BMO extension theorem for relative uniform domains

By
Yasuhiro Gotoн

§ 1. Introduction

Let D be a domain in n-dimensional Euclidean space, and $B M O(D)$ the space of all functions of (n-dimensional) bounded mean oscillation on D. We say D has $B M O$ extension property if each $B M O(D)$ function is the restriction to D of some $B M O\left(\mathbf{R}^{n}\right)$ function.

In 1980, P. Jones [J] showed that a domain D has $B M O$ extension property if and only if D is a uniform domain (cf. [GO]). For various characterizations of uniform domain, see [G]. A uniform domain is 'uniform' as a subdomain of \mathbf{R}^{n} or $\mathbf{R}^{n} \cup\{\infty\}$. Here we consider relative uniformness of domains, that is, a uniformness as a subdomain of other domain, and show that this relative uniformness and the corresponding relative $B M O$ extension property coincides with to each other, which is a generalization of Jones' result (Th. 1.)

Our method is essentially almost the same as the original one of Jones, but since we must localize his method, and for the completeness, we shall give the proofs for all our lemmas below.

§ 2. Notation, preliminary lemmas and main result

Throughout this paper we treat only 2 -dimensional case for the simplicity, since the same argument holds in the case of general dimension. Let D be a domain lying in \mathbf{R}^{2}. We say that a function $u \in L_{l o c}^{1}(D)$ is in $B M O(D)$ if

$$
\|u\|_{*, D}=\sup _{Q} \frac{1}{m(Q)} \int_{Q}\left|u(z)-u_{Q}\right| d m(z)<\infty,
$$

where $d m$ is the two dimensonal Lebesgue measure, $u_{Q}=m(Q)^{-1} \int_{Q} u d m$ and the supremum is taken for every closed square Q in D whose sides are parallel to the coodinate axes. Throughout this paper 'square' means a closed square whose sides are parallel to the coordinate axes, 'dyadic square' means a square $\left[k 2^{n},(k+1) 2^{n}\right] \times\left[l 2^{n},(l+1) 2^{n}\right], k, l, n \in \mathbf{Z}, l(Q)$ denotes the side length of a square $Q, t Q, t>0$ denotes the square having the same center as Q and $t l(Q)$ as its side length, $d(\cdot, \cdot)$ denotes the Euclidean distance, A_{1}, A_{2}, \ldots denotes
positive universal constants, A denotes positive universal constant which may vary from place to place.

We say that a square Q lying in D is admissible if it satisfies $d(Q, \partial D) \geq 32 l(Q)$ and $\mathscr{A}(D)$ denotes the set of all admissible squares in D. We say that a sequence of admissible square $Q_{0}, Q_{1}, \ldots, Q_{n}$ in D is an admissible chain if it satisfies the following conditions;

$$
\begin{array}{ll}
Q_{i} \cap Q_{i+1} \neq \emptyset, & 0 \leq i \leq n-1, \\
\frac{1}{2} \leq \frac{l\left(Q_{i}\right)}{l\left(Q_{i+1}\right)} \leq 2, & 0 \leq i \leq n-1,
\end{array}
$$

and call n its length. For two admissible squares Q, Q^{\prime} in D we define

$$
\delta_{D}\left(Q, Q^{\prime}\right)=\min \left\{n \geq 1 \mid Q=Q_{0}, Q_{1}, \ldots, Q_{n}=Q^{\prime} \text { is an admissible chain }\right\}
$$

and the admissible chain which attains above minimum is called geodesic admissible chain joining Q and Q^{\prime}. Remark we define δ_{D} so that $\delta_{D}\left(Q, Q^{\prime}\right) \geq 1$ for technical reason, δ_{D} is not a distance function but triangle inequality holds. Further for two squares Q, Q^{\prime} lying in \mathbf{R}^{2}, we define

$$
\psi\left(Q, Q^{\prime}\right)=\log \left(1+\frac{l(Q)+l\left(Q^{\prime}\right)+d\left(Q, Q^{\prime}\right)}{l(Q)}\right)\left(1+\frac{l(Q)+l\left(Q^{\prime}\right)+d\left(Q, Q^{\prime}\right)}{l\left(Q^{\prime}\right)}\right)
$$

then
Lemma 1. Let Q, Q^{\prime} be admissible squares in D then

$$
\psi\left(Q, Q^{\prime}\right) \leq A_{1} \delta_{D}\left(Q, Q^{\prime}\right)
$$

Conversely if there exists a square \tilde{Q} such that $Q \cup Q^{\prime} \subset \tilde{Q} \subset 2 \tilde{Q} \subset D$ then

$$
\delta_{D}\left(Q, Q^{\prime}\right) \leq A_{2} \psi\left(Q, Q^{\prime}\right) .
$$

Especially, for all squares $Q, Q^{\prime} \subset \mathbf{R}^{2}$, we have

$$
A_{1}^{-1} \psi\left(Q, Q^{\prime}\right) \leq \delta_{\mathbf{R}^{2}}\left(Q, Q^{\prime}\right) \leq A_{2} \psi\left(Q, Q^{\prime}\right)
$$

Proof. First of all we prove the first inequality. Let $Q, Q^{\prime} \in \mathscr{A}(D)$. We may assume $l(Q) \leq l\left(Q^{\prime}\right)$. Let $Q=Q_{0}, Q_{1}, \ldots, Q_{n}=Q^{\prime}$ be arbitrary admissible chain joining Q, Q^{\prime}.
(Case 1) $d\left(Q_{0}, Q_{n}\right) \geq l\left(Q_{n}\right)$. In this case it suffices to show that $\log d\left(Q_{0}, Q_{n}\right) /$ $l\left(Q_{0}\right) \leq A n$. And since $l\left(Q_{i}\right) \leq 2^{i} l\left(Q_{0}\right), 0 \leq i \leq n$, it holds that

$$
d\left(Q_{0}, Q_{n}\right) \leq \sum_{i=1}^{n-1} \sqrt{2} l\left(Q_{i}\right) \leq \sqrt{2} \sum_{i=1}^{n-1} 2^{i} l\left(Q_{0}\right) \leq \sqrt{2} 2^{n} l\left(Q_{0}\right) .
$$

(Case 2) $d\left(Q_{0}, Q_{n}\right)<l\left(Q_{n}\right)$. Then it suffices to show that $\log l\left(Q_{n}\right) / l\left(Q_{0}\right) \leq A n$, and since $l\left(Q_{n}\right) \leq 2^{n} l\left(Q_{0}\right)$ this inequality holds.

Next we will prove the second inequality. We may assume $l(\tilde{Q}) \leq l(Q)+$ $l\left(Q^{\prime}\right)+d\left(Q, Q^{\prime}\right)$ by replacing \tilde{Q} with some smaller square if necessary. Let $2^{m} \leq$
$l(\widetilde{Q}) / l(Q) \leq 2^{m+1}, 2^{m^{\prime}} \leq l(\widetilde{Q}) / l\left(Q^{\prime}\right) \leq 2^{m^{\prime}+1}$, then there exist two chains $Q=Q_{0} \subset$ $Q_{1} \subset \cdots \subset Q_{m+1}=\tilde{Q}, Q^{\prime}=Q_{0}^{\prime} \subset Q_{1}^{\prime} \subset \cdots \subset Q_{m^{\prime}+1}^{\prime}=\tilde{Q}$ which are admissible as chains lying in \mathbf{R}^{2}. Hence $Q=Q_{0}, Q_{1}, \ldots, Q_{m}, Q_{m+1}, Q_{m^{\prime}}^{\prime}, Q_{m^{\prime}-1}^{\prime}, \ldots, Q_{1}^{\prime}$, $Q_{0}^{\prime}=Q^{\prime}$ is admissible as a chain lying in \mathbf{R}^{2} of length $m+m^{\prime}+2$. If we decompose each square into 4096 congruent subsquares by dividing its sides into 64 pieces, then each such subsquare is admissible hence we can easily construct an admissible chain joining Q, Q^{\prime} whose length is at most $6+64\left(m+m^{\prime}+1\right)+6$, therefore

$$
\delta_{D}\left(Q, Q^{\prime}\right) \leq 64 m+64 m^{\prime}+76 \leq A\left\{1+\log \frac{l(\tilde{Q})}{l(Q)}+\log \frac{l(\tilde{Q})}{l\left(Q^{\prime}\right)}\right\} \leq A \psi\left(Q, Q^{\prime}\right)
$$

Q.E.D.

Lemma 2 (cf. [S]). There exists a decomposition of D into a family of dyadic squares $\mathscr{D}(D)=\left\{Q_{i}\right\}, Q_{i}{ }^{\circ} \cap Q_{j}{ }^{\circ}=\emptyset,(i \neq j), \bigcup_{i} Q_{i}=D$ for each $\alpha \geq 2$ such that

$$
\begin{gathered}
\alpha \leq \frac{d\left(Q_{i}, \partial D\right)}{l\left(Q_{i}\right)} \leq 2 \alpha+2 \\
\frac{1}{2} \leq \frac{l\left(Q_{i}\right)}{l\left(Q_{j}\right)} \leq 2, \quad \text { if } Q_{i} \cap Q_{j} \neq \emptyset
\end{gathered}
$$

Proof. First of all we decompose \mathbf{R}^{2} into a family of dyadic square $[k, k+1] \times[l, l+1], k, l \in \mathbf{Z}$. If there exists a square Q in this family such that $d(Q, \partial D)<\alpha l(Q)$, then we decompose Q into 4 congruent subsquares. Let Q^{\prime} be one of such subsquares. Then

$$
\frac{d\left(Q^{\prime}, \partial D\right)}{l\left(Q^{\prime}\right)} \leq \frac{2\left(d(Q, \partial D)+\frac{\sqrt{2}}{2} l(Q)\right)}{l(Q)}<2 \alpha+\sqrt{2}<2 \alpha+2
$$

Hence by repeating above process, we can decompose Q into a family of dyadic squares $Q^{\prime \prime}$ which satisfies $\alpha \leq d\left(Q^{\prime \prime}, \partial D\right) / l\left(Q^{\prime \prime}\right) \leq 2 \alpha+2$.

Next, suppose there exist a dyadic square Q such that $2 \alpha+2<d(Q, \partial D) / l(Q)$ then let Q^{\prime} be the dyadic square containing Q such that $l\left(Q^{\prime}\right)=2 l(Q)$. We join all squares in Q^{\prime} into one square Q^{\prime}. Then

$$
d\left(Q^{\prime}, \partial D\right) \geq d(Q, \partial D)-\sqrt{2} l(Q) \geq(2 \alpha+2-\sqrt{2}) l(Q)>\alpha l\left(Q^{\prime}\right)
$$

Hence by repeating above process we obtain a family of square Q such that

$$
\alpha \leq \frac{d(Q, \partial D)}{l(Q)} \leq 2 \alpha+2
$$

Finally, for such two squares Q, Q^{\prime} such that $Q \cap Q^{\prime} \neq \emptyset$ we have

$$
l\left(Q^{\prime}\right) \leq \alpha^{-1} d\left(Q^{\prime}, \partial D\right) \leq \alpha^{-1}(d(Q, \partial D)+\sqrt{2} l(Q)) \leq\left(2+\frac{2+\sqrt{2}}{\alpha}\right) l(Q)<4 l(Q)
$$

and so $l\left(Q^{\prime}\right) \leq 2 l(Q)$.
Q.E.D.

In the following, $\mathscr{D}(D)$ denotes the family obtained by above method with $\alpha=32$, which we call Whitney decomposition of D. Note that if $D \subset D^{\prime}$ then for each $Q \in \mathscr{D}(D)$ there exists a square $Q^{\prime} \in \mathscr{D}\left(D^{\prime}\right)$ such that $Q \subset Q^{\prime}$. And note that if $Q, Q^{\prime} \in \mathscr{D}(D)$ satisfy $Q^{\prime} \cap 21 Q \neq \emptyset$ then $l\left(Q^{\prime}\right) \geq l(Q) / 2$. In fact, if $Q^{\prime \prime} \in \mathscr{D}(D)$ satisfys $l\left(Q^{\prime \prime}\right) \leq l(Q) / 4$ then

$$
\begin{aligned}
d\left(Q, Q^{\prime \prime}\right) & \geq d(Q, \partial D)-d\left(Q^{\prime \prime}, \partial D\right)-\sqrt{2} l\left(Q^{\prime \prime}\right) \\
& \geq 32 l(Q)-66 \cdot \frac{1}{4} l(Q)-\frac{\sqrt{2}}{4} l(Q)>15 l(Q)
\end{aligned}
$$

hence $Q^{\prime \prime} \cap 21 Q=\emptyset$.
We say that a sequence $Q_{0}, Q_{1}, \ldots, Q_{n} \in \mathscr{D}(D)$ is a Whitney chain if $Q_{i} \cap$ $Q_{i+1} \neq \emptyset$. Since $\mathscr{D}(D) \subset \mathscr{A}(D)$, every Whitney chain is admissible. We set

$$
W_{D}\left(Q, Q^{\prime}\right)=\min \left\{n \geq 1 \mid Q=Q_{0}, Q_{1}, \ldots, Q_{n}=Q^{\prime} \text { is a Whitney chain }\right\}
$$

and the Whitney chain which attains above minimum is called geodesic Whitney chain joining Q and Q^{\prime}. It holds that $\delta_{D}\left(Q, Q^{\prime}\right) \leq W_{D}\left(Q, Q^{\prime}\right), Q, Q^{\prime} \in \mathscr{D}(D)$ by definition. Conversely

Lemma 3. $W_{D}\left(Q, Q^{\prime}\right) \leq A_{3} \delta_{D}\left(Q, Q^{\prime}\right), Q, Q^{\prime} \in \mathscr{D}(D)$
Proof. Let $Q=Q_{0}, Q_{1}, \ldots, Q_{n}=Q^{\prime}$ be a geodegic admissible chain in D. Let $\hat{Q} \in \mathscr{D}(D)$ be a square such that $\hat{Q} \cap Q_{j} \neq \emptyset$. Then we have $l(\hat{Q}) \geq l\left(Q_{i}\right) / 4$, hence the number of square $\hat{Q} \in \mathscr{D}(D)$ satisfying $\hat{Q} \cap Q_{j} \neq \emptyset$ is at most $(4+2)^{2}=36$. It follows that $W_{D}\left(Q, Q^{\prime}\right) \leq 36(n-1)+1 \leq 36 n=36 \delta_{D}\left(Q, Q^{\prime}\right)$.
Q.E.D.

Let D_{2} be a domain lying in \mathbf{R}^{2}. We say that a domain $D_{1} \subset D_{2}$ is relative uniform with respect to D_{2} if it satisfies

$$
\delta_{D_{1}}\left(Q, Q^{\prime}\right) \leq M \delta_{D_{2}}\left(Q, Q^{\prime}\right), \quad Q, Q^{\prime} \in \mathscr{A}\left(D_{1}\right)
$$

for some constant $M \geq 1$. And $\mathscr{U}\left(D_{2}, M\right)$ denotes the set of all subdomains of D_{2} satisfying this condition. Note that if $D_{1} \in \mathscr{U}\left(D_{2}, M_{1}\right)$ and $D_{2} \in \mathscr{U}\left(D_{3}, M_{2}\right)$ then $D_{1} \in \mathscr{U}\left(D_{3}, M_{2} M_{1}\right)$. And note that if $D_{1} \in \mathscr{U}\left(D_{2}, M\right)$ and $f: D_{2} \rightarrow D_{2}^{\prime}$ is a quasiconformal mapping then $f\left(D_{1}\right) \in \mathscr{U}\left(D_{2}^{\prime}, K M\right)$ where K is a constant depending only on the maximal dilatation of f. (cf. lemma 23.)

We say also a domain D lying in \mathbf{R}^{2} is uniform (cf. [G]) if it satisfies

$$
W_{D}\left(Q, Q^{\prime}\right) \leq M \psi\left(Q, Q^{\prime}\right), \quad Q, Q^{\prime} \in \mathscr{D}(D)
$$

for some constant $M>0$. Lemma 1 and lemma 4 below shows that D is uniform if and only if it is uniform with respect to \mathbf{R}^{2}.

In the following, $B_{1}(M), B_{2}(M), \ldots$ denote constants depending only on M, and $B(M)$ denotes a constant depending only on M which may vary from place to place. The relative uniformness follows from the following property which is weaker in appearance than its definition.

Lemma 4. Let D_{1} be a subdomain of D_{2} such that

$$
W_{D_{1}}\left(Q, Q^{\prime}\right) \leq M \delta_{D_{2}}\left(Q, Q^{\prime}\right), \quad Q, Q^{\prime} \in \mathscr{D}\left(D_{1}\right)
$$

then

$$
\delta_{D_{1}}\left(Q, Q^{\prime}\right) \leq A_{4} M \delta_{D_{2}}\left(Q, Q^{\prime}\right) \quad Q, Q^{\prime} \in \mathscr{A}\left(D_{1}\right)
$$

Proof. Let $\tilde{Q}, \tilde{Q}^{\prime}$ be squares in $\mathscr{D}\left(D_{1}\right)$ which minimize $W_{D_{1}}\left(\tilde{Q}, \tilde{Q}^{\prime}\right)$ under the condition $\widetilde{Q} \cap Q \neq \emptyset, \widetilde{Q}^{\prime} \cap Q^{\prime} \neq \emptyset$.
(Case 1) $W_{D_{1}}\left(\tilde{Q}, \tilde{Q}^{\prime}\right)=1$. Then there exists a square \hat{Q} such that $Q \cup Q^{\prime} \subset \hat{Q} \subset$ $2 \hat{Q} \subset D_{1}$ therefore by lemma 1 ,

$$
\delta_{D_{1}}\left(Q, Q^{\prime}\right) \leq A_{2} \psi\left(Q, Q^{\prime}\right) \leq A_{1} A_{2} \delta_{D_{2}}\left(Q, Q^{\prime}\right)
$$

(Case 2) $W_{D_{1}}\left(\tilde{Q}, \tilde{Q}^{\prime}\right) \geq 2$. Then first of all we will show $\delta_{D_{1}}\left(Q, Q^{\prime}\right) \geq A \log l(\tilde{Q}) /$ $l(Q)$. If $l(Q) \geq l(\tilde{Q}) / 4$ then this inequality is trivial, hence we may assume $l(Q)<$ $l(\widetilde{Q}) / 4$. Since $Q^{\prime} \cap 2 \widetilde{Q}=\emptyset$, if follows that

$$
d\left(Q, Q^{\prime}\right) \geq \frac{1}{2} l(\tilde{Q})-l(Q) \geq \frac{1}{4} l(\tilde{Q}) .
$$

On the other hand, let $Q=Q_{0}, Q_{1}, \ldots, Q_{n}=Q^{\prime}$ be a geodesic admissible chain in D_{1}. Then

$$
d\left(Q, Q^{\prime}\right) \leq \sum_{k=1}^{n-1} \sqrt{2} l\left(Q_{k}\right) \leq \sum_{k=1}^{n-1} \sqrt{2} 2^{k} l(Q) \leq \sqrt{2} 2^{n} l(Q)
$$

Hence $l(\tilde{Q}) \leq A 2^{n} l(Q)$ and so $\delta_{D_{1}}\left(Q, Q^{\prime}\right)=n \geq A \log l(\tilde{Q}) / l(Q)$. Similarly we have

$$
\delta_{D_{1}}\left(Q, Q^{\prime}\right) \geq A \log \frac{l\left(\tilde{Q}^{\prime}\right)}{l\left(Q^{\prime}\right)}, \quad \delta_{D_{2}}\left(Q, Q^{\prime}\right) \geq A \log \frac{l(\tilde{Q})}{l(Q)}, \quad \delta_{D_{2}}\left(Q, Q^{\prime}\right) \geq A \log \frac{l\left(\tilde{Q}^{\prime}\right)}{l\left(Q^{\prime}\right)} .
$$

And so

$$
\begin{aligned}
\delta_{D_{1}}\left(Q, Q^{\prime}\right) & \leq \delta_{D_{1}}(Q, \tilde{Q})+\delta_{D_{1}}\left(\tilde{Q}, \tilde{Q}^{\prime}\right)+\delta_{D_{1}}\left(\tilde{Q}^{\prime}, Q^{\prime}\right) \\
& \leq A+A \log \frac{l(\tilde{Q})}{l(Q)}+A \log \frac{l\left(\tilde{Q}^{\prime}\right)}{l\left(Q^{\prime}\right)}+M \delta_{D_{2}}\left(\tilde{Q}, \tilde{Q^{\prime}}\right) \\
& \leq A+A \delta_{D_{2}}\left(Q, Q^{\prime}\right)+M\left(\delta_{D_{2}}(\tilde{Q}, Q)+\delta_{D_{2}}\left(Q, Q^{\prime}\right)+\delta_{D_{2}}\left(Q^{\prime}, \tilde{Q}^{\prime}\right)\right) \\
& \leq A M \delta_{D_{2}}\left(Q, Q^{\prime}\right) .
\end{aligned}
$$

Q.E.D.

Let Q, Q^{\prime} be admissible squares in D. We set

$$
\hat{\delta}_{D}\left(Q, Q^{\prime}\right)= \begin{cases}W_{D}\left(\tilde{Q}, \tilde{Q}^{\prime}\right)+\log \left(2+\frac{l(\tilde{Q})}{l(Q)}\right)\left(2+\frac{l\left(\tilde{Q}^{\prime}\right)}{l\left(Q^{\prime}\right)}\right), & \delta_{D}\left(\tilde{Q}, \tilde{Q}^{\prime}\right) \geq 2, \\ \psi\left(Q, Q^{\prime}\right), & \delta_{D}\left(\tilde{Q}, \tilde{Q}^{\prime}\right)=1,\end{cases}
$$

where $\tilde{Q}, \widetilde{Q}^{\prime}$ are squares in $\mathscr{D}(D)$ which minimizes $W_{D}\left(\tilde{Q}, \tilde{Q}^{\prime}\right)$ under the condition $\tilde{Q} \cap Q \neq \emptyset, \tilde{Q}^{\prime} \cap Q^{\prime} \neq \emptyset$. (Minimizing condition is not essential.) Then above argument shows that

$$
\frac{1}{A} \hat{\delta}_{D}\left(Q, Q^{\prime}\right) \leq \delta_{D}\left(Q, Q^{\prime}\right) \leq A \hat{\delta}_{D}\left(Q, Q^{\prime}\right)
$$

Now we can state our main theorem.
Theorem 1. Let D_{2} be a domain lying in \mathbf{R}^{2}. Then the following three conditions are equivalent to each other for subdomain D_{1} of D_{2};
(1) Every $\operatorname{BMO}\left(D_{1}\right)$ function is the restrinction of some $\operatorname{BMO}\left(D_{2}\right)$ function.
(2) There exists a constant $M>0$ such that

$$
W_{D_{1}}\left(Q, Q^{\prime}\right) \leq M \delta_{D_{2}}\left(Q, Q^{\prime}\right), \quad Q, Q^{\prime} \in \mathscr{D}\left(D_{1}\right)
$$

(3) D_{1} is relative uniform with respect to D_{2}, that is, there exist a constant $M \geq 1$ such that

$$
\delta_{D_{1}}\left(Q, Q^{\prime}\right) \leq M \delta_{D_{2}}\left(Q, Q^{\prime}\right), \quad Q, Q^{\prime} \in \mathscr{A}\left(D_{1}\right)
$$

The relative $B M O$ extension property is not local property. There exists two domains $D_{1} \subset D_{2}$ such that
(1) for every square $Q \subset D_{2}$ and every $u \in B M O\left(D_{1}\right)$, there exists a extension \hat{u} of u to Q such that $\|\hat{u}\|_{*, Q} \leq A\|u\|_{*, D_{1}}$
(2) but there exists a $B M O\left(D_{1}\right)$ function u which can not be extended to a $B M O\left(D_{2}\right)$ function.

Example 1. Let

$$
\begin{gathered}
S_{n}=\left\{0<x<\frac{1}{n}, 0<y<1\right\} \cup\left\{1-\frac{1}{n}<x<1,0<y<1\right\} \\
\cup\left\{0<x<1,0<y<\frac{1}{n}\right\}, \\
T_{n}=\left\{\frac{1}{n} \leq x<\frac{1}{4}, \frac{7}{8}<y<1\right\}, \quad U_{n}=\left\{\frac{3}{4}<x \leq 1-\frac{1}{n}, \frac{7}{8}<y<1\right\}, \\
V=\left\{\frac{1}{4} \leq x \leq \frac{3}{4}, \frac{7}{8}<y<1\right\}, \quad D_{1}^{n}=S_{n} \cup T_{n} \cup U_{n}, \quad D_{2}^{n}=D_{1}^{n} \cup V,
\end{gathered}
$$

then for every square $Q \subset D_{2}^{n}$ and every $u \in B M O\left(D_{1}^{n}\right)$, there exists a extension \hat{u} of u to Q such that $\|\hat{u}\|_{*, Q} \leq A\|u\|_{*, D_{1}^{n}}$. We set

$$
u_{n}(x, y)= \begin{cases}n x, & (x, y) \in S_{n} \\ 0, & (x, y) \in T_{n} \\ n, & (x, y) \in U_{n}\end{cases}
$$

then $u_{n} \in B M O\left(D_{1}^{n}\right)$ and $\left\|u_{n}\right\|_{*, D_{1}^{n}} \leq 1$. On the other hand for every extension \hat{u}_{n} of u_{n} to D_{2}^{n} it holds that $\left\|\hat{u}_{n}\right\|_{*, D_{2}^{n} \rightarrow \infty}$. Hence by linking these domains D_{2}^{n} in a suitable way, we obtain our requirement.

Note that $W_{D_{1}}\left(Q, Q^{\prime}\right), Q, Q^{\prime} \in \mathscr{D}\left(D_{1}\right)$ corresponds to the quasi-hyperbolic metric

$$
k_{D_{1}}\left(z, z^{\prime}\right)=\inf \int_{\gamma} \frac{|d \zeta|}{d\left(\zeta, \partial D_{1}\right)}
$$

where the infimum is taken for all rectifiable curves γ joining z to z^{\prime}, and $\delta_{D_{2}}\left(Q, Q^{\prime}\right), Q, Q^{\prime} \in \mathscr{D}\left(D_{1}\right)$ corresponds to the following metric

$$
j_{D_{1}, D_{2}}\left(z, z^{\prime}\right)= \begin{cases}k_{D_{2}}\left(z, z^{\prime}\right)+\log \frac{d\left(z, \partial D_{2}\right)}{d\left(z, \partial D_{1}\right)} \frac{d\left(z^{\prime}, \partial D_{2}\right)}{d\left(z^{\prime}, \partial D_{1}\right)}, & \left|z-z^{\prime}\right| \geq d\left(z, \partial D_{2}\right) / 2 \\ \log \left(1+\frac{\left|z-z^{\prime}\right|}{d\left(z, \partial D_{1}\right)}\right)\left(1+\frac{\left|z-z^{\prime}\right|}{d\left(z^{\prime}, \partial D_{1}\right)}\right), & \left|z-z^{\prime}\right|<d\left(z, \partial D_{2}\right) / 2\end{cases}
$$

Hence the condition (2) of theorem 1 implies;

$$
k_{D_{1}}\left(z, z^{\prime}\right) \leq K j_{D_{1}, D_{2}}\left(z, z^{\prime}\right)+L, \quad z, z^{\prime} \in D_{1}
$$

§3. Proof of Theorem 1

Lemma 5. Let $Q, Q^{\prime} \in \mathscr{A}(D)$ and u a $B M O(D)$ function then

$$
\left|u_{Q}-u_{Q^{\prime}}\right| \leq A_{5}\|u\|_{*, D} \delta_{D}\left(Q, Q^{\prime}\right)
$$

Proof. Let $Q=Q_{0}, Q_{1}, \ldots, Q_{n}=Q^{\prime}$ be a geodesic admissible chain in D. First of all we estimate $u_{Q_{i+1}}-u_{Q_{i}}$. We may assume $l\left(Q_{i+1}\right) \leq l\left(Q_{i}\right)$, then $Q_{i+1} \cup$ $Q_{i} \subset 3 Q_{i} \subset D$, hence

$$
\begin{aligned}
\left|u_{Q_{i}}-u_{3 Q_{i}}\right| & \leq \frac{1}{m\left(Q_{i}\right)} \int_{Q_{i}}\left|u-u_{3 Q_{i}}\right| d m \\
& \leq \frac{9}{m\left(3 Q_{i}\right)} \int_{3 Q_{i}}\left|u-u_{3 Q_{i}}\right| d m \leq 9\|u\|_{*, D}
\end{aligned}
$$

Similarly we have $\left|u_{3 Q_{i}}-u_{Q_{i+1}}\right| \leq 36\|u\|_{*, D}$, hence

$$
\left|u_{Q^{\prime}}-u_{Q}\right| \leq \sum_{i=0}^{n-1}\left|u_{Q_{i}}-u_{Q_{i+1}}\right| \leq \sum_{i=0}^{n-1} 45\|u\|_{*, D}=45\|u\|_{*, D} \delta_{D}\left(Q, Q^{\prime}\right) . \quad \text { Q.E.D. }
$$

Lemma 6 (cf. [RR], [J]). Let $u \in L_{\text {loc }}^{1}(D)$ be a function which belongs to $B M O(Q)$ for every square Q in D such that $d(Q, \partial D) \geq \lambda l(Q)(\lambda \geq 1)$ and $\|u\|_{*, Q} \leq K$ then u is in $B M O(D)$ and $\|u\|_{*, D} \leq A_{6} K \lambda$.

Proof. We set $[3 \lambda+\sqrt{2}]+1=s$. Let Q be arbitrary square in D. We may assume its center is the origin. We set $l(Q)=l$. Let $Q_{m}, m=1,2, \ldots$ be squares having the origin as its center and $l\left(Q_{m}\right)=\left(1-2^{-m}\right) l$. We deompose
$Q_{m}, m \geq 2$ into congruent subsquares with side length $2^{-m-1} l$ and \mathscr{D}_{m} denotes the set of every such subsquare which is not contained in Q_{m-1}. Concerning Q_{1}, we decompose it into 4 congruent subsquares which we denotes \mathscr{D}_{1}, then $\# \mathscr{D}_{m}=2^{m+3}-12$. Further we decompose each square of \mathscr{D}_{m} into s^{2} congruent subsquares by decompose its sides into s pieces, which is denoted by $\mathscr{D}_{m}^{\prime}=\left\{Q_{m, i}\right\}$, $1 \leq i \leq s^{2}\left(2^{m+3}-12\right)$. Let $Q_{m, i} \cap Q_{m^{\prime}, i^{\prime}} \neq \emptyset$ then $1 / 2 \leq l\left(Q_{m, i}\right) / l\left(Q_{m^{\prime}, i^{\prime}}\right) \leq 2$. We may assume $l\left(Q_{m, i}\right) \geq l\left(Q_{m^{\prime}, i^{\prime}}{ }^{\prime}\right.$. Then $Q_{m, i} \cup Q_{m^{\prime}, i^{\prime}} \subset 3 Q_{m, i}$ and

$$
\frac{d\left(3 Q_{m, i}, \partial D\right)}{l\left(3 Q_{m, i}\right)} \geq \frac{d\left(Q_{m, i}, \partial D\right)-\sqrt{2} l\left(Q_{m, i}\right)}{3 l\left(Q_{m, i}\right)} \geq \frac{s-\sqrt{2}}{3} \geq \lambda
$$

hence $3 Q_{m, i}$ satisfy the condition of lemma. It follows $\left|u_{Q_{m, i}}-u_{Q_{m^{\prime}, i}}\right| \leq 45 \mathrm{~K}$ by the same argument as lemma 5. Let Q_{0} be one of the square in $\left\{Q_{1, i}\right\}$ containing the origin. Then we can join every square in $Q_{m, i}$ to Q_{0} by a chain which consists of at most $m s$ squares, hence

$$
\begin{aligned}
\int_{Q}\left|u-u_{Q_{0}}\right| d m & \leq \sum_{m, i} \int_{Q_{m, i}}\left(\left|u-u_{Q_{m, i}}\right|+\left|u_{Q_{m, i}}-u_{Q_{0}}\right|\right) d m \\
& \leq \sum_{m, i}\left(m\left(Q_{m, i}\right) K+m\left(Q_{m, i}\right) 45 K m s\right) \\
& \leq \sum_{m, i} m\left(Q_{m, i}\right) 46 K m s \\
& =\sum_{m=1}^{\infty} l^{2} s^{-2} 2^{-2 m-2} \cdot 46 K m s \cdot s^{2}\left(2^{m+3}-12\right) \\
& \leq 92 l^{2} s K \sum_{m=1}^{\infty} m 2^{-m} \leq A K l^{2} \lambda
\end{aligned}
$$

and so $m(Q)^{-1} \int_{Q}\left|u-u_{Q}\right| d m \leq 2 m(Q)^{-1} \int_{Q}\left|u-u_{Q_{0}}\right| d m \leq A K \lambda$.
Q.E.D.

Lemma 7. Let Q_{0} be a square in $\mathscr{D}(D)$. We set a function $F_{Q_{0}} \in L_{\text {loc }}^{1}(D)$ as follows;

$$
F_{Q_{0}}(x)=W_{D}\left(Q, Q_{0}\right), \quad x \in Q \in \mathscr{D}(D)
$$

Then $F_{Q_{0}}$ is a $B M O(D)$ function and $\left\|F_{Q_{0}}\right\|_{*, D} \leq A_{7}$.
Proof. Let $Q \in \mathscr{A}(D)$, then the proof of lemma 3 shows that Q intersect at most 36 squares in $\mathscr{D}(D)$, hence $\left\|F_{Q_{0}}\right\|_{*, Q} \leq 36$. Therefore we have $\left\|F_{Q_{0}}\right\|_{*, Q} \leq$ $A_{6} \cdot 36 \cdot 32$ by lemma 6 .
Q.E.D.

Let D_{1} be a subdomain of D_{2}. Assume that every $\operatorname{BMO}\left(D_{1}\right)$ function is the restriction to D_{1} of some $B M O\left(D_{2}\right)$ function. Then by open mapping theorem there exists a constant $N \geq 1$ such that for every $u \in B M O\left(D_{1}\right)$, we can find an extension $\hat{u} \in B M O\left(D_{2}\right)$ of u satisfying

$$
\|\hat{u}\|_{*, D_{2}} \leq N\|u\|_{*, D_{1}} .
$$

$\mathscr{E}\left(D_{2}, N\right)$ denotes the set of all subdomains of D_{2} which satisfy above condition.

Lemma 8. $\mathscr{E}\left(D_{2}, N\right) \subset \mathscr{U}\left(D_{2}, A_{8} N\right)$.
Proof. Let $D_{1} \in \mathscr{E}\left(D_{2}, N\right)$ and fix a square $Q_{0} \in \mathscr{D}\left(D_{1}\right)$. Let $F_{Q_{0}}$ be the function in lemma 7, then $\left\|F_{Q_{0}}\right\|_{*, D_{1}} \leq A_{7}$ by lemma 7. Hence there exists an extension $\hat{F}_{Q_{0}}$ of $F_{Q_{0}}$ such that $\left\|\hat{F}_{Q_{0}}\right\|_{*, D_{2}} \leq A_{7} N$ by hypothesis. Let $Q_{1} \in \mathscr{D}\left(D_{1}\right)$ then lemma 5 shows

$$
\begin{aligned}
W_{D_{1}}\left(Q_{1}, Q_{0}\right)-1 & \leq\left|\left(\hat{F}_{Q_{0}}\right)_{Q_{1}}-\left(\hat{F}_{Q_{0}}\right)_{Q_{0}}\right| \\
& \leq A_{5}\left\|\hat{F}_{Q_{0}}\right\|_{*, D_{2}} \delta_{D_{2}}\left(Q_{1}, Q_{0}\right) \leq A_{5} A_{7} N \delta_{D_{2}}\left(Q_{1}, Q_{0}\right),
\end{aligned}
$$

hence by lemma 4

$$
\delta_{D_{1}}\left(Q, Q^{\prime}\right) \leq 2 A_{4} A_{5} A_{7} N \delta_{D_{2}}\left(Q, Q^{\prime}\right), \quad Q, Q^{\prime} \in \mathscr{A}\left(D_{1}\right) . \quad \text { Q.E.D. }
$$

Lemma 9. Let $Q_{0}, Q_{1}, \ldots, Q_{n}$ be a geodesic Whitney chain in $D_{1} \in \mathscr{U}\left(D_{2}, M\right)$ such that $l\left(Q_{0}\right)=l\left(Q_{n}\right)$ and $d\left(Q_{0}, Q_{n}\right) \geq B_{1}(M) l\left(Q_{0}\right)$. Further assume there exists a square \tilde{Q} such that $Q_{0} \cup Q_{n} \subset \tilde{Q} \subset 2 \tilde{Q} \subset D_{2}$. Then there exists an integer i such that $l\left(Q_{i}\right)=2 l\left(Q_{0}\right)$.

Proof. Let $B_{1}(M)>0$ be a constant such that $t>2 \sqrt{2} M A_{3} A_{2} \log (3+t)$ holds for every $t \geq B_{1}(M)$. By lemma 1 and 3,

$$
\begin{aligned}
n & =W_{D_{1}}\left(Q_{0}, Q_{n}\right) \leq A_{3} \delta_{D_{1}}\left(Q_{0}, Q_{n}\right) \leq M A_{3} \delta_{D_{2}}\left(Q_{0}, Q_{n}\right) \leq M A_{3} A_{2} \psi\left(Q_{0}, Q_{n}\right) \\
& =2 M A_{3} A_{2} \log \left(3+\frac{d\left(Q_{0}, Q_{n}\right)}{l\left(Q_{0}\right)}\right)
\end{aligned}
$$

On the other hand if $l\left(Q_{i}\right) \leq l\left(Q_{0}\right)$ for every Q_{i} then

$$
d\left(Q_{0}, Q_{n}\right) \leq \sum_{i=1}^{n-1} \sqrt{2} l\left(Q_{i}\right) \leq n \sqrt{2} l\left(Q_{0}\right)
$$

hence

$$
\frac{d\left(Q_{0}, Q_{n}\right)}{l\left(Q_{0}\right)} \leq \sqrt{2} n \leq 2 \sqrt{2} M A_{3} A_{2} \log \left(3+\frac{d\left(Q_{0}, Q_{n}\right)}{l\left(Q_{0}\right)}\right)
$$

which is a contradiction. Hence there exists an integer i such that $l\left(Q_{i}\right)=2 l\left(Q_{0}\right)$. Q.E.D.

Lemma 10. Let $Q_{0}, Q_{1}, \ldots, Q_{n}$ be a geodesic Whitney chain in $D_{1} \in \mathscr{U}\left(D_{2}, M\right)$ such that $l\left(Q_{n}\right)=2 l\left(Q_{0}\right)$ and $l\left(Q_{i}\right)<l\left(Q_{n}\right), 0 \leq i \leq n-1$. Further assume there exists a square \tilde{Q} such that $Q_{0} \cup Q_{1} \cup \cdots \cup Q_{n} \subset \tilde{Q} \subset 2 \tilde{Q} \subset D_{2}$. Then we have

$$
n \leq B_{2}(M), \quad \frac{d\left(Q_{0}, Q_{n}\right)}{l\left(Q_{0}\right)} \leq B_{3}(M)
$$

Proof. Since $l\left(Q_{n-1}\right)=l\left(Q_{0}\right)$, we have $d\left(Q_{0}, Q_{n-1}\right)<B_{1}(M) l\left(Q_{0}\right)$ by applying lemma 9 to the geodesic Whitney chain $Q_{0}, Q_{1}, \ldots, Q_{n-1}$. Hence

$$
d\left(Q_{0}, Q_{n}\right) \leq d\left(Q_{0}, Q_{n-1}\right)+\sqrt{2} l\left(Q_{n-1}\right) \leq B(M) l\left(Q_{0}\right)
$$

Further

$$
\begin{align*}
n & =W_{D_{1}}\left(Q_{0}, Q_{n}\right) \leq M A_{3} A_{2} \psi\left(Q_{0}, Q_{n}\right) \\
& \leq 2 M A_{3} A_{2} \log \left(4+\frac{d\left(Q_{0}, Q_{n}\right)}{l\left(Q_{0}\right)}\right)=2 M A_{3} A_{2} \log (4+B(M))
\end{align*}
$$

Lemma 11. Let $Q_{0}, Q_{1}, \ldots, Q_{n}$ be a geodesic Whitney chain in $D_{1} \in \mathscr{U}\left(D_{2}, M\right)$ such that $l\left(Q_{i}\right)<l\left(Q_{n}\right), 0 \leq i \leq n-1$. Further assume there exists a square \tilde{Q} such that $Q_{0} \cup Q_{1} \cup \cdots \cup Q_{n} \subset \tilde{Q} \subset 2 \tilde{Q} \subset D_{2}$. Then we have

$$
n \leq B_{4}(M) \log \frac{l\left(Q_{n}\right)}{l\left(Q_{0}\right)}, \quad \frac{d\left(Q_{0}, Q_{n}\right)}{l\left(Q_{n}\right)} \leq B_{5}(M)
$$

Proof. Let $l\left(Q_{n}\right)=2^{m} l\left(Q_{0}\right)$ and set

$$
s_{k}=\min \left\{i l l\left(Q_{i}\right)=2^{k} l\left(Q_{0}\right)\right\}, \quad 0 \leq k \leq m .
$$

By applying lemma 9 to the geodesic Whitney chain $Q_{s_{k}}, Q_{s_{k}+1}, \ldots, Q_{s_{k+1}}$ we have

$$
s_{k+1}-s_{k} \leq B_{2}(M), \quad \frac{d\left(Q_{s_{k+1}}, Q_{s_{k}}\right)}{l\left(Q_{s_{k}}\right)} \leq B_{3}(M),
$$

hence

$$
n=\sum_{k=0}^{m-1}\left(s_{k+1}-s_{k}\right) \leq m B_{2}(M) \leq B(M) \log \frac{l\left(Q_{n}\right)}{l\left(Q_{0}\right)} .
$$

And so

$$
\begin{aligned}
d\left(Q_{0}, Q_{n}\right) & \leq \sum_{k=0}^{m-1} d\left(Q_{s_{k}}, Q_{s_{k+1}}\right)+\sum_{k=1}^{m-1} \sqrt{2} l\left(Q_{s_{k}}\right) \\
& \leq B_{3}(M) \sum_{k=0}^{m-1} l\left(Q_{s_{k}}\right)+\sum_{k=1}^{m-1} \sqrt{2} l\left(Q_{s_{k}}\right) \\
& \leq\left(B_{3}(M)+\sqrt{2}\right) \sum_{k=0}^{m-1} 2^{k} l\left(Q_{0}\right) \leq B(M) l\left(Q_{n}\right) .
\end{aligned}
$$

Q.E.D.

Lemma 12. Let $Q_{0}, Q_{1}, \ldots, Q_{n}$ be a geodesic Whitney chain in $D_{1} \in \mathscr{U}\left(D_{2}, M\right)$ and \hat{Q} one of the largest square in this chain. Then

$$
\log \left(2+\frac{l(\hat{Q})}{l\left(Q_{0}\right)}\right)\left(2+\frac{l(\hat{Q})}{l\left(Q_{n}\right)}\right) \leq A_{9} n .
$$

Further if there exists a square \tilde{Q} such that $Q_{0} \cup Q_{1} \cup \cdots \cup Q_{n} \subset \tilde{Q} \subset 2 \tilde{Q} \subset D_{2}$ then

$$
n \leq B_{6}(M) \log \left(2+\frac{l(\hat{Q})}{l\left(Q_{0}\right)}\right)\left(2+\frac{l(\hat{Q})}{l\left(Q_{n}\right)}\right), \quad d\left(Q_{0}, Q_{n}\right) \leq B_{7}(M) l(\hat{Q}) .
$$

Proof. The first inequality is trivial since $1 / 2 \leq l\left(Q_{i+1}\right) / l\left(Q_{i}\right) \leq 2$. Next assume there exists a square \tilde{Q} such that $Q_{0} \cup Q_{1} \cup \cdots \cup Q_{n} \subset \widetilde{Q} \subset 2 \tilde{Q} \subset D_{2}$. We
set $S=\left\{i \mid 0 \leq i \leq n, l\left(Q_{j}\right)=l(\hat{Q})\right\}, i_{1}=\min S, i_{2}=\max S$. Lemma 11 shows that

$$
\begin{array}{cc}
i_{1} \leq B_{4}(M) \log \frac{l\left(Q_{i_{1}}\right)}{l\left(Q_{0}\right)}, & \frac{d\left(Q_{0}, Q_{i_{1}}\right)}{l\left(Q_{i_{1}}\right)} \leq B_{5}(M) \\
n-i_{2} \leq B_{4}(M) \log \frac{l\left(Q_{i_{2}}\right)}{l\left(Q_{n}\right)}, & \frac{d\left(Q_{i_{2}}, Q_{n}\right)}{l\left(Q_{i_{2}}\right)} \leq B_{5}(M)
\end{array}
$$

and lemma 9 shows that

$$
\frac{d\left(Q_{i_{1}}, Q_{i_{2}}\right)}{l\left(Q_{i_{1}}\right)}<B_{1}(M)
$$

Hence

$$
\begin{aligned}
i_{2}-i_{1} & =W_{D_{1}}\left(Q_{i_{1}}, Q_{i_{2}}\right) \leq M A_{3} \delta_{D_{2}}\left(Q_{i_{1}}, Q_{i_{2}}\right) \leq M A_{3} A_{2} \psi\left(Q_{i_{1}}, Q_{i_{2}}\right) \\
& =2 M A_{3} A_{2} \log \left(3+\frac{d\left(Q_{i_{1}}, Q_{i_{2}}\right)}{l\left(Q_{i_{1}}\right)}\right) \leq 2 M A_{3} A_{2} \log \left(3+B_{1}(M)\right) \leq B(M)
\end{aligned}
$$

And so

$$
\begin{aligned}
n & =\left(n-i_{2}\right)+\left(i_{2}-i_{1}\right)+i_{1} \\
& \leq B_{4}(M) \log \frac{l\left(Q_{i_{2}}\right)}{l\left(Q_{n}\right)}+B(M)+B_{4}(M) \log \frac{l\left(Q_{i_{1}}\right)}{l\left(Q_{0}\right)} \\
& \leq B(M) \log \left(2+\frac{l(\hat{Q})}{l\left(Q_{0}\right)}\right)\left(2+\frac{l(\hat{Q})}{l\left(Q_{n}\right)}\right),
\end{aligned}
$$

further

$$
\begin{align*}
d\left(Q_{0}, Q_{n}\right) & \leq d\left(Q_{0}, Q_{i_{1}}\right)+\sqrt{2} l\left(Q_{i_{1}}\right)+d\left(Q_{i_{1}}, Q_{i_{2}}\right)+\sqrt{2} l\left(Q_{i_{2}}\right)+d\left(Q_{i_{2}}, Q_{n}\right) \\
& \leq B_{5}(M) l\left(Q_{i_{1}}\right)+\sqrt{2} l\left(Q_{i_{1}}\right)+B_{1}(M) l\left(Q_{i_{1}}\right)+\sqrt{2} l\left(Q_{i_{2}}\right)+B_{5}(M) l\left(Q_{i_{2}}\right) \\
& \leq B(M) l(\hat{Q}) .
\end{align*}
$$

Corollary 1. Let $D \in \mathscr{U}\left(\mathbf{R}^{2}, M\right)$ and $Q, Q^{\prime} \in \mathscr{D}(D)$. And Q is the largest square in a ginven geodesic Whitney chain joining Q and Q^{\prime}. Then

$$
B_{6}(M)^{-1} W_{D}\left(Q, Q^{\prime}\right) \leq \log \left(2+\frac{l(\hat{Q})}{l(Q)}\right)\left(2+\frac{l(\hat{Q})}{l\left(Q^{\prime}\right)}\right) \leq A_{9} W_{D}\left(Q, Q^{\prime}\right) .
$$

Lemma 13. Let $D_{1} \in \mathscr{U}\left(D_{2}, M\right)$ and $Q, Q^{\prime} \in \mathscr{D}\left(D_{1}\right)$. Assume there exists a square \tilde{Q} such that

$$
Q \cup Q^{\prime} \subset \tilde{Q} \subset 6 \tilde{Q} \subset D_{2}, \quad d\left(Q, Q^{\prime}\right) \geq \frac{1}{4} l(\tilde{Q})
$$

Let $Q=Q_{0}, Q_{1}, \ldots, Q_{n}=Q^{\prime}$ be a geodesic Whitney chain in D_{1}. Then there exists an integer i satisfying

$$
l\left(Q_{i}\right) \geq B_{8}(M) l(\tilde{Q}), \quad Q_{i} \subset 3 \tilde{Q}
$$

Proof. In the case that $Q_{0} \cup Q_{1} \cup \cdots \cup Q_{n} \subset 3 \tilde{Q}$, since $2(3 \tilde{Q})=6 \tilde{Q} \subset D_{2}$, lemma 12 shows that there exists an integer i such that

$$
l\left(Q_{i}\right) \geq \frac{d\left(Q_{0}, Q_{n}\right)}{B_{7}(M)} \geq \frac{l(\widetilde{Q})}{4 B_{7}(M)} .
$$

Next in the case that $Q_{0} \cup Q_{1} \cup \cdots \cup Q_{n} \notin 3 \tilde{Q}$ then there exists an integer m such that

$$
Q_{0} \cup Q_{1} \cup \cdots \cup Q_{m} \subset 3 \tilde{Q}, \quad Q_{m+1} \notin 3 \tilde{Q}
$$

If $l\left(Q_{m}\right)<l(\widetilde{Q}) / 12$ then

$$
\begin{aligned}
l(\tilde{Q}) & \leq d\left(Q_{0}, \partial(3 \tilde{Q})\right) \leq d\left(Q_{0}, Q_{m}\right)+\sqrt{2} l\left(Q_{m}\right)+\sqrt{2} l\left(Q_{m+1}\right) \\
& \leq d\left(Q_{0}, Q_{m}\right)+\frac{\sqrt{2} l(\tilde{Q})}{12}+\frac{2 \sqrt{2} l(\tilde{Q})}{12}=d\left(Q_{0}, Q_{m}\right)+\frac{\sqrt{2} l(\tilde{Q})}{4}
\end{aligned}
$$

hence

$$
\left(1-\frac{\sqrt{2}}{4}\right) l(\tilde{Q}) \leq d\left(Q_{0}, Q_{m}\right)
$$

And so by applying lemma 12 to $Q_{0} \cup Q_{1} \cup \cdots \cup Q_{m}$ it follows that there exists an integer $i, 0 \leq i \leq m$ such that $d\left(Q_{0}, Q_{m}\right) \leq B_{7}(M) l\left(Q_{i}\right)$ therefore

$$
l\left(Q_{i}\right) \geq \frac{d\left(Q_{0}, Q_{m}\right)}{B_{7}(M)} \geq \frac{\left(1-\frac{\sqrt{2}}{4}\right) l(\tilde{Q})}{B_{7}(M)} \geq \frac{l(\tilde{Q})}{4 B_{7}(M)}
$$

It follows that the constant

$$
B_{8}(M)=\min \left\{\frac{1}{4 B_{7}(M)}, \frac{1}{12}\right\}
$$

satisfys our assertion.
Q.E.D.

Let $D_{1} \in \mathscr{U}\left(D_{2}, M\right)$. In the following we set $D^{\prime}=D_{2} \backslash \overline{D_{1}}$ and $\mathscr{D}\left(D^{\prime}\right)$ denotes its Whitney decomposition.

Lemma 14. Let $D_{1} \in \mathscr{U}\left(D_{2}, M\right)$ and Q a square in D_{2}. Then there exists a square $\tilde{Q}^{\prime} \in \mathscr{D}\left(D_{1}\right) \cup \mathscr{D}\left(D^{\prime}\right)$ and a dyadic square Q^{\prime} such that

$$
Q^{\prime} \subset \tilde{Q}^{\prime} \cap Q, \quad l\left(Q^{\prime}\right) \geq B_{9}(M) l(Q)
$$

Proof. We may assume that $2 Q \subset D_{2}$ by considering ($1 / 2$) Q instead of Q if necessary. Let $Q=[a, a+l] \times[b, b+l]$ and set

$$
\begin{aligned}
& Q_{\alpha}=\left[a+\frac{1}{3} l, a+\frac{5}{12} l\right] \times\left[b+\frac{1}{3} l, b+\frac{5}{12} l\right], \\
& Q_{\beta}=\left[a+\frac{7}{12} l, a+\frac{2}{3} l\right] \times\left[b+\frac{7}{12} l, b+\frac{2}{3} l\right] .
\end{aligned}
$$

In the case that $Q_{\alpha}{ }^{\circ} \subset D_{1}$, let Q^{\prime} be the dyadic square in $\mathscr{D}\left(Q_{\alpha}\right)$ containing the center of Q_{α}. Then

$$
l\left(Q^{\prime}\right) \geq \frac{1}{66} d\left(Q^{\prime}, \partial Q_{\alpha}\right) \geq \frac{1}{66}\left(\frac{l\left(Q_{\alpha}\right)}{2}-l\left(Q^{\prime}\right)\right)
$$

and so $l\left(Q^{\prime}\right) \geq \frac{1}{134} l\left(Q_{\alpha}\right)=\frac{1}{1608} l(Q)$. And since $Q_{\alpha}{ }^{\circ} \subset D_{1}$ there exists a square $\tilde{Q}^{\prime} \in \mathscr{D}\left(D_{1}\right)$ containing Q^{\prime}.

We can prove similarly in the case that $Q_{\alpha}{ }^{\circ} \subset D^{\prime}, Q_{\beta}{ }^{\circ} \subset D_{1}, Q_{\beta}{ }^{\circ} \subset D^{\prime}$, hence we may assume that $Q_{\alpha}{ }^{\circ} \cap \partial D_{1} \neq \emptyset$ and $Q_{\beta}{ }^{\circ} \cap \partial D_{1} \neq \emptyset$. In this case we can find two squares $Q_{\alpha}^{\prime} \in \mathscr{D}\left(D_{1}\right), Q_{\beta}^{\prime} \in \mathscr{D}\left(D_{1}\right)$ such that $Q_{\alpha}^{\prime} \subset Q_{\alpha}, Q_{\beta}^{\prime} \subset Q_{\beta}$. Hence if we set $\hat{Q}=\frac{1}{3} Q$ then

$$
\begin{gathered}
Q_{\alpha}^{\prime} \cup Q_{\beta}^{\prime} \subset Q_{\alpha} \cup Q_{\beta} \subset \hat{Q} \subset 6 \hat{Q} \subset D_{2}, \\
d\left(Q_{\alpha}^{\prime}, Q_{\beta}^{\prime}\right) \geq d\left(Q_{\alpha}, Q_{\beta}\right)=\frac{\sqrt{2}}{2} l(\hat{Q}) \geq \frac{1}{4} l(\hat{Q}),
\end{gathered}
$$

and so lemma 13 implies that there exists a square $Q^{\prime}\left(=\tilde{Q}^{\prime}\right) \in \mathscr{D}\left(D_{1}\right)$ such that

$$
Q^{\prime} \subset 3 \hat{Q}=Q, \quad l\left(Q^{\prime}\right) \geq B_{8}(M) l(\hat{Q})=\frac{B_{8}(M)}{3} l(Q), \quad \text { Q.E.D. }
$$

Especially no point of $\left(\partial D_{1}\right) \cap D_{2}$ is the density point for $\left(\partial D_{1}\right) \cap D_{2}$, hence
Corollary 2. Let $D_{1} \in \mathscr{U}\left(D_{2}, M\right)$ then $m\left(\left(\partial D_{1}\right) \cap D_{2}\right)=0$.
Lemma 15. Let $D_{1} \in \mathscr{U}\left(D_{2}, M\right)$ and $\mathscr{D}\left(D_{1}\right)$ contain arbitrary large square, then for every square $Q^{\prime} \in \mathscr{D}\left(D^{\prime}\right)$ such that $d\left(Q^{\prime}, \partial D_{2}\right) \geq B_{10}(M) d\left(Q^{\prime}, \partial D^{\prime} \cap D_{2}\right)$ there exists a square $Q \in \mathscr{D}\left(D_{1}\right)$ and a square $\tilde{Q} \subset D_{2}$ such that

$$
l(Q)=l\left(Q^{\prime}\right), \quad d\left(Q, Q^{\prime}\right) \leq B_{11}(M) l\left(Q^{\prime}\right) \quad Q \cup Q^{\prime} \subset \tilde{Q} \subset 2 \tilde{Q} \subset D_{2}
$$

Proof. We set $L(M)=\max \left\{4 B_{7}(M), 300\right\}$ and choose two constants $B_{10}(M) \geq 1, B_{11}(M)>0$ so that

$$
32 B_{10}(M)-132-\frac{\sqrt{2}}{2}>\sqrt{2} L(M), \quad B_{11}(M)>\sqrt{2} L(M) .
$$

Then

$$
d\left(Q^{\prime}, \partial D_{2}\right) \geq B_{10}(M) d\left(Q^{\prime}, \partial D^{\prime} \cap D_{2}\right) \geq d\left(Q^{\prime}, \partial D^{\prime} \cap D_{2}\right)
$$

and so $d\left(Q^{\prime}, \partial D^{\prime} \cap D_{2}\right)=d\left(Q^{\prime}, \partial D^{\prime}\right)$. Hence there exists a square $Q_{0} \in \mathscr{D}\left(D_{1}\right)$ such that

$$
d\left(Q^{\prime}, Q_{0}\right) \leq 2 d\left(Q^{\prime}, \partial D^{\prime}\right), \quad l\left(Q_{0}\right) \leq l\left(Q^{\prime}\right)
$$

therefore by lemma 2

$$
d\left(Q^{\prime}, Q_{0}\right) \leq 2 d\left(Q^{\prime}, \partial D^{\prime}\right) \leq 132 l\left(Q^{\prime}\right)
$$

Let \tilde{Q} be a square having the same center z_{0} as Q_{0} and $l(\tilde{Q})=L(M) l\left(Q^{\prime}\right)$. Then

$$
\begin{aligned}
d\left(z_{0},\left(D_{2}\right)^{c}\right) & \geq d\left(\left(D_{2}\right)^{c}, Q^{\prime}\right)-d\left(Q^{\prime}, Q_{0}\right)-\frac{\sqrt{2}}{2} l\left(Q_{0}\right) \\
& \geq\left(32 B_{10}(M)-132-\frac{\sqrt{2}}{2}\right) l\left(Q^{\prime}\right)>\frac{\sqrt{2}}{2} 2 L(M) l\left(Q^{\prime}\right)=\frac{\sqrt{2}}{2} l(2 \tilde{Q}) .
\end{aligned}
$$

hence $2 \tilde{Q} \subset D_{2}$, further

$$
\begin{aligned}
\frac{L(M)}{2} l\left(Q^{\prime}\right) & =\frac{1}{2} l(\tilde{Q})=d\left(z_{0},(\tilde{Q})^{c}\right) \leq \frac{\sqrt{2}}{2} l\left(Q_{0}\right)+d\left(Q_{0}, Q^{\prime}\right)+\sqrt{2} l\left(Q^{\prime}\right)+d\left(Q^{\prime},(\tilde{Q})^{c}\right) \\
& \leq \frac{\sqrt{2}}{2} l\left(Q^{\prime}\right)+132 l\left(Q^{\prime}\right)+\sqrt{2} l\left(Q^{\prime}\right)+d\left(Q^{\prime},(\tilde{Q})^{c}\right)
\end{aligned}
$$

hence

$$
d\left(Q^{\prime},(\tilde{Q})^{c}\right) \geq\left(\frac{L(M)}{2}-132-\frac{3 \sqrt{2}}{2}\right) l\left(Q^{\prime}\right)>0
$$

and so $Q^{\prime} \subset \tilde{Q}$. Since $\mathscr{D}\left(D_{1}\right)$ contains arbitrary large square there exists a geodesic Whitney chain $Q_{0}, Q_{1}, \ldots, Q_{n}$ in D_{1} such that

$$
Q_{0}, Q_{1}, \ldots, Q_{n-1} \subset \tilde{Q}, \quad Q_{n} \notin \tilde{Q}
$$

We will show that $l\left(Q_{i}\right)=l\left(Q^{\prime}\right)$ for some integer $i, 0 \leq i \leq n-1$. We may assume $l\left(Q_{n-1}\right)<l\left(Q^{\prime}\right)$. Then $l\left(Q_{n}\right) \leq l\left(Q^{\prime}\right)$ and so

$$
\begin{aligned}
\frac{L(M)}{2} l\left(Q^{\prime}\right) & =\frac{1}{2} l(\tilde{Q})=d\left(z_{0}, \partial \tilde{Q}\right) \leq \frac{\sqrt{2}}{2} l\left(Q_{0}\right)+d\left(Q_{0}, Q_{n-1}\right)+\sqrt{2} l\left(Q_{n-1}\right)+\sqrt{2} l\left(Q_{n}\right) \\
& \leq \frac{5 \sqrt{2}}{2} l\left(Q^{\prime}\right)+d\left(Q_{0}, Q_{n-1}\right)
\end{aligned}
$$

hence

$$
d\left(Q_{0}, Q_{n-1}\right) \geq\left(\frac{L(M)}{2}-\frac{5 \sqrt{2}}{2}\right) l\left(Q^{\prime}\right) \geq \frac{L(M)}{4} l\left(Q^{\prime}\right)
$$

Therefore by applying lemma 12 to $Q_{0}, Q_{1}, \ldots, Q_{n-1} \subset \tilde{Q} \subset 2 \tilde{Q} \subset D_{2}$, there exists some $j, 0 \leq j \leq n-1$ such that

$$
l\left(Q_{j}\right) \geq \frac{d\left(Q_{0}, Q_{n-1}\right)}{B_{7}(M)} \geq \frac{L(M)}{4 B_{7}(M)} l\left(Q^{\prime}\right) \geq l\left(Q^{\prime}\right)
$$

and so there exist some $i, 0 \leq i \leq n-1$ such that $l\left(Q_{i}\right)=l\left(Q^{\prime}\right)$.
Moreover since $Q^{\prime} \cup Q_{i} \subset \tilde{Q}$ we have

$$
d\left(Q^{\prime}, Q_{i}\right) \leq \sqrt{2} l(\widetilde{Q}) \leq \sqrt{2} L(M) l\left(Q^{\prime}\right) \leq B_{11}(M) l\left(Q^{\prime}\right)
$$

Q.E.D.

For domains $D_{1} \in \mathscr{U}\left(D_{2}, M\right)$ such that $\mathscr{D}\left(D_{1}\right)$ contain arbitrary large square, we set

$$
\begin{gathered}
\mathscr{D}\left(D^{\prime}\right)_{\alpha}=\left\{Q^{\prime} \in \mathscr{D}\left(D^{\prime}\right) \mid d\left(Q^{\prime}, \partial D_{2}\right) \geq B_{10}(M) d\left(Q^{\prime}, \partial D^{\prime} \cap D_{2}\right)\right\}, \\
\mathscr{D}\left(D^{\prime}\right)_{\beta}=\mathscr{D}\left(D^{\prime}\right) \backslash \mathscr{D}\left(D^{\prime}\right)_{\alpha}, \quad D_{\alpha}^{\prime}=\bigcup_{Q \in \mathscr{Q}\left(D^{\prime}\right)_{\alpha}} Q, \quad D_{\beta}^{\prime}=\bigcup_{Q \in \mathscr{\mathscr { D }}\left(D^{\prime}\right)_{\beta}} Q .
\end{gathered}
$$

And for each $Q^{\prime} \in \mathscr{D}(D)_{\alpha}, \tau\left(Q^{\prime}\right)$ denotes one of the square Q in $\mathscr{D}\left(D_{1}\right)$ obtained by above lemma.

Let $u \in L_{l o c}^{1}\left(D_{1}\right)$. We extend this function to $D_{2} \backslash D_{\beta}^{\prime}$ by setting

$$
\tilde{u}(z)=u_{\tau\left(Q^{\prime}\right)}, \quad z \in Q^{\prime} \in \mathscr{D}\left(D^{\prime}\right)_{\alpha}
$$

on D_{α}^{\prime}. Note that \tilde{u} is defined almost everywhere on $D_{2} \backslash D_{\beta}^{\prime}$ by corollary 2.
Lemma 16. Let $D_{1} \in \mathscr{U}\left(D_{2}, M\right)$ and $\mathscr{D}\left(D_{1}\right)$ contain arbitrary large square. Let $u \in B M O\left(D_{1}\right)$. Then

$$
\left|\tilde{u}_{Q_{2}}-\tilde{u}_{Q_{1}}\right| \leq B_{12}(M)\|u\|_{*, D_{1}} \delta_{D_{2}}\left(Q_{2}, Q_{1}\right), \quad Q_{1}, Q_{2} \in \mathscr{D}\left(D_{1}\right) \cup \mathscr{D}\left(D^{\prime}\right)_{\alpha}
$$

Proof. We will prove this lemma only in the case $Q_{1}, Q_{2} \in \mathscr{D}\left(D^{\prime}\right)_{\alpha}$, since we can treat the other case as the same way.

Because of lemma 1 and 15

$$
\begin{aligned}
\delta_{D_{2}}\left(Q_{1}, \tau\left(Q_{1}\right)\right) & \leq A_{2} \psi\left(Q_{1}, \tau\left(Q_{1}\right)\right)=2 A_{2} \log \left(3+\frac{d\left(Q_{1}, \tau\left(Q_{1}\right)\right)}{l\left(Q_{1}\right)}\right) \\
& \leq 2 A_{2} \log \left(3+B_{11}(M)\right) \leq B(M)
\end{aligned}
$$

Similarly we have $\delta_{D_{2}}\left(Q_{2}, \tau\left(Q_{2}\right)\right) \leq B(M)$, therefore

$$
\begin{aligned}
\delta_{D_{2}}\left(\tau\left(Q_{2}\right), \tau\left(Q_{1}\right)\right) & \leq \delta_{D_{2}}\left(\tau\left(Q_{2}\right), Q_{2}\right)+\delta_{D_{2}}\left(Q_{2}, Q_{1}\right)+\delta_{D_{2}}\left(Q_{1}, \tau\left(Q_{1}\right)\right) \\
& \leq B(M)+\delta_{D_{2}}\left(Q_{2}, Q_{1}\right) \leq B(M) \delta_{D_{2}}\left(Q_{2}, Q_{1}\right)
\end{aligned}
$$

And so by lemma 5 we have

$$
\begin{aligned}
\left|\tilde{u}_{Q_{2}}-\tilde{u}_{Q_{1}}\right| & =\left|u_{\tau\left(Q_{2}\right)}-u_{\tau\left(Q_{1}\right)}\right| \leq A_{5}\|u\|_{*, D_{1}} \delta_{D_{1}}\left(\tau\left(Q_{2}\right), \tau\left(Q_{1}\right)\right) \\
& \leq A_{5}\|u\|_{*, D_{1}} M \delta_{D_{2}}\left(\tau\left(Q_{2}\right), \tau\left(Q_{1}\right)\right) \leq A_{5}\|u\|_{*, D_{1}} M B(M) \delta_{D_{2}}\left(Q_{2}, Q_{1}\right)
\end{aligned}
$$

Q.E.D.

Lemma 17. Let $D_{1} \in \mathscr{U}\left(D_{2}, M\right)$ and $\mathscr{D}\left(D_{1}\right)$ contain arbitrary large square. Let Q be a dyadic square such that $Q \subset D_{2} \backslash D_{\beta}^{\prime}$ and $2 Q \subset D_{2}$. Let $u \in B M O\left(D_{1}\right)$. Then

$$
\frac{1}{m(Q)} \int_{Q}\left|\tilde{u}-\tilde{u}_{Q}\right| d m \leq B_{13}(M)\|u\|_{*, D_{1}}
$$

Proof. Let $s>0$ be the smallest integer such that $2^{s} B_{9}(M)>1$. We decompose Q into $2^{2 s}$ congruent dyadic subsquares by dividing its each side into $N=2^{s}$ pieces. Then by lemma 14 , at least one of such N^{2} subsquares \hat{Q} satisfys the
condition

$$
\hat{Q} \subset Q^{\prime} \cap Q, \quad l(\hat{Q})=\frac{1}{N} l(Q)
$$

for some $Q^{\prime} \in \mathscr{D}\left(D_{1}\right) \cup \mathscr{D}\left(D^{\prime}\right)_{\alpha}$. Let $\left\{Q_{j_{1}}\right\}_{j_{1}=1,2, \ldots, N^{2-1}}$ be the set of all such subsquares except for \hat{Q}. Further, we decompose each $Q_{j_{1}}$ into N^{2} congruent dyadic subsquares by dividing its each side into N pieces similarly, and $\hat{Q}_{j_{1}}$ and $Q_{j_{1}}^{\prime} \in$ $\mathscr{D}\left(D_{1}\right) \cup \mathscr{D}\left(D^{\prime}\right)_{\alpha}$ are two squares which satisfy

$$
\hat{Q}_{j_{1}} \subset Q_{j_{1}}^{\prime} \cap Q_{j_{1}}, \quad l\left(\hat{Q}_{j_{1}}\right)=\frac{1}{N} l\left(Q_{j_{1}}\right) .
$$

Let $\left\{Q_{j_{1} j_{2}}\right\}_{j_{2}=1,2, \ldots, N^{2}-1}$ be the set of all such subsquares of $Q_{j_{1}}$ except for $\hat{Q}_{j_{1}}$. And by repeating this process, we obtain three families of dyadic squares $Q_{j_{1} j_{2} \ldots j_{n}}^{\prime} \in$ $\mathscr{D}\left(D_{1}\right) \cup \mathscr{D}\left(D^{\prime}\right)_{\alpha}$ and $\hat{Q}_{j_{1} j_{2} \ldots j_{n}}, Q_{j_{1} j_{2} \ldots j_{n}}$ such that

$$
\begin{gathered}
Q_{j_{1} j_{2} \ldots j_{n-1}}=\bigcup_{j_{n}} Q_{j_{1} j_{2} \ldots j_{n}} \cup \hat{Q}_{j, j_{2} \ldots j_{n-1}}, \\
\hat{Q}_{j, j_{2} \ldots j_{n}} \subset Q_{j_{i}, j_{2} \ldots j_{n}}^{\prime} \cap Q_{j, j_{2} \ldots j_{n}}, \quad l\left(\hat{Q}_{j, j_{2} \ldots j_{n}}\right)=\frac{1}{N} l\left(Q_{j, j_{2} \ldots j_{n}}\right) .
\end{gathered}
$$

Then

$$
\begin{aligned}
\sum_{j_{1} j_{2} \ldots j_{n}} m\left(Q_{j_{1} j_{2} \ldots j_{n}}\right) & =\left(1-\frac{1}{N^{2}}\right) \sum_{j_{1} j_{2} \ldots j_{n-1}} m\left(Q_{j_{1} j_{2} \ldots j_{n-1}}\right)=\cdots \\
& =\left(1-\frac{1}{N^{2}}\right)^{n-1} \sum_{j_{1}} m\left(Q_{j_{1}}\right)=\left(1-\frac{1}{N^{2}}\right)^{n} m(Q) .
\end{aligned}
$$

hence, by regarding $Q_{j_{1} j_{2} \ldots j_{n}}=Q, \hat{Q}_{j_{1} j_{2} \ldots j_{n}}=\hat{Q}$ when $n=0$, we have

$$
\sum_{j_{1} j_{2} \ldots j_{n}} m\left(\hat{Q}_{j_{1} j_{2} \ldots j_{n}}\right)=\frac{1}{N^{2}} \sum_{j_{1} j_{2} \ldots j_{n}} m\left(Q_{j_{1} j_{2} \ldots j_{n}}\right)=\frac{1}{N^{2}}\left(1-\frac{1}{N^{2}}\right)^{n} m(Q) .
$$

Therefore

$$
\sum_{n=0}^{\infty} \sum_{j_{1} j_{2} \ldots j_{n}} m\left(\hat{Q}_{j_{1} j_{2} \ldots j_{n}}\right)=m(Q) .
$$

Hence the family $\left\{\hat{Q}_{j_{1} j_{2} \ldots j_{n}}\right\}$ make a decomposition of Q.
Here we will show that $\left|\tilde{u}_{\hat{d}_{j, j_{2} \ldots j_{n}}}-\tilde{u}_{\hat{Q}_{j_{, j 2}, \ldots j_{n-1}}}\right| \leq B(M)\|u\|_{* . D_{1}}$.
(Case 1) $Q_{j_{1} j_{2} \ldots j_{n-1}} \subset Q_{j_{1} j_{2} \ldots j_{n-1}}^{\prime}$. When $Q_{j_{1} j_{2} \ldots j_{n-1}}^{\prime} \in \mathscr{D}\left(D_{1}\right)$ then

$$
\hat{Q}_{j_{1} j_{2} \ldots j_{n}} \cup \hat{Q}_{j_{1} j_{2} \ldots j_{n-1}} \subset Q_{j_{1} j_{2} \ldots j_{n-1}}^{\prime} \subset 2 Q_{j_{1} j_{2} \ldots j_{n-1}}^{\prime} \subset D_{1}
$$

hence by lemma 5 and 1

$$
\begin{aligned}
\mid \hat{u}_{\hat{Q}_{j_{2}, \ldots, j_{n}}}-\hat{u}_{\hat{Q}_{j_{1}, \ldots, j_{n-1}}} & \leq A_{5}\|u\|_{*, D_{1}} \delta_{D_{1}}\left(\hat{Q}_{j_{1} j_{2} \ldots j_{n}}, \hat{Q}_{j_{1} j_{2} \ldots j_{n-1}}\right) \\
& \leq A_{5} A_{2}\|u\|_{*, D_{1}} \psi\left(\hat{Q}_{j_{1} j_{2} \ldots j_{n}}, \hat{Q}_{j_{1} j_{2} \ldots j_{n-1}}\right) \leq A\|u\|_{*, D_{1}}
\end{aligned}
$$

And when $Q_{j_{1} j_{2} \ldots j_{n-1}}^{\prime} \in \mathscr{D}\left(D^{\prime}\right)_{\alpha}$ then \hat{u} is a constant function on $Q_{j_{1} j_{2} \ldots j_{n-1}}$ hence it follows that $\left|\hat{u}_{\hat{Q}_{j_{1}, \ldots j_{n}}}-\hat{u}_{\hat{Q}_{J_{1 / 2} \ldots j_{n-1}}}\right|=0$.
(Case 2) $Q_{j_{1} j_{2} \ldots j_{n-1}}^{\prime} \subset Q_{j_{1} j_{2} \ldots j_{n-1}}$. Then $Q_{j_{1} j_{2} \ldots j_{n}}^{\prime} \subset Q_{j_{1} j_{2} \ldots j_{n-1}}$, hence

$$
Q_{j_{1} j_{2} \ldots j_{n}}^{\prime} \cup Q_{j_{1} j_{2} \ldots j_{n-1}}^{\prime} \subset Q_{j_{1} j_{2} \ldots j_{n-1}} \subset Q \subset 2 Q \subset D_{2}
$$

When $Q_{j_{1} j_{2} \ldots j_{n}}^{\prime} \in \mathscr{D}\left(D_{1}\right)$ then

$$
\begin{aligned}
& \left|\tilde{u}_{\hat{Q}_{j, j_{2} \ldots j_{n}}}-\tilde{u}_{Q_{j, j_{2} \ldots j_{n}}^{\prime}}\right|=\left|u_{\hat{Q}_{j, j_{2} \ldots j_{n}}}-u_{Q_{j_{i, 2} \ldots j_{n}}}\right| \\
& \leq \frac{1}{m\left(\hat{Q}_{j_{1} j_{2} \ldots j_{n}}\right)} \int_{\hat{Q}_{j_{j}, \ldots j_{n}}}\left|u-u_{Q_{\mathcal{L}_{j}, \ldots j_{n}}^{\prime}}\right| d m \\
& \leq N^{4} \frac{1}{m\left(Q_{\left.j_{1} j_{2} \ldots j_{n}\right)}^{\prime}\right)} \int_{Q_{j_{j, 2} \ldots, j_{n}}^{\prime}}\left|u-u_{Q_{j_{1}, \ldots j_{n}}^{\prime}}\right| d m \leq N^{4}\|u\|_{*, D_{1}} .
\end{aligned}
$$

And when $Q_{j_{1} j_{2} \ldots j_{n}}^{\prime} \in \mathscr{D}\left(D^{\prime}\right)_{\alpha}$ then $\left|\tilde{u}_{\hat{Q}_{i, 2} \ldots j_{n}}-\tilde{u}_{Q_{j_{1}, \ldots j_{n}}^{\prime}}\right|=0$. Therefore we have

$$
\left|\tilde{u}_{\hat{Q}_{1, j_{2} \ldots j_{n}}}-\tilde{u}_{Q_{j_{1,2}, \ldots, j_{n}}^{\prime}}\right| \leq N^{4}\|u\|_{*, D_{1}}
$$

in either case. Similarly we obtain

$$
\left|\tilde{u}_{\hat{Q}_{j, j_{2} \ldots j_{n-1}}}-\tilde{u}_{Q_{j, j_{2} \ldots j_{n-1}}^{\prime}}\right| \leq N^{2}\|u\|_{*, D_{1}}
$$

Further by lemma 16 and 1

$$
\left|\tilde{u}_{Q_{j, j_{2} \ldots j_{n}}^{\prime}}-\tilde{u}_{Q_{j_{1}, \ldots j_{n-1}}^{\prime}}\right| \leq B_{12}(M) A_{2}\|u\|_{*, D_{1}} \psi\left(Q_{j_{1} j_{2} \ldots j_{n}}^{\prime}, Q_{j_{1} j_{2} \ldots j_{n-1}}^{\prime}\right) \leq B(M)\|u\|_{*, D_{1}} .
$$

It follows that

$$
\begin{aligned}
\left|\tilde{u}_{\hat{Q}_{j, j_{2} \ldots j_{n}}}-\tilde{u}_{\hat{Q}_{j_{1,2} \ldots j_{n-1}}}\right| \leq & \left|\tilde{u}_{\hat{Q}_{j, j_{2} \ldots j_{n}}}-\tilde{u}_{Q_{j, j_{2} \ldots j_{n}}^{\prime}}\right|+\left|\tilde{u}_{Q_{j_{1}, \ldots j_{n}}^{\prime}}-\tilde{u}_{Q_{j, j_{2} \ldots j_{n-1}}^{\prime}}\right| \\
& +\left|\tilde{Q}_{Q_{1,2} \ldots j_{n-1}}^{\prime}-\tilde{u}_{\hat{Q}_{j_{2}, \ldots, j_{n-1}}}\right| \\
\leq & B(M)\|u\|_{*, D_{1}} .
\end{aligned}
$$

And so

$$
\left|\tilde{u}_{\hat{Q}}-\tilde{u}_{\hat{Q}_{j_{1}, \ldots, j_{n}}}\right| \leq \sum_{i=1}^{n}\left|\tilde{u}_{\hat{Q}_{j_{1}, j_{2} \ldots i}}-\tilde{u}_{\hat{Q}_{j_{1}, \ldots} \ldots j_{-1}}\right| \leq n B(M)\|u\|_{*, D_{1}} .
$$

hence

$$
\begin{aligned}
\int_{Q}\left|\tilde{u}-\tilde{u}_{\hat{Q}}\right| d m & \leq \sum_{n=0}^{\infty} \sum_{j_{1} j_{2} \ldots j_{n}} \int_{\hat{Q}_{j_{1}, j_{2} \ldots j_{n}}}\left(\left|\tilde{u}-\tilde{u}_{\hat{Q}_{j_{1}, \ldots, j_{n}}}\right|+\left|\tilde{u}_{\hat{Q}_{j_{1} j_{2} \ldots j_{n}}}-\tilde{u}_{\hat{Q}}\right|\right) d m \\
& \leq \sum_{n=0}^{\infty} \sum_{j_{1} j_{2} \ldots j_{n}}\left(\|u\|_{*, D_{1}}+n B(M)\|u\|_{*, D_{1}}\right) m\left(\hat{Q}_{j_{1} j_{2} \ldots j_{n}}\right) \\
& \leq \sum_{n=0}^{\infty} n B(M)\|u\|_{*, D_{1}} \frac{1}{N^{2}}\left(1-\frac{1}{N^{2}}\right)^{n} m(Q) \leq B(M)\|u\|_{*, D_{1}} m(Q) .
\end{aligned}
$$

Q.E.D.

Lemma 18. Let $u \in L_{\text {loc }}^{1}(Q)$ satisfy the following condition;

$$
\begin{gathered}
\frac{1}{m\left(Q^{\prime}\right)} \int_{Q^{\prime}}\left|u-u_{Q^{\prime}}\right| d m \leq K, \quad Q^{\prime} \in \mathscr{D}(Q), \\
\left|u_{Q^{\prime}}-u_{Q^{\prime \prime}}\right| \leq K, \quad \text { if } Q^{\prime}, Q^{\prime \prime} \in \mathscr{D}(Q), \quad Q^{\prime} \cap Q^{\prime \prime} \neq \emptyset
\end{gathered}
$$

then $u \in L^{1}(Q)$ and

$$
\frac{1}{m(Q)} \int_{Q}\left|u-u_{Q}\right| d m \leq A_{10} K .
$$

Proof. Let Q_{0} be the largest square in $\mathscr{D}(Q)$. Set

$$
\mathscr{F}_{m}=\left\{Q^{\prime} \in \mathscr{D}(Q) \left\lvert\, l\left(Q^{\prime}\right)=\frac{1}{2^{m-1}} l\left(Q_{0}\right)\right.\right\}, \quad 1 \leq m<\infty
$$

then we can show the following estimate easily;

$$
\begin{gathered}
\sum_{Q^{\prime} \in \mathscr{F}_{m}} m\left(Q^{\prime}\right) \leq A 2^{-m} m(Q), \\
W_{Q}\left(Q^{\prime}, Q_{0}\right) \leq A m, \quad Q^{\prime} \in \mathscr{F}_{m} .
\end{gathered}
$$

hence

$$
\begin{aligned}
\int_{Q}\left|u-u_{Q_{0}}\right| d m & \leq \sum_{m=1}^{\infty} \sum_{Q^{\prime} \in \mathscr{F}_{m}} \int_{Q^{\prime}}\left(\left|u-u_{Q^{\prime}}\right|+\left|u_{Q^{\prime}}-u_{Q_{0}}\right|\right) d m \\
& \leq \sum_{m=1}^{\infty} \sum_{Q^{\prime} \in \mathscr{F}_{m}}(K+K A m) m\left(Q^{\prime}\right) \\
& \leq A K \sum_{m=1}^{\infty} \frac{m}{2^{m}} m(Q) \leq A K m(Q),
\end{aligned}
$$

and so $m(Q)^{-1} \int_{Q}\left|u-u_{Q}\right| d m \leq 2 m(Q)^{-1} \int_{Q}\left|u-u_{Q_{0}}\right| d m \leq A K$.
Q.E.D.

Lemma 19. Let $D_{1} \in \mathscr{U}\left(D_{2}, M\right)$ and $\mathscr{D}\left(D_{1}\right)$ contain arbitrary large square. Let Q be a square such that $Q \subset D_{2} \backslash D_{\beta}^{\prime}$ and $u \in \operatorname{BMO}\left(D_{1}\right)$. Then

$$
\frac{1}{m(Q)} \int_{Q}\left|\tilde{u}-\tilde{u}_{Q}\right| d m \leq B_{14}(M)\|u\|_{*, D_{1}} .
$$

Proof. Let $Q_{1}, Q_{2} \in \mathscr{D}(Q), Q_{1} \cap Q_{2} \neq \emptyset$. By lemma 17 and 18 , it suffices to show that $\left|\tilde{u}_{Q_{1}}-\tilde{u}_{Q_{2}}\right| \leq B(M)\|u\|_{*, D_{1}}$. By the proof of lemma 17 , there exist two dyadic squares $\hat{Q}_{i},(i=1,2)$ in Q_{i} and two squares $Q_{i}^{\prime} \in \mathscr{D}\left(D_{1}\right) \cup \mathscr{D}\left(D^{\prime}\right)_{\alpha}$ such that

$$
\hat{Q}_{i} \subset Q_{i}^{\prime} \cap Q_{i}, \quad l\left(\hat{Q}_{i}\right)=\frac{1}{N} l\left(Q_{i}\right) .
$$

(Case 1) If $l\left(Q_{1}^{\prime}\right) \geq 4 l\left(Q_{1}\right)$ and $Q_{1}^{\prime} \in \mathscr{D}\left(D_{1}\right)$ then since $Q_{2} \subset 2 Q_{1}^{\prime}$ it holds that $Q_{1}^{\prime} \cap Q_{2}^{\prime} \neq \emptyset$ and $Q_{2} \subset Q_{2}^{\prime}$. Hence Q_{1}, Q_{2} is an admissible chain in D_{1} and by lemma 5

$$
\left|\tilde{u}_{Q_{1}}-\tilde{u}_{Q_{2}}\right| \leq A_{5}\|u\|_{*, D_{1}} .
$$

(Case 2) If $l\left(Q_{1}^{\prime}\right) \geq 4 l\left(Q_{1}\right)$ and $Q_{1}^{\prime} \in \mathscr{D}\left(D^{\prime}\right)_{\alpha}$ the same argument as in case 1 shows

$$
Q_{1}^{\prime}, Q_{2}^{\prime} \in \mathscr{D}\left(D^{\prime}\right)_{\alpha}, \quad Q_{1} \subset Q_{1}^{\prime}, \quad Q_{2} \subset Q_{2}^{\prime}, \quad Q_{1}^{\prime} \cap Q_{2}^{\prime} \neq \emptyset .
$$

hence by lemma 16

$$
\left|\tilde{u}_{Q_{1}}-\tilde{u}_{Q_{2}}\right|=\left|\tilde{u}_{Q_{1}^{\prime}}-\tilde{u}_{Q_{2}^{\prime}}\right| \leq B_{12}(M)\|u\|_{*, D_{1}} .
$$

which also proves this lemma in the case $l\left(Q_{2}^{\prime}\right) \geq 4 l\left(Q_{2}\right)$, and finally (Case 3) Assume $l\left(Q_{1}^{\prime}\right) \leq 2 l\left(Q_{1}\right)$ and $l\left(Q_{2}^{\prime}\right) \leq 2 l\left(Q_{2}\right)$. In the case $Q_{1}^{\prime} \subset Q_{1}$ then by lemma 17
$\left|\tilde{u}_{Q_{1}^{\prime}}-\tilde{u}_{Q_{1}}\right| \leq \frac{1}{m\left(Q_{1}^{\prime}\right)} \int_{Q_{1}^{\prime}}\left|\tilde{u}-\tilde{u}_{Q_{1}}\right| d m \leq \frac{N^{2}}{m\left(Q_{1}\right)} \int_{Q_{1}}\left|\tilde{u}-\tilde{u}_{Q_{1}}\right| d m \leq N^{2} B_{13}(M)\|u\|_{*, D_{1}}$.
Next in the case $Q_{1} \subset Q_{1}^{\prime}$ then also by lemma 17, $\left|\tilde{u}_{Q_{1}^{\prime}}-\tilde{u}_{Q_{1}}\right| \leq 4 B_{13}(M)\|u\|_{*, D_{1}}$. Therefore $\left|\tilde{u}_{Q_{1}^{\prime}}-\tilde{u}_{Q_{1}}\right| \leq B(M)\|u\|_{*, D_{1}}$ holds in either case. Similarly we have $\left|\tilde{u}_{Q_{2}^{\prime}}-\tilde{u}_{Q_{2}}\right| \leq B(M)\|u\|_{*, D_{1}}$. Moreover since

$$
\frac{1}{N} l\left(Q_{i}\right) \leq l\left(Q_{i}^{\prime}\right) \leq 2 l\left(Q_{i}\right), \quad l\left(Q_{i}^{\prime}\right) \leq 4 l\left(Q_{1-i}\right), \quad d\left(Q_{i}^{\prime}, Q_{1-i}^{\prime}\right) \leq 3 \sqrt{2} l\left(Q_{i}\right), \quad i=0,1
$$

it holds that

$$
\psi\left(Q_{1}^{\prime}, Q_{2}^{\prime}\right) \leq 2 \log \{1+N(4+2+3 \sqrt{2})\} \leq B(M)
$$

and since $Q_{1}^{\prime} \cup Q_{2}^{\prime} \subset 9 Q_{1} \subset 18 Q_{1} \subset D_{2}$ lemma 16 and 1 show that

$$
\begin{aligned}
\left|\tilde{u}_{Q_{1}^{\prime}}-\tilde{u}_{Q_{2}^{\prime}}\right| & \leq B_{12}(M)\|u\|_{*, D_{1}} \delta_{D_{2}}\left(Q_{1}^{\prime}, Q_{2}^{\prime}\right) \\
& \leq B_{12}(M)\|u\|_{*, D_{1}} A_{2} \psi\left(Q_{1}^{\prime}, Q_{2}^{\prime}\right) \leq B(M)\|u\|_{*, D_{1}} .
\end{aligned}
$$

Hence

$$
\left|\tilde{u}_{Q_{1}}-\tilde{u}_{Q_{2}}\right| \leq\left|\tilde{u}_{Q_{1}}-\tilde{u}_{Q_{1}^{\prime}}\right|+\left|\tilde{u}_{Q_{1}^{\prime}}-\tilde{u}_{Q_{2}^{\prime}}\right|+\left|\tilde{u}_{Q_{2}^{\prime}}-\tilde{u}_{Q_{2}}\right| \leq B(M)\|u\|_{*, D_{1}} .
$$

Q.E.D.

Lemma 20. Let $D_{1} \in \mathscr{U}\left(D_{2}, M\right)$ and $\mathscr{D}\left(D_{1}\right)$ contain arbitrary large square. Let $u \in B M O\left(D_{1}\right)$ and $Q \in \mathscr{D}\left(D^{\prime}\right)_{\beta}$. We set

$$
S(u, Q)=\sup \left\{\tilde{u}\left(Q^{\prime}\right)-B_{12}(M)\|u\|_{*, D_{1}} \delta_{D^{\prime}}\left(Q, Q^{\prime}\right) \mid Q^{\prime} \in \mathscr{D}\left(D^{\prime}\right)_{\alpha}\right\}
$$

where $B_{12}(M)$ is the constant in lemma 16 , then $S(u, Q)<\infty$ and if we define the extension \hat{u} of \tilde{u} to D_{2} by setting

$$
\hat{u}(z)=S(u, Q), \quad z \in Q \in \mathscr{D}\left(D^{\prime}\right)_{\beta},
$$

on D_{β}^{\prime}, then

$$
\left|\hat{u}_{Q_{2}}-\hat{u}_{Q_{1}}\right| \leq B_{12}(M)\|u\|_{*, D_{1}} W_{D^{\prime}}\left(Q_{2}, Q_{1}\right), \quad Q_{1}, Q_{2} \in \mathscr{D}\left(D^{\prime}\right) .
$$

Proof. Let $Q \in \mathscr{D}\left(D^{\prime}\right)_{\beta}$. First of all we show $S(u, Q)<\infty$. Let Q_{0}, Q_{1} be arbitrary squares in $\mathscr{D}\left(D^{\prime}\right)_{\alpha}$, then by lemma 15

$$
\begin{aligned}
\tilde{u}_{Q_{1}}-\tilde{u}_{Q_{0}} & \leq B_{12}(M)\|u\|_{*, D_{1}} \delta_{D_{2}}\left(Q_{1}, Q_{0}\right) \leq B_{12}(M)\|u\|_{*, D_{1}} \delta_{D^{\prime}}\left(Q_{1}, Q_{0}\right) \\
& \leq B_{12}(M)\|u\|_{*, D_{1}}\left(\delta_{D^{\prime}}\left(Q_{1}, Q\right)+\delta_{D^{\prime}}\left(Q, Q_{0}\right)\right)
\end{aligned}
$$

hence

$$
\tilde{u}_{Q_{1}}-B_{12}(M)\|u\|_{*, D_{1}} \delta_{D^{\prime}}\left(Q_{1}, Q\right) \leq \tilde{u}_{Q_{0}}+B_{12}(M)\|u\|_{*, D_{1}} \delta_{D^{\prime}}\left(Q, Q_{0}\right) .
$$

and so $S(u, Q) \leq \tilde{u}_{Q_{0}}+B_{12}(M)\|u\|_{*, D_{1}} \delta_{D^{\prime}}\left(Q, Q_{0}\right)<\infty$.
Next let $Q_{1}, Q_{2} \in \mathscr{D}\left(D^{\prime}\right)_{\beta}$ be squares which adjacent to each other. Let $Q^{\prime} \in \mathscr{D}\left(D^{\prime}\right)_{\alpha}$, then $\hat{u}_{Q_{1}} \geq \tilde{u}\left(Q^{\prime}\right)-B_{12}(M)\|u\|_{*, D_{1}} \delta_{D^{\prime}}\left(Q_{1}, Q^{\prime}\right)$ hence

$$
\begin{aligned}
\hat{u}_{Q_{1}}+B_{12}(M)\|u\|_{*, D_{1}} & \geq \tilde{u}\left(Q^{\prime}\right)-B_{12}(M)\|u\|_{*, D_{1}}\left(\delta_{D^{\prime}}\left(Q_{1}, Q^{\prime}\right)-\delta_{D^{\prime}}\left(Q_{1}, Q_{2}\right)\right) \\
& \geq \tilde{u}\left(Q^{\prime}\right)-B_{12}(M)\|u\|_{*, D_{1}} \delta_{D^{\prime}}\left(Q^{\prime}, Q_{2}\right) .
\end{aligned}
$$

and so $\hat{u}_{Q_{1}}+B_{12}(M)\|u\|_{*, D_{1}} \geq \hat{u}_{Q_{2}}$. Therefore by the symmetry for Q_{1}, Q_{2}

$$
\left|\hat{u}_{Q_{1}}-\hat{u}_{Q_{2}}\right| \leq B_{12}(M)\|u\|_{*, D_{1}} .
$$

Next let $Q_{1} \in \mathscr{D}\left(D^{\prime}\right)_{\beta}, Q_{2} \in \mathscr{D}\left(D^{\prime}\right)_{\alpha}$ be squares which adjacent to each other. Then

$$
\hat{u}_{Q_{1}} \geq \tilde{u}_{Q_{2}}-B_{12}(M)\|u\|_{*, D_{1}} \delta_{D^{\prime}}\left(Q_{1}, Q_{2}\right)=\tilde{u}_{Q_{2}}-B_{12}(M)\|u\|_{*, D_{1}} .
$$

Let Q^{\prime} be an arbitrary square in $\mathscr{D}\left(D^{\prime}\right)_{\alpha}$. Then by applying lemma 16

$$
\begin{aligned}
& \tilde{u}_{Q^{\prime}}-B_{12}(M)\|u\|_{*, D_{1}} \delta_{D^{\prime}}\left(Q_{1}, Q^{\prime}\right) \\
& \quad \leq\left(\tilde{u}_{Q_{2}}+B_{12}(M)\|u\|_{*, D_{1}} \delta_{D^{\prime}}\left(Q_{2}, Q^{\prime}\right)\right)-B_{12}(M)\|u\|_{*, D_{1}} \delta_{D^{\prime}}\left(Q_{1}, Q^{\prime}\right) \\
& \quad \leq\left(\tilde{u}_{Q_{2}}+B_{12}(M)\|u\|_{*, D_{1}} .\right.
\end{aligned}
$$

hence $\hat{u}_{Q_{1}} \leq \tilde{u}_{Q_{2}}+B_{12}(M)\|u\|_{*, D_{1}}$ and so $\left|\hat{u}_{Q_{1}}-\hat{u}_{Q_{2}}\right| \leq B_{1_{2}}(M)\|u\|_{*, D_{1}}$.
Hence by combining lemma 16 we obtain $\left|\hat{u}_{Q_{1}}-\hat{u}_{Q_{2}}\right| \leq B_{12}(M)\|u\|_{*, D_{1}}$ for all $Q_{1}, Q_{2} \in \mathscr{D}\left(D^{\prime}\right)$ which are adjacent to each other. Therefore

$$
\left|\hat{u}_{Q_{2}}-\hat{u}_{Q_{1}}\right| \leq B_{12}(M)\|u\|_{*, D^{\prime}} W_{D^{\prime}}\left(Q_{2}, Q_{1}\right), \quad Q_{1}, Q_{2} \in \mathscr{D}\left(D^{\prime}\right) . \quad \text { Q.E.D. }
$$

Lemma 21. Let $D_{1} \in \mathscr{U}\left(D_{2}, M\right)$ and $\mathscr{D}\left(D_{1}\right)$ contain arbitrary large square. Let $u \in \operatorname{BMO}\left(D_{1}\right)$. Then \hat{u} belongs to $B M O\left(D_{2}\right)$ and it holds that

$$
\|\hat{u}\|_{*, D_{2}} \leq B_{15}(M)\|u\|_{*, D_{1}}
$$

Proof. We set

$$
L(M)=4\left(66 B_{10}(M)+\sqrt{2}\right) .
$$

Let $Q \subset D_{2}$ be a square such that $L(M) l(Q) \leq d\left(Q_{1}, \partial D_{2}\right)$.
(Case 1) If $Q \subset D_{2} \backslash D_{\beta}^{\prime}$ then by lemma 19

$$
\frac{1}{m(Q)} \int_{Q}\left|\hat{u}-\hat{u}_{Q}\right| d m \leq B_{14}(M)\|u\|_{*, D_{1}} .
$$

(Case 2) If $Q \not \not \not D_{2} \backslash D_{\beta}^{\prime}$ then there exists a square $Q_{0} \in \mathscr{D}\left(D^{\prime}\right)_{\beta}$ such that $Q_{0} \cap Q \neq$ \emptyset. When $d\left(Q_{0}, \partial D_{2}\right) \leq d\left(Q_{0}, \partial D^{\prime} \cap D_{2}\right)$ then

$$
d\left(Q_{0}, \partial D_{2}\right)=d\left(Q_{0}, \partial D^{\prime}\right) \leq 66 l\left(Q_{0}\right)
$$

and when $d\left(Q_{0}, \partial D_{2}\right)>d\left(Q_{0}, \partial D^{\prime} \cap D_{2}\right)$ then

$$
d\left(Q_{0}, \partial D_{2}\right) \leq B_{10}(M) d\left(Q_{0}, \partial D^{\prime} \cap D_{2}\right)=B_{10}(M) d\left(Q_{0}, \partial D^{\prime}\right) \leq 66 B_{10}(M) l\left(Q_{0}\right)
$$

Hence it holds that $d\left(Q_{0}, \partial D_{2}\right) \leq 66 B_{10}(M) l\left(Q_{0}\right)$ in either case. And so

$$
66 B_{10}(M) l\left(Q_{0}\right) \geq d\left(Q_{0}, \partial D_{2}\right) \geq d\left(Q, \partial D_{2}\right)-\sqrt{2} l\left(Q_{0}\right) \geq L(M) l(Q)-\sqrt{2} l\left(Q_{0}\right)
$$

hence

$$
l\left(Q_{0}\right) \geq \frac{L(M)}{66 B_{10}(M)+\sqrt{2}} l(Q) \geq 4 l(Q)
$$

therefore Q is covered by at most 4 squares in $\mathscr{D}\left(D^{\prime}\right)$, hence by lemma 20

$$
\frac{1}{m(Q)} \int_{Q}\left|\hat{u}-\hat{u}_{Q}\right| d m \leq \sup _{z_{1}, z_{2} \in Q}\left|\hat{u}\left(z_{2}\right)-\hat{u}\left(z_{1}\right)\right| \leq 4 B_{12}(M)\|u\|_{*, D_{1}} .
$$

And so by lemma $6 \hat{u}$ belongs to $B M O\left(D_{2}\right)$ and

$$
\|u\|_{*, D_{2}} \leq A_{6} \max \left\{B_{14}(M), 4 B_{12}(M)\right\} L(M)\|u\|_{*, D_{1}} .
$$

To remove the restriction for domain D_{1}, we need several lemmas below.
Lemma 22. Let $D_{1} \in \mathscr{U}\left(D_{2}, M\right)$ and $z_{0} \in D_{1}$. We set $D_{1}^{\prime}=D_{1} \backslash\left\{z_{0}\right\}, D_{2}^{\prime}=$ $D_{2} \backslash\left\{z_{0}\right\}$ then $D_{1}^{\prime} \in \mathscr{U}\left(D_{2}^{\prime}, A_{11} M\right)$.

Proof. Let u be a function in $B M O\left(D_{1}^{\prime}\right)$ then we can easily show that u is in $\operatorname{BMO}\left(D_{1}\right)$ and $\|u\|_{*, D_{1}} \leq A\|u\|_{*, D_{1}^{\prime}}$, which implies $D_{1}^{\prime} \in \mathscr{E}\left(D_{1}, A\right)$ (cf. [RR].) Hence for $Q_{1}, Q_{2} \in \mathscr{A}\left(D_{1}^{\prime}\right)$ we have

$$
\delta_{D_{1}^{\prime}}\left(Q_{1}, Q_{2}\right) \leq A A_{8} \delta_{D_{1}}\left(Q_{1}, Q_{2}\right) \leq A A_{8} M \delta_{D_{2}}\left(Q_{1}, Q_{2}\right) \leq A A_{8} M \delta_{D_{2}^{\prime}}\left(Q_{1}, Q_{2}\right)
$$

by lemma 8 . Hence $D_{1}^{\prime} \in \mathscr{U}\left(D_{2}^{\prime}, A A_{8} M\right)$.
Q.E.D.

Lemma 23. Let $f: D \rightarrow D^{\prime}$ be a conformal map, $Q_{i},(i=1,2)$ admissible squares in D having z_{i} as its center. Let $Q_{i}^{\prime},(i=1,2)$ be admissible squares in D^{\prime} having $f\left(z_{i}\right)$ as its center satisfying $d\left(Q_{i}^{\prime}, \partial D^{\prime}\right) / l\left(Q_{i}^{\prime}\right)=d\left(Q_{i}, \partial D\right) / l\left(Q_{i}\right)$ then

$$
\frac{1}{A_{12}} \delta_{D}\left(Q_{1}, Q_{2}\right) \leq \delta_{D^{\prime}}\left(Q_{1}^{\prime}, Q_{2}^{\prime}\right) \leq A_{12} \delta_{D}\left(Q_{1}, Q_{2}\right)
$$

Proof. Let Q be arbitrary admissible squares in D having z_{0} as its center and let Q^{\prime} be the admissible squares in D^{\prime} having $f\left(z_{0}\right)$ as its center and satisfying $d\left(Q^{\prime}, \partial D^{\prime}\right) / l\left(Q^{\prime}\right)=d(Q, \partial D) / l(Q)$ then Koebe's distortion theorem shows that

$$
\frac{1}{A} Q^{\prime} \subset f(Q) \subset A Q^{\prime}
$$

hence we can easily prove our assertion.
Q.E.D.

Lemma 24. Let $D_{1} \in \mathscr{U}\left(D_{2}, M\right)$ and $f: D_{2} \rightarrow D_{2}^{\prime}$ a conformal map, we set $D_{1}^{\prime}=$ $f\left(D_{1}\right)$ then $D_{1}^{\prime} \in \mathscr{U}\left(D_{2}^{\prime}, A_{13} M\right)$

Proof. Let $Q_{1}^{\prime}, Q_{2}^{\prime} \in \mathscr{A}\left(D^{\prime}\right)$ and Q_{1}, Q_{2} admissible squares in D corresponding to $Q_{1}^{\prime}, Q_{2}^{\prime}$ in lemma 23. Then

$$
\delta_{D_{1}^{\prime}}\left(Q_{1}^{\prime}, Q_{2}^{\prime}\right) \leq A_{12} \delta_{D_{1}}\left(Q_{1}, Q_{2}\right) \leq A_{12} M \delta_{D_{2}}\left(Q_{1}, Q_{2}\right) \leq A_{12}^{2} M \delta_{D_{2}^{\prime}}\left(Q_{1}^{\prime}, Q_{2}^{\prime}\right)
$$

hence $D_{1}^{\prime} \in \mathscr{U}\left(D_{2}^{\prime}, A_{12}{ }^{2} M\right)$.
Q.E.D.

Proposition 1 ([R], [J]). Let $f: D \rightarrow D^{\prime}$ be a conformal map, then for every $u \in B M O\left(D^{\prime}\right)$, $u \circ f$ belong to $B M O(D)$ and $\|u \circ f\|_{*, D} \leq A_{14}\|u\|_{*, D^{\prime}}$.

Lemma 25. $\mathscr{U}\left(D_{2}, M\right) \subset \mathscr{E}\left(D_{2}, B_{16}(M)\right)$.
Proof. Let $D_{1} \in \mathscr{U}\left(D_{2}, M\right)$. Let $z_{0} \in D_{1}$ and set $D_{1}^{\prime}=D_{1} \backslash\left\{z_{0}\right\}, D_{2}^{\prime}=D_{2} \backslash\left\{z_{0}\right\}$ then by lemma $22, D_{1}^{\prime} \in \mathscr{U}\left(D_{2}^{\prime}, A_{11} M\right)$. We set

$$
f(z)=\frac{1}{z-z_{0}}, \quad D_{1}^{\prime \prime}=f\left(D_{1}^{\prime}\right), \quad D_{2}^{\prime \prime}=f\left(D_{2}^{\prime}\right)
$$

then by lemma $24, D_{1}^{\prime \prime} \in \mathscr{U}\left(D_{2}^{\prime \prime}, A_{13} A_{11} M\right)$. Let $u \in B M O\left(D_{1}\right)$, then by proposition 1

$$
\left\|u \circ f^{-1}\right\|_{k, D_{1}^{\prime \prime}} \leq A_{14}\|u\|_{*, D_{1}^{\prime}} \leq A_{14}\|u\|_{*, D_{1}}
$$

and further by lemma 21 there exist some extension v of $u \circ f^{-1}$ to $D_{2}^{\prime \prime}$ such that

$$
\|v\|_{*, D_{2}^{\prime \prime}} \leq B_{15}\left(A_{13} A_{11} M\right)\left\|u \circ f^{-1}\right\|_{*, D_{1}^{\prime \prime}} .
$$

hence $\hat{u}=v \circ f$ is a extension of u to D_{2} such that

$$
\|\hat{u}\|_{*, D_{2}} \leq A\|\hat{u}\|_{*, D_{2}^{\prime}} \leq A A_{14}\|v\|_{*, D_{2}^{\prime \prime}} \leq A A_{14} B_{15}\left(A_{13} A_{11} M\right) A_{14}\|u\|_{*, D_{1}}
$$

which implies the assertion.
Q.E.D.

Remark 1. Let $D_{1} \in \mathscr{U}\left(D_{2}, M\right)$ then we constructed a non linear extension operator on $B M O\left(D_{1}\right)$ to $B M O\left(D_{2}\right)$. I don't know whether we can construct such linear operator or not.

References

[G] F. W. Gehring, Uniform domains and the Ubiquitous Quasidisk, Jahresber. Deutsch. Math.Verein., 89 (1987), 88-103.
[GO] F. W. Gehring and B. G. Osgood, Uniform domains and the quasi-hyperbolic metric, J. Analyse. Math., 36 (1979), 50-74.
[J] P. Jones, Extension theorems for BMO, Indiana Univ. Math. J., 29 (1980), 41-66.
[R] H. M. Reimann, Functions of bounded mean oscillation and quasiconformal mappings, Comm. Math. Helv., 49 (1974), 260-276.
[RR] H. M. Reimann and T. Rychener, Funktionen beschränkter mittelerer Oszillation, Lecture Notes in Math. 489, Springer, 1975.
[S] E. M. Stein, Sngular Integrals and differentiability properties of Functions, Princeton Univ. Press, 1970.

