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Singular Cauchy Problems of Higher Order
with Characteristic Initial Surface

By

Setsuro FuIg

Introduction

The present article is concerned with the Cauchy problem of linear partial
differential equation with holomorphic coefficients in complex domain. The pur-
pose is to give an explicit representation of the singularity of the solution for
meromorphic Cauchy data.

In the case where the ‘initial surface is non-characteristic, this problem
has been studied by several authors: see Y. Hamada [2] in case of simple
characteristics, see Y. Hamada-J. Leray—-C. Wagschal [3] in case of constant
multiple characteristics, see Y. Hamada—G. Nakamura [4], D. Shiltz-J. Vaillant-
C. Wagschal [10] and T. Kobayashi [8] in case of involutive characteristics, and
see, for instance, J. Urabe [12] and C. Wagschal [14] and so on in other
cases.

On the other hand, we can consider this problem even in the case where
the initial surface is characteristic. Indeed, the Cauchy problem for Fuchsian
partial differential operator (in the sense of M. S. Baouendi—-C. Goulaouic [1])
has a unique holomorphic local solution under some conditions (see Y. Hasegawa
[5], M. S. Baouendi—C. Goulaouic [1]). J. Urabe [13] treated a special class
of operaters in C? whose principal parts are t0? — 2 and whose characteristic
exponents are constant. He gave an explicit representation of the singularity of
the solutions by means of hypergeometric functions. S. Ouchi [8] treated second
order operators whose principal parts are of simple characteristics multiplied by
t?>. He used the multi-phase functions and showed that the solutions are holo-
morphic except on the characteristic sets.

In this paper, we treat a class of operators L(x;D,), x = (Xq, X1, ..., X,) =
(xg, x") of order 2m (m € N), which are, roughly speaking, transformed to operators
with simple characteristics by change of variables x, = y3, x' =y’ (see (A.1) and
(A.2)). By (A.1), these are of Fuchs type with weight m. So we consider the
Cauchy problem

{L(x; D, )u(x) =0,
Dku(0; x)=v,(x') (k=0,....m—1),
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2 Setsuro Fujiié

where v,(x’) has poles along x; =0. This problem is a generalization of J.
Urabe [13].

What is difficult in studying Fuchsian operators is that not only the principal
part but also the lower order terms affect very much the singularity of solu-
tions. As is well-known, in the Cauchy problem for the second order operator
in two independent variables

L=1tD? — D? + (1 — ¢)D,

with initial surface ¢t = 0, the values of ¢ is of dicisive importance in discussing
the singularity of solutions. If L is of order 2m with m = 2, then we have m
values playing the role of ¢ above. And hence we need a strong condition (A.3)
in order that the representation of the solution be the same as that of J. Urabe
[13] (see Remark 1.5 in section 1).

I with to express my thanks to Professor Nobuhisa Iwasaki for his con-
stant encouragement and to Professor Norio Shimakura for his kindness to read
through the paper and give me valuable advices. The problem was suggested
by Professor Jiichiro Urabe. I wish to express my sincere gratitude to him for
his valuable suggestions.

§1. Assumptions and results

Let Q be an open neighborhood of the origin in C"*! = C x C" with standard
coordinates x = (X, X1, ..., X,) = (Xg, x') and L = L(x; D,) a linear partial differen-
tial operator of order 2m (m € N) whose coefficients are holomorphic in . We

0
use the notation D, = (Dy, Dy, ..., D,) = (Dy, D), Df:a? (j=0,1,...,n),and D’ =
j
D/’ ... D for f=(By,..., B,) and [Bl =By + - + B,
We shall impose three conditions (A.1), (A.2) and (A.3) on the symbol L(x, &),

é = (éOa 615 -'-’én) =(él’ 6,)

First, we write L(x, &) as

L(x, &)= Y a8 (1.1)

k+|Bls2m

d(k, p) = max(k + [|B|2+ 1] —m, 0)

for all (k, B) satisfying k + |B| < 2m, where [a] denotes the largest integer not
exceeding a.

We define

(A1) a,p4(x) is divisible by x§*P, that is, a,4(x) is written in the form:
Ay p5(x) = x§4P g, 5(x) (k + |8l = 2m)

with a holomorphic function d,z in Q. Especially, d,,0 = 1.
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A\
Next, let LH(x; &) be the principal symbol of L(x; ¢), and L¥(y; n) the symbol
obtained from L¥(x; £) by the change of variables x, = yo2, x’ =y’ in the follow-
ing way:

/} H 2 ’ 1 ’
L%(y;m) = L7 yo*, ¥'s 5— 101" | s
A

Where y= (yO’ Vis /\’ yn) = (yO’ y’) and n= (”Oa Niseens nn) = (’109 r’l) By (A1)9
the coefficients in L# are holomorphic in Q.

(A.2) Equation L/\” 0; 19, 1,0,...,0) =0 has 2m distinct roots.

A\
(L¥(0; 19, 1,0, ...,0) is in fact a polynomial with respect to n3 of degree m
by (A.1) and we denote the roots by {»%,};~,. See the proof of Proposition 1.1.)
Finally, the condition (A.1) allows us to write L(x;D,) as

L, D)= Y Y xg“Li(x'; xoDo)D” + L™(x; x Do, D'}, (1.2)

1BlS2m 0<x<s(f)

where s(f) =m — [lﬁl; !

mial with respect to A [resp. (4, ¢')] whose coefficients are holomorphic at x’ =0
[resp. x = 0].

:l and each of Lj(x'; 4)’s [resp. L™(x; 4, £)] is a polyno-

(A.3) There exists a constant ¢ € C\{1,2,...,} such that L§(x'; A) is divisible by
[15-6 = )@ —c—p) for all f and k (|B] < 2m, 0 <k < s(f)).

Note that L(x'; A) is always divisible by ﬂ:;é(l — p). Condition (A.3) is
clearly equivalent to the following:

(A.3). There exists a constant c € C\{1,2,...} such that

=0 (j=01,....k—1)

A=c

A{{ (s 1) / T u—p)}
p=0

for all B and x (|| £ 2m, 0 <k < s(B)) in a neighborhood of the origin x' =0,
where A, is an operator acting on functions of A:

@)D = A+ 1) = fA), Aif =441, 4 =f).

We shall sometimes write (A.3), [resp. (A.3).] instead of (A.3) [resp. (A.3)']
in order to specify the constant c.

Before stating our main theorem, let us define the auxiliary functions
U8, p), XL(8, p) and Y,(6, p), which are fundamental to describe the singularity
of the solution of our Cauchy problem (C.P.) below.
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First, we introduce the so-called wave forms f,(s), k,(s) with a complex
parameter p:

1
fs) = 7"

p+D
0 1
k,(s) = %fp(s) = m (logs +y(p+ 1)),
where Y(p) = % Especially k,(s) = |p + 1|(—1)*"'s? for p= —1, =2, ....

Next, we introduce the multi-valued functions U{?(f, p) as the solution of
the Cauchy preblem;
{ PUS ={6D} — D} + (1 — c)D,} UL =0,
U0, p) = f,(p),

0 0
where D9=%, Dp=% and c is a constant (ce C\{1,2,...}). We can write
down UY(6, p) explicitly as:
1 —-p —p+1
UL, p) = p(Z2, 22—
A P (2 2 09

46
where z = prd Now we define X\(6, p) and Y9(6, p) as follows:

0
X:JC)(gi P) = a_p U;(JC)(O’ p) >

Y;9(6, p) = 0D, X116, p) .
Note that X! is the solution of the Cauchy problem:

{ PX9 =0,
X910, p) = kylp).

For the property of UX(6, p), X6, p) and Y(6, p), see [13].

Now let us consider the Cauchy problem with initial surface S = {x, = 0},
whose Cauchy data have poles along x; = 0. By the principle of superposition,
we have only to consider the following problems:

{L(x; D,)u(x) =0

D§u(0, x') = & w(xVk_o(x;), k=0,...m—1, (I=0,....m—1), (CP)

where « is an integer, d,, is Kronecker’s delta and w(x') is a holomorphic function
in a neighborhood of the origin x' = 0.

Put T = {x, = x; = 0}. From Remark 1.1 below, we see that if zeS — T
is sufficiently close to the origin, the Cauchy problem (C.P.) has a unique holo-
morphic solution in a neighborhood of z (see [1]). The solution is expected
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to have singularities along the characteristic surfaces of L issuing from T. The
characteristic surfaces are S and V, = {g (x)=0}U{g, (x)=0} (r=1,...,m),
where ¢ (x) is expressed as @ (x) = p,(x) + 26,(x)"?> for some holomorphic func-
tions 6,(x) and p,(x), which will be constructed in Proposition 1.1 at the end of
this section.

Theorem. Under the assumptions (A.1) (A.2) and (A.3),, there exists one and
only one solution of the Cauchy problem (C.P.) and it is extended holomorphically
to the universal covering space R(w — (\Jmy V,)US), where w is a connected neigh-
borhood of the origin of C"*'. More precisely, the solution is expressed as:
u(x) = Zl ; (95 X(6,(x), p,(x)) + hp(x) Y,2(6,(x), p,(x))), (1.3)
r=1 p=2l—-a
where gy(x) and hy(x) are holomorphic functions in w and the sum on the right-hand
side is uniformly convergent on every compact subset of R(w — (| J, V,)US).

Remark 1.1. Note that d(k,0) = max(k —m,0), and d(k,f)=k —m+ 1 if
Bl = 1. It follows that any symbol L(x; &) which satisfies (A.1) is Fuchsian in
the sense of Baouendi-Goulaouic [1] with respect to the hyperplane x, = 0 of
order 2m and with weight m.

Remark 1.2. If L is an operator satisfying (A.1) [resp. (A.3).], any holomor-
phic change of variables, which preserves the hyperplane x, = 0, transforms L
into another operator L' which also satisfies (A.1) [resp. (A.3).].

Remark 1.3. In the case m =1, the conditions (A.1), (A.2) and (A.3) are
equivalent to the following: L(x;¢) is a second order Fuchsian symbol with
respect to the hyperplane x, = 0 with weight 1.  The characteristic exponent,
which is equal to the constant ¢ in (A.3),, is not positive integer. Moreover,
the coefficient of ¢2 does not vanish at the origin.

Remark 14. If L, and L, satisfy (A.1), then the composition L, o L, also
satisfies (A.1), and if both of L, and L, satisfy (A.3), L, oL, also satisfies
(A.3),. We can verify the latter assertion by lemma E in the Appendix.

Remark 1.5. We give an example of a 4th order operator to justify the
assumption (A.3). Let L be the composition of two operators L, and L,; L=
L,oL,,and each L, (r = 1, 2) a second order operator in C2 = C, x C, as follows:

L, =tD? —aD? + (1 —c,)D,
where ¢, and a, are constants, a, # 0 and ¢, e C\{l,2,...}. Note that each L,

satisfies the conditions (A.1), (A.2) and (A.3), from remark 1.3, while L satisfies
(A.1) but (A.2) if and only if a, # a,; and (A.3), if and only if ¢, =¢, =c.
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The solution of the second order Cauchy problem

{L,u, =0
u,(0, x) = w,(x)k _, (x) ,

is of the form
u(t, x) = Y5 _, (g5(t, X)X (a,t, x) + hi(t, x) Y (a,t, x))

for each r =1, 2, as is shown in the theorem. Then, it is natural to consider
whether the solution for the 4th order Cauchy problem, say,

Lu=0
u(0, x) = w(x)k_,(x) (1.4)
D,u(0,x) =0,

is of the form

u(t,X) =Y 1.2 20 . {95t x)X(a,t, x) + hi(t, x) Y (a,t, x)}, (1.5)

with holomorphic functions gj(t, x) and hy(t, x) in a neighborhood of (t, x) = (0, 0).
The answer is "no”.

Counterexample. If a; #a, and if ¢, # c,, the solution of the Cauchy
problem (1.4) is not of the form (1.5).

To see this, we investigate the transport systems. The transport system of,
say, (gp, hy) is as follows:

(a,(ay — a,){(2tD, + 1)h} — 2D,g}}
=(L,+E; A, + Ble)g,‘,_l + (E,B, + B, Ez)h},_l
+ (LB, + Ble)g,‘,_z + (L E, + ElFZ)h;_z
+ LiL,g,3,
(1.6)
W 2(a, — a,){D,g, — a;D.h,}
=(ByA, + A1B,)gy + (F, + BB, + A, E;)h;_,
+ (Fy A, + A,Ly)g}_, + (FyB, + B, F,)h;_,
+ FyFh,_5,

¢ — ¢

where A, = 2D, + ,B.=-2aD,E =a(2tD,+1+c, —c)and F, =L, +

2D, +M(r ~1,2).

The Cauchy problem (1.6) with Cauchy data g,(0, x) has a unique holomor-
phic solution (g}, h}) if the Cauchy data and the right-hand side of (1.6) are

p>°p
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holomorphic. However, on the right-hand side of (1.6), the coefficients of the
operators A, and F, are not holomorphic if ¢; # ¢,. Therefore we cannot con-
struct in general the solution of the form (1.5).

We shall conclude this section with the following proposition which enables
us to construct the characteristic hypersurfaces V, (r =1,..., m).

Proposition 1.1. Under the assumptions (A.1) and (A.2), the first order Cauchy
problem
{L"(X; $.)=0

$(0; %) = x, (7

has 2m distinct solutions {¢*},-, . ., each of which can be written in the form

$E(x) = p,(x) £26,(x)"2, (r=1,...,m)

where p,(x) and 6,(x) are holomorphic in a neighborhood of the origin, and further-
more, 6, is expressed as

0,(x) = x40,(x) r=1,...,m) (1.8)
where a,(x) is holomorphic and ¢,(0) # 0.

Proof. Put ;Z(y) = ¢(y3,y’). We consider the new Cauchy problem
A .
{Lj’(y; 4)=0
¢(01 ,V’) = yl
Taking account of (A.2), implicit function theorem and Cauchy-Kovalevskaya

theorem guarantee that this problem has 2m local solutions which are holomor-
phic in y in a neighborhood of the origin. Moreover, we can easily verify by

A\ ~ ~
the definition of L# that if ¢(y) is a solution of (1.9), theP\ ¢V(y) is also a

solution of it, where ¢¥(y) = ¢(—y,, ¥'). On the other hand, L#(0; 7,, 1,0, ..., 0)
is a polynomial of n3, since

dk, p) = [k—;l] if k+|Bl=2m. (1.9

And hence, taking account of (A.2), n§ #0 (r=1,...,m). Therefore 5?—;5(0) # 0,
0

a - J - J - 0 -
and since —¢@"(0) = ——¢@(0), we have — ¢V (0) # —#(0). Thus we can clas-
5. 0= 530 7, O % 5,40
sify the 2m solutions of (1.9) into m couples {¢*},_; . , by means of the relation
8=y V) =4 (oy)  (r=1...,m).
Put

_ $r+ - ~’r_ 2 _ $r+ + &r_ _
0,—<T , pr—T r=1,....,m).
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Then 6, and p, are holomorphic in x in a neighborhood of the origin since
theg are even in y,. Moreover, noting (¢ — ¢,)(0) = 0 and ai;o(ﬁ,* —47)0) =
2‘,j—yo¢,+ (0) # 0, we can express 6, as (1.8). Q.ED.

§2. Preliminary calculations

We shall prove the theorem in the following way. Suppose that the solution
of (C.P.) be equal to a series u of type (1.3). To determine the coefficients {g;}
and {h;}, we operate L term by term to the series. It turns out that anyone
of derivatives of X\”’s and Y’s is again a linear combination of X\”’s and Y,*’s
(see Lemma 2.1). Putting Lu = 0, we get a system of partial differential equations
which {g;} and {h,} solve. We may call it transport system. Coefficients are
not holomorphic in general (Remark 1.5). However in our case, the condition
(A.3) guarantees that they are holomorphic (Proposition 3.1). If we prescribe
holomorphic Cauchy data, the transport system has one and only one holomor-
phic solution {g;, h;} (Proposition 3.4). Thus we obtain a formal solution of
type (1.3) of (C.P.). In section 4, we shall prove that the formal solution is in
fact convergent in a neighborhood of the origin. In section 5, we shall prove
the fundamental formulas used mainly in the proof of Proposition 3.1.

In this section, we prepare three preliminary lemmas of which we shall make
use in the next section. We omit the proofs because they are obtained by simple
calculations.

From now on, we fix the constant ¢ in (A.3) and write X,, Y, instead of
X9, Y9 respectively. First, we express the derivatives of X, and Y, with respect
to 6 and p as linear combinations of X ’s and Y;’s using the definition of
them. Here we introduce operators E, acting on functions of A:

U S0

— Ak k=0
Epo = A E=Y

0 (k= —1)

where A(A)=AA—-1)...(A=1+1).
Lemma 2.1.

. [1/2] . [(—1)/2] .
0Dy X, = kZO by i (€)0" X2 + kZ'o bi2k+1(€)0% Y, ai-1

a+1y/2y

2y .
0'DyY, = kzl by, 2k-1(€)0*X 241 + kZ'o by, 21(¢)0* Y, _ 2 »

DX, =X, ,,

DY, =Y, ,,
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and especially for k < |,

1
bl,Zk = {Ek—l (m/il>} N

- A
by k-1 = {Ek—1<m/11>} R

Lemma 2.1'. It follows from the above lemma that if K(A) is a polynomial
with respect to A of order | divisible by A(A—1)...(A—1'+1) OV L), then
K(0Dy)X, and K(6D,)Y, can be expressed as

1/2) [-1y2]
K(6Dg)X, = Z By (c)6* X, o+ Z B4y ()6* ) SEPYEIEN
k=0
[a+1y2] _ (/21
K(6D,)Y, = Z sz 1(c)6* Xpok41 + Z Bz,‘(c)O Y, 2
=1 k=0

> bl,2k+1 = (EkAl)|A=c B

=c

s Bl,2k = {Ek(lAl)}lﬂﬁc .

=c

and especially for k <I',

1
By = {Ek—l <,{ — kK(A)>}

~ y)
BZk—l = {Ek—l (A kK(}»)>}

Note that Bj(c) and Ej(c) are polynomials of c.

s sz+1 = (EkK(l))|J.=c s

A=c

> §2k = {Ek(AK(A))}hw .

A=c

Next, let K(x, £) be a homogeneous polynomial with respect to ¢ of degree
. Denote by K,(x; &, n) the sum of terms of degree k in ¢ and of degree | — k
in n of K(x; & + ), that is to say,

] [}
K, rE +sn) =Y Ki(x;ré sn) =Y r*s'"™ K, (x; & 1),
k=0 k=0

where r, se C. We shall write

2 k(s 9),

K9(x; &) = 3,

az
KUB(x; &) = 3, ackK(x ).

And we define K(x;6,D, + p,D,) to be
1
K(x;0.Dy + p.D,) = 3, Ky(x; 0y, p,)DED, ™,
k=0

where 6 and p are functions of x and

0 _<ﬂ a6 _(op dp
~=\axg v ax) Px= g Ax)
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Lemma 2.2. Let us put
91K(X; BxDo + prp)Xp(e, p) = Kl.Xp_l + K2 Yp—l + K3Xp—l+l + K4Yp—l+l + - 5
0'K(x; 0D + p.D,)Y,(8, p) = K'X, 1 + K?Y, , + K*X, 1y + K*Y, 11y + -,
where ... is a linear combination of {X,, Y,},_1+2<,<, Whose coefficients are func-
tions of x. Then we have
=21
Kl = Z Bl_kKZk(X; Bxi' px) i
k=0
-1)21
K?=" 3  07"Kau(x: 0, 05,
k=0

3 [(-1)/2] ket
K= 3 kle—=1=h0™ " Kapuy(x: e, p2)

[1/2]
K=}, ke = R0 Kau(x; 6 p)

K' = 60K?,
IZZ =K1

= o Ik
R =S ke + 1= 004K u(x 6, p.)
k=0

., lu=1y2]
K¢="% {(k+Dc- k230" T K 5yt (%5 0y, p1) -
k=0
Finally, let P(x; &) be a polynomial in ¢ of degree I, P¥(x; &) the principal
part of P and QY(x, &) the principal part of Q(x, &)= P(x, &) — PH(x, ).
Lemma 2.3.

P(x; D) LS () Z(0(x), p(x))]
= fPH(x;0.Dy + p.D,)Z + % SP*(x; 6.Dy + pD,)(6s,5,D5 + pxx,D,)Z

+ DifPHU)(x; exDO + prp)Z +fQH(x9 9xD0 + prp)Z +,

for every f(x) and Z(8, p), where ... consists of terms involving the derivatives of
Z of order less than | — 1.

§3. Construction of the formal solution

Suppose that the series of (1.3) solves (C.P.). Operating L(x; D,) to it by
term by term differentiation, we obtain a system of linear equations with respect
to {gp, h;} which consists of an infinite numbers of couples of partial differential
equations. Coefficients are holomorphic thanks to the hypothesis (A.3) (Proposi-
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tion 3.1). The p-th couple contains {g;, hj}?*2™ and their derivatives of order
at most 2m + p — q. However, the coefficients of g;.,, and hj,,, are revealed
to be identically equal to zero owing to the choice of (6", p") (Proposition 3.2).
So, the p-th couple is a first order system with two unknowns {g}+sm—1, Bp+2m-1}
if {gj, h;}222m=% are already known (Proposition 3.3). Hyperplane x, = 0 is char-
acteristic with respect to the couple. However, the Cauchy problem has one
and only one holomorphic solution {g;.ym-1,hp+2m-1} €Very time we prescribe
arbitrary but holomorphic Cauchy data (Proposition 3.4).

Given a linear differential operator K(x, D,) of order I, let us define
M{(K)(x; D,), MiK)(x;D,), N{(K)(x;D,) and N{(K)(x;D,),
linear differential operators of order | — k, as follows:

K(x; D){g(x) X ,(6,(x), p.(x))}
= kz.o {M{(K)(x; D)9 (x)} X pi + {N{(K)(x; Dx)g(x)} Y,

for every g(x), and

K(x; D,) {h(x) Y,(6,(x), p,(x))}

M~

{M(K)(x; D)h(x)} X -y + {N{(K)(x; DYh(x)} Y,

k

0

for every h(x).

Proposition 3.1. The coefficients of the operators My(L), Mi(L), Ni(L) and
NI(L) are all holomorphic in a neighborhood of the origin.

Proof. Let H be the ring of germs of holomorphic functions of x at the
origin, H[D,] the ring of linear partial differential operators with coefficient in H,
and H{{X,}, {Y,}) the vector space of finite linear combinations of X,’s and Y,’s
with coefficients in H. Using these notations, Proposition 3.1 can be written as;

Mi(L) = My(L) = N(L)= Nj(L)=0  (mod. H[D,])
(I1<r<m0<k<2m).

In order to prove this proposition, we use the expression (1.2) of L. Taking
account of Lemma 2.1 and (1.8), it is evident that

MUL)= ML )=NJ(L")=N)L")=0 (mod. H[D,])
(1<r<mO0<k<2m).

So, we have only to consider the term xg*Lj(x'; xo Do)D" for every g and x > 0.
Step 1: First we prove that

xo *Lj(x"; x0 Do) X 5(8(x), p(x))
X0 Lj(x"; x0 Do) Y,(8(x), p(x))

0,
0 (mod. H{{X,}, {Y,}>).
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Here, (0, p) stands for any one of (6,, p,)’s. From (1.8), we can regard x, as a
holomorphic function of 6 and x’, and we write j(0, x') = p(x,(6, x'), x’). Then,
applying Lemma A’ in Section 5, we have

xo " Li(x"; X0 Do) X,,(8(x), p(x)) = Z x5 {T(A, 4,)L5(x"; D}l 1=0p,X 56, p(6, x"))

;0 x{) K(TLp)h oD,+op,D,Xp(9 p).
i

And using Lemma B, we have

—K T K(y' 1 j—x K
xo"Lj(x'; X0 Do) X,(0(x), p(x) = 3, 3 ¥ = x5 0*{(Uys © T)L5}H 200,08 X (0, p)
j=0420k=2q9:
Now we apply Lemma 2.1 Note that (U,, o T)Lj is divisible by A(A—1) ...
(A—Kk+k+j+1) because Lj is divisible by A(A—1) ... (A—x+1) and
U,x(4;) o Ti(4, 4;) is of order at most k + j with respect to 4,. So we can apply
Lemma 2.1" with I' =k — j — k. Recalling (1.8), we obtain

| S
Y 2 Y i xd " 0{(Upx © T)L5} 1-00,D5 X (6, p)

j=0 420 k=q 4°

K—j=k-1 1
SR I CREPE R L)

j20 4920 k2q

_ OlXp—q—Zl

A=c

+Kl; {(E, 0 q'koT})L;}h:COIYp_q_z,_l] (mod. H{{X,}, {Y,}>).

x°oT, and E;o Uy, o T; are of order at most [ +
/11 1°
= {(E;o U,y o T)Lj}|;-, = O thanks to (A.3). Consequently,

A=c

1
A' — l q,
k + j and hence at most k — 1 if | <k — j—k — 1. Therefore {(E,_l o

Uk © 73-) LE}

x5 L(x"; x0Do) X,(6,(x), p,(x)) =0 (mod. H{{X,}, {¥;}).

Note also that E;_; o ——

Just in the same way, we can prove that
xo“Lj(x"; x0 Do) Y,(6,(x), p,(x)) = (mod. H{{X,}, {Y;})).
Step 2: Next we prove that
M(xg*L§) = M{(xg"Lj) = Nj(xo*Lj) = Nj(xg"L§) =0  (mod. H[D,])
for all B, k >0, 1<r<m, 0<k<2m.

Indeed, by Lemma C,

-KTK 1 —K K(y!
xo"L(9(x)X,) = Py ﬁx{, Dog {43 L5(x"; 2} 2=xo0, X,
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and we can verify just in the same way as Step 1 that
XML D) ameop, X, =0 (mod. H({X,} {X,})) .
So we have
(xo"Lp) = Ni(xg"Lp) =0  (mod. H[D,]).
For the same reason,
Mi(xg"L5) = Ni(xg*Lj) =0 (mod. H[D,]).
Step 3: To complete the proof of Proposition 3.1, it suffices to prove that
Mi(xg*LsD"*) = Mi(xg*LsD"*) = Nj(x5*LyD"*) = Nj(x5*L;D"*) = 0
(mod. H[D,]) for all B, k>0, 1<r<m, 0<k<2m.
However, this is easy because, by Step 2, we have only to check that for 1 <i<n,
DX, (0(x), p(x)) = pe,Xp—y + 60,07'Y,_; .
D;Y,(0(x), p(x)) = 0, Xy + ps,Ypo1 + 0,07 Y,
and p,, 0., 6,07 € H. Q.E.D.
Proposition 3.2. For each r (1 <r <m),
3m(L)(x) = N3u(L)(x) = M5, (L)(x) = N5, (L)(x) = 0.
Proof. We can verify by making use of Lemma 2.2 and Lemma 2.3 that
am(L) = 672"LHY . N,(L)(x) = 6,7 2mL"?
13,,(L) = 672mLF R, (L)(x) = 6, 2mLF2.

Since L' = QLH? and LA? = LH1 it suffices to prove L¥! = LH2 =0. From the
definition of 6 and p, we have

LP(x; (p £26'),) =0,
and by the homogeneity of L¥, we have
L¥(x; 6, + 6'p,) = 0,

that is,

2m 2m
Y L¥(x;6,,0"p,)=0 and Y L{(x;6,, —0"p,)=0.
k=0

k=0

By adding or substracting these two equalities, we obtain

m m—1
kZO leik(x; 0x, Gllsz) = 0 and kzo L¥k+1(x; gx, ellsz) = 0 .
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Therefore we have

LHI = Z sz_kLgk(x; Ox’ px) = 0 ’

k=0
L2 = kzo G2kt L (x;0,p,)=0. Q.E.D.
Proposition 3.3. We put

My (L)0xi D) = 3 FGAD; + Q'3

Njmoy(L)(x; D,) = 2 Ri(x)D; + 5'(x) ,
o 3.1)
M (L)(x; D) = 3, D+ '),

N5pos(L)xi D) = 3 REGD,+ §1(0)

Then we have
Pg = 0(x,),
Ry = d,(x') + O(x,),
Py=2e,(x)xo+ 0(x3), Pr=0(xo) (i=1...n),
0% = e,(x') + O(x,) ,
Ry = 0(x,),

where d,(x') and e,(x’) are holomorphic functions of x' in a neighborhood of the
origin and

4,0)#0, (0)#0.

Proof. We can check the following by simple calculation using Lemma 2.2
and Lemma 2.3

eszi — oLH(i)l
92"'R‘~ — GLH(i)z

02"'S — LH4 + 9RH2 + 190 LH(i.j)l + 102,) LH(i.j)Z
2 xin 2 xin
(3.2)

92m}‘5’i — 02LH(1')2
~ —~ 1 - 1 .
92m — JH3 02RH2 - 029 LH(:,,)I - 03 LH(1.1)2
Q=L""+ + 37 Yxix; + 2 Pxix;

6?"R; = OLHO'  (i=0,1,...,n),
where R¥(x; &) is the principal symbol of R(x; &)= L(x; &) — LH(x; &).
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Step 1: We have
LH(O)l — O(X%m) , LH(:’)Z = O(X(Z)m—l)
y . (3.3)
Oy LI = O(x3mY),  LHOD? = 0(3m™)

We prove only the second and the third because others can be proved in a
similar way. From Lemma 2.2, we have

m—1
H(i)2 2m—-2—ky H(i .
LHO2 — Z 0" LZI?-O)-l(x’ ox’ px)'
k=0

LY@ is a polynomial of 6, and p,, and of degree 2k + 1 in 6,. Pay attention
to the terms of degree k, in 6, and put 2k + 1 =k, + k,. From (L.9), their
coefficients are at least of O(x{*:*1/2)), and especially of O(xk*1*2/2]) if i =0. On
the other hand, since 0, = O(x,), they are at least of O(x{?). Therefore, LY}, =
O(x[2e*1+1/2ly = O(xk*), and LHD? = O(x™"!). Here remark that the terms in
L9, of degree less than 2k + 1 with respect to 6, (ie. k, <2k + 1) are of
O(xk+2),

-1
LH(i.j)l — mz 92m-2—kL121‘§i,j) X
k=0
In the case i # 0, j # 0, we can observe in a similar way as above that LH®)1 =
O(x§"~?). However, 6,, = O(x,) and hence 0., [LAEDT = O(xg™™!). If either

i=0 or j=0, LG jtself is of O(x3™?).
Step 2: We prove that

oL" 12 -1/2
d(x') = ZW(O, x'; 26,0, x')'2,1,0,...,0)6, (0, x')"'?,
0

A\
’ aLH ’ n1/2 1/2
e(x') = —5’7 (0, x"; 26,,(0, x') 2,1,0,...,000,,(0,x") 12
0

and d(0) # 0, e(0) # 0. As for Po and R,, recalling the above remark in step 1
and the fact p, (0, x') = 4, x, we obtain

LEQ)(x; 0y, px) = k + 2)d3k42,2m-24-2,0....,0)(05 x') 2 xg + O(x5+?).

Therefore

ﬁo = kZO 2k&2k.(2m—2k,0,....0)(0’ xl)"xo + O(X(ZJ) ’
and if we put
e(x’) = kZO k&Zk,(Zm—Zk.O ..... 0)(0, x,)k ’

then

Py = 2e(x')xo + O(x3), Ry =d(x') + O(x,) .
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On the other hand,

LH(y ¢ ) - LH yO? y ’ ¢y0’ ¢y

1 -~ .
- a 2’ , ( > p’
k+|l§§2m k,p(YO y') 2y0¢y0 ¢y

and taking account of the fact ay., 4(x) = O(x¢*'), we obtain

1

A\ ~ ~
LH(O’ y/9 ¢y0(0’ y,)’ 19 0’ (AR 0) = 2k de,(Zm—Zk.O ..... 0)(0’ yl)¢y0(0’ y’)Zk ’

M=
)

Il
(=]

k

~
oLY

- k
'a—'((), yl; ¢y0(07 yl)a 1, 07 ooy 0) =
No

2% G2k, 2m-2K,0,...,0) (0 y')‘lzyo(O, Yy

]

M=
()

k=0

Here,
,,(0, y) = 5,,(0, y') + 6712(0, y)6, (0, y') .

Since p is even with respect to y,, we have p, (0, y’) = 0, and since 6 = xq0(x) =
yéo(x) and ¢(0, x') = 6,,(0, x'), we have

8712(0, )8,,(0, y') = a(0, x') " *y318, (0, y') = 20(0, x') 726, (0, x') = 26,,(0, x')> .

And hence, we have

> m .
aL(O x';26,,0,x),1,0,...,0)= + Y. ki am-2x.0.....0(0, x")6,, (0, x' )1z
k=0
Therefore,
N\
aLH n1/2 n1/2
e(x') = 6—(0 x';20,,(0, x")'2,1,0,...,0)0,,(0, x')"* .
Mo

Next, we consider 0. Compare Q with S in (3.2). Since 6°™S = O(x3™) by

XX j

Proposition 3.1 and 00 LA +292p,‘iij”""""2 is of O(x3™*') by Step 1,
LH* 4+ 6R"? must be of O(x2™). On the other hand, we have

LH4= Z ( k)glm 1- kLZk’
k=0
3 _ S k(e + 1 — K)gPm KLY, |
k=0

So we conclude

L‘I}'S + 02RH2 Z k02m kL + 0(x2m+1

We can easily verify that

LY, = Gy am-2x.0,...,0)(0, x')0,(0, x')%*x§ + O(xg*
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in a similar way as above. And hence

L™3 + 9*RH? = kZO k@ 2m-2x.0,...,00(0, x")0,, (0, x2S 4+ O(x3™ 1)

A\

a H
B (;1‘ (O, x,; 20):0(0, x’)I/Z» 19 Oa ceey 0)0,;0(0, xl)2m+1/2x(§m + 0(x3m+1) *

0

Therefore,

Q =e(x')+ O(xq) .

Step 3: Finally we prove that d(0) # 0 and e(0) # 0. Since 6, (0) # 0, it suffices
to prove that

oL"

———(0;26,,(0)"2,1,0,...,0) # 0.

ono
However, this follows immediately from (A.2), so the proof of Proposition 3.3 is
completed. Q.E.D.

Now we construct the formal solution of (C.P.). From Proposition 3.2 and
Proposition 3.3, g, and hj, will be determined inductively in p by solving a first
order Fuchsian partial differential system. First we consider the initial conditions
of this system.

Lemma 3.1. All g,(0,x") and hy(0,x') (2l — a < p) are uniquely determined
from w(x') by a linear algebraic system of the following form,

~
llngb

04,0, x')*g,(0, x') = U({D§6,(0, x"), D§p, (0, x')}, {Dogp-5(0, x'), Dohy_(0, x")})

+ 5lvk5p_2k’_aw(x,) (k = 0, 1, e, — 1) N (3.4)

where U, (k=0,1,...,m — 1) are polynomials of the elements with 1 <r < m,
y<k 1l <s=<2k and 2t <s.

Proof. (3.4) follows from the fact that

I'(c —k)
DgXp(O’ p)=(— l)kwkp—zk(l’) s
I'(c—k
DEY,0.9) = (= Ik (o).
1-
which can be checked by simple calculation. And noting that 6,, (0) = Z¢,yo(0)2,

(A.2) guarantees that the m x m matrix

91 X0 (0) o omxo(o)
61 Xxg (O)M_l o omxo(o)m—l

is invertible, that is, (3.4) is uniquely solvable. Q.E.D.
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Next, we consider the differential system which g, and hj satisfy. From
Proposition 3.2, they are written in the following form for each r (1 <r < m);

(M3, (L)(x; D)g}, + Mb,,_,(L)(x; D)K,

= = X, (M3 (L) DGy + Mip(L)(6s DI i11)

) . (3.5)
N3,y (L)(x; D)gy + N5, —,(L)(x; D)k},

- _kzz (N3m—i(L)(X; D)Gy sy + Njpi(L)(x; DY, _4s1) -

-

Proposition 3.1 and Proposition 3.3 imply that the system (3.5) is of the form

{O(xo)Do + _i o(1)D; + 0(1)}g + {ZxODO + 1+ i O(xo)D,}h =F(x),

{DO + Y 0(1)D; + 0(1)}g + {O(xo)Do + Y o(1)D, + O(l)}h =G(x),
i=0 i=1
(3.6)
where g(x) and h(x) are unknown functions and F(x) and G(x) are given functions.

Proposition 3.4. Given ¢(0, x') = v(x’) a holomorphic function at x’' =0, the
system (3.6) has a unique holomorphic solution (g(x), h(x)).

Proof. The system of (3.6) can be written in the form

[xoDy — A(x; D')] (zzz;) — (x;;j(li-;)> ,

where A(x;D’) is a 2 x 2 matrix whose elements are differential operators with
respect to x' of order at most 1 with holomorphic coefficients and H,(x) and
H,(x) are holomorphic functions. We can easily check that

0 O
A|x0=0 = 1

This means that (3.6) is a Fuchsian system in the sense of H. Tahara [10] with
1
characteristic eigenvalues 0, —5 So we can apply Theorem 1.2.10 of [10] with

no = 1. If we give g(0, x’), h(0, x’) as Cauchy data, the compatibility condition is
A (90X (0
=7O\h(0,x)) T \H,0,x)) "

h(0, x') = 2H,(0, x').

that is,

Then, Proposition 3.4 is a direct consequence of Theorem 1.2.10 of [10].
Q.E.D.
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To conclude, first of all we determine g7 ,,,,(0, x') (1 £r < m) by means of
(3.4) and next g~ ,,,,(x) and h",,,,(x) by means of (3.5). Then we can determine
9 v+2141(0,x') (1 £ r £ m) again by means of (3.4). Repeating this procedure, we
can determine uniquely all gj(x) and hp(x). Thus we have completed the con-
struction of the formal solution.

§4. Convergence of the formal solution

After the construction of the formal solution which has been done in the
previous section, it remains for us to verify the convergence of the formal
solution. We prove it by the method of the majorant function. To do so, we
prepare a family of scale functions @,(s,z) and ¥,(s,z). We define them as
follows,

_ (2j + Plps)  _ __ R-:
¢p(5, Z) = j;o W = Df¢0 P ¢0(S, Z) = m

¥, (s,2)= ¥ (j + D@ + plps)

5o (2R — z)2iti+re =Db:%., ¥, = Dy(sDo) ,

where p and R are some positive constants (p > 1).
The following proposition can be easily checked.

Proposition 4.1.
(i) D.®,=d,,,, D,¥,=¥,. .,

KsDi®b,_,  ifrzmax(2(l—d),l—1),

(ii) (2sD; + )&, > {stz); ¥, ifr=max(—d)l),

(i) D.¥, » Ks'Di®,_, ifrzmax (2l —d—1),1-2),
STPT\KsDIY,_, frzmaxQU—d—1,1-1),
p
. 1 1 1
(iv) R—z(p"»ﬁd)”’ R_Z‘I’p»ﬁ'l’p,

1 1

V) ®R-RR -7 R -9® 2"

1 1
R-RR-B " ®=g® 2"

(R > R,R" > R)

where K = K(R, p) is a positive constant independent of p.

We write the Cauchy problem (3.5) with initial deta g,(0, x') = wj(x’), where
wp(x') are determined by (3.4), in the following form,
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(e,(x')(2xoDy + 1),
= — M3, (L)(x; D)g}, — {M5,,_,(L)(x; D) — ¢,(x')(2xo Do + 1)} 1}

= 5 M )55 DI s+ W L) (55 DI 1) @)

j d,(x")Dog,
= —{N3p—1(L)(x; D) — d,(x")Do } g}, — Nj,._1(L)(x; D)H,

— 3, (Nined D)3 DI ss + Nyms (D)5 D1} (42)

(950, x") = wp(x") (r=1,...,m) 4.3)

In the following proposition, we use the notation as follows.
fA) =2 1 falx

for f(x) =Y . fx% o= (a, ..., a,), and
K*(x, D) = ¥ K#(x)D"

for K(x, D) =), K,(x)D"

We define two functions gj(x) and hj(x) which will be majorants of the
solutions gp(x) and hy(x) (r =1,...,m) of the Cauchy problem (4.1), (4.2), (4.3)
respectively.

gy (x) = GC?W 1 p1o(X0, X1 + " + X,)
h:(X) = Hcp¢p+1+21—-a(x09 X4+ x,)
where G, H and C are some positive numbers.

Proposition 4.2. There exist p > 1 and positive numbers R, G, H and C such
that the following majorant relations hold,
(2x0Dg + 1)k} > (¢ My_1)* g5 + {€, Myyy — (%0 Do + 1)*} 1}

m

+ Z {(er-lMam—k)#g:—k+1 + (er_IM;m—k)#h:—h+l} 4.4)

k=2
9 DOg; > (dr_lNam—l - DO)#g: + (dr_lﬁém—l)#h:
+ Z {(dr_lN5m—1)#g:—k+1 + (dr_lﬁgm—k)#h; 4.5)
k=2
L gx(0, x") » wp(x') r=1,....m (4.6)

and g}(x) and h¥*(x) are majorants of g,(x) and hy(x) (r =1, ..., m) respectively.

Proof. First we investigate M5, _,, M3,_y, N5._, and N3,._, in detail. Cal-
culating x§ D§ D' (g,(x) X ,(6(x), p(x))) and x§ Dt D'*'(h,(x) Y,(6(x), p(x))) using Lem-
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ma 2.1, we find that the former is a linear combination of
xq DD g, X, 425 With B+ B, S B, 2SI ST
and
X§THIDE DY, gz, With B+ Py S B, 2+ 1SL ST
and the latter is a linear combination of
xg WD DG X, (p42j-yy With B+ B S B, 212 ST
and
x§ "Dy DPih, Y, (g,42p With B+ B SBL2j< 1 ST

with holomorphic coefficients. It follows from these and the condition (A.1)
(1Bl €£2m—1"+d')and I' + || £ 2m) that M5, _,, M5, _,, N5,._, and N3, _, are
linear combinations of

x8D{D'?  with max 2( —d), 1) + |B| £k,

X4DLD?  with max 2(—d)+1,1— 1)+ |8l <k,

xdD{D? with max (2l —d)— 1, 1+ 1)+ B Sk,
and x3D{D? with max (2(/ —d), )+ |f| <k

respectively with holomorphic coefficients.

Now we choose constants R, p, G, H and C so that (4.4), (4.5), (4.6) may
hold. Note that wj(x') which are determined by (3.3) have a common radius
of convergence R =0 and sup,, <z |wh(x')| < C**'p! for sufficiently large con-
stant C' > 0. And hence, (4.6) holds for sufficiently large G and C. In (4.4)
and (4.5), we can check the following using the above property of M3, _, A7I§,,,_,,,
NS—i» M5,._, and Proposition 4.1:

(2xoDy + 1R} > (e, M5,_,)*g}
and
Dog* > (d; ' Ny ,_y)*h*
for sufficiently small R > 0,
(2xoDy + 1)h7 » (e, M_y — (2xoDo + 1)} *h¥
and
Dogy > (d, ' N3y — Do)*g

for sufficiently large p > 1, and

(2xoDy + 1)hy > kZZ {(e; " M%) *g% s + (]} ~;m—k)#h:—k+l}
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and
Dogy > kZZ {(dr-lNZrm—k)#g:—k+l + (dr_lﬁim—k)#g:-k+l}

for sufficiently large C > 0.
Thus we have proved the first part of Proposition 4.2. The second part is
not difficult to verify. Q.E.D.

Therefore, we know the holomorphic coefficients have the estimates |g,|,
|h,| < Kp!T?, where K and T are positive constants independent of p, in the
common existence domain which is a neighborhood of the origin of C**!.  On

. 1
the other hand, we have the estimate |X,|, |Y,| gECQr" on every compact

set Q in the universal covering space over D, — (| Jm, V,)US where D, =
{xe C"*';|x| = r} and C, is a constant which depends only on Q and is indepen-
dent of p (see [13]). Thus choosing r such that r < T and w = D,, we prove
the convergence of the formal solution.

§5. Appendix

In this section, we prove some fundamental lemmas which we have used in
previous sections.

Let s >t =t(s) be a change of variable which is holomorphic at s = 0 and
satisfying

t(0)=0 and ¢'(0)#£0. (5.1)

Given a polynomial K (o) of single variable, there exists one and only one K(s, ),
which is polynomial with respect to ¢ and holomorphic with respect to s at

s =0, such that
pr [u(s(®))] v S8 u(s) (5.2)

holds for any smooth function u(s).
We are going to show an algebraic procedure to compute K(s, o).

Lemma A. There exists a family of polynomials {S;(c, 1)}, of two variables
(0, A) satisfying the conditions:

i. Sj(a,4) is of degree at most j with respect to each of o, 1;

ii. Given a polynomial K(c), then (5.2) holds for

Rs.0)= 3 s'S(0, 4,)K(0), (5.3)
=0

where A, is the operator defined to be (4,K)(6) = K(6 + 1) — K(o0).
Remark 5.1. ¢ and 1 are assumed to be non-commutative, more precisely,

(A + 1)ie? = (0 + q)P(A + 1) (5.4)
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for non-negative integers p, g. And (5.3) should be interpreted in the following
way:

j
If Sjo,4) = ) ¢,0°4% (c,,’s are constants),
p,q=0

then S;(o, 4,)K(0) = i Cpa0°(42K)(0) . (5.5)
pq=0

Proof. By hypothesis (5.1), t (or s) is represented as a convergent power
series in a neighborhood of s =0 (resp. t = O):

t= kZO a, s, (5.6)
s= 3 bt (5.6

where aq =1t'(0) # 0 and b, = i # 0. Therefore, we have
0 a
(o

=a§ Y s7"PA,(0), (5.7
p=0

57 =bg Y 1°*B,(0). (5.7)
q=0

A,(o)s and B(o)s are polynomials of ¢. We may verify that
deg A,(0) =p, degByo)=q, (5:8)
especially,
Ay(0) = By(o) = 1.

Given a polynomial K(o), let K(s, ) be the function with which (5.2) holds.
Applying (5.2) to u(s) = s° and taking account of (5.7), we have

K(s,0) =s7°b¢ Y. t°*B,(6)K(c + ) . (52)
q=0
(If (5.2) holds for all complex numbers g, then it does in particular for non-
negative integers. So, (5.2) holds for polynomials and hence for any smooth
function u(s). Therefore, (5.2) is equivalent to (5.2)). Representing conversely
t°*1 as power series in s by making use of (5.7) we have

R(s.0) = i $P*14,(0 + q)B(0)K(G + q) .

||M8

The right-hand side may be rearranged as

Rs.0)= 3 sH{o), (5.9)
=0
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where

Hjo) = ZI:O adA;_,(c + q)B,(0)K(o + q)
a=

-

aA;_,(0 + q)B,(0)(4, + 1)*K(0)

because K(o + q) = (4, + 1)'K(0). So, if we define S;(o, 1) to be

S(0.0) = 3 a3, (o + g)B,(0)A + 1)1, (5.10)
q=0
then we have
Hy(0) = Sy(0. 4,)K(0). 5.11)

Therefore, (5.3) holds. Sj(, 4) is polynomial of degree at most j with respect to
each of ¢ and A because of (5.8). Q.E.D.

By expanding s into power series of ¢ and taking account of the condition
(5.1), we obtain the following.

Lemma A'. There exists a family of polynomials {T (o, 1)}~ of two variables
(0, A) satisfying the conditions:

i. T{o,A) is of degree at most j with respect to each of o, 4;

ii. Given a polynomial K(c), then (5.2) holds for

R(s.0)= 3 t'T(0, 4,)K(0),
j=0

Lemma B. Let g(t) be a holomorphic function which satisfies g(0) =0. Then
there exist polynomials U, j(A) (q 2 0, j = q) of degree j independent of K such that

K@D, + g()D,)u = ZO%DZ g tH{U, (4K} ;=pu  for any u=u(t, z).
q2 . jzq
(5.12)

Proof. By linearity of the operator K(tD, + g(t)D,), we have only to prove
(5.12) for K(r)=1" (n=0,1,...), that is, to prove

1 ;

(tD, + g(©)D,)'u = 3 —Di ¥, t{U, {4)t"}H—ip,u, (5.13)
q209:  jzaq

We shall show first the uniqueness of the polynomial U, ;(4) satisfying (5.13) and

next that U, ;(4) is of degree at most j. More precisely, we try a formal series

Y50 U, A for U, j(A) and rewrite (5.13) as

u. (5.13)

t=tD,

1 .
(D, + g®)D,)'u= 3 —DI ¥ t’{ > U,;,jdit"}
120

9204:  j2q

The coefficients U} ;s will be uniquely determined successively from (5.12). And
then, we shall show that Uj; are 0 if [ > j.
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First, substituting n = 0 into (5.13), we obtain
1

u= 3 —Di ;qtjUgju.

9209 j2
It follows that

U:J = 50"1‘50"’ . (5.14)
Next, operating tD, + g(t)D, on both sides of (5.13), we obtain

u
t=tD,

1 .
(tD, + g(t)Dz)"”u = Z —D;’Z t’{(f + ) Z U;‘jdit"}
=0 9! "jzq 120

u,
t=tD,

FT AT T gnd] T U]
q2049: jzqtk 120

k20

where we put g(f) = Y 522, git*. On the other hand, replacing n by n + 1 in (5.13),
we have

(tD, + g(t)D,)"'u = Z l'D;’ Z t’{(t + j) z U;‘jdit"“} u.
q209:  jzaq 1z0 t=tD,
Using a formula
AT = (1 + DAL + 14570 )en, (5.15)
we obtain
(+ DU = (j— DU, + :Z: 40ka1 Ul jons - (5.16)

We see that all U;; (j=¢=0,/20) are uniquely determined successively
by (5.14) and (5.16), and the formal series U, ;(A) =) 5, U, ;A" satisfies (5.13).
Furthermore, if we substitute [ = j in (5.16), we get

, jza ;
(Jj+ I)Uq{;l = kZ'o 9k +1Uj-1,j-k-1 - (5.17)

It follows from (5.17) by induction that U,; with [ > j is determined only by
U?; with j' <0 which are 0. Therefore,

U,;=0 forl>j,
that is, U, ;(4) is a polynomial of degree j. Q.E.D.

Lemma C. Let K(t) be a polynomial of single variable, then,
1
K(@D,)(f9) = l;) ﬁt'fo(AiK)lmp,g (5.18)

for any f(t) and ¢(t).
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Proof. By linearity of the operator K(tD,), we have only to prove (5.18)
for K(r)=t" (n=0, 1,...), that is, to prove

1
eD)'(f-9) = ﬂt'fo(AiT")IFmtg (5.19)
120 ¢

Let us prove (5.19) by induction with respect to n. It is true for n = 0. Assuming
(5.19) for n, let us prove it for n + 1. Operating tD, on both sides of (5.19), we
have

l 1
D,y (f-g) = ; l_ D + 1D f(4:") emip g + ;0 ﬁt’D,’f(TA’J")IFm,g
1
= T DA + (@ + DAY g
It follows from (5.15) that (5.19) is also true for n + 1. Q.E.D.

Lemma D. Let K(1) be of degree n. Then the following formula holds for
j=1,2,....

n I+j—1
Kz—j=} (= 1)’( - >A£K(r). (5.20)
=0 j—1
Proof. First, let us prove
K(z—1)= Z —1)4'K(t (5.21)

by induction with respect to n =deg K. It is true for n = 0. Assuming (5.21)
for n, let us prove it for n + 1. Let K(r) be of degree n + 1. Applying (5.21)
to 4,K(z), which is of degree n, we have

K(t)— K(t—1)=

n
1=

l)lAHlK )
0

And hence (5.21) is true also for n + 1.
(5.21) may be rewritten symbolically as

Krx—1)=(1+4,)'K(@).
So, by induction, we have
K —j)=0+4,)7K(1),
for j = 1. By power series expansion of (1 + 4,)7/, we obtain (5.20) because
4'K(t)=0 ifl 2degK. Q.E.D.
Lemma E.
K(tD,)(t Ju(t)) = t JK(tD, — j)u(t)

for any u = u(t) and positive integer j.
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Proof. By Lemma C and Lemma D, we have

)
120

| —

K(tD,)(t u) t'(Dft ) (4eK) | c—p,u

—-—

!

Il

T (- 1)'(’ 0 1>r-f(A£K>|f=,D,u

120

= t7IK(D, — j)u. Q.ED.
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