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Introduction

Recent study of conformal field theory has provided new insights and tech-
niques concerning the moduli space of stable curves. Among them is an extensive
study o n  a n  interplay between the  representation theory o f infinite-dimensional
Lie algebras a n d  th e  theory o f  vector bundles o n  th e  m oduli space of stable
curves. The basic  idea  is  easy . C onsider th e  m oduli space o f  framed stable
curves (stable curves w ith coordinates). W hile it is clear that the  L ie  algebra
of infinitesimal change of coordinates acts on this moduli space, interesting point
is that even singular change of coordinates acts on  this m oduli space. The effect
of singular coordinate change is to deform  th e  shape o f curves. T hus the Lie
algebra of infinitesimal changes of coordinates, possibly with singularities, serves
a s  a  L ie  algebra o f infinitesimal symmetry o f  th e  m oduli space . T he algebra
plays an important role in  the  conformal field th e o ry . In certain circumstances,
however, the  universal central extension of the algebra, called the  V irasoro Lie
algebra, is more convenient to u s e .  It gives a  symmetry of the determinant line
bundle o n  th e  m o d u li sp a c e . I t  is  a lso  possible to  consider th e  algebra of
infinitesimal change of trivialization, possibly with singularities, a s  a n  algebra of
infinitesimal symmetry of the moduli space of framed vector bundles. The central
extension of this algebra is called an affine Lie a lgebra . S im ilar to  the theory
of vector bundles on a symmetric space, an interplay of Lie algebra representation
and vector bundles on  the  moduli space thus arises.

Following this idea, Tsuchiya, Ueno, and Yamada [TU Y ] constructed vector
bundles, called sheaves o f  vacua, over base schemes of local universal families
of framed stable curves. They further showed that there is a projective connection
o n  each such vector bundle. B ut w e m ay ask w hat kind o f  a  role the use of
coordinates plays. W e want a coordinate-free description of the theory to study
the  mechanism o f  this procedure deeper. In  fact, it is  p roved  in  [T U Y ] that
the  choice o f coordinate is unessential, b u t it  is  n o t  a t  a ll c le a r  a  p r io r i. In
this paper we give a simple and coordinate-free description of the construction
given there, and clarify the nature of the th e o ry . In  the  way we deal with the
notion of norm al ordering, which is used in the construction of the projective
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connection, by the effective use of explicit representation of the  Atiyah algebra
o f  a  determinant bundle, developed by Beilinson and  Schechtman [BS].

A s a  result, we construct the  sheaf of vacua o n  a  b a se  space of family of
pointed stable curves, without the  presence of coordinates, and  we describe the
infinitesimal symmetry of this sheaf by the infinitesimal symmetry of determinant
line and the  cotangent space of marked points.

L et us explain the content of this paper m ore precisely.
We first discuss the linear algebra of the ring C((t)) of formal Laurent power

series. In  differential geometric approach, a  loop algebra is an  algebra of func-
tions o n  a  circle with values in  a  L ie  algebra. In  stead o f using a  circle, we
u se  here th e  "infinitesimal circle", o r  th e  formal scheme Spf C((t)), a n  object
whose ring of functions consists of formal Laurent power series. The difference
between the  usual circle and  the  infinitesimal one comes from the  difference of
th e  topology used to complete th e  r in g  o f  regular functions C(t) o n  C \ {0},
namely, the  C'-topology o n  S 1 =  {z E C; 1z1 = 1} and  the  t-adic filtration topol-
o g y . B ut the  difference is not so serious. All we d o  in  this paper is to take
a  topological base and express the traces of operators by using them, just as in
th e  differential-geometric c a se  [S W ]. Thus th e  result o f  this paper may well
hold in the differential-geometric case also, with a  slight modifications concerning
the  topology. The advantage of our approach is that we can use a  strong tool
of the formal tech cohomology [BS], and that it gives an  algebraic construction
o f th e  theory. T he la tter suggests that we may remove the restriction of the
ground field being C .  Technical tools concerning the special kind of topological
bases of the topological vector space C((t)) are  summed up in section 0. They
are defined so that matrices we have to take determinants are essentially upper
triangular ones (cf. [KNTY], [SW].)

In section 1 we define, for each family X  —> S  of proper Gorenstein curves
with marked points Q 1 ,  .  .  .  ,  Q„, a  sheaf of affine Lie algebras and  develop an
"infinitesimal" analogue of representation theory of affine Lie algebras. We also
introduce in  this section the sheaf of covacua o n  S  attached to the  family,
introduced in  [T U Y ]. Not so much is known about this sheaf, b u t it has a
few nice properties, such as the  behavior under the  normalization of the curves
(factorization property), and  the  ex istence  o f a  natural projective connection.
(There is a deep relation between these two properties. See [Segal].)

We next m ention the definition and  the  symmetry of the  determinant line
bundle. It is surprising that th e  n o tio n  o f  th e  determinant line bundle of a
complex of sheaves defined in  algebraic geometry is well suited to the description
of what is called a n  "infinite determinant".

The infinitesimal symmetry, o r th e  Atiyah algebra, o f the  determinant line
bundle det 1127 r* Ox  , is studied by Beilingson and Shechtmann ([BS]). In section
3 , we extend their result to make it applicable  for a  family o f  curves with
singularities. Preliminary remarks about the Atiyah algebras are summarized in
section 2. There we also describe the weight algebra which describes the symme-
try of cotangent bundles along the marked points Q ..
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Finally, the projective connection o n  th e  sheaf of covacua is introduced in
section 4. The essential part o f this construction is to  give the  Sugawara form
in a coordinate-free manner using the Virasoro algebra defined in section 3.

The goal of this paper is to  prove the following.

Theorem 4.2. A  central ex tension of  the tangent bundle obtained by composing
the algebra o f  infinitesimal symmetries o f  the  determinant line bundle and that of
the relative cotangent bundles of  the curve along the divisors Q. ac ts  on the sheaf
o f  covacua.

Thus w e find a n  explicit relation of the projective connection o n  I I ,  and
the symmetry of the determinant line bundle. (Here  i s  the  sheaf of tangent
vectors o n  S  whose corresponding deformations o f  fibers preserves singularity.
See (0.1).)

The reader may see that our definition of the projective connection is much
more simpler than that of the original definition in  [TUY], done after a  lengthy
induction argument and complicated coordinate-dependent formulae. Our defini-
tion is suitable for calculation a n d  m ay be useful fo r the  further study of the
sheaf of covacua. W e hope our result will help understanding the relation be-
tween this theory and  the  theory of geometric quantization of moduli space of
stable bundles, developed, for example in  [Hitchin].

T he author is grateful to Professor K enji Ueno fo r giving him good ad-
vice. H e also thanks Dr. Satoshi Naito for discussions.

§0 . Preliminaries

0.0. Basic settings. T hroughout th is paper, 7r: X —> S  denotes a  proper
Gorenstein morphism o f schemes over C  with integral fibers of dimension one
(that is ,  a  family o f  proper algebraic curves, possibly with singularities.) The
assumption o f IC  to  b e  Gorenstein im p lie s  tha t it is  f la t an d  th a t  the relative
dualizing sheaf cox is  fo r TE on X  exists and is invertible. (See [H a].) W e assume
that S is smooth over C .  In particular, the tangent sheaf ,9- s o f  S is Os-flat. Let
qi : S X ( i  e [1, n]) be n mutually disjoint sections of 7E, and Q. = image qi . We
assume that it is smooth on some neighbourhood of each Q i . Denote the formal
neighbourhood of Q. b y  t/i ,  a n d  th a t  o f  th e  divisor D = U7=1 Q i b y  U: U =

D enote th e  o p en  se t X \supp D  b y  ) .C, U  = U fl X. N o t e  th a t .).0  is
affine over S.

0.1. Subsheaves of tangent sheaves. We begin with explaining some nota-
tions. C onsider an exact sequence

0 --+ —> d4 7E
*
 5

-
s .

The map d it  i s  surjective on U  because it is  sm o o th  a ro u n d  U .  W e pull the
above sequence back by the inclusion n- 1 9-

s  n * Y -s (reca ll tha t .9 -
s  i s  e s-flat.),

and  we obtain an exact sequence

O <In
—' .9 -xis —■ It S •
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The sheaf is th e  sheaf of germs of tangent vector fields whose horizontal
components are constant along the fibers of i t  [BS]. We define furthermore the
subsheaf X , i r , D o f g -

x . „ as

= ft G 5-X,7cIt preserves DI .

The sections of are  those of 3-
x  which are tangential to D.

F or later use, we define subsheaves and g -x' „, of 5S, .9— x ,„, and
X ,n,D  respectively a s  follows.

= n,(Image eg-s)) c tr* n*,.%; L-2 grs

gric ,„ = dir ( i t

= n g- x,„,,
Roughly speaking, 3", is  th e  sheaf of tangent vectors o n  S  whose corre-

sponding deformation o f th e  fiber of i t  (given by th e  Kodaira-Spencer theory)
preserves the singularity. As an example, consider a local universal desingulariza-
tion X —> S o f a  curve X0 a t  a n  ordinary double point P .  Namely, dim S = 1,
and there exists a  divisor F  o n  X , a  neighbourhood V of F, a  coordinate s on
S, x, y e F(V, (9,) with xy = s satisfying,

X \ F  (X o \P) x S (diffeomorphic)

V {(X, Y, Z)1XY = c A 3

si

S A1

Then g-
x'is is generated by s(0/0s) over (9s .

N ote that we have exact sequences

0 °

° g-X ls —' O.

0.2. Linear algebra o f  formal power series and residues. F o r  any closed
point so e S, we can choose a  neighbourhood So o f  s , such that there exists a
formal coordinate ti e F(So , ir* C ,,) around each Qi . (We always assume that
ti (Q ) = O.) The choice of these coordinates enables us to trivialize sheaves such
as

Ir*CtI e  ( 95(( 0 )
i=1

ÙS( .9 5 ( ( t1 ) ) d t1  .
i=1

We equip these sheaves with the  Jo -adic topology.
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W e have a canonical residue pairing between the above two sheaves, which
makes them topological duals.

?I) 
t r  E Rest i =o

i=1

= ( i (t i )) e n* coo se s ( ( t i ) ) d t i

= (rli(ti)) E '-='" es (( t i) )
i=1

Using residues, we may define various operators o n  rc (9e, and tc,,coo s a s
follows. Consider the  product Û  xs Û  over S  a n d  denote by A  the diagonal.
Each section f( t  ,  t 2 ) of (it x rt),(plco(*z1)10 e,) V lim (it x  n) * (plco(+ kt1)1Ù x s e ) de-

k
fines the following operators o n  n * Oe, and rr* c o o s .

((Reso f ) f ) , ( t i ) E Res ou ; ) f ( t ( i )

o c o m ti)  d ef((Res
°
L  R e s u =, ti)a)(u.i)

((Res, Of )i (t i ) dg . Resu = i , f a t i , u i ) f(u i )

((Res
°
 0 co),(t i ) t - f f i i ( u i ,  t i )co(u t )

(Res, 0 dg Res o r +  Res, r,

(Res' 0 4-11 Res
°
 +  Res' ix

Where f  e ir* C o, co e rr * wois , =  Ifx ,x u j ,  • • • , e.t.c.
N ote that Res, (0 ,  Res ° (0  are differential operators.
These operators satisfy the  following adjoint relations.

(co Res o (Of) = (Res f )

(col Res, (Of )  =  (Res
°
 M O f )

(col Res 4 (Of) =  ( — Res
°
 (f)o)1 f )

The following lemma is im portant for our la ter arguments.

Lemma 0.2 .1. For each f ,  there ex ists an  integer p  such that

Ker (Res o (0) D n * V9u ( — pD)) ,

Image (Res, (0 ) c 7 r * ((9u ( + pD)) .

A  similar property holds f o r Res
°
 an d  Res'.

0 .3 . Two ways of expansion . It is worthwhile to give a n  explanation for
these operators in  the following w a y . F o r  th e  sake of simplicity, in  this subsec-
tion we consider the case S = Spec C, and n =  1 and fix some formal coordinate
t  o f U.
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Put

 

g = {E ak ,i zk widw
k, leZ

ak,, E C, there exists a n  integer N  such that
ak,I = 0  for a ll k, 1 satisfying k +1 < N

It is regarded a s  an  algebra of operators on  the  vector space C((t)) as follows.

(Res e f)(t) =  R e s„  e(t, u)f(u) (e e g, f e C((t))) .

Each element t(z, w) of (7r x 7r)* (pIcox i s (*4)10 x E.,) admits two ways of expan-
sion, corresponding to the cases > wi and  zi <  w i. W e  th u s  have two ways
of regarding f  as an element of g, which we denote by /1z1, t  and /12, < Iw i t. For
example,

z
- k  - 1  

W
k

d w  ,
k=0

00

E  z k - i w - k d w .
k=0

In  these terms, Res, and  Res, is expressed as

Res, f = Res /1z1 , t(z, w)

Res, r= Res /121 <IwI t(z, w)

W e m ay  regard (7r x 7r)* (plcox / s (*.61))1,yx 0) a s  a  subalgebra o f  g  by  m eans of
.11zi > iw i o r

x n),(Picoxis(*A))16.(1)c4

This may be useful for construction of element of (n x n) *  (/) icox/s(*A” I o o)
by giving som e elem ent o f  g. (This is not m isleading, because if  /1z1, 1wi t, =
/Izi < iw i t , ,  then w e see f ,  a n d  t2 a r e  regular on 4 , a n d  then  w e have actually

=

0 .4 .  The notion of fram es. Taking a sufficiently small affine open subscheme
S, = Spec B , of S  such that w e have a  formal coordinate ti a long  each  Q .

n-
1 (S1 ). N ote that

F(S1; IC* (9 ) 0 7 = 1  B i ((ti )) .

W e equip this vector space with a  e  t i ./31((0)-adic topology.
W e introduce th e  following notions concerning special bases of n* (9E., and

its  subsheaves.
I. A local f ram e of n,et, (resp. n* G , resp. n* e u ) defined over S, is a  family

{f "} g e ,  of elements of F(S 1 ; n* (90 (resp. F(S„; n," ) ,  resp. ['(S 1 ; n & ) )  satisfying
the following conditions.

(1) The index set M  is an ordered set isomorphic to (Z, (resp. (—N,
resp. (N,

dw
z  w

dw
z  w
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(2) { f ' }
i s  a  topological b a s e . Namely, every element f  of F(S 1 ; ir, G )

(resp. F(S i ; 7r,(9k), resp. F(S 1 ; n,C o )) is expressed uniquely a s  a  conver-
gent linear combination o f { f " } , E ,  with coefficients in F(S 1 ; (9s ):

f =  E  f "
/LE M

(3) fm —> 0 as p —r +cc.
N ote tha t the  topology o f F(S 1 ; 7.c ,( Y  is  d iscre te . A  frame of 11,31 ;

is thus the  same a s  a  basis of this vector space.
II. A triple ( { e } , e m , { }„ „) of local frames of the three sheaves

r,00, 7 r , e u  (respectively) is said to be consistent if the  matrix expressing
W I , W I  b y  a  linear combination of {e"}  is "essentially upper triangular" one.
More precisely, it is consistent if there exists po e M, vo  e  N , i 1 e M , k i e K  such
tha t the following conditions are satisfied.

< P i ,
# N „. < aD , #K,Ki < co , n m< ,,) < + Go

m< ,. , m „ ,  K , K o , and  using this identification, we have

= e v + finite linear combination o f {ew}, > v( i f  v  v o )

= e" + convergent linear combination o f {e"'}„, < (if Ito)
Where we denote

{y e N; vo}, K < K , = lk  E K; K Lç_ IC . . . ,  etc ,

a n d  #  denotes the number of elements of a set.
III. A  local frame { e } , E m  o f  7r,Co is  sa id  to  b e  good if  it consists of a

disjoint union of a local frame of it..4 t9 a n d  a  lo c a l  frame of a n d  a  finite
number of functions. In  precise, it is good if there exists a  partition  of M

M N , K , N rIK ={ 0 } ,

M  = N ' LJ K ' u  M ' { 0}  ,

M ' < N ' < 0 < K ' , # M ' < +oo ,

where we denote N ' = N \{ 0}  , K ' = K \{ 0}  ,

su c h  th a t {el } { e"}, 1 i s  a  subset (necessarily a  frame) o f  ir* Ci,
respectively.

N ote tha t e°  is necessarily a n  invertible element of B 1 ,  which we assme to
b e  1 in  the  follow ing. The triple of frames ({e"} l e '  f e K L c K )  defined
by a  good local fram e is said to  be very consistent.

Now we have the following fundamental

Claim 0.4.1. If  the  base  schem e S  is N oetherian, then f o r any  closed point
x o  e S i , there alw ays ex ists a consistent triple of  local f ram es (e'}  , M , { v } v. N,
{t1K }KEK) defined on some affine open neighbourhood of  xo.
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Indeed, define {e "}, E m, n{• K }KEK in  the  following way.

M = Z  x [1, n] with the  lexicographic order,

K = {(k, i) e M k  0 }  ,

e(k mlu j = tì  • Suf o r  (k, i) E M

e
ck,i) for (k, i) e K .

{ v  v  N  m ay be chosen in  th e  following w ay. T he base  change theorem
im plies tha t the re  is  a n  integer 1(0 s u c h  th a t  fo r  a l l  pa irs (k, i) w ith  k < 1(0 ,
i e [1, n], there is a  function f ( " ) ,  regular over X ,  with a  form

(4') f  = Cle( " )  ±  higher order terms,a  e F(S 1 ; Cs ), a(x0 ) 0 O.

W e choose  such  func tions f o r  f in ite  su ch  pairs: (k, i) e {k, — 1, x  [1, n].
Shrinking S, if necessary, we may assume that all the leading coefficients of f (k .i )

a r e  1. Taking appropriate product o f  them , w e h a v e  a  family {V k m}, < k o  o f
functions of the form (*) defined on a common open neighbourhood of x0 . These
functions, together with finite number o f some extra functions (added to span
the lower order functions), gives a  required frame.

Similarly, we can show the following

Claim 0.4.2. If  the base scheme S  is Noetherian, then f o r any closed point
X0  E  S1 ,  there always exists a  good frame le#1 of  n * e u  defined on some affine
open neighbourhood of  x 0 .

0 .5 .  The notion of dual frames. We define the notion of a local frame of
n* wo s  in  th e  sam e way a s  a b o v e . N ote  th a t ir* Ou a n d  7r,„ coos a r e  th e  dual
topological vector space of each other by virtue of the  residue pairing.

Definition 0.5.1. The frames {p } , E ,,,, of ir* Ou (resp. n * (9i, resp. n * Cu ) and
{4 } , e ,  o f  n * o)ui s  (resp. n * ohy/ s /n * co i s , resp. rvou ls /n * cou / s ) are said to be dual
to each other if relations

( f  I f ') ( for all II, y e M)

hold.

It is easy  to  prove the following:

Lemma 0.5.2. For any local frame of  7r,! (resp. n * Ok, resp. ir,O u ), there
exists a unique local frame of ir* coui s  (resp. n * cou i s hvo,•a s , resp. 7vou / s /n.co u ls )
dual to it.

Furthermore, we see from the residue theorem, that a  dual of a  very consis-
tent triple of local frames is also very consistent, and the dual o f a  good frame
of n* Ou is also good, if we define these notions for cos t s  i n  a  similar manner
as in  the  preceding subsection.
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§ 1. Non-twisted affine Lie algebras and their representations

In  this section, we define a  sheaf of non-twisted affine Lie algebras g ' on  S
associated to a  finite-dimensional simple Lie algebra A, and construct sheaves of
its highest weight representations .11,, .99A. This can  be  done  by  rewriting the
constructions in [Kac], Chapter 7, in the language of sheaves, with paying atten-
tion to coordinate-freeness. The 'sheaf of covacua' is then defined by posing a
'gauge' condition' on

1.1. Non-twisted affine Lie algebra g'. T h e  realization of non-twisted affine
Lie algebras using explicit formula for the cocycle, is easily extended to the sheaf
version as fo llow s. W e fix  a  finite dimensional sim ple L ie algebra A and  a
non-degenerate symmetric invariant bilinear form (  , )  on it.

Definition 1.1.1. We define a  sheaf g ' of  L ie algebras over (9s  by introducing
a  ((9s -linear) bracket on the (9,-module

g' = 4 Oc n*eti EJ esc

as
(1) c  is a central element o f  g'.
(2) [ X  f ,  Y  g ]  =  [X , Y ] f g  + (X , Y )(df lg)c (X , Y e A, f , g  e
W here (I) is the canonical pairing introduced in  0.2.

We sometimes denote the  element X  0 f  o f g ' a s  X [ f ] .  In  th is notation,
the commutation relation (2) above is rewritten as

(2') [X [f ], Y [g ]] = [X , Y ][f g] + (X , Y )(dflg)c

The sheaf A 0, n* (9e, of 6-valued functions defined on Û  w ill be denoted as
A 0 ir,,(9e,. It has a  canonical structure of Lie algebra obtained by the pointwise
com m utator. O ur algebra g ' is  a central extension of A 1t* (9e,.

R em ark 1.1.2 A ® n * Ou ,  A 0 n * C i  a re  L ie  subalgebras o f  g '.  N o te  that
for any element of A c) n* eu , its v a lu e  (121)  along Q. is well-defined A-valued
function o n  S .  N am ely , it is the  pu ll back  o f  th e  function b y  the section
Q. S im ilary , the  va lue  o f the  sec tion  o f A 0 n* C9k along each sections of it
has also meaning and  is a lso  a  A-valued function on S.

N ext le t  u s  consider a  triangular decomposition o f  g ' .  W e fix  a Cartan
subalgebra 6 of A a n d  a  triangular decomposition A = ŒI A _ of A.

We define the  subalgebras n + , p + , o f g ' a s  follows

n , =  e  A 0 E A, O c  es for a ll il

P + = e 4 7r*cul (12i) e ± 6)0C eS for a ll il

P+ = P+ e s c

= 4 ®c 7r* wr - icolc) + os e = (4 0c es) e ese
i= 1
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Note that 15._ = n, C) b. The notion corresponding to n_ can not be defined
in  a  coordinate free m a n n e r . But the existence of these subalgebras in the above
definition is enough for construction of highest weight representations.

1.2. The representations .A t i A ,  2 A ,  and the sheaf of covacua 17j. Put

Pc  = {21.1. = (;1., c), 1, = (21 , ,  2„) C E  C} .

Each A e Pc  is regarded a s  a n  element of ( )* = fe,o4n()5,_, e s )  a s  follows.

2 10  =
2

g1Q 1n 6 P+) ; 2 (c) = C

where we regard each Ai as an element of (6 C) ft+ )v by extending it trivially on it,.
We introduce the  Verma module.

Construction - Definition 1.2.1. F or A e Pc ,  w e introduce the following
module structure on Cs and denote it as (e)A .

= /1( )' f E f  (9
S) •

Then, the sheaf  M A  of Verma modules with the highest weight A  is defined by an
induced module

-A ' = 1-119' 01.(;')N,)

where 11(•) denotes the universal enveloping algebra.

W e denote the  sec tion  o f </ilA corresponding to the  sec tion  1 E (es)A (the
highest weight vector) b y  12>.

By the use of formal coordinates {07=1 o n  U, g' may by trivialized as

= 6 Oc (95((t ) ) 0 es c .

With the help of a triangular decomposition of g' derived by using these trivializa-
tions, we obtain a  trivialization of itA:

.11
À MA CDC 6 5

where MA in the form ula above is the usual Verma module, tha t is, the Verma
m o d u le  in  th e  c a se  S = Spec C .  In  particu la r, .11, i s  a  quasi-coherent es-
module.

Next we define th e  'smallest' highest weight module X I .  T o  d o  that, we
first deal w ith th e  way how sheaves of tangent vectors act o n  g ' .  Recall the
definition of 5 -

x  (section 0.1). W e have the following

Lemma 1.2.2. acts on g ' by  the action determined as follows.
(1) T . (X  f )  =  X  ( r . f )  ( t  e X e ,  f e TC,(O0)

(2) T.(gc) = (dn(T).g)• c (g E  ( s )

Corollary 1.2.3. n* 5 -0,„ acts on U(g') as a derivation.
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Lemma 1.2.4. T he subalgebra of  1 t . 9 p re s e rv e spreserves Further-
more, for any  e lem ent of and an elem ent t of  7r,,Fu D , the following formula
holds.

7g — = — A(T.0 .

* 11 D d I ,Therefore, we can define the action of  7r on as follows

T.(
11 12 >) (T.V)1 2 >

Using the trivialization of MA, the same argum ent as in [Kac], proposition
9.3, gives the  following:

Proposition 1.2.5. MA h as  a unique, m ax im al 7r* (9-"(—D))-invariant g'-
submodule

Definition 1.2.6.

Definition 1.2.7. W e define the sheaf  of  covacua associated to a weight A. to
be the sheaf

'KA = -r2/(4 T c * (9x)..K .

W e refer to (A  7r* (9i).29,  as the gauge condition.

N ote  that our 11, has no  apparen t symmetries. Namely, n o  L ie  algebra
(such a s  A, g ', . . . )  acts o n  this sheaf (9s-1inearly i n  a  canonical w a y . B u t it
carries geometric information about X , encoded by the  gauge condition.

§ 2 .  A  quick review on an Atiyah algebra

2.1. The Atiyah algebra of a  line bundle. In  this and the next subsections,
we forget abou t our general assumption (section 0.0) a n d  review th e  general
theory of Atiyah algebras. See [BS] for m ore details.

L et F  be a  locally free sheaf o f rank o n e  o n  a  scheme S  over C . T h e
Atiyah algebra of F  is, by definition, the sheaf of first order differential operators
on  F.

= Diff1 F .

It has a natural structure of Lie algebra, and is an extension of .9- -s by (9s .
0  e s  . 5 4  Symbi  g _s  _+ 0

We refer the  above sequence as the  fundamental sequence of

2.2. The definition o f Atiyah algebra. Keeping the  preceding subsection in
mind, we define the  general notion of Atiyah algebra (more precisely, (9,-Atiyah
algebra in the sense of [BS]) as a Lie algebra d  with a  fixed extension sequence
(which we call fundamental),

P.4
( 1 ) 0 —■ —■ —■ 0

°99À  = 11
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We have two operations on  Atiyah algebras, namely, summation and scalar
multiplication.

The sum  of tw o Atiyah algebras d ,  2  is defined by

+ = g's 4 )/ {(isl(f )5 ig (f))1  f G

Its fundamental sequence is given by id + . ,  = 0) = (0, im ) and p„_", = Pd =

It is  c lea r tha t th e  sum  of Atiyah algebras o f line bundles ,t",, SF2 is  iso -
morphic to (hence we may identify with) the Atiyah algebra of the tensor product
-971 ' f -'2 ,•

Next we define the  scalar multiple of an Atiyah algebra.
Let A e C and s i be an Atiyah a lgebra . The 2-multiple of s i  is defined by

= (es  10 d)/(2, 1)(O, with i = 0) , P =  ( 0 5 Pd) •

If A 0, it coincides with the Lie algebra sit, equipped with another funda-
mental sequence

0 &s

F o r  A = 0, the 0-m ultiplie of s t  is  ju s t  a  d ire c t  sum  C s 40 ,?Ts  w i t h  the
standard fundamental sequence.

It is easy to  see that w ith these sum m ation and  scalar multiplication, the
category of Atiyah algebras forms a  "C-vector space in  category" [BS].

2 .3 .  Action of an Atiyah algebra on  a  vector bundle. L et -V be  a  locally
free sheaf of finite rank (a vector bundle) over S, and d  an  Atiyah algebra with
the fundamental sequence given by (1).

We say we have an action of si on -V if the following conditions are satisfied.
(1) each section a of d  acts on -V as a first order differential operator OW
(2) the principal symbol o f 0(a) coincides with pd  (a) id-.
(3) 0 (id( 1)) = 1.
It is easy  to  prove the  following

Claim 2.3.1. Given a  vector bundle IT, the following data are equivalent.
(1) A n action of  si on f or some A tiyah algebra d .
(2) A n action of the tangent bundle „Fs  (f lat connection) on projective bundle

P(17 ).
W e call these data a projective connection on V -.

It is w orth noting the  following fact ([BS]).

Claim 2.3.2. Given an action of  an A tiy ah alg e b ra d  o n  a  'V ; we can
determine the f irst Chern class o f  V . solely  in terms o f  s t

This holds because we can consider a  connection o n  -v. a n d  its curvature
purely in  terms of si.
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2.4. The scalar multiple of an Atiyah algebra of a  line bundle. We explain
the  no tion  o f scalar m ultiple in  the case when d  is  th e  Atiyah algebra of a
line bundle

If A is a positive integer, A d , is regarded as the Atiyah algebra of the A-th
tensor power .F° A. In fact, a local section T  of si,F  a c ts  o n  .F ° ' by

T.(s i •  "  s„) = -c.s, S2 0 • • • 0 ±  S i  0  T .S 2  0  •  "  0  S ,,  ±  •  "

S i  0  S 2  "  •  0  T .S „

And under this action, id ,(1) acts on  .57; ° '  by  A-multiple.
The same argument shows tha t if 2  is  a  negative integer, Ad,- is identified

with the Atiyah algebra of (..F®( )*, and 0,21, is clearly the  Atiyah algebra of
( 9s =

F o r  general A, ta k e  a  lo c a l generating section s o f  .F  a n d  consider the
formal A-th power s '  of s. A section T  of ,s4  acts on f s '  ( f  e  e s ) by

T.(fs') = (Symb i (t).f + A((t. )/s)f)s' .

T he above formula suggests that th e  algebra o f  infinitesimal symmetry of
the  formal 2-th power F® " is w ell-defined a n d  identified with lia fF ,  although
F® " itself is not a  well-defined o b je c t. W e may thus deal with A ds,  as if
exists and  it  is  the  Atiyah algebra of this "line bundle".

2 .5 .  The weight algebras d e ,,,xis , <W.F . Return to our original settings (sec-
tion 0.0). We have sections q i o f  7C. Since it is assum ed to be sm ooth on  some
neighbourhood of Q. = Image q1,  the  dualizing sheaf cux i s  is identified w ith the
sheaf of relative Kdhler differentials there. F o r later use we introduce here the
weight algebra, a  linear combination of the Atiyah algebra of line bundles qtwx/s-

There is a surjection (in the usual sheaf theoretic sense) of onto
.91,1.„x/5 . Indeed, there is an  action of 7t,,49Tu„rz,D o n  qP(cox / s )  determined by the
action (Lie derivative) of tr,.iU„n,D on n * w u d s .  Namely, the action of a section
t u , of o n  a  s e c t i o n  e a)  of e c o x i s  is  g iven  by  the  following.

t u ,.(qtco) = qt(Lie(r u ‘ ),w) .

In  terms of local coordinate t i o f  Lib  it is expressed a s  a  first order differential
operator.

0 0c(sE a ( s ) t 1+  b ( s ) —
a  

.(c(s) e d t i ) = b(s)
) 
e d t i + a o ( s ) c ( s ) e d t ,

s
.

k=0 as

P u t "symbolically"

.97 = 07=1 qt(c0 x15)-  •

Here A, . arbitrary com plex num ber, bu t later in section 4.2, we will set it to
b e  the  va lue  o f the  C asim ir operator o f  A o n  th e  irreducible highest weight
module V . 6  with highest weight A.

W e thus have a surjection n D  .524 ,  in  other w ords, it * g -
u ,  acts

on F . W e  re fe r  the Atiyah algebra a t ,  = E(--A,osig i..,,,s as the weight algebra.
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§3 . The Atiyah algebra of the determinant line bundle

T h e  determ inant line bundle, defined by Grothendieck [SGA] (see also
[KM]), may easily be described by the use of the notion of semi-infinite-forms
([KNTY], [SW ]). W e review  it a n d  describe in  these term s the structure of
th e  Atiyah algebra o f  th e  determ inant line  bundle . The construction of the
explicit representation o f the  Atiyah algebra is essentially due to  Beilinson and
Schechtman [BS]. W e m odify their approach to m ake it applicable to  the case
in  which it is not necessarily smooth. Actually, our construction gives a  slightly
restricted Atiyah algebra, written sti— d'et defined by Symb -,  O D . (S e e  section
0.1 for the definition of ..9".) For the sake of brevity, we introduce the elements
of the algebras in  a  rather ad-hoc manner. See [BS], especially section 2.8, for
more sophisticated and natural approach using the language of derived categories.

3.1. The determinant line bundles det R i r e x  and det Rn * cox i s . Using a  con-
sistent triple of local frames (see section 0.2), we may present a  locally generating
section of the determinant line bundle det Rn * C9x  d e t  [n * Cî C) n * (9, —> n* 00]
defined o n  S1 ,  written symbolically as

( A  v ) 0 ( / \  / 1 K ) 0 { A
veN rceK PEM

The dual of the det R7r* e x  is expressed by another determinant line bundle,
det Rn * cox l s ,  by the Serre duality. It is isom orphic to

n * cou is s  11*(Dosdet n * coe,i s[
n*olis 7r*c0uis .

U sing  th e  dual fram es, the  sec tion  o f det Rir* cox i s  co rresponding  to  the
trivialization o f det Rn * e x  defined  by  the  loca l generating section (**) is also
expressed by semi-infinite forms as

(  A  ) ® (A  n,c) {  A  e } .
veN KeK geM

3.2. w-extension of .9T 15 ( — D). C o n s id e r  th e  product Xreg x s  Xre g  o v e r  S,
where we denote by Xre g  th e  o p e n  se t o f  X  where TE is sm ooth. W e identify
sheaves on Xreg w ith that on X r e g  Xs X r e g  w ith support on the diagonal d r e g . W e
have the following exact sequence.

0 plco pla)(+2.61 reg ) D in s  0 .

W here D iG s  d en o te s  th e  sheaf o f first order differential operators along the
fiber of 7E. Recall that w coincides with S2k/s ,  the  sheaf of relative 1-forms, on
Xre g . The m ap ô is given by the following formula.

(6(r(z, w)dw).f)(t) = Res,,, r(t, t 2 )f(t 2 ) .

W e pull this sequence back by the inclusion 5 1s (— D) D i N i s  to  obtain

0  p l c o  B o ,D —> 5 -x i s ( — D) ,

eg 
}-1
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where we denote the  sheaf 6- 1 (.9 2(15 ( —D)) by k J ) .  We push this sequence out
by the projection ptco McoIplco(—  d r e g ) c o  and  obtain

O — "  A 0 - , 1 D  .Fx/s( —D) O.

Here A o- ,
1D Bo ,D IA`co(—A reg ) is called the co-extension of 5 -

x i s ( — D ).  Its support
is contained in  A reg  and  we regard the above sequence as an  exact sequence of
sheaves o n  X reg .

Using the  above exact sequence we define the  complex A 0 , 13, of sheaves on
Xr e g  b y  the middle column in  following diagram.

A
°  
0,D g-X

0  — > o,D orXIS,D 0

 A - 20,D

N ote that acts o n  A o- ,
i i )  a s  a n  infinitesimal symmetry of (n: X  S , {q ,}).

3 .3 . The Virasoro algebra. We define the  sheaf of Virasoro algebras as

"KAM = n4,(A0- ,1D10)/d(n* CO •

It has a  canonical structure of Lie algebra with the  following bracket.

[r 1 , r2 ] —

N ote that there is an exact sequence

0 - + d(n* OÙ) n c o o s  1 7 :51gf n * ,Fos  -4 O.

17.5.9/ has the  following canonical subsheaves of L ie algebras

1 7 :1Uo = Tc*(AO-,ID a d ( 7/* (9 u)

the class of
r . - fA î = e x n) * (Bolc xc)

in  -rim
The map 6:-Kitgi±-.7r * .9-gi s  is  surjective. In fact, take a  good local frame

fe 4 1g  m  o f  n,Kee, and  its dual frame {e rr} M  o f  n* coNs . Then for any section
T  of n*  59-xis ,  the  element i  o f  (n x n) * (Bo lû x 6) defined by

f(t,u )= (tg. )(t)„(u )

E n* .Ficis
(Res, r').n,ei = 0
(Res' f).n coic is =  0

gives the  element of I/'5 .4 ii with 6(0= t k .  (See the  last part of section 0.3.)
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— d' et RTE . CX •3.4. Atiyah algebra ..ed In this subsection, we show that the presen-
tation of s i l ta d m i t s  a  t ech-cohomological expression. If it is smooth, (so
that X  coincides with Xreg ,) it is the 0-th direct image R° n* (A ',,,) of the complex

D , as you may find the proof in  [B S]. A lthough the sheaf corresponding to
Bc,, ,  is not defined all over X  in the case when it i s  singular, the "formal tech"
presentation of the cohomology group, which is effectively used in  [BS], extends
to  th is  case.

The set of cocycles is given by the following.

=  {(rg, T y ; ru)ITÎ E Tu G 77 * .%(/ 7r, D , rû  E 'VAR; t± — Tu  =  6(0} .

I t  h a s  a structure of Lie algebra as follows

[(Tic, tu ;  rû),  ( a i ,  au; SU)] =  (Eric, a±], [ t ,  a u ] ; au•r(J)

The set of coboundaries is

= {(6(ri,), S (ru ); rx — ru )Irg E  'K5.92 , ru e t 0 }

I t  is  an ideal of 2'.
The cohomology g r o u p  /A' gives a presentation of d d e t

T o  s e e  t h i s ,
first rem ark that there is an exact sequence

(***) 0 —> (9s
 14  7 .4 14 —■ 0 ,

where the m ap n* is defined by

ir* ([r±, r u ; re]) it (r )  =  it (tu )

whereas the m ap i  is determined by the following diagram.

1ERes=(•11) projection

(9s

Next we give the action of an element ("L i, T u ; ru) of 2 ' on  det Rn* Ci,  by
the following equation

(1 + E(TÎ, T u; re)). ( (  A 0  (  A rr) 0  {  A  eu }  1)

= ( A (1 + tr i ) )  ® (  A (1 + 0  {  A  (1 + E(T u  — Res o fe ))e 4 } - 1

veN KeK iteM

where g  is  the dual num ber, that is, g 2  =  0.
U sing lem m a 0.2.1 w e see  tha t { (1 + ari ) v}, {(l +  cru MKI, 11 + e(r o  —

Reso fo))e"} is  a consistent triple of frames defined o n  C [e ]  S ,  a n d  hence the
right hand side of the above formula is well-defined. If we take a  very consistent
triple of frames and choose a local trivialization defined by it, the  above action

VONK  e l ( AeM
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is expressed a s  a  first-order differential operator

rc* (t u ) +  E (e v iRes i (0 0  +  E (e„ Res, (fo)e") +  (e o lRes o ( fo )e ° )
veN K e K '

+ E (e,j(Res, (fo) — t u )e").
m..rw

By this formula, it is easy to see that the action of 2° on det Rir * Ox  factors
through an  ac tion  of .27.4, a n d  th a t the  sequence (***) can be identified with
the fundamental sequence

«ES

§ 4. The projective connection on the sheaf of covacua

4.1. The Sugawara form. Here in  this section, we formulate the notion of
the Sugawara form (see for example [Kac], Chap. 12) in a coordinate-free manner
using the  result of the last section.

We fix a  basis {Ja} a
d1714 a n d  its dual basis {Ja } 14 w ith  respect to  the invari-

ant bilinear form (  ,  ) .  W e denote the value of an  operator (1/2)E ad Ja ad Ja

by g * .  In what follows, we fix a  weight A = (X, c) e Pc  and assume that c + g* 0
O. P u t c v = c(dim 6)/(c + g*).

W e define th e  Sugawara fo rm  T [ r ]  associated to a n  element r  o f f̂f,fgt.
Recall that the  sheaf 17 :AR is  a quotient of (7r x 7r)* (B ,,,I0  x  0 ) .

Definition 4.1.1. Let {e }m"  b e  a local f ram e o f  n * C o, {e m}m"  its dual
f ram e . Let f  be a section of (it x  n) * (B0 ,,10 „ 0). W e define the energy-momentum
tensor T [ f ]  as

d im  4
TV] —  E E P re

2 ( c  +  g * )  M  a
60911v[e] —  c(dim 6)(emiReso ( f) e" ))  .

;LE =1

The sum converges strongly  on the representation space di, in the sense that the
sum  is alw ays f inite w hen it acts on an element of

To show the last claim of the above definition, we first note that the commu-
tation relation of g' (definition 1.1.1), and the  following equality

(d(6(f) o co)lf) = — (w16(i.). f ) for f  e ir* Ou  ,  W  e rc * c o o s  .

implies the following identity which gives another expression for the summand.
dimE Ja [e p 0 6(f)]Ja [el4] — c(dim 4)(emlRes0 (f) e )
a=1

dim 4E Ja [e; ] ,1"[em
 o  6(f)] —  c(dim 4)(emiRes 1 ( f ) e 4 ) .

0=1

Then using lemma 0.2.1, w e find that the  summand is equal to
d im  §E Ja[e v 6 ( i . ) ] J a [ e l
a=1
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when y  is  large enough, and  to
dim
E Ja [e lJa [e , 0 60]

a=1

when kt is small enough.
W e refer the  above situation simply as T [ i ]  i s  a  strong-operator limit of

elements of 11(g'). It is  c lea r from  the  definition that  T [ r ]  a c ts  a lso  on
2 .  I t  i s  e a s y  t o  show the following lemmas.

Lemma 4.1.2. T [ f ]  does not depend on the choice of  a local fram e {e"}.

Let { f ' ' }
 be  another local fram e. T hen  {e"} and  { f" } a r e  related to each

other by a n  essentially upper triangular matrix { a:'}.

fP ' = E a'e" .

The dual frames a re  related to each other by the following relation.

e„ = E .

Using these relations, the lemma easily follows, similarly to th e  proof of the
base-independence of trace of an  linear operator o n  a  finite dimensional vector
space.

Lemma 4 .1 .3 . I f  'f E pIcox i s ( = Ker (5), then

cv
 N

C vT[f] =— Trace„., Ù (Res, =  E Res t i =0 t . )
2 L .J=1 2= All) •

The above lemma suggests in particular that for a n y  of (it x rt),(B c,,D 10,< Ù),
T [ i ]  d ep en d s o n ly  o n  th e  class r  o f  f  i n  17 : fM .  W e m ay  thus w rite  T [r ]
instead o f  T [r ].

Lemma 4.1.4. T he action of  T E ir,g -„I s  o n  T [r ]  is given by  the following
formula.

T.(T [r]) =  T [t.r] .

W here w e consider T [ r ]  a s  a  strong-operator limit o f  elements o f  11(g').
(Recall we hav e an action of  ir...9-ei s  o n  11(g'). (Lemma 1.2.4).)

Let us denote by T[f; {e}, {e p }]  the Sugawara form associated to f, calcu-
lated by means o f a  frame {e"} and its dual frame lem l. F or each T  in
1 + er defines a  fiber preserving infinitesimal automorphism of U . A pplying this
automorphism to TV ; {e"}, {eo } ], and computing, we find

(1 + et).T[P; {e"}, {e„}] = T[(1 + z).f; {(1 + E T ).e "}  , {(1 + er).e 4 }] .

B ut since {(1 + t ) . e " }  is  a local frame and 1(1 + er).ep l  is its dual, we deduce
the lemma from lemma 4.1.2.
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The derivation of the following commutation relation between the Sugawara
form and  an  element of the affine Lie algebra is essentially well known.

Lemma 4.1.5. [T [r], X  [ f ]] = X  PO . f ] (X e  f  E n* OÙ).

T h e  p roo f is  ob ta ined  by  rew riting the [K ac, lem m a 12 , 3 ] u sing  local
coordinates along Qi .

Thus, for each element of 11(0, we obtain,

[T [r ], ] =  (5 (r ).  .
This commutation relation, together with lemma 4.1.4, implies

Lemma 4.1.6. [T P A , T [r 2 ]] =  T[3(r 1 ).r2 ]  =  T a r i , r2],r5sd.

S o  the Sugawara form  gives a  representation of the V irasoro  algebra on
highest weight modules of affine Lie algebras.

4 .2 .  The existence of a projective connection: main theorem. W e are  now
in a position to give a projective connection o n  I fA .

Theorem.
en

e
t R + E A

A `
9 1 * ( 0

2 x's

acts on "KA. (Here {4}7= 1 are the values given in section 2.5, that is, the value
of  the Casim ir operator of on the irreducible highest weight module V .

with highest weight A i .)
It follow s that there is an action of on P(17 :1 ). In other words, there is

a projective connection on - KA .

We may put the statement in another w a y . L e t  g  be a  line bundle defined
in section 2.5. Then the above theorem says that the Lie a lgebra  d iet Ric .e x  acts
on "Kt 0 g, and that the element I = of .2/— d e l Rn*Ox acts o n  'KA ® F  as
a multiplication by c u /2. (W e  re fe r  the latter fact as "the central charge of the
action is c v /2".)

Proof  o f  the  theorem . W e first define a n  a c tio n  o f  .2' o n  difA 0 g and
.99),

(1) (Tic, tu; r0).M 2 > = (TU. V112 > T[ro] WiA> s W12> 
where V' E 11(g') and  s e F .

Using lemmas 4.1.5 and 4.1.6, we can easily check tha t th is is  indeed  an
action of a L ie algebra.

The commutation relation of a Sugawara form with elements of /1(g') gives
another formula representing the action.

(2) (rî, T o ; ro). VI  I Â> 0 s = W)12> 0 s + WT[re/]12> 0 s + V1 12> 0 Tu.s
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This formula im plies that the action preserves th e  gauge condition and hence
induces the action of 2 ' o n  ' 6 .  By calculation we conclude that A' acts trivially
on 0 217  a n d  s o  ,saftet 

R ir x =  / . 4  a c ts  o n  ' r .,1 0  F . I n  f a c t ,  (6 (r) , 0, rg)
(rg e -rJR ± )  acts on 17 ,, 0  F  trivially, in  view of (1) and the following formula
for a Sugawara form using good frame of rt,(91 .

M g ] =  E  J a [6(ri) o e„]Ja [e ]  +  E J a [e] Ja[6(ri). en ].
oeM\N '2EN

(W e om it the  summation symbol fo r a  fo r simplicity.) N o te  that 6(ri) o e  is
regular on .,*( if kt E M \N  and  tha t e" is regular on •k  if y  e N.

Similarly, (0, 6(ru ), —ru )  (ru  e '17 :51M0 )  ac ts o n  1/i 0 .54"  trivially, in  view of
(2) and the following identity.

T[ru ] = E Ja[6(ru ) + E a[h("1. 1 .1 "[S (ru ) o h (,,,, i) ]

+ E [6 (ru ) 0 ho m ] J a [h ( 0 ,

]

where we fix local coordinates ti o f  U i and set

h(m m l ui  = 01u; = ti m i dtA i  •

Indeed,

(0, 6(ru ), A>

= —  V T [ru]lA > s + VIA> 0  tu.S

= V i (  -E Ja[S(ru ) o h (0 ,0 ]Ja [e ' i ] I A> + IA> 0 (5(ru ).. )

=, ( ( r u ) ,  o  dti)(0) s +  A> 0 Nry). )

=o
Lemma 4.1.3 shows th a t the central charge of the action is c v /2.
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