
J . M ath. K yoto Univ. (JMKYAZ)
33-1 (1993) 1-27

Singular Cauchy Problems of Higher Order
with Characteristic Initial Surface

By

Setsuro Fumt

Introduction

The present article is concerned with the Cauchy problem of linear partial
differential equation with holomorphic coefficients in complex dom ain . T he  pur-
pose is to  give a n  explicit representation o f the  singularity of the solution for
meromorphic Cauchy data.

In  th e  c a s e  w here the  in itia l surface  is non-characteristic, this problem
has been  studied  by  severa l au thors: see  Y . H am ada [2 ] in  case  o f sim ple
characteristics, see Y. Hamada—J. Leray— C. W agschal [3] in case of constant
multiple characteristics, see Y. Hamada—G. Nakamura [4], D. Shiltz—J. Vaillant—
C. Wagschal [10] and T. Kobayashi [8] in case of involutive characteristics, and
see, for instance, J . U ra b e  [1 2 ]  and  C . W agscha l [14 ] and  s o  o n  in  other
cases.

O n  th e  other hand, we can consider this problem even in  the  case  where
the initial surface is characteristic. Indeed, the C auchy problem for Fuchsian
partial differential operator (in the  sense of M. S. Baouendi—C. Goulaouic [1])
has a unique holomorphic local solution under some conditions (see Y. Hasegawa
[5], M. S. Baouendi— C. Goulaouic [1]). J. U rabe [13] trea ted  a  special class
of operaters in C 2 w hose  principal parts are tar2 — a! a n d  whose characteristic
exponents are  constant. H e gave an  explicit representation of the singularity of
the solutions by means of hypergeometric functions. S. Ouchi [8] treated second
order operators whose principal parts are of simple characteristics multiplied by
t 2 . H e used the multi-phase functions and showed that the solutions are holo-
morphic except on  the  characteristic sets.

In  th is paper, w e treat a  class of operators L(x; Dr ), x  = (xo , x 1 , x„) =
(x 0 , x') of order 2m (m e N), which are, roughly speaking, transformed to operators
with simple characteristics by change of variables x o =  y ,  x ' = y ' (see (A.1) and
(A.2)). By (A.1), these are  of Fuchs type with weight m .  So w e consider the
Cauchy problem

SL(x; Dr )u(x) = 0,
Ipt,u(0; x') = v k (x') (k = 0, m — 1)
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where v„(x') has po les a long  x, =  O. T h is  problem  is a  generalization o f  J.
Urabe [13].

What is difficult in studying Fuchsian operators is that not only the principal
p a r t  b u t also the  lower order terms affect very much th e  singularity o f  solu-
t io n s . As is well-known, in the Cauchy problem for the second order operator
in  two independent variables

L = tD,2  — + (1 — c)D,

with initial surface t = 0, the values of c  is  of dicisive importance in discussing
the  singularity o f so lu tions. If  L  is  o f order 2m w ith m  2 ,  then w e have m
values playing the role of c a b o v e . And hence we need a  strong condition (A.3)
in  order that the representation of the solution be the same as tha t of J . Urabe
[13] (see Remark 1.5 in section 1).

I  w ith  to  express m y thanks to Professor Nobuhisa Iwasaki fo r his con-
stant encouragement and to Professor Norio Shimakura for his kindness to read
through the  paper a n d  give m e valuable advices. T he problem was suggested
by Professor Jiichiro Urabe. I w ish  to  express my sincere gratitude to  h im  for
his valuable suggestions.

§ 1 .  Assumptions and results

Let Q be an open neighborhood of the origin in Cn+1 =  C x C" with standard
coordinates x = (x o , x l , x „ )  =  ( x o , x') and L = L(x; Dx ) a linear partial differen-
tial operator of order 2m (m e N) whose coefficients are holomorphic in  Q . W e

0
use the notation D„ = (Do , D1 , D ) = (Do , D'), (j = 0, 1, , n), and D'' =

Oxi

D„fl- for fi = (fi,, ..., fin ) and  IX = fl + ••• + fin .
We shall impose three conditions (A.1), (A.2) and (A.3) on the symbol L(x,

= =
First, we write L(x, as

L(x, =  E  ak ,p (x)W 4  .
k+1/3152m

We define

d(k, 13) = max (k  + [ 1i61 ±  1]  m ,  0 )
2

fo r a ll (k, fi) satisfying k  + 1,61 2m, where [a] denotes th e  largest integer not
exceeding a.

(A .1) ak ,p (x) is divisible by X g " ) ,  that is, ak ,p (x) is written in the form:

ak ,p (x) = xg (k mak ,p (x) + Ifil 5 2 m)

with a  holomorphic function àk .f l in  Q. Especially, a2.,0 = 1.
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Next, let (x; be the principal symbol of L(x; and (y; g) the symbol
obtained from (x; by the change of variables xo =  y o

2 , x' =  y ' in the follow-
ing way:

f -Y i(y ;  =  'Pk y ' .
2 y o

 ) 1 ' )
'  

where y = (ye, Yi, Y.) = (Yo, y') and = Oh, n i, • • • = 11'). B y  (A.1),
the coefficients in are  holomorphic in  Q.

(A .2) Equation g (0 ;  go , 1, 0, ..., 0) = 0 has 2m distinct roots.

(D(0; no , 1, 0, ..., 0) is  in  fact a polynomial w ith respect to fig of degree m
by (A.1) and we denote the roots by W r I rin=1. See the proof of Proposition 1.1.)

Finally, the condition (A.1) allows us to  w rite  L(x; Dx )  as

L(x, Dx )  =  E E  x o--.1_4(x% xo po )D' + L - (x; x o Do , D') ,
ifils2m o<,,ss(p)

(1.2)

where s(fl) = m 
+  

a n d  each of 14(x'; A.)'s [resp. L - (x; A , 0 ] is a polyno-

mial with respect to  A [resp. (A, whose coefficients are holomorphic a t x' = 0
[resp. x = 0].

(A .3) There ex ists a constant ce C\ { 1, 2, ...,}  such that L '(x '; A ) is divisible by
f : ( 2  — — c — P) f o r all )q  and K (f3 0  <  K S(/3)).

N ote th a t L '(x '; A ) is always divisible by 1 1 : 0
1 (2 — p). Condition (A.3) is

clearly equivalent to the  following:

(A.3)'. There ex ists a constant c e C\ {1, 2, ... } such that

zli,1 1/213 (x'; A)
K - 1
11 (A — P)}

p= 0
= 0( j  =  0, 1 , ... , K — 1)

A=c

 

f o r all 13 and K (1131 2m, 0 < K  s(f i)) in  a neighborhood o f  th e  origin x' = 0,
w here A , is an  operator acting on functions o f  A:

(A  j) .)  = f  +  1 )  —  f (
1 ) , A  =  , t ( A  f ) , zl?f(A ) = f(2) .

We shall sometimes write (A.3), [resp. (A.3)J instead o f (A.3) [resp. (A.3)']
in  order to specify the constant c.

B efore  sta ting  ou r m a in  theorem , l e t  u s  define t h e  auxiliary functions
LI;P(6, p), X (0, p) and nc )(0, p), which are fundamental to describe the singularity
of the solution of our Cauchy problem (C.P.) below.
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First, w e introduce th e  so-called wave forms f p(s), k p (s) w ith  a  complex
parameter p:

f , ( s )  —  r ( p

1

+  1 )

s P

akp (s) = f (s) —  +  1) (log s + tfr(p + 1)),

where 1//(p) = r ( P )  . Especially kp (s) = p  +  1!(— 1)P-1 sP for p = — 1, — 2, ....F(p)
Next, we introduce th e  multi-valued functions U (0 , p )  as the solution of

the Cauchy preblem;

j  P U r = 1014 —  D,  (1 — c)De l Ur = O,
t Ur (0 , 19 ) = fp(P) ,

0 0
where Do = , D,, = a n d  c  is  a  constan t (c e C\ {1, 2, ... }). W e can write

dow n U (8, p) explicitly as:

1 — p —p + 1U
PP'

r(0, p) =    1 — c;r(p + 1) 2 2

40
where z = Now we define X (0 , p ) a n d  nc )(0, p) as follows:

X (; )(0, p) = —

a
p)ap

Y r(0, p) = ODOX1,1_1(0, p) .

N ote tha t VI")  i s  the solution of the Cauchy problem:

Pc n )  = 0 ,
Vpc) (0, p) = k p (p) .

F or the  property o f  (4,c)(0, p), X(19, p) a n d  nc )(0, p), see [13].
N ow  le t us consider the Cauchy problem with initial surface S = {x0  = 0 },

whose Cauchy data have poles along x, =  O. B y  the principle of superposition,
we have only to consider the following problems:

f L(x; Dx )u(x) = 0
(C.P.)N u(0, x ') = w(x')k_ a (x,) , k = 0, ..., m — 1, (/ = 0, m — 1) ,

where a is an integer, St,k is  Kronecker's delta and w(x') is a  holomorphic function
in  a  neighborhood of the  origin x' = O.

P u t  T = {x 0 = x, = 0 }. From  Rem ark 1.1 below, we see that if z eS — T
is sufficiently close to  the origin, the Cauchy problem (C.P.) has a unique holo-
morphic so lu tion  in  a  neighborhood o f z  (see [1]). The solution is expected
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to  have singularities along the  characteristic surfaces of L  issuing from T  The
characteristic surfaces are  S  and V,. = =  0 1  U  {Or -  (x) = 0} (r = 1, . . . , m),
where O (x) is expressed a s  Or

-±(x) = pr (x) + 20,.(x) 112 f o r  some holomorphic func-
tions Or (x) and p,.(x), which will be constructed in Proposition 1.1 a t  the end of
this section.

Theorem. Under the assumptions (A.1) (A.2) and (A.3)r ,  there exists one and
only one solution of  the Cauchy  problem (C.P.) and it is extended holomorphically
to the universal covering space A (a) — (Urm-,K)U S), where o) is a connected neigh-
borhood of  the  origin o f  Cn+ 1 . M ore precisely, the solution is expressed as:

u(x) = E  E  ( g ;(x)x(pc)(or (x), pr (x)) + 14(x)Y(0,.(x), p r (x))) , (1.3)
r=1 p=21-a

where g (x ) and h (x ) are holomorphic functions in a) and the sum on the right-hand
side is uniformly convergent on every compact subset o f  ,R(o) — (Urm=, V,.)U S).

Rem ark 1.1. N o te  th a t  d(k, 0) = max(k — m, 0), a n d  d(k, fi) k  —  m  +  1  if
1. It follows that any sym bol L(x; which satisfies (A.1) is  Fuchsian in

the sense o f Baouendi-Goulaouic [1] w ith respect to  th e  hyperplane x o =  0  of
order 2m and  with weight m.

Remark 1.2. If L is an  operator satisfying (A.1) [resp. (A.3),], any holomor-
phic change of variables, which preserves th e  hyperplane x o =  0 , transforms L
into another operator L ' which also satisfies (A.1) [resp. (A.3),].

Rem ark 1.3. In  th e  c a se  m = 1, the conditions (A.1), (A.2) a n d  (A.3) are
equivalent to the  following: L(x; is  a  second o rd e r  Fuchsian symbol with
respect to  th e  hyperplane x o =  0 with weight 1. The characteristic exponent,
which is equal to the constant c  in  (A.3)r ,  is  n o t  positive integer. M o re o v e r ,
the coefficient of a  d o e s  n o t  v a n is h  a t  the origin.

Remark 1.4. If L ,  and  L 2  satisfy (A.1), then the composition L, 0 L 2  also
satisfies (A.1), a n d  if  b o th  o f  L ,  a n d  L 2  satisfy (A.3)r , L ,  o L 2  also satisfies
(A.3)„. W e can verify the latter assertion by lemma E  in  th e  Appendix.

Rem ark 1.5. W e give a n  example o f  a  4th  order operator to  justify  the
assumption (A.3). L et L  be  the composition of two operators L ,  and L 2 ;  L =
L, o L 2 , and each L, (r = 1, 2) a second order operator in C2 = C, x C x  as follows:

L, = tD,2  — ar D1 + (1 — c r )D,

where Cr a n d  ar are constants, ar 0 0  and  c,. e C \ {1, 2, ...}. N ote that each L,.
satisfies the conditions (A.1), (A.2) and (A.3), from  rem ark 1.3, while L  satisfies
(Al) b u t  (A.2) if  and  only if a, 0 a 2 ; and (A.3), if  and  only if c, = c 2  =  c.
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The solution of the second order Cauchy problem

fL r u,. = 0
tu,.(0, x) = wr (x)k _OE,(x)

is  of the form

ur (t, x) = E„-,._„, (grp (t, x)X (p la r t, x) + hip(t, x)Y ;»(ar t, x))

for each r = 1, 2, a s  is show n in  th e  theorem . Then, it is natural to consider
whether the solution for the 4th order Cauchy problem, say,

,
Lu = 0

u(0, x) = w(x)k_ Œ(x) (1.4)

, Dt u(0, x) = O,

is  of the form

u(t, x) = L_,Vn r=1,2 p Œ  Ig r
p (t, x)X , ) (ar t, )0  + hrp (t, x)Y,}" ) (ar t, x)} , (1.5)

with holomorphic functions grp (t, x) and hip(t, x) in  a  neighborhood of (t, x) = (0, 0).
The answer is "no".

Counterexample. If a l  0  a 2 a n d  i f  c l  0  c 2 ,  the solution of the Cauchy
problem (1.4) is  n o t of the  form (1.5).

To see this, we investigate the transport system s. The transport system of,
say, (4„ 14) is  a s  follows:

a l (a2  — a1){(2 tD, + 1)h 2D x g;}

= (L 1 +  E 1 A2 + Bi B2)4-1 ± (E1 132 + 131 E2)11;-1

+  ( L i  B2 ± Bi L2)4-2 + (L1E2 + E1F2)h-2

+ L I L2 4 3  ,
(1.6)

2(a 2 — a i ){Di g;, — ai D„q,}

= (B i  A2 + A i B2)4_1 + (F1 ± Bi B2 + A i E2) 11;-1

± (Fi A2 ± A i 1 ,2)g ip-2 ± (Fi B2 ± B1F2)N7-2

+ Fi F2 q,_3 ,

— crwhere Ar =  2D, +
c i

t

,  /3, = —2ar Dx , Er  = a i (2tD, + 1 + c 1 —  cr ) and Fr = L r +

2c 1 D 
+ c i (c, — C r)

 ( r  =  1 ,  2 ) .i t
The Cauchy problem (1.6) with Cauchy data g,(0, x) has a unique holomor-

phic solution (4 , h pl )  if  the  C auchy  da ta  and  the  right-hand side o f (1.6) are
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holomorphic. However, o n  th e  right-hand side o f (1.6), the coefficients of the
operators A 2 a n d  F2 are not holomorphic if c, c 2 . Therefore we cannot con-
struct in  general the solution of the form (1.5).

We shall conclude this section with the following proposition which enables
us to construct the  characteristic hypersurfaces V,. (r = 1, , m).

Proposition 1.1. Under the assumptions (A.1) and (A.2), the first order Cauchy
problem

SLH(x; Ox ) = 0
1.0(0; x) = x 1

has 2m distinct solutions {41 } r- .... „„ each o f  which can be written in the form

0,.± (x) = Pr (X) ± 20,.(x) 112 , (r = 1, . . . , m)

where p,.(x) and Or (x) are holomorphic in a neighborhood of the origin, and further-
more, Or  is expressed as

Or (x) = xe•r (x) (r = 1, m) (1.8)

where ar (x) is holomorphic and o-,.(0) 0 0.

Pro o f . P u t Ay) = 0 (4 , y '). We consider the  new Cauchy problem

SLY( y; 4 ) = 0
= Yi

Taking account o f  (A.2), implicit function theorem a n d  Cauchy-Kovalevskaya
theorem guarantee that this problem has 2m local solutions which are holomor-
phic in  y  in  a  neighborhood o f th e  o rig in . Moreover, we can easily verify by
th e  definition of th a t  i f  (-6(y) is a  so lu tion  o f (1.9), th e n  -S ly )  is  a lso  a
solution of it, where . "(.Y) = ( — Yo, 31'). On the other hand, L2i (0; rto, 1, 0, ..., 0)
is a polynomial of gl„, since

+
d(k, fl) =[

k 11
k 2

m
2 (1.9)

And hence, taking account of (A.2), i 0 (r = 1, . m ) . Therefore ,

a  q3(0) 0,
0 .110_ a _ -and since ,

 a 
0'1(0) =  a

0(0), we have 0 v(0)
0 Yo aYo aYo

sify the 2m solutions of (1.9) into m couples {  }r =,

0
— ( 0 ) .  Thus we can clas-
aYo

....„ ,  by means of the relation

4 +  ( — A, Y') = ( y  Y') (r = 1,

(1.7)
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Then Or a n d  p r
 a r e  holomorphic in  x  i n  a  neighborhood o f  th e  origin since

0
they are even in yo . Moreover, noting ( 4 +  — ) ( 0 )  =  0 and (Or+ —  Or-  ) ( 0 )  =

aYoa
2 07(0) 0 ,  w e can express B,. as (1.8). Q.E.D.

, yo

§ 2. Preliminary calculations

We shall prove the theorem in the following w ay. Suppose that the solution
of (C.P.) be equal to a  series u  of type (1.3). To determine the coefficients {4}
a n d  {KJ }, we operate L  te rm  by  te rm  to  the  series. I t  t u r n s  o u t that anyone
of derivatives of X r s  and  11

1

(
)̀ '5 is again a  linear combination of X r s  and  Y r's

(see Lemma 2.1). Putting Lu = 0, we get a  system of partial differential equations
which Ig pr l  a n d  {hrp }  so lve . W e m ay  ca ll it transport sy stem . Coefficients are
n o t holomorphic in  general (Remark 1.5). However in  ou r case, the condition
(A.3) guarantees that they a re  holomorphic (Proposition 3.1). I f  we prescribe
holomorphic Cauchy data, the transport system has one and only one holomor-
phic solution {gpr, hip} (Proposition 3.4). Thus w e obtain  a  formal solution of
type (1.3) of (C.P.). In section 4, we shall prove that the  formal solution is  in
fact convergent in a neighborhood of the  o rig in . In  sec tion  5, we shall prove
the  fundamental formulas used mainly in  the  proof of Proposition 3.1.

In  this section, we prepare three preliminary lemmas of which we shall make
use in the next sec tion . We omit the proofs because they are obtained by simple
calculations.

From  now  on , we fix the constant c  in  (A.3) and  write X i,, Y p  in stead  of
Y r respectively. First, we express the derivatives of x .„ and  Yp  w ith respect

to  O  a n d  p  a s  linear combinations o f  X q 's  a n d  Yq ' s  using th e  definition of
them . Here we introduce operators Ek  ac ting  on  functions of 2:

(Ekf)(A )=

1 f (1 )  (k 0)
! Ak+1(2 )

  

0 (k = —1)

where AAA) = 2(2 —  1)... (2 — 1+ 1).

Lemma 2.1.

[1/2] [(I-1)12]

OlDf,X p -2 k= b/,2k(C)B kX E  b / ,2 k + 1 ( 0 9 1 1 7p -2 k -1
Pk = 0 k=0

BIM Yp

[(I+1)/2 ][ 1 / 2 ]

=  E  i;I,2k-1(C) 6 k X p-2k +1 E F)1,2k(C)e k Y p-2k
k=1 k=0

Dp̀ X p =

D' Y  =  YP P P-1
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and especially fo r k  < I,

9

bi,2k {Ek- i  ( A
l— k A 1) }

A=c

6
1,2k

= (Ekiii)1A =c

{ E k -i( 1
2— k A i ) }

A-=c
{Ek(2-41)}1A=c •

Lemma 2.1'. It follows from  the above lemma that i f  K (2) is a polynomial
with respect to 2  o f  order I divisible by  1(2 — 1) ... (2 — +  1 )  (0 1' 1 ) ,  then
K (04)X p and K(OD9 )Yp can be expressed as

[112] — 1)12]
K(01)9 )X p = B2k(c)o k xp-2k + B2k+1(C)Ok Yp-2k-1

k = 0 k= 0

[(I+ 1)/2] [1/2]
K (OW  Yp  = —2k-1(c)64kXp-2k+1 E ij2k(C) e k Yp-2k 5

k=1k  =  0

and especially fo r k <

1
B2k t E k — i  ( 2 k K ( 4 ) }

,
r3 2k -i —  tEk -i k K v v )}

A=c
B2k±i. — (EkK(2))1.1=c

  

A=c
jj2 k  =  {E k ( 11K ( 2 ))) 1.1=c •

   

Note that Bi (c) and 13; (c) are polynomials of c.

Next, le t K(x, be a  homogeneous polynomial with respect to of degree
I. D e n o te  b y  Kk (x; r i )  the  sum of terms of degree k  in a n d  o f  degree 1 —  k
in  n  of K (x; +  q ), th a t  is  to  say,

K (x ,r + sn )  = E K k (x; sn) = E rk s" K k (x; n )  ,
k=0 k=0

where r, s e C .  We shall write

0
Kti )(x; =  - K ( x ; ,

Ko'k) (x; —  e u k K(x; 0 •

And we define K(x; Ox Do + p„D p )  to be

K(x; Ox Do + px 1 ))  = E K k (x ; (9x , px ).1):Dp"  ,
k=0

where O  and  p  are  functions of x  and

ao ao— (a x , , a x n ) = Gaxpo ,a a :  
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Lemma 2 .2 .  Let us put

011((x; 0„D0 + p x Dp )X p (0, p) = X  +  K 2 +  K 3 X p _1+ 1  + K 4  Yp _i + i  + • • ,

0 1K(x; Ox Do + p x Dp ) Yp (0 , p) = k ' x _ 1 + Yp _i +  3 X p _i + i  + 1Z 4 1Tp _i + i  + • • • ,

where . . .  is a linear combination of  {X q , Y q } p _ 1 + 2 5 q 5 p  whose coefficients are func-
tions o f  x. Then we have

U-2]
K 1 =  E el kx2k(x; ex, p x ) ,

k=0

[(1-1)/2]
K 2  =  E  0̀ - kK2k+i(x ., ex, Px)

k=0

[(1- 1)12]
K 3 =  E  k(c — 1 — k) 0 1 - ' 1 ( 2k+i(x; Ox, Px)

k=0

[1/2]
=  E k(c — k) 0 1 - k - 1 K2k(x; Ox, Px)

k=0

R-1 = oK 2
 ,

= K ',
[I/2]

"k'3  =  E  k(c + 1 — k) 0 1 - k K2k(x; Ox, Px)
k=0

[(I - 1)/2]
R 4 =  E  { ( k  +  1 ) c  —  k

2
K 2k+1(X ; Ox, px) •

k = 0

Finally, let P(x; be a polynomial in of degree I, (x; the principal
part of P  and 0 (x , the principal part of Q(x, =  P ( x ,  —  PH (x,

Lemma 2.3.

P(x; Dx )[f(x)Z(0(x), p(x))]

= f  PH (x; Ox Do + p x Dop )Z  + 0xD0 + px Dp )(ex i x i Do + p„,„,D p )Z

+ D if P n x ; 0 x D0 + p x Dp ) Z  f Q H (x; Ox Do + p x .Dp )Z + • • • ,

f or every f (x ) and Z(0, p), where . . .  consists o f  terms involving the derivatives of
Z  of  order less than I — 1.

§ 3 .  Construction of the formal solution

Suppose that the series of (1.3) solves (C.P.). Operating L(x; Dx )  to it by
term by term differentiation, we obtain a system of linear equations with respect
to {grp , hrp }  which consists of an infinite numbers of couples of partial differential
equations. Coefficients are holomorphic thanks to the hypothesis (A.3) (Proposi-



Singular Cauchy Problems 11

tion 3.1). The p-th couple contains {g qr, h qr}fi t p' n  and their derivatives of order
at most 2m + p — g. However, the coefficients of g pr + 2 „, and h pr+ 2 „, are revealed
to be identically equal to zero owing to the choice of (Or, p r )  (Proposition 3.2).
So, the p-th couple is a  first order system with two unknowns f a +2m-11 hpr  +2m-11
if 14 , k i

r g " 1 - 2  are already known (Proposition 3.3). Hyperplane x o  =  0 is char-
acteristic with respect to  the couple . However, the Cauchy problem has one
and only one holomorphic solution f a,,,pr +2m-1, hpr  +2 m -1 } every time we prescribe
arbitrary but holomorphic Cauchy data (Proposition 3.4).

Given a  linear differential operator K(x, D x )  of order I, le t us define

MT,(K)(x; Dr ), 1171;,*(K)(x; Dr ) , N ,r,(K)(x; Dr ) a n d  gik (K )(x ; Dr ),

linear differential operators of order 1 — k, as follows:

K(x; Dr ){g(x)X p (Or (x), pr (x))1

= {M(K)(x; D r )g(x)} X p _k + {N(K)(x; D r )g(x)} Yp _k

k=0

for every g(x), and

K(x; Dr ){h(x)Yp a(x), pr (x))1

= fikc(K)(X; Dr )h(x)} X p _k { (K )(X ; Dx)h(X)) Yp—k

for every h(x).

Proposition 3.1. The coefficients of the operators M(L), 1171(L), 1\7(L) and
1■4(L) are all holomorphic in a neighborhood of the origin.

P ro o f . Let H  be the ring of germs of holomorphic functions o f x  a t  the
origin, H[D r ]  the ring of linear partial differential operators with coefficient in H,
and H<IX q l, {Yq }> the vector space of finite linear combinations of Xq 's and Yq 's
with coefficients in H .  Using these notations, Proposition 3.1 can be written as;

M (L ) 1 Ï4- T(L) N ( L )  I (L) 0 (mod. H[D r ] )

(1 < r < m, 0 < k < 2m) .

In order to prove this proposition, we use the expression (1.2) of L .  Taking
account of Lemma 2.1 and (1.8), it is evident that

fa(.L - ) IST'(L - ) 0 (mod. H[D r ] )

(1 < r < m, 0 < k 2m) .

So, we have only to consider the term xo- K x0D0)D1 for every fi and K>  O.
S tep 1 : First we prove that

xo- K x0D0)X,(0(x), p(x)) O ,

x j'L '(x '; x 0 D0 ) Yp (0(x), p(x)) 0 (mod. H <{Xq }, {x,}>).
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Here, (O, p) stands for any one of (0„ p,.)'s. From (1.8), we can regard xo  a s  a
holomorphic function of O and x', and we write OK x ') = p(x 0 (0, x'), x'). Then,
applying Lemma A' in Section 5, we have

xo Doxp(o(x), p(x )) = E X4—K T (2, A A )V (X ' ; A)} 1,1=0DeX p(9 , 0 (9, x ' ))
.W1)

= E x-tx(7A)1A=0D 0 +8,58D,Xp(e, p ) •

And using Lemma B, we have

1
x Lp(x'; x0 D0 )Xp (0(x), p(x)) = E  E  E T;)411A=0D0DXp(0, p)

q o q!

Now we apply Lemma 2.1'. Note that (U0  0 'Ti ) /4  is  divisible by  A(A — 1 ) ...
(A — K  k  + j + 1 )  because / 4  is divisible b y  42 —  1) ... (A — K  + 1) and
Uq ,k (4) 0 T; (2, A A )  is of order at most k  + j with respect to A A. So we can apply
Lemma 2.1' with l' = K — J —  k. Recalling (1.8), we obtain

E  E  E ok{(Uq,k 0 7-))/4}1,1 =0 D 8 D7„Xp(0, p)
i>o q o q :

f (  
-1

1E E E —
1

, x4- Kek E E, U
q'k 

0 T )1,"}
j 1 3j^O q^ Ok ^ q q . 1=1 A l A=c

01 X
p — q  — 2 1

  

K—j —
k- 1

+ E {(E, o  u„,k 0 TJ )/411).=còYp-,-2,-11
I=1

(mod. H<{X,7}, {Yq}>).

Note also that Ei _1 0 A 1_ i  0 Uq ,k 0 Ti  a n d  E, 0 Uq ,k 0 'Ti  a re  o f order at most / +
1

k  + j and hence at most K  —  1 if / .. K  —  j  —  k — 1. Therefore { ( E  0 01-1 2 1

)

U,,,k 0 = {(E, 0 Uq .k  0 7; )14}1 A ,  =  0 thanks to (A.3)'. Consequently,

x cTKL73(x'; x 0 130 )X p (0,.(x), p,.(x)) 0 (mod. H<{ X q }, { Yq } >) .

Just in the same way, we can prove that

x L73(x'; x o Do ) Yp (0,.(x), p,.(x)) 0 (mod. H<{X ,1} , { 1} >).

S tep 2: Next we prove that

M (x cTK/4) (x„T" N(xcTK L;) g l a x cT".1.4) 0 (mod. H [D ])

for all K > 0 , 1 < r < m , 0<k<2m .

Indeed, by Lemma C,

x L ( g (x )xp ) = E — Dt,gtzl I
A L7,(x'; A)}1.1=x0Do Xpt o

A=c
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and we can verify just in  th e  same way a s  Step 1 that

x 114 1AL'(x'; 2 )Itt=x„D„X„ = 0 (mod. H<IX q l , { 17q} ›).

So we have

M ( x L )  N ( x o- KL73) 0 (mod. H[Dx ]).

F or the  same reason,

Arc(xo
- " L p  g r jr,(xE.,KLp a . 0 (mod. H[Dx ]).

S tep 3: To complete the  proof of Proposition 3.1, it suffices to prove that

M(x 0
- "Lp'fl) /1-41(x L p 1 ) N ( x o

- KLIII D I) R (x ,T K L 73 /Yfl) 0

(mod. H [D ]) for all 16, k > 0 , 1 < r< m , 0 < k < 2m .

However, this is easy because, by Step 2, we have only to check that for 1 < i < n,

Di X p (0(x), p(x)) = p x ,X p  - 1 ±  ex,  1  yp_ i  .

D1 n(0(x), p(x)) = Ox ,X p _i  + p x ,Yp _, + c0x ,0 - 1 Yp ,

and N o  Or o  0 y 0 E H. Q.E.D.

Proposition 3 .2 .  For each r (1 < r < m),

Mr2 ,„(L)(x) = M„,(L)(x) = A,„(L)(x) = gIL„(L)(x) = O.

Pro o f . W e can verify by making use of Lemma 2.2 a n d  Lemma 2.3 that

A ls,n(L) = 9,7 2 m 1, 1 1 1 M„,(L)(x) = 0,.- 2 mLH 2

i l i r2m (L ) =  e r
- 2 m 171 1  , R'in11 -)1x) = Or- 2 m 1 7 1 2

Since L7 1 1  =  0 0 2 a n d  L- 1 2  = L H 1  it suffices to prove LH 1  = L H 2  = O. F r o m  the
definition o f 0  and  p, w e have

LH (x; (p ± 20 112 )x ) = 0

and by  the homogeneity of LH ,  we have

LH (x; Ox  + O 1/2 p )  =  O,

tha t is,
2m 2m
E  11(x; o x , p x )  = and E  L t(x ; ex , —ev2px ) = O.

k=0 k=0

By adding o r  substracting these two equalities, we obtain
.-1

LIA(x; Ox , 01/2 Px) = 0 and E L'Ik+i(x; ex , ev2px ) = O.
k=0 k=0



14 Setsuro Fujiié

Therefore we have

L H 1  = E 02 — kak (x; ex, px) = O,
k=0

L . 2 E  0 2 m -
k- 1L12Ik + i  ( x ;  Ox ,  p x )  =  O.

k=0

Proposition 3.3. W e put

M„,_,(L)(x; Dx ) = E Pf(x)Di + Qr(x) ,
i=0

M.-1(L)(x; Dx ) = E R7(x)D1 + Sr(x) ,
i=0

Q.E.D.

(3.1)

JÇ'lin,-1(L)(x; Dx ) = i=o 15 (x)Di + (x) ,

grim-i(1 )(x; Dx ) = i=o k(x)10, + gr(x) .

Then we have
Pi; = 0(x 0 ),

RIO = dr (x ') + 000 ,

11; = 2er (x')x o  + 0 (4 ) = 0(x 0 ) (i = 1, , n) ,

= er(x ') + 0 (x0)
kro  = 0(x0)

where dr (x ') and e r (x') are holomorphic functions o f  x ' in  a neighborhood of the
origin and

dr (0)O , e r (0) 0 O.

Pro o f . W e can check the following by simple calculation using Lemma 2.2
and  Lemma 2.3:

02 1"Pi =  &Ow l

02 'nR i = OLH ( l ) 2

02 'ns = LH4  + 010 2 +  00 L Hojn + 2
1 02 p x , x , LH(1,j)2

02m pi0 2LH(02
(3.2)

1 102m  _ +43 0 2 e 2  4 . _ 0 20  o u , D I  4 . _ 0 3 n  i f i r c i ,D 2
2 x ix i 2  ' x 'x i

02 91, = 0LH( 0 1 (i = 0, 1, n) ,

where R" (x; is the principal symbol of R(x; =  L ( x ; —  L H (x;
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S tep 1: We have
L H (0 )1  = o(xr), 0 ( 0 2 = 0 (x r - 1 )

oci,D2 = 0 ( 4 ,1 )0 = 0 (xr - 1 ),

W e prove only the second and the third because others can be proved in  a
similar w a y . From Lemma 2.2, we have

.-1
L H ( i ) 2

E  
0 2 m - 2 — k

L 1211!+1(X> Ox, Px) •
k=0

A V , is  a polynomial of Ox  a n d  px , and of degree 2k + 1 in O. P a y  attention
to  the terms o f degree lc, in  Ox o  a n d  p u t  2k + 1 = k l + k 2 . From  (1.9), their
coefficients are at least of 0(xgk L+ " 21 ), and especially of 0 (x " 2 ' 2 1 ) if i = O. On
the other hand, since Ox , = 0(x 0 ), they are at least of 0 (42 ). Therefore, 122i

lli,11 =
0 ( x g2k+i-Fl)2is =) 0 ( 4 ' ) ,  and LH ( i ) 2  =  0 (xr - 1 ). Here remark that the terms in
L1

2
1g_1),  of degree less than 2k + 1 with respect t o  Ox o  (i.e. k ,  <2k + 1) are of

0 (4 + 2 ).
-m1

_  E 0 2 m - 2 — k  H (i,j)
•'—'2k •

k=0

In the case i 0, j  0, we can observe in a similar way as above that L"-i" —
0 (x  r  ') .  However, Ox x ,  = 0(x 0 ) and  hence O L " - 1 )1 = 0(x,r - 1 ). I f  either
i = 0 or j  = 0, Lm i-i" itself is of 0 ( 4 ' ) .
Step 2: We prove that

d(x') = 2 (0, x'; 20x 0 (0, x')' 12, 1, 0, , 0)0x0 (0, x') - 1 /2
Ono

OLH

e(x') = (0, x'; 20x 0
(0, x') 112 , 1, 0, ..., 0)0x 0 (0, x')'/2

ono
and d(0) 0 ,  e (0 )  O. As for Po a n d  Ro , recalling the above remark in step 1
and the fact px ,,(0, x') = Si ,k , we obtain

L i
2V+

)
1 (x; 0x , px ) = (2k + 2 )a2k+2,(2m-2k-2, 0 ......

Therefore

and if we put

then

1-5o = E 2 1 c1 i 2k,(2m-2k,0,...,0)(O5 X T X 0 0 (x ),
k=0

e(x') ki2 k ,(2 m -2 k , 0 ....... 0)(0, ')"
k=0

(3.3)

0)(0, x 1)2 k+l x r 1 0 ( 4 c + 2 )

Po = 2e(x')x 0  +  0 (x ) , R  = d(x') + 0(x 0 ) .



(0, x' ; 219,0, x'), 1, o, =  + E  ka2k , (2m _2k , 0
alb) k=0

And hence, we have

aL"
.....0 ) (0, x')5x0 (0, x')k-1/2
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O n the  other hand,

1 - -
LH (Y; Oy) = y'; 2 y 0 0yo , (by')

-

E ak,fl(A ,  Y ' ) (  
1 

2 y 0  
Oy o e y

,

k +  5 2m

and  taking account of the  fact a2 k + i ,fl (x) = 0(4 1 ), we obtain

m lNO, y '; y o (0, y'), 1, 0, ..., 0) =  Y'
k' - '0 22k a2k,(2m-2k,0 , ...... 0)(0 ) Y' ) -$),005 ...10 2 k  5

(0, y'; y'), 1, 0, ..., 0) =
ai/o

Here,

v ,m k
0)(0,

) j y
0

( 0 ,  y ,) 2k-1
a2k,(2m-2k,0 ........ 

k=0

y') = P yo (0, y') ± Vh /2( 0 ,  0 1 )y 0 (0 ,

Since fi is even with respect to  yo , we have fin (0, y') = 0, and since = x 0 0-(x) =
y ( x )  and (7(0, x') = O(0, x'), we have

6-1/2 (0, y )5y0 (0, y ' )0 0 5  X Y
1/2ycT1

63,0 (0 , y') = 2o-(0, x') -1 1 2 0x 0 (0, x') = 20x 0 (0, x') 1/2 .

Therefore,

e(x ') = (0, x'; 2û 0 (O, x')"2 , 1, 0, ..., 0)0x 0 (0, x') 1/2 .

Next, we consider Compare -0' with S in  (3.2). Since 02 mS = 0(xgm) by

Proposition 3.1 a n d  -
1

08x  x +  -
1

02 px  x  LY ( '-i)2  i s  o f  0(xg'n+ 1 )  b y  S te p  1,

+ OR H 2  m u s t  be  o f 0(4m). O n the  other hand, we have

=  E  k (c - 002m -i-k ak
k=0

L i n  = k (c + 1 - k )0 2 m- k a k

k=0

So we conclude

2m+1Li n  0 2 R H 2  =  Em  kO 2 m - k L i i
2k ° ( X 0

k=0

We can easily verify that

= a2k,(2m-2k,0 ........ 0)(0 ) X' )Ox 0 (0, X ' ) 2k X 18.........0 ( 4 + 1 )
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in  a  similar way as  a b o v e . A nd hence

')2m+k)c(1,-L713 + 02 RH2 =
r' 2k,(2m-2k,0 ....... 0)(0, X' )Ox 0 (0, X" 0 (4 )m + 1 )

k=0

OL
H

= (0, x'; 219x 0 (0, x')' 12 , 1, 0, ..., 0)0x0(0, x,)2m+ii2x7m + 0(x
m + 1

o)  .2

° 110
Therefore,

= e(x') + 0(x 0 ).

Step 3: Finally we prove that d(0) 0  and e(0) O. S in c e  0 x .(0) 0 0, it suffices
to prove that

01,11
(0; 20x .(0) 1/2 , 1, 0, ..., 0) 0 0 .

However, this follows immediately from (A.2), so  the proof of Proposition 3.3 is
completed. Q.E.D.

Now we construct the formal solution of (C.P.). From  Proposition 3.2 and
Proposition 3.3, g ; and hp" will be determined inductively in  p  by solving a  first
order Fuchsian partial differential system. First we consider the initial conditions
of this system.

Lemma 3.1. A ll g (0 , x ')  and  h;(0, x') (21 — a p) are  uniquely determined
from  w (x ') by  a  linear algebraic system  of  the following form,

E x'f g wo, x') = uk ({D6or o, x'), D6pro, x')}, x'), x')} )
r=1

6 1 , k 6 p - 2 k , - a
W (X ') (k  = 0, 1, m — 1) , (3.4)

w here U k (k  = 0, 1, m — 1) are  polynomials o f  th e  elements w ith 1  r  m ,
y k , 1 < s 2 k  and 2t s .

Pro o f . (3.4) follows from the  fact that

D :  X  p ( 0 ,  p )  =  (  1 ) k  
F(c — k)

F(c) tt 2k (P)p- 

131 Yp (0, p) = (— 1)k k 
F (c  —  k )

F(c) kp-2k+1(P)

1 - 2
which can be checked by simple calculation. And noting that 0,.x . (0 )  =  Or y .(0 ) ,

(A.2) guarantees that the  m x m matrix

1 1

0 1 ( 0) • • • Om x . ( 0 )

Oixo (0 )m  -1 • • • 0 . 0 (Or

is invertible, that is, (3.4) is uniquely solvable. Q.E.D.
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Next, we consider th e  differential system which g ; a n d  h ; satisfy. F r o m
Proposition 3.2, they a re  written in  the  following form for each r (1 r m ) ;

M12._,(L)(x; D)g; + A71'2 „,_,(L)(x; D)h;

= - E
k 2  1

1W2.-k11-4(x; D)g;_ k _F i + 14r2 „,_k (L)(x; D)h;_ k + i ) ,
=

2m-1 (L)(x; Mg; ± 1;4.m-1114(x; D)h;
(3.5)

- E
k 2  (

M . „,-k11,1(x; D)g;_k+1 It - k ( L ) ( X ;  D ) h rp-k+1) •
=

Proposition 3.1 and Proposition 3.3 im ply that the  system (3.5) is  of the form

0(x 0 )D0  + 0(1)D i + 0(1)}  g + { 2x 0 D, + 1 + 0(x 0 )Di } h = F(x) ,

{ D, + 0(1)D i + 0(1)}  g + { 0(x 0 )D, + 0(1)D i + 0(1)}  h = G(x) ,
i=o i=i

(3.6)

where g(x) and h(x) are unknown functions and F(x) and G(x) are given functions.

Proposition 3.4. Given g(0, x') = v(x ') a  holomorphic function at x' = 0, the
system (3.6) has a unique holomorphic solution (g(x), h(x)).

Pro o f . The system of (3.6) can be written in  the  form

(g(x)) ( x0 1/1 (x))[x 0 D0 — A(x; D')]
h(x)) H 2 (x ) )

where A(x; D') is  a  2 x 2 matrix whose elements are  differential operators with
respect to  x ' of o rde r a t m ost 1 w ith holomorphic coefficients and Hi (x) and
H2 (x) are  holomorphic functions. W e can easily check that

0 0

1
O - -

2

A 0 0  =

This means that (3.6) is a  Fuchsian system in  the  sense of H. Tahara [10] with
1

characteristic eigenvalues 0, So we can apply Theorem 1.2.10 of [10] with

r/0  =  1 . If we give g(0, x'), h(0, x') as Cauchy data, the compatibility condition is

g(0, x'))
xo=o(ho, x')) °H 2 ( 0  x ,) )

tha t is,
h(0, x') = 2H2 (0, x') .

Then, Proposition 3.4 is  a direct consequence of Theorem 1.2.10 of [10].
Q.E.D.
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To conclude, first of all we determine g ' 1 a + 2 1 (0, x') (1 r m) by means of
(3.4) and next g 21 (x) and hr_Œ + 2 1 (x) by means of (3.5). Then we can determine

g r _ a + 2 I + 1
(0, .0  (1 r  m) again by means of (3.4). Repeating this procedure, we

can determ ine uniquely all g(x) and h pr(x). Thus w e have completed the con-
struction of the formal solution.

§ 4. Convergence of the formal solution

After the construction of the formal solution w hich has been done in the
previous section, it  rem a in s  f o r  u s  to  v e rify  the  convergence of the  formal
so lu tion . W e prove it by the  method of the majorant func tion . T o  do  so , we
prepare a  family o f  scale functions O p (s, z ) a n d  n ( s , z). W e define them  as
follows,

op(s, z) = E  ( 2../ + PAps)i
(2j)!(R _ z)2J+1.1-p ,

Wp (s, z) =  7  ( +  1)(2j + psyi p
Vio ,

i>1) (2,i)!(R — z)2i+1+" =
=  Ds (sa l,) Dz ,

where p  and  R  are  some positive constants (p > 1).
The following proposition can be easily checked.

Proposition 4.1.
( i ) Dz 0 1„ = ° p+1 Dz. =  Vip+1

0
0 ( S ,  z) 

R—
2  z(R — z) — ps

KISd p,10,-., if r max (2(1 — d — 1), — 2) ,
(iii) » d

K S  D,VIp - , if r max (2(1 —  d — 1), 1 —  1) ,

1
(iv) 0  »  0

R — z  P R  P '
1 1

—
R —  z P »  R  P '

1 1
( y )  0 » 0

(R' — R)(R" — R) P (R ' —  s)(R" —  Z )  P

1 1
(R' — R)(R" — R)

»  
(R' — s)(R" — z)

V I

P
( R '  >  R ,  R "  >  R )

where K  =  K (R , p ) is a positive constant independent of p.

We write the Cauchy problem (3.5) with initial deta g(0, x') = wrp (x'), where
wrp (x ') are determined by (3.4), in  the  following form,
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- en(x)(2x 0 D0 +  1)h;

=  — M ;.-1(L )(x ; M g; — {11-4S..-1( 1 )(x; D) — e,.(x)(2x 0 D0 + 1)1h;

—E fm;„,-k(L)(x;mg;_k+1+ li./1 „ , _ k ( L ) ( x ;  D)h rp-k+11 (4.1)
k=2

dr (x')D o g;

= — {M,„_ 1 (L)(x; D) — dr(x')Dolg; D)hrp

—E  {M„,_ k (L)(x; D)grp_
k + 1

-AlLn_k(L)(X; D)h r
p _k+11 (4.2)

k=2

x ' )  = wrp (x') (r = 1, m) (4.3)

In  the  following proposition, we use the notation as follows.

f #(x) = E !fake

for f (x ) = f a x", a = (ao , ..., an ), and

K*(x, D) = E K ( x )DŒ

for K(x, D) = EG, K a (x)D".
We define two functions  g ( x )  and h ( x )  w hich w ill be majorants of the

solutions g(x) and hrp (x) (r = 1, ,  m )  of the C auchy problem (4.1), (4.2), (4.3)
respectively.

=  GCP Vp+21-.(x0, x1 + • • ' +

11,(x) H C P 0 p+14-21-.(xo, x1 + " • + xn)

where G , H  and  C  are  some positive numbers.

Proposition 4.2. There exist p> 1  and positive numbers R , G, H and C such
that the following majorant relations hold,

(2x 0 D0  + 1)h* » (e 1 A/1;„,_i eg p* + fe r
- 1 1i7P — (2x 0 D0  + 1)*Ih*

+ E {(e» AF2.-k) # 4 -k +1  (e r- 1  t im-kehr-k+11
k=2

D 0 4  »  (d,- 1 1T2' „,_, — Do )* + (4- 1  RL,- 1 )#hri

+ E
k 2

 { (dr- i m m - o # 4 , - k + ,  + ( d r- I g & - k ) # h ;
=

g;(0, »  wrp (x') r = 1, , m (4.6)

and g p* (x) and h(x ) are m ajorants o f  g(x ) and hrp (x) (r = 1, , m) respectively.

P roo f. First we investigate A/11
2',„_k ,  /17/ 12.m _k, M m _k and 1S4 m _k in detail. C a l -

culating xg'MD'r (g p (x)X ,(0(x), p(x))) and xg'MD'P'(h p (x)Yp (0(x), p(x))) using Lem-

(4.4)

(4.5)
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ma 2.1, we find that the former is a  linear combination of

xo
cp —I, +

p X ,— ( 0 2 +2 j)  w ith  #1 + #22 j 5  l'

21

and

4 - 1 1 + i D V i i p l i h p  11'p— (fl2+2P-1 ) with
and the latter is a  linear combination of

d'.X -11+,114-11
pX  p— (32+2j-1)0 with

and

+ )62 5 2i + 1 1

13 1 + 13 2 )6', 2j - 1

Y p _ (p 2 + 2 i )  w ith  fl1 + #2 5  fi', 2 j  5  11 -5

with holomorphic coefficients. It follows from these and the condition (A.1)
(Ifil 5 2(m — 1' + d ') and 1' + 2m) that M ;„, k , 1S„_ k  and A rI n _ k  are
linear combinations of

xod D I  w ith m ax (2(1 — d), 1) + 1,31 k,0

x g r D 'I ' w ith m ax (2(/ — d) 1, 1 — 1) + k,

41AD' 13 w ith  m a x  (2(/ — d) — 1, 1+  1) + 1,61 k,

a n d  4/4/91  w ith  m a x  (2(1 — d), 1) + k

respectively with holomorphic coefficients.
Now we choose constants R, p, G, H  and C so that (4.4), (4.5), (4.6) may

hold . N ote  that wrp (x ') which are determined by (3.3) have a  common radius
of convergence 0  and w ( x ' ) I

sup C' nP+1 p! for sufficiently large c o -ix'Iski2 rp
stant C' > O. And hence, (4.6) holds for sufficiently large G  an d  C .  In  (4.4)
and (4.5), we can check the following using the above property of A/1,„_k , 117/1

2
. „,_k ,

Mr2 „,_k and Proposition 4.1:

(2x0 D0 + 1)hp* » (e r
- 1 .M12 _1 )#gp*

and

Do g p* » (4 - 1  „ , _ 1 )# hp*

for sufficiently small R > 0,

(2x0 D0 + 1)h'; » /17/;.-1 ( 2 x0D0 + 1)} 4&11

and

Dog p* » (d 1—  D o )' g p*

for sufficiently large p >  1 , and

(2x0 D0  +  1)h* » E {(e,.- 1 Mr2 „, e g * + (er
- 1  /1711

2
.e h * }—k p—k+1 p—k+1

k= 2
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and
n  n * f i d - 1  mr I* n * I'd  -1 mr 1* ,*
•-"Oup Z_, ' ' 2 m - k l +  1 "r  - "2 m -k l U p -k+ 1 }

k= 2

for sufficiently large C > O.
Thus we have proved the first part of Proposition 4.2. The second part is

not difficult to verify. Q.E.D.

Therefore, we know th e  holomorphic coefficients have the estimates Igp l,
1111,1 K p!TP, where K  a n d  T  are positive constants independent o f p , in the
common existence domain which is a  neighborhood of the origin of Cn+ 1 . On

1
th e  o ther hand , w e  h a v e  th e  e s tim a te IX  I  IYIp —  C rP o n  every compactP  — p !

s e t  Q  i n  t h e  universal covering space over D r  —  ( U = 1  Vr ) US w h e r e  D,. =rm

{ x  G Cn+ 1 ; r} and CQ  is  a constant which depends only on Q and is indepen-
dent of p  (see [13 ]). Thus choosing r  such that r < T  and t o  = Dr , we prove
the convergence of the formal solution.

§ 5. Appendix

In  this section, we prove some fundamental lemmas which we have used in
previous sections.

Let s —> t = t(s) be  a change of variable which is holomorphic a t s = 0 and
satisfying

t(0) = 0 a n d  t'(0) 0 0 . (5.1)

Given a polynomial K (a) of single variable, there exists one and only one ,k (s, a),
w hich is polynomial w ith  respect t o  a  a n d  holomorphic w ith respect t o  s  at
s = 0, such that

d
{K (t —

d t

)[u(s(t))]}
d.t? (s, s —
d s

)u (s)
1--t(s)

(5.2)

 

holds for any smooth function u(s).
W e are  going to  show  an algebraic procedure to compute k - (s, a).

Lemma A .  There exists a family of  polynomials {Si (o- , 2)}7= 0  o f  two variables
(a, A) satisfying the conditions:

A) is  o f  degree at m ost j w ith respect to each o f  a, A;
Given a polynomial K(o - ), then (5.2) holds for

(s, E 41,)K(a), (5.3)
i=o

w here A , is the operator defined to be (d„K)(o - ) = K(o - + 1)—  K(o- ).

Remark 5.1. a  and A are assumed to be non - commutative, more precisely,

(A + 1)qaP = (a + g)P(A + 1)q (5.4)
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for non-negative integers p, g. And (5.3) should be interpreted in  the  following
way:

I f  S.(a-
'

 2 )  = E  p9 0- 2'  ( c P9 's are constants) ,
p ,g=  0

t h e n  Si (a, ,)K (a)  = E  cpq a-P(A 100-). (5.5)
p ,q=  0

Pro o f . By hypothesis (5.1), t  (o r s) is represented as a convergent power
series in  a  neighborhood of s (resp. t = 0):

CO

t E  ak sk + 1 (5.6)
k=0

CO

s =  E bk tk +i, (5.6')
/ =0

where ac, = C(0) A 0  and  bc, = 0  O. T herefore , w e  have
0  

CO

t- = ag E s-±PA p(0), (5.7)
p= 0

s - =  b E  t Bq (a) . (5.7')
q=0

A p (a)'s and  13q (o- )'s are  polynomials o f  a .  We may verify that

deg A p (a)_  p,d e g  13,1(a) . _ q,( 5 . 8 )

especially,

A 0 (a) = B o (a) = 1

Given a polynomial K(a), le t IZ(s, a) be the function with which (5.2) holds.
Applying (5.2) to  u(s) = s  and  taking account of (5.7)', w e have

(s, = s - gbj E  ta+ q13q (a)K(o- + q).( 5 . 2 ' )
q =o

(If (5.2)' holds fo r all complex numbers a ,  then  it does in  particular fo r non-
negative integers. So, (5.2) holds fo r  polynomials a n d  hence fo r  any smooth
function u(s). Therefore, (5.2)' is equivalent to  (5.2)). Representing conversely
t ' q  as power series in  s  by m aking use of (5.7) w e have

k(s, a) = E E agsP+qAp(cr + a)Bq (0)K (0-+ q) .
p=0  q=0

The right-hand side may be rearranged as

IZ(s, a) =  E silli (o- ), (5.9)
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where

IM O ) =  E  agAi _q (0- +  g)Bq (o-)K(o- + q)
q=0

= agAi_q(0" g)13q (o-)(A , + 1)K(a)
q=0

because K(o- + g) = (.4„ + l)K(o -). So, if we define Si (o-, A) to be

A ) = E + g).13,(o-)(A  + 1) , (5.10)
q=0

then we have

H(a) = Si (o, o .)K(o-) . (5.11)

Therefore, (5.3) h o ld s . Si (o-, A) is polynomial of degree at most j  with respect to
each of o- a n d  A because of (5.8). Q.E.D.

By expanding s  in to  power series of t  and taking account of the condition
(5.1), we obtain the following.

Lemma A'. There exists a family of polynomials {Ti (o-, A)}7=0  o f  two variables
(a, A) satisfying the conditions:

i. A) is  of  degree at m ost j  with respect to each of  a, A;
ii. Given a polynomial K(o-), then (5.2) holds for

GO

(s, a) = E .(1,0K(a) ,
i=o

Lemma B .  Let g(t) be a holomorphic function which satisfies g(0) = O. Then
there exist polynomials Uq ,; (1) (g 0, j  g )  o f  degree j  independent of K  such that

K(tD, + g(t)Dz )u  = E  _
1

/4 E tifu, ; (4)K(T)}1,=,D ,u f o r any  u = u(t, z)
(1!

(5.12)

P ro o f . By linearity of the operator K(tD, + g(t)D), we have only to prove
(5.12) for K(r) = T r' (n = 0, 1, ...), tha t is, to prove

(tD, + g(t)Dz )nu = E _ E tilude t yrnIl t =t „,u.
g o  g!

(5.13)

We shall show first the uniqueness of the polynomial U,,; (2) satisfying (5.13) and
next tha t Uq ,i (.1.) is  of degree at most j. M ore precisely, we try a  formal series
Ei >0  Uq

l
 J AI f o r  Uq ,; (A) and rewrite (5.13) as

(tD, + g(t)Dz )nu = E of E ti E uqi JA I T n }
q?,0 1 1:1

u.
S = D

(5.13')

   

The coefficients Uql. i 's  will be uniquely determined successive y from (5.12). And
then, we shall show th a t  UL  are 0  if 1 > j.
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First, substituting n = 0 in to  (5.13), we obtain

u = E E
j>q

It follows that

Uq
°

, j = (50 , q (50, j •

Next, operating tD, + g(t)D z o n  both sides of (5.13)', we obtain

1
(tD, + g(t)D ) u E D zgE tif(r +;) E T"I•

q• 1 1D

+ E E E  g k±lti E Uql  - 1 ,  j - k - l i i ire
(1 0  q: k 2 0  j q+k 1 0

r=tD,

(5.14)

u ,

r =ID,

where we put g(t) = E;,°,4  gut". On the other hand, replacing n by n + 1 in (5.13),
we have

1
(tD, + g(t)D z ) i u  =  E E t i t  +;) E

1 0

Using a formula
AI, T n+ 1  =  ( er +  0 / 41 + 14 ,1-1 ) T n

we obtain

(5.15)

(1 + = ( j —  Ug
l
j  + E gg k + i  Uq̀

k= 0

W e see  tha t a ll U,1  ( j  g 0, I 0) are uniquely
b y  (5.14) and (5.16), and the form al series Uq ,./(A) = E /

Furthermore, if we substitute 1 = j in (5.16), we get

(5.16)

determined successively
III , satisfies (5.13).

- 1 , j - k - 1  •

j - 9

+ 1 ) U 1 :1
1: 1 =  E q9k +1`-'q -1 ,j-k -1  •

k=0
(5.17)

It follows from (5.17) b y  induction th a t  U,1  w ith  1 > j is determined only by
with j ' <O w hich  are O. Therefore,

= 0 for / > j  ,

tha t is, Uq ,i (A) is  a polynomial of degree j. Q.E.D.

Lemma C .  Let K ( r )  be a polynomial of single variable, then,

K(tD,)(f • g) = 1E t`.D: f(te.,K)1, = ,D ,g (5.18)

f or any f ( t )  and g(t).
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P ro o f . By linearity o f  th e  operator K(tD,), w e have only to prove (5.18)
for K(T) = T" (n = 0, 1, ...), tha t is, to prove

1
(tD,)(f • g) =  E  t iD: f(4 r")1,=tptg

i > 0

Let us prove (5.19) by induction with respect to  n . It is  true  fo r  n  =  0 . Assuming
(5.19) for n, let us prove it fo r  n  +  1 . Operating tD, on  both sides of (5.19), we
have

1
(tD,)'( f  •  g ) =  E , ( t ' 1 g + 1  + lt ig)f(4tt")1 , = 1 0  +  E —t 1D:f(T4T")1, = 1 D t g

1 0 1 0 t!

= E - t iD:f{(Idt - 1  + OLIt)TnIls=tD,g •
I I21

It follows from (5.15) that (5.19) is also true for n + 1. Q.E.D.

L em m a D . Let K (t )  be o f  degree n. Then the following form ula holds for
j =  1 , 2 , ....

/ - 1 - / - 1 )
K ( T  —  =  ( —

1=0 (  j  —  1 I  
.61 K ( T ) . (5.20)

P ro o f . First, le t u s  prove

K(T —  1) = E (- 1)14K(T) (5.21)
1=0

b y  induction w ith respect to n = deg K .  I t  is  tru e  fo r  n  =  0 . Assuming (5.21)
for n, le t u s  prove it for n + 1. L e t K (T )  b e  of degree n + 1. Applying (5.21)
to  A ,K (T ), which is of degree n, we have

K(T) — K (T — 1) = ( — 1)14 1,-"  K (T) .
1=0

A nd hence (5.21) is true also for n + 1.
(5.21) may be rewritten symbolically as

K(T — 1) = (1 + 4,)'K(T) .

So, by  induction, we have

K(r — j) =  (1 + ifyiK(T),

for j  1. By power series expansion of (1 + At r i ,  we obtain (5.20) because

A K (t) =  0 if I deg K .Q . E . D .

Lemma E.

K(tD,)(t - iu(t)) = t - iK(tD, — j)u(t)

f o r any  u = u(t) and positive integer j.

(5.19)
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Pro o f . B y L em m a C  a n d  Lem m a D , w e  h av e

1 „
K(tD ,)(t - iu ) =  E —,, r(D ;t - i )(AtI K)it=tp,u

i>o

E (_ 0/( 1 + 1) t - io jo i t =t p,u
i " -

=  t - ' K(tD, — j)u .

27

Q.E.D.
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