Jo
lug — ug-| < K, ifQ,0e€2Q), QNQ"#90.
then ue L'(Q) and
1
o) J; [u —ugldm < A,0K .
Proof. Let Q, be the largest square in 2(Q). Set
7, = {Q’ e 2(Q)lIQ) = %I(Qo)} . lsm<o,
then we can show the following estimate easily;

Y m@Q) < A27"m(Q),

Qe &y

Wo(Q', Qo) < Am, Qe%,.

hence
f lu—ugldm<y J (lu —ug | + lug — ug,)dm
Q m=1 Qe #,, JQ’
<Y Y (K+KAmm(Q)
m=1 Q'e ¥,

< AK i ;n—mm(Q) < AKm(Q),

m

and so m(Q)~! f lu — ugldm < 2m(Q)™! j lu —ug,|dm < AK .
0

Q

Q.ED.

Lemma 19. Let D, € %(D,, M) and 2(D,) contain arbitrary large square. Let

Q be a square such that Q < D,\D; and ue BMO(D,). Then

1
WQ) L li — digldm < By 4(M)]|lullx,p, -

Proof. Let Q;, Q,€2(Q), Q,NQ, # 9. By lemma 17 and 18, it suffices
to show that |y — dig,| < B(M)|ullx,p,- By the proof of lemma 17, there exist
two dyadic squares Q,, (i=1, 2) in Q; and two squares Q;e 9(D,)U2(D’), such

that

P

: 5y = L 10,
Q<= Q:NQg;, Q) = NI(Q.)-
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(Case 1) If 1(Q)) = 4l(Q,) and Q) € D(D,) then since Q, = 2Q; it holds that
0,NQ,#0 and Q, = Q,. Hence Q,, Q, is an admissible chain in D, and by
lemma 5

ltg, — fig,| < Asllullx,p, -
(Case 2) If l(Q}) = 4I(Q,) and Q) € D(D’), the same argument as in case 1 shows
0y, 0,€2(D),, Q,<Qy, Q<@ QNG #P.
hence by lemma 16
lig, — tg,| = llg, — tig,| < By2(M)|ull«,p, -

which also proves this lemma in the case /(Q%) > 41(Q,), and finally

(Case 3) Assume [(Q)) < 2/(Q,) and 1(Q) < 21(Q,). In the case Q; = Q, then

by lemma 17

|4 i, | < ! j | — dig, |dm < N? J |ti — fip |dm < N2B,,(M)||ul

Ugy — =0\ - 1 =21\ - 1 - Dy -
T T mQ) Jo o m@Q.) Jo, ° s

Next in the case Q, < Q) then also by lemma 17, |y, — i, | <4B,;(M)|ul« p,-
Therefore |y, — fip,| < B(M)|ulx,p, holds in either case. Similarly we have
liig, — fig,| < B(M)|ul«,p,- Moreover since

1
N (@) <UQ)<21Q), UQ)=<4lQ-), d(Q: Qi) < 3/21Q), i=0, 1.

it holds that
W01, 0y) < 2log {1 + N(4 +2 +3/2)} < B(M).
and since Q,UQ, =90, = 18Q, = D, lemma 16 and 1 show that
liig, — gy < Bya(M)llullx,p,0p,(Q7, Q3)
< Byo(M)lullx,p, 42¥(Q}, Q3) < BIM)[[ullx,p, -
Hence

lilg, — flg,| < lilg, — fg,| + |lg; — fg,| + liig, — fig,| < B(M)|ullx,p, -
Q.ED.

Lemma 20. Let D, € %(D,, M) and 9(D,) contain arbitrary large square. Let
ue BMO(D,) and Q € 2(D')s. We set

S(u, Q) = sup {#(Q') — By,(M)|lullx,p,0p(Q, Q)1Q" € 2(D"),}

where B,,(M) is the constant in lemma 16, then S(u, Q) < oo and if we define the
extension 4 of ii to D, by setting

Uz)=Sw, Q), zeQeP(D),



190 Yasuhiro Gotoh
on Dy, then

[tg, — tig,| < By2(M)|ulls p, Wp(Q2, Q1) , Qi Qe 2(D).

Proof. Let Qe P(D');. First of all we show S(u, Q) < co. Let Qq, Q; be
arbitrary squares in 2(D’),, then by lemma 15

ilg, — flg, < Byy(M)|ullx,p,0p,(Q1, Qo) < Bi2(M)l|ull,p,0p/(Q1> Qo)
< By (M)[ull,p,(0p(Q1> Q) + p(Q, Qo))
hence
itg, — By (M) |[ullx,p,0p(Q1, Q) < g, + By5(M)l|ull«,p,0p(Q, Qo) -

and so S(u, Q) < iig, + By, (M)|lull+,p,dp:(Q, Qo) < 00.
Next let Q,, Q, € 2(D'), be squares which adjacent to each other. Let
Q' € 9(D'),, then g, > i(Q') — By, (M)|ullx,p,0p(Qy, Q) hence

dg, + Bio(M)lullx,p, = #(Q") — By2(M)[ullx,p,(0p:(Qy, Q) — p:(Q1, @2))
> i(Q") — Bio(M)|lullx,p,0p(Q', Q2) -
and so #y, + B;,(M)|ull«, p, = iig,. Therefore by the symmetry for Q;, Q,
ldg, — dg,| < Bi2(M)|ullx,p, -

Next let Q, € 2(D');, Q, € 2(D'), be squares which adjacent to each other.
Then

g, 2 ilg, — By, (M) |ullx,p,0p(Q1, Q) = dg, — By, (M) |lullx,p, -
Let Q' be an arbitrary square in 9(D’),. Then by applying lemma 16
iig: — Byo(M)|lullx,p,0p(Q1. Q)
< (fig, + B12(M)|lullx,p,6p(Q2, @) — By2(M)|ullx,p,0p(Qy, Q)
< (ilg, + B ,(M)|lullp, -

hence iy, < iy, + Bi,(M)llul«,p, and so |dy, — dg,| < By ,(M)|lul«,p,-
Hence by combining lemma 16 we obtain |dy, — dg,| < B;,(M)|lul« p, for
all Q,, Q, € 2(D') which are adjacent to each other. Therefore

sz — g | < B, (M)|lulls.p Wp(Q2, Q4) 0., 0,e2(D). Q.E.D.

Lemma 21. Let D, € %(D,, M) and 2(D,) contain arbitrary large square. Let
ue BMO(D,). Then 1 belongs to BMO(D,) and it holds that

||12||>(<,D2 < B,s(M) ”“”*,D,
Proof. We set

L(M) = 4(66B,0(M) + \/2).
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Let Q = D, be a square such that L(M)I(Q) < d(Q,, D).
(Case 1) If Q = D,\D; then by lemma 19

M(Q)J [ — dgldm < By4(M)|lull«, p, -

(Case 2) If Q ¢ D,\Dy then there exists a square Q, € 9(D’); such that Qo NQ #
@. When d(Q,, 0D,) < d(Q,, dD'ND,) then

d(Qy, 0D,) = d(Qq, D) < 661(Q,) .
and when d(Q,, dD,) > d(Q,, @D’ N D,) then
d(Qq, 8D,) < B,o(M)d(Qo, 0D’ N D,) = B,o(M)d(Q,, dD') < 66B,o(M)I(Q,) -
Hence it holds that d(Q,, dD,) < 66B,o(M)I(Q,) in either case. And so
66B,6(M)I(Qo) = d(Qo, 3D,) = d(Q, 3D;) — \/21(Qo) = LIM)I(Q) — \/21(Qs)
hence

L(M)
> 41(Q) .
Qo) = 6B, (M) + ﬁ(Q)Z @

therefore Q is covered by at most 4 squares in 2(D’), hence by lemma 20

1
o) | 18— toldm < sup i(zy) — i(z,)| < 4By (M)ulls,p, -
M(Q)L ol p li(z;) — i(z,)l < 4By, (M)lull4.p

z1,22€Q
And so by lemma 6 & belongs to BMO(D,) and
lullx,p, < As max {B,4(M), 4B, ,(M)} L(M) lullx,p, - Q.E.D.
To remove the restriction for domain D,, we need several lemmas below.

Lemma 22. Let D, e U(D,, M) and zoe D,. We set D} = D;\{zo}, D5 =
D,\{zo} then D; e WD}, Ay, M).

Proof. Let u be a function in BMO(D]) then we can easily show that u
is in BMO(D,) and |u« p, < Aluly,p;, which implies Di € &(D,, 4) (cf. [RR])
Hence for Q,, Q, € &/(D;) we have

0p(Q1, Q2) < AAgdp (Q1, Q,) < AAgMp,(Q1, Q2) < AAgMp,(Q4, Q)
by lemma 8. Hence D) € %(D;, AAgM). QE.D.

Lemma 23. Let f: D — D’ be a conformal map, Q;, (i = 1, 2) admissible squares
in D having z; as its center. Let Q:, (i = 1,2) be admissible squares in D' having
f(z;) as its center satisfying d(Q;, 0D')/I(Q;) = d(Q;, dD)/I(Q;) then

X;%(Qn 0,) < 6p(Q1,03) < A120p(Q41, Q5)
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Proof. Let Q be arbitrary admissible squares in D having z, as its center
and let Q' be the admissible squares in D' having f(z,) as its center and satisfying
d(Q', oD")/I(Q’) = d(Q, dD)/I(Q) then Koebe’s distortion theorem shows that

10 1@< 40

hence we can easily prove our assertion. Q.E.D.

Lemma 24, Let D, € %(D,, M) and f: D, = D} a conformal map, we set D] =
f(D,) then Dy € (D3, A3 M)

Proof. Let Q), Q, e #(D’) and Q,, Q, admissible squares in D correspond-
ing to Q}, Q5 in lemma 23. Then

0p(Q1, Q%) < A1,6p,(Q1, Q) < A1, M3p,(Q4, Q) < A122M50'2(Q’1’ 03)
hence D € %(D3, A,,*M). Q.E.D.

Proposition 1 ([R], [J]). Let f: D — D' be a conformal map, then for every
ue BMO(D'), uo f belong to BMO(D) and |[uo fll4p < A4lltll« p-

Lemma 25. %(D,, M) < &(D,, B,s(M)).

Proof. Let D, € %(D,, M). Let zye D; and set Dy = D;\{zo}, Dy = D,\{z,}
then by lemma 22, D} € %(D;, A, M). We set

1
fle) = . Di=f(Dy), D3=f(D3)

z — 2z

then by lemma 24, D} € %(D;, A;3A,;M). Let ue BMO(D,), then by proposi-
tion 1

luof " epy < Arallulls,p, < Arallullx,p,
and further by lemma 21 there exist some extension v of uof ~! to Dj such that
01,05 < Bys(Ay341, M) lucf =" 4 py -
hence @i =vo f is a extension of u to D, such that
lallx,p, < Alldlls,p, < AA14ll0]l4,p, < AA 4B 5(A13A1, M)A 4 llull4,p,
which implies the assertion. Q.ED.

Remark 1. Let D, € %(D,, M) then we constructed a non linear extension
operator on BMO(D,) to BMO(D,). I don’t know whether we can construct
such linear operator or not.
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