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The K -localizations of the stunted real
projective spaces
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Zen-ichi YOSIMURA

0. Introduction

Given an associative ring spectrum E with unit, a CW-spectrum X is said
to be quasi E-equivalent to a CW-spectrum Y if there exists a map f: Y- EA X
such that the composite (uA 1)(1 Af): EAY—>EAX is an equivalence where
u: E A E— E denotes the multiplication of E. We call such amap f: Y>EA X
a quasi E -equivalence. Let KO and KU be the real and the complex
K-spectrum respectively. Since there is no difference between the KO- and
KU ,-localizations, we denote by Sy the K_-localization of the sphere spectrum
S =2X° Recall the smashing theorem [BI, Corollary 4.7] (or [R]) that the
smash product S A X is actually the K,-localization of X. This implies that
two CW-spectra X and Y have the same K-local type if and only if X is quasi
Sk4-cquivalent to Y.

In [Y2] we studied the quasi KO,-equivalence, and moreover in [Y3] and
[Y4] we determined the quasi KO,-types of the real projective spaces RP" and
the stunted real projective spaces RP"/RP™ = RP)},,,. In this note we shall be
interested in the quasi Sg,-equivalence in advance of the quasi KO,-
equivalence. The purpose of this note is to determine the K,-local types of the
stunted real projective spaces RP"/RP™ along the line of [Y5], in which we have
already determined the K,-local types of the real projective spaces RP" [YS5,
Theorem 3]. Our proof will be established separately in the following three cases;

) RP®*"/RP® 2<n<oo), i) RP¥*2/RP»~! (1>1) and
iii) RP=+2F1U/RPE-1 (0 <t < oo).

In the proof of [YS5, Theorem 3] we first investigated the behavior of the
Adams operations & and % for the real projective spaces RP", and then applied
a powerful tool due to Bousfield [B2, 9.8] (or see [Y5, Theorem 4]). By a
quite similar argument to the old case we shall determine the K,-local types of
RP3:1" (2 < n < o) and the Spanier-Whitehead duals DRP3:*2' (t > 1) (Theorem
2.7 and Proposition 2.8). Since two finite spectra X and Y have the same
K -local type if and only if their duals DX and DY have the same K,-local type
[YS. Lemma 4.7], it is easy to determine the K ,-local types of RP3** (1 > 1)
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(Theorem 2.9). In order to observe the rest case we shall construct maps
gy 2 > Y, modelled on the bottom cell inclusions i: 22— X' RP3*3'* ! where

s=1
Y, is a certain elementary spectrum with a few cells appearing in Theorem 2.7

admitting the same K ,-local type as ' RP3*¥{'*'. By proving that each cofiber
C(g,,) has the same K ,-local type as ' RP3{*#* ! we shall determine the K -local

types of RP3*#*! (1 <t < o) (Theorem 3.8).

1. Some elementary spectra with a few cells

1.1. The Moore spectrum SZ/n of type Z/n (n > 2) is constructed by the

cofiber sequence 05 505 SZ/n 5 1. Let M,,. M,,., P,, and Pj, denote the
cofibers of the maps in: X' = SZ/2m, nj: SZ/2m— 2°, fj,: £* > SZ/2m and
Nam: Z1SZ/2m — X° respectively [Y2, 1.4.1]. Here n: X' > X° is the stable
Hopf map of order 2, and 7,, and #,, are an extension and a coextension of
n satisfying #,,i = and jij,, =#. Hereafter the subscript “2” in the symbols
i, and fj, are dropped as # and 5. Notice that P;, and P,, are respectively
quasi KO,-equivalent to £*M,, and X~ 'M},. and P, = C(y) and P, = C(3j) are
respectively quasi KO, -equivalent to 2* and 2~ (see [Y2, Corollary I. 5.4] and
[YS. (1.2)]). More precisely, it follows from [Y5, Theorem 1.2 i)] that X~ 3C(#)
has the same K ,-local type as C(y).

Denote by V,,, Vom. U, and Uy, the cofibers of the maps if: X' SZ/2 —
SZ/m, §j: Z'SZ/m—SZ[2, fjgp2: E*SZ[2 > SZ[/4m and fy,,.: E*SZ/4m -
SZ/2 respectively where 1y,,, is a coextension of # with jn,,,,, =1 and 7,,,, is
an extension of 5 with #,,,,i =1. Then they are exhibited by the following
cofiber sequences

oo 2o v, At r Ay, 2 o)
(1.1)

Cli) 5 £° L0 Uy, S s Cl). £ 0 S U, L 5,

Here 7: £° - C(n) and j: C(5j) » £3 denote the bottom cell inclusion and the top
cell projection, and 4: C(5)) = Z° and 7: 23 - C(jj) satisfy the equalities Al = 4
and jA =4. By virtue of [Y5, Theorem 1.2 ii) with (1.3) and (1.4)] we observe
that 272V, A C(), U,,, A C() and £~ 32U}, have the same K, -local type as 5,,.

Denote by MP,,, the cofiber of the map in v fj,,: X' v 22> SZ/2m. By
use of [Y2, Lemma II.1.1] we have a cofiber sequence

(1.2) L VINLLENY V) SRELLA

where iy: SZ/2m — M,,, denotes the canonical inclusion. Note that Z*MP,,, is
quasi KO,-equivalent to MP,, [Y4, Corollary 2.7]. In [Y2, Propositions 1.4.1,
1.4.2, 11.1.2 and 11.1.3 and Corollary 1.4.6] the KU- and KO-homologies of some
elementary spectra with a few cells are computed. In particular, for X = M,,,,
M., V5, and MP,, we have
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(1.3) i) The KU-homologies KU;X (i =0, 1) are tabled as follows:

i = 0 | i = 0 1
KUM,,=Z2®Z/2m 0 KU M;, = Z Z/[2m
KUV, = Z/2m 0 KUMP,, =Z®Z/m Z

i) The KO-homologies KO;X (0 <i < 7) are tabled as follows:

i = 0 1 2 3 4 5 6 7
KOM,,, =Z/2m 0 Z®Z/2 Z]2 Z/4m 0 Z 0
KOM;, = Z Z/4m Z/2 Z/2 V4 Z/2m 0 0
KOV, = Z/m 0 Z/2 Z/2 Z/dAm Z]2 Z/2 O
KOMP,,, =~ Z/2m 0 z Z Z/2m 0 zZ Z

Consider the two composite maps

(1.4)
iy =jrwi: 20— SZ/2 —SZ/2%. §i, =j, .0, £2 —> SZ)2 —> SZ/2*

where the map j, ,:SZ/2—-SZ/2* is the obvious map associated with the
inclusion Z/2 < Z/2*. Evidently i (1) =1/2e KUySZ/2* = Z/2* and 1, ,(1)
=1/2eKU,SZ/2*~Z/2*. Since [SZ/2*, £?* KO]=0. it is immediately shown
that

(1.5) the cofiber C(i,) is quasi KO, -equivalent to the wedge sum X' v SZ/2*.

On the other hand. the KU- and KO-homologies of the cofiber C(ij,) are easily
computed as follows:

(1.6) i) KUyC(fj,) = Z/2% and KU,C(ij,) = Z.
i) KO;C(fj,) =Z/2°,0,0, Z according as i =0, 1, 2,3 mod 4.

1.2. Let X and Y be CW-spectra which admit the same quasi KO-
type. Let f:2°— X and ¢g: 2° > Y be maps related by the equality (1, A 1)f =
(ev A 1) hg for a suitable quasi KO,-equivalence h: Y- KO A X where 1,: 2°—
KU denotes the unit of KU and ¢;: KO- KU the complexification. Thus
f(NeKUyX and ¢,(1)e KU, Y coincide when KU, X and KU,Y are identified
via the quasi KO, -equivalence h. 1If g,,: KOy X - KUy X is a monomorphism,
then there holds the equality (1, A 1)f = hg where 1,: £° — KO denotes the unit
of KO. In this case it is easily seen that

(1.7) the cofiber C(f) is quasi KO,-equivalent to C(g).

Consider the cofiber sequence ZOﬂSZ/21;zi—(;C(I11i)LC>Z‘. The cofiber

C(mi) is evidently decomposed into the wedge sum X' v SZ/m. Since the
composite iqif: X1SZ/2 — C(mi) is expressed as (0,in): X'SZ/2 > X' v SZ/m,
we obtain two cofiber sequences
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(18) S0y 3y, — 2! and 2° 28 M, — I v M,, — 2!
where k,:X°—>SZ/2m—V,, and ky:2°—>SZ/4m— M,,, denote the bottom
cell inclusions. Choose a map iy 4 2° >V, with j 7, 4, =n. Then [Y5,
Lemma 3.6] asserts that

(1.9) the cofiber C(ijy 4,) is quasi KO,-equivalent to 2*P,,,.
By the aid of (1.7) we show

Lemma 1.1. Let Y be a CW-spectrum which is quasi KO -equivalent to the
Sfollowing spectrum X : 1) 2% v SZ[/4m. 2) Z* v V,,. 3) My,,. 4) X2 v X ~8Z/4m,
5) X2V ETY,, or 6) X7 M,,. If a map g:X°—>Y satisfies that g,(1) =
0,2meKU,Y=Z ® Z/4m, then its cofiber C(g) is quasi KO, -equivalent to the
Jollowing spectrum W:1) Z°v X' v SZ/2m, 2) Z*v v . 3) Z'v M,,
4 X"rv X P, 5 X*v X*P,, or 6) X 2MP,, corresponding to each of the
above cases 1)-6).

Proof. In each case of 1)-6) we consider the map f:2X°— X given as
follows: 1) (0, 2mi): 2° = X% v SZ/4m, 2) (0, mky): X° = 2* v V,,, 3) 2mk,,: 2°
> My 4) 0, 7i4): 20> 272V Z728Z/4m, 5) (0, fy4n): 20> 22 v 272V,
6) ipgfiam: 2°— 2" 2M,,. By means of (1.2). (1.8) and (1.9) we observe that each
cofiber C(f) is itself the spectrum W stated in the lemma except the case 5),
and it is quasi KO,-equivalent to W= 2% v X?P,, in the rest case 5). Then
it is easily seen that KU, C(f)=Z® Z/2m and KU,C(f)=Z, and hence
f(1)=(0,2meKUyX xZ@® Z/4m. Since KO,X =0 in the cases 1), 2). 3), 5)
and 6), (1.7) implies our result immediately except the case 4).

In the case 4) we shall next show that (1.7) remains still valid although
tue: KO3 20 v SZ/4m —» KU,2° v SZ/4m is never a monomorphism. The map
F=1(0,f14,): 2° > 272 v X7 2SZ/4m satisfies that f,(1) = (0, 1,0)e KO, X% v SZ/
4m=KO,2°@®KO, 2°@®KO0,2°=Z/2®Z/2®Z/2. ldentify KO, Y and KU, Y
with KO, 272 v Y72SZ/4m and KU, X2 v X~ 2S8Z/4m respectively via a quasi
KO,-equivalence h: Y—> KO A (272 v £728Z/4m). Then it is easily seen that
g (1) =(a. 1,b)e KO Y= Z/2@® Z/2@® Z/2 for some a and b because ¢,(1)=
0.2meKU,Y=~Z ® Z/4m by our assumption. Here both a« and b may be
taken to be 0 by replacing the quasi KO,-equivalence h without the change of
the complexification (ey A )h: Y KU A(Z™% v £72SZ/4m). Thus f,(1) and
g, (1) have the same expression in KO, Y= K0,2° v SZ/4dm=Z/2® Z/2® Z/2
as desired.

Similarly to Lemma 1.1 we obtain

Lemma 1.2. Let Y be a CW-spectrum which is quasi KO ,-equivalent to the
following spectrum: 1) SZ /2% or 2) X ~*SZj2*. If a map g: X° = Y satisfies
that g, (1)=1/2e KUy Y = Z/2%, then its cofiber C(g) is quasi KO -equivalent to
the following spectrum: 1) ' v SZ[2* or 2) X~ 2C(ij,) corresponding to each of
the above cases 1) and 2).
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Proof. Set f=i,:2°—>8Z/2% in the first case and f =i : 2> X" 2§Z/2~
in the second case. Then we can apply (1.7) to show our result since
K0,8Z/2* =0=KO0,SZ/2*.

1.3. Let f: 22" 'X > Y be a map of order 2 and f: Z*"'X ASZ/2 - Y and
f:2%X > YASZ/2 be its extension and coextension with f(1 Ai)=f and
(1 Aj)f =f. Then there exist maps

(p:Z"z'"IC(‘f)__’X and y: Y——>C(f)

of order 2 whose cofibers C(¢) and C(y) coincide with X ~2'C(f) and X'C(f)
respectively. The bottom cell inclusion i: 2% — SZ/2 has an extension T,,: C(2g)
— X A SZ/2 whose cofiber is ' C(g) for any map ¢g: W— X. Similarly the top
cell projection j: SZ/2— X' has a coextension j,,: YA SZ/2— C(2g) whose
cofiber is C(g') for any map ¢': Y- W. Consider the composite maps

ijp: E72TIC(f) — Clg), Wiy Z7'Clg) — C(),
Jhg: Z27CRy) — Y, [y S ZMX — CR9)
where i,: X —» C(g) and j,.: 2~ 'C(gy’) — Y denote the canonical inclusion and the

canonical projection respectively. By use of Verdier’s lemma we can easily show
the following equalities among the cofibers of the above maps.

Lemma 1.3. C(i,0) = Z~*C(fT,,) and C(j,) = C(jryf).

Choose maps h: X3SZ/2 - C(ij), k: £38Z/2 - C(j), h: Z'C(jj) — SZ/2 and
k: Z3C() — SZ/2 such that jh = ijj. jk = ij5, hi = i and ki = fji where j: C(5)) >
2%8Z/2 and 1: SZ/2 - C(7j) denote the canonical projection and the canonical
inclusion respectively. The maps h and h have order 2 and the maps k and k

have order 4 (use [AT, §4]). Using a fixed Adams’ K ,-equivalence 4,: 2#5Z/2
— S8Z/2 [Ad2] we can obtain seven kinds of maps f, (t = 1) [Y5, (1.13)]:

o, = jAST ¢ zer-1__, 30,
Hars1 = NASI: e 30 Har+y = JjALI: Xer+l 30
Aapsy = HALI: T8 3 5 C(7). alyyy = jA%R: E8C(T) —> 2°,

Mapssy = kASI: Z84S 5 (). myy .,y = jA5k: X8 2C () —> 2°.

(1.10)

Denote by f,: 2%~ 'SZ/2 — W the map obtained by omitting the “i” from
the composite components of the map f,: 22 ~! —» W for f, = ay,, lgr41» day42 OF
My, 5. and similarly by f,: £2W— SZ/2 the map obtained by omitting the “j”
from the composite components of the map f': Z* ' W— 3° for f,' = oy, fors 1
az,.,+, ormy, 5 (see [YS, (2.3) and (3.2)]). Then there exist eight kinds of maps

(1.11) fo X7 2T1C(f) — Z° and [, 2° — C(f)

as given in [YS5, (2.5) and (3.4)]. Among the cofibers of these maps there hold
the equalities as C(f_,)= X~ 2'C(f) and C(f.,) = Z'C(f)).
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Choose a coextension hy,,: £*SZ/2—SZ/2 A C(i7) of h with (j A 1)hy,, =h
and an extension fi,;,: X'SZ/2 A C(ij) = SZ/2 of h with fi,,(i A 1)=h. Setting
ysr = A5y 51 ZSZ)2 A Cli) > Z° and iy, o, = hyyp A5iz E5445SZ/2 A Ci),
we obtain the following maps similar to (1.11):

(112) by 273 73C (@44 0) — 272C(H) and by, _5: C(i7) — Cldy, 4 )

such that C(b_,,_,) = 2 ¥ *Clay, +,) and C(b" 4, ;) = ' Clug,+,) (see [Y 5, (2.5)
and (3.4)]).

Since [23SZ/2, £°] = [238Z/2, 2°]1 = [8Z/2, X' C(n)]1 = Z/2 and [2'S5Z/2,
C(i]1=0. the maps j:SZ/2-X', 7:X'SZ/2-X° h:X3SZ/2—-C(y) and
k: X55Z/2 — C(n) give rise to the following two kinds of coextensions:

j2‘2m: SZ/2 - SZ/Z"L jV,4m/2 : SZ/Z I l{tm‘
'74:)1/2: Z‘ZSZ/z I SZ/4’”* ﬁV.Zm/ZZ ZZSZ/Z I VZm’
ﬁz,,,/z: 4872 — SZ/2m A C(1)), ﬁu.4m/z3 X 487/2 — Uy,
Kmj2: Z°SZ[2 —> SZ/4m A C(il),  ky gmj2: £°SZ/)2 — U,,,

(1.13)

such that jj, 5, =j. Jjviv. ami2 = J> 1'74m/2 = ’7: Jvily, amj2 = =1 (A I)th/z = h,
jUhU ami2 = =h (jn 1)k4,,,/2 =k and ijU am2 = k. Here j, ,,, is the obvious map
associated with the inclusion Z/2 < Z/2m.

Compose the above eight maps after the map a,, = A%i, and also the first
two maps after the map fiy, ., = A40. 4., = ASh or i, .5 = A5k, Then we

obtain the following several coextensions given into the concrete forms:

Ggpy: 28" —8Z/2, Ggpyy 2% — W,
flapsr g 2072 —S§Z/2!, flarsyp, s 2972 — W,
gpprg 2844 — SZ/2'ACW), Agpyap, 2T — U,,
(1.14) Mlgpsy s 2070 — SZ/2'ACW), Mgpypg: E8T° — Uy,
flar ey 2572 —8Z/2, Rars v rore2 — W,
Aipea: 28 71C(H) — SZ/2', Agrp i 2V THCH) — Wy
Mgy 28H3CH) — SZ/2% Myt 28 2C0H) — Vy

whenever [ > 2. All the maps ¢, ,: %' X — W,, given in (1.14) satisfy the following
condition:

(1.15) Griy(l) =27 e KUy, Wy = Z/2'.

For the Moore spectrum SZ/2' of type Z/2' the bottom cell inclusion
i: %> SZ/2" and the top cell projection j: SZ/2' — X! are sometimes written as
i, and j, with the subscript “/”. Similarly the maps iy, iy.jy and j (W=U
or V) appearing in (1.1) are written as iy, iy,. jw., and ju, with the subscript
“I” when 2m = 2'. Applying Lemma 1.3 to the maps given in (1.11), (1.12) and
(1.14), we now obtain
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Lemma 1.4. 1) C(flj,-,)= C(.i}jl) and C(f. jy,-1)= C(.fr./VJ) Jor 1>2,
where f' = 0y,, fyp 11> dapsa O My, 3 With oy, = 04,.

i) Cblgy—z2(ji-1 A1) =Clda+2)) and CO_4_3jui-1) = Cldg 420, for
=2

By virtue of [Y5, Lemma 3.6 ii)] we can show

(1.16) i) C(figr+y.) and C(f4+,,v.) have the same K, -local types as C(jif, 4 )
and C(fiy,+4.y,) respectively.

ii) C(My,+3,) and C(my, 5y, have the same K -local types as C(1g,13..)
and C(my,, ;) respectively.

Similarly to (1.13) the maps j: SZ/2— X!, ij: Z1SZ/2 - 3° h: 23SZ/2 >
C(n) and k: X°SZ/2 — C(n) give rise to the following maps:
@17 Jrw S22 —SZ/2%, Na ot 22SZ)2 —> SZ/2%,

' hy o: 24822 —> SZ)2% AC(), kyo:2°SZ)2 —> SZ/2% A C(i)).

Composing the above four maps after the map d,,, and also the obvious map
J2.. after the map fig, ., d4,+, OF iy .3, we obtain seven kinds of maps as
follows:

Typ oot 28 —SZ/2%,
fars 1w Z4 5 SZ/2% forsr o 1 972 5 8Z)2%
Gapsgm: ZF4 — SZJ2% A C(i), @iyan i 5741 Clij) — SZ/27,
Mapis.0: 20— SZ2% ACH), Mypss.0: 2 2C) —> SZ/2%.

(1.18)

All the maps ¢, ,: 2% X — W, given in (1.18) satisfy the following condition:
(1.19) Prox(1)=1/2e KU, W, = Z/2%.

2. The K,-localizations of RP3:}'| and RP3*?

2.1. Let X, (n>1) denote the suspension spectrum X~ "SP?S" whose n-th
term is the symmetric square SP?S" of the n-sphere as in [Y3,§2] or [Y5.§4],
and X denote the union of X,. In other words, X is the spectrum whose
n-th term is SP?S" for each n > 1. For every n > | the Spanier-Whitehead dual
DX, is denoted by X _, for convenience sake. From [U. Theorem 3.3] (or [Y3,
Proposition 2.6 i)]) we recall the KU-homologies of X, (n # 0) that KUy X, = Z,
Z@®Z or Z[1/2] according as n =2t — 1, 2t or o0 and KU, X, =0. For each
k # 0 the complex Adams operation Y& behaves in KUy X, (n # 0) as follows (see
[YS, Lemma 4.1 i) and Corollary 4.2 i)]):

(2.1) y&= A,, or | according as n = 2t or otherwise.

1/kt

Here A, , = < LKk 1

>, which operates on (Z ® Z) ® Z[1/k] as left action.
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For each n (1 < n < o) the real projective n-space RP" is related to the above
spectrum X,,, by a cofiber sequence RP"—2X°—>X,,, »XZ'RP" [JTTW].
Therefore the stunted real projective space RP"/RP™ (0 < m < n < o0) is exhibited
by the following cofiber sequence

(2.2) RP"/RP" — X, », —> X, +, —> Z'RP"/RP".

For simplicity RP"/RP™ is often abbreviated to be RP} ,, as usual. we first
investigate the behavior of the complex Adams operation y¢ on KU, RP), ., and
KU*RP ., (cf. [Ad1]).

Lemma 2.1. i) The KU-homologies KU, RP),,, (0 <m < n < o) and their
Adams operations Yt for each k #0 are tabled as follows:

X =RPRIYTY ORPRIY RPL., RPETHT RPRYY RP3,
KUyX = 0 0 0 4 Z V4

Yyt = 1/k* 1/k 1/k
KU_ X Z®Z/2 Z/2* Z/]2* Z@®Z/2 Z/]2* Z)2°

'//I(‘ = Ak..s+t+1 1 1 Ak.s+t+l 1 1

i) The KU-cohomologies KU*RP, ., (0 <m<n<oo) and their Adamns
operations Y& for each k #0 are tabled as follows:

X =RP3RIVTY RPRIY RP3., RPE™*' RPE*?  RP3,
KU°X =~ Z/2 zZ/2 Z, Z®Z2 Z®Z/Y Z®Z,
lﬁ’(‘ = 1 1 1 Ay, =5 Ay, s Ay, s
KU 'X=> Z 0 0 Z 0 0
I//,(‘ — k.v+1+1 kx+1+1

where Z, denotes the 2-completion of the integers.

Proof. i) The s =0 case has been proved in [YS, Lemma 4.1 ii)]. Recall
that KU,RP%%% =0 and the sequence 0— KU_,RP*— KU_,RP**" -
KU_,RP%%" -0 is exact for each n. Since the Adams operation Y& on
KU_,RP**""® Z[1/2] behaves as y{ = Ay 4,4+, or | according as n =2t + 1
or otherwise, the X = RP3}% case follows immediately. On the other hand, the
cofiber sequence X7?'— RP3*" - RP3ET" —» ¥2*1 induces two isomorphisms
KU_ RP¥®*" 5 KU_ RP%I" and KUyX?* 5 KU,RP%"" for each n. Hence the
X = RP3*" case is immediate, too.

i) The s=0 case has been proved in [Y5, Corollary 4.2 ii)]. Note
that there exist isomorphisms KU 'RP3:%% 5 KU 'RP*»*" and KU 'RP31"
~ KU 'RP3*" for each n. On the other hand, the cofiber sequence (2.2)
induces an exact sequence 0 —» KU 'RP%EI" 5 KU°X, ., .1 = KUX, 4.0\ —

KU°RP2%" 5 0 for each n where ¢ =0 or 1. Our result is now immediate from
[YS5, Corollary 4.2].
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2.2. In [YS5] we dealt with CW-spectra X satisfying the following property:
(I,,)  KUyX = Z/2m on which ¢yt =1 and KU, X =0;
(I;0) KUyX =~ Z/2® on which y£ =1 and KU, X =0; or
(I1,,), KUyX =Z@® Z/2m on which y% = A4,, and KU, X =0
1k 0
1 —k'/2k" 1
action. As an immediate result of Lemma 2.1 we notice that

where A4, , =( ) which operates on (Z@ Z/2m)® Z[1/k] as left

(23) Z'RPEI¥ X'RPL,,, Z'RP3EI¥*! and DRPZ*? satisfy the property
(1), (Iyw), (I5)54,4+, and (I1,)_, respectively.

In order to determine the quasi KO,-types of RP311 (1 <n< o) and
DRP%*2" (t > 0) we need the following calculations (see [FY] or [Y4, Lemma
3.4]).

Lemma 2.2. i) KO,,RPi"i" =0=KO,,RPi* if n=1,2 34,5 mod 8,
and hence if n = oo.

i) KOu,i s RPI"I" =0=KO,, .o RP if n=0,1,56,7 mod8, and
hence if n = oo.

iil) KOum+sRPIMTT =0 = KOy, 46 RPEZY for all n.

iv) KO*m" 3RPim+2 = (0= KO*" 3RP{"*% if t=1,2 mod 4.

v) KO*m TRP{m"*2 =0 = KO*"""RP{"*3" if t =0,3 mod 4.

vi) KO*" SRPim+2 = (0 = KO*" SRPin*% for all t.

Proof. The first three parts have been shown in [Y4, Lemma 3.4]. The
latter three parts are similarly shown by a dual argument.

Proposition 2.3 (cf. [Y4, Theorem 2 i) and iii)]). i) X ~*"*'RP3ni% is quasi
KO, -equivalent to SZ/2%, Myar, Voarero Z*V Vyarir, Voara, Moarsa, SZJ2%3,
20 v SZ/2%*3 according as n=8r, 8r + 1,...,8r+ 7. In addition, ¥~ *"*'RP, .,
is quasi KO -equivalent to SZ[2%.

i) X- “’"“RPZ::;*" 2 s quasi KO,-equivalent to SZ/2*, Z°v SZ/2*,
SZ2%*Y, Myuriry Voariz, 2%V Vyaria, Woares, Mye.s according as n = 8r,
87+ 1,....87 + 7. In addition, ¥ ~*"*'RPZ, _, is quasi KO ,-equivalent to SZ/2*.

i) Z*MDRPim*2" is quasi KO, -equivalent 1o £° v SZ/2%, Z° v Z*Vyur. 1,

OV Z*Vyero2, 2O v SZ/2%7*3 uccording as t = 4r, 4r + 1, 4r + 2, 4r + 3.

iv) Z*mDRP3"* 272 s quasi KO ,-equivalent 10 Myar, My o1, E*Myar.a,

2*M,ur.s according as t = 4r, 4r + 1, 4r + 2, 4r + 3.

Proof. Use Lemmas 2.1 and 2.2, and then apply [Y3, Theorem 2.5] when
n or t is finite and [B2, Theorem 3.3] when n is infinite.

Proposition 2.4 (cf. [Y4, Theorem 2 ii) and iv)]. i) X~ *"*'RP{"*" is quasi
KO, -equivalent to X' v SZ/2%, Z' v Myar, ' v Vyarot, TPV 24V Voo, Sl v
Vier-2e ZVV Myarea, 1 v SZ2%*3, X1 v X0 v SZ/2%*3 according as n = 8r,
8r+ 1,....8¥ + 7. In addition, X~ *"*'RPg, is quasi KO,-equivalent to X' v
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i) X4 IRPIT=2 s quasi KO -equivalent 10 Pyari, 2%V Pyaror, Pyares,
SYMPyirizy Z4Pyar.s, 24V E4Pyuris, 24Pyuria, Z*MPyar.s according as n = 8,
8r + 1....,8r + 7. In addition, X~ *"*>RPS, _, is quasi KO ,-equivalent 1o C(1j,).

Proof. According to [Y2. Corollary 1.1.6], X is quasi KO-equivalent to Y
if and only if the Spanier-Whitehead dual DY is quasi KO,-equivalent to
DX. Hence Proposition 2.3 iii) and iv) imply immediately our result when n is
even. We next use the cofiber sequences X2~ 1/5 Rp2st2r+1 |, gp2s+ai+i _, 52
and T 175" Rp® | RP% - 52 From Lemma 2.1 i) it follows that S
=(0.2)eKU,_RP3ET¥* ' = Z @ Z/2'*" and f; ., (1) =1/2e KU,,_RPJ,_ | =
Z/2%. Applying Lemmas 1.1 and 1.2 with the aid of Proposition 2.3 i) and ii)
we can easily obtain our result when n is odd or infinite.

2.3. Recall the behavior of the real Adams operation % on KO, X, ® Z[1/k]
0<i<T) for each k #0 (see [YS, (4.3)]):

(2.4) i) When n is odd or infinite, Y% = k? or 1 according as i = 4 or otherwise;
i) When n=4s+ 2, Y% = 1. 1/k*. k* or 1/k*~2 according as i =0, 2, 4 or 6:
iii) When n =4s # 0. Y% = A4, »,, k? A, ,, or 1 according as i = 0, 4 or otherwise.

We here investigate the behavior of the real Adams operation y% for RP351"
(I <n<oo) and DRPZE*? (t > 0), which is useful to determine their K,-local
types.

Proposition 2.5. When X = 5~ #m+1Rpintn s -4m+ippimen simpp pam 2
or Z*™DRPI"*2 . the Adams operation W% acts on KO, X ® Z[1/k] 0<i<7)
Jor each k #0 as follows:

i) The X = X4 1RPI™ 1" cases: 1)  When n is even or infinite, 1/k*™y% =
k% or 1 according as i = 4 or otherwise; 2) Whenn = 4s + 1, 1/k*™yk = 1/k2m+ 2,
k2, 1/k**2572 or | according as i =2, 4,6 or otherwise: 3) When n =4s + 3,
L/K2™ Yl = Ag ams 25420 K2 Ap ams 2542 0F 1 according as i =0, 4 or otherwise.

i) The X = X*"DRPN*? case: kKPPl = Ay > kK* Ay 5 oF 1 according
as i =0,4 or otherwise.

i) The X = Z*"DRPI™* 2 case: k*™yk = k™, k., k*"*2 or 1 according as

i=2.4,6 or otherwise.

Proof. Use the cofiber sequence RP% ., = X,+1 = X4 = Z'RP%,, of (2.2)
and its dual sequence X 'DRP", - X_,_,—>X_,,_, > DRP!,,. By a quite
similar argument to [YS, Lemma 4.4] with the aid of (2.4) our result is easily
shown.

To determine the K,-local types of RP3:*" (0 < n < oo) we shall not need

to investigate the behavior of their real Adams operations . Neverthless we
dare to give the following result, whose proof is almost the same as in Proposition
2.5 (or [YS, Lemma 44]).

Proposition 2.6. When X = X~ 4m+Y1RpIm*n op T -4m*IRPIM*" the Adums
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operation Y% acts on KO; X @ Z[1/k] (0 <i<7) for each k #0 as follows:

i) The X = X~ 4"*1RP{"*" case: 1) When n is even or infinite, 1/k*™y% =
1/k2™, k%, 1/k*" =2 or 1 according as i = 1, 4, 5 or otherwise; 2) When n = 4s + 1,
1/I2mg = 17k, 1k2mr s k20 1/k*™ =2, 1/k*™Y 272 or 1| according as
i=1,2 4.5 6 or otherwise; 3) When n=4s+ 3, 1/k* Yk = Ay ppms2541- 1/K*,
k* Ay ams 25+ 1> 1/K*™ "2 or 1 according as i =0, 1. 4,5 or otherwise.

i) The X = X 4" 1RP™ " case: 1) When n is even or infinite, 1/k*™ % =
1/k2m=2 k2, 1/k*™ % or 1 according as i=3,4,7 or otherwise; 2) When
n=4ds+ 1, 1/k2™yk% =1, 1/k¥m25 1 /K220 k2, 1/k2m 2720 1/k*™ =% according
as i=0,2,3,4,6 or 7: 3) When n=4s+3, 1/k2"Yk = Ay 3ms 2542, /K" 2,
k? Ay ams 2542, /K2 ™% or 1 according as i =0, 3.4, 7 or otherwise.

We now determine the K,-local types of RP3ii} as the first part of our
main result (cf. [DM, Theorem 4.27).

Theorem 2.7. The stunted real projective space E'RP31% (2 <n < o) has
the same K -local type as the elementary spectrum tabled below :

s\ 8r 8r+ 1 8r+2 8r+3
4m -1 SZ /2% CligXgme+ar) \YAPARE Cligys 1 Mamare 1)
4m Sz/2% CligeHam+ar+ 1) Vyuran Cliy arv1am s ar+2)
4m+ 1| SZ2% ACH)  Clligy A Dgmsari2) SZ/2¥ TP ACH) Clligy 1 A Digyyars)
4m + 2 SZ/Z“' ACOH) Clligy A DMy ars3) Ujaren Clivars1%am+ar+a)
s\ 8r+4 8r+5 8r+6 8r+7
4m— 1 Vyarss Cliy ar v 20am-ar+2) Vaarss Clivars 3Mam-ares)
4m Vyar 2 Cliv ars 2Mam+ar3) Szj24? Cligr s 3%am+ar+4)
4m + 1 Uzar-» Cliv.ar+ 2%am+ar+a) Ugares Cliy.ar sHam i arss)
4m+2 Usar-z Cliviars 2Hamsarvs)  SZJ2¥ X ACH) Clligres A Dltgmraro)
n\.s 4m-—1 4m 4m + 1 4m+ 2
o I SZJ2* SZ]2" SZ[2" AC(y) SZ]2” AC(y)

Proof. Put (2.3) and Propositions 2.3 and 2.5 together and then apply [YS.
Theorems 1.2 and 2.6 with (2.8)] as in the RP" case [YS5, Theorem 4.6 ii)].

Applying [YS, Theorem 2.6 with (2.8)] we can similarly obtain

Proposition 2.8. The Spanier-Whitehead dual DRP3;* (1 > 1) has the same
K, -local type as the cofiber of the map tabled below:
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s\t 4r 4r + 1 4r +2 4r+3
4'" lgp®—gm ,U‘4r+ld‘4m 1L’.4r+la-4m lar+ 3% —am
4m + 1 ly,arft—am-1 lyars1M-am—1  lars2l-am- Laps 3H—am-1

. ., . .
4m+2 |\ (i ADb -2 Tpar ibosm-2 iare2b-am-2 larss A Dby -3

4m+3 larM—am-3 lar+ 1M-am~3  lvar+2M-am-3  lur+3M-am-3

According to [Y5, Lemma 4.7], two finite spectra X and Y have the same
K -local type if and only if their Spanier-Whitehead duals DX and DY have the
same K-local type. As a dual of Proposition 2.8 we can show immediately the
second part of our main result by using Lemma 1.4 and (1.16) with the aid of
[YS, (2.7) and (3.7)].

Theorem 2.9. The stunted real projective space X!RP35*2' (t > 1) has the
same K -local type as the cofiber of the map tabled below:

s\t 4r 4r + 1 4r +2 4r+3
4m Xam,ar+1 Xam, v ar+2 Lam.v.ar+3 Lam.ar+a
Am+ 1| famerviarcr Hamtervarc2 Hamsrares  Hame1.aria
Am+2 | dymsraret Qam+2,0.4r+2  Qam+2,0.4r+3  Yam+2.4r-4

Am + 3 | Mgyszvaret Mamesare2 Mamesares  Mame3ar-a

3. The K,-localizations of RP3**™*!

3.1. Let p be a fixed prime and r be a positive integer such that r = + 3
mod 8 when p =2 and r generates the group of units of Z/p?> when p is
odd. Denote by #, the fiber of the map Yk —1: KOZ, —» KOZ, where
KOZ, = KO A SZ,, is the real K-spectrum with coefficients Z,. Consider the
map K,: £, — 2 'SQ inducing an isomorphism K, 7_, ¢, ® Q 31,50 ®
Q. According to [B1, Theorem 4.3] (or [R]) the fiber of the map «,, is actually
the KZ,,-localization of the sphere spectrum S. Thus we have cofiber sequences

B 1) Sz, = Sy~ 27ISQ T 2 Sk,

ii) f(p) L’ KOZ(MWJL’I KOZ(p) _"_2' le(p)

where Sy, = Sk A SZ, for the K,-localization Sy of S. The unit 15: S - KO
is factorized through Sy as 1, = 1 [ for the K -localization map I/ S — Sx. Note
that the composite 1,1,: Sg,  — KOZ, is just the map ix: Sy > KO smashed
with SZ .

Let J be a set of primes. The obvious map I;: S —» SZ,, associated with
the inclusion Z < Z;, gives rise to the SZ,-localization map [, Al: X —
SZ;~n X. For each map f: Y— X we denote by f,: Y- SZ, A X the J-local
map given by the composite (I, A 1)f.
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Lemma 3.1. Let J be u fixed set of primes, W and X be CW-spectra with
W finite and f: W— S A X be a map such that the composite (ix A1) f: W
KO A X is trivial.  Assume that [E*W, SQ A X1 =0 and [Z'W, KOZ,AnX]=0
Jor each prime pelJ. Then the J-local map f;,: W— S, A X becomes trivial.

Proof. Under our assumptions it is immediate that (1g A 1),: [W. Sgz,, A X]
—[W. KOZ, A X] is a monomorphism for each peJ. Therefore the p-local
map f,: W— Sgz, A X becomes trivial for each peJ. Since there exists an
isomorphism [W, Sx A X1® Z,,, > [W. Skz,, A X] under the assumption that W

is finite, we can find a positive integer n, prime to p such that n,f =0e[W.
Sk A X] for every peJ. Consequently we get a positive integer n prime to all
peJ such that nf=0e[W, SxA X]. This implies that the J-local map
Juy: W= Skz,,, A X is trivial as desired.

Lemma 3.2. Let p be a fixed prime and W, X and Y be CW-spectra. Let
[iWoSeAX, g: WoYand h': Y- S A X be maps such that f and h'g coincide
when they are carried into [W. Sgziqn X1 and [W. KO A X]. Assume that
[22W, SQAX]=0=[2'Y, SQAX] and g*:[Z'Y, KOZ,AX]->[Z'W.
KOZ, A X] is an epimorphism. Then there exists a map h:Y—Sg A X
satisfying f = hge[W, Sk A X].  Further the map h is taken to be a quasi Sg,-
equivalence whenever h' is so.

Proof. Consider the commutative diagram

[Z'Y. KOZy A XT 225 Y, 7 A X122 1Y, Sgq, A X

1 g E

[Z'W. KOZiy A X1 — [ Fip A K] g [W Sz, A X ]

2A L),

in which the left vertical arrow g* and the right upper arrow (1, A 1), are
epimorphisms and the right lower arrow (1; A 1), is a monomorphism. By a
routine diagram chasing we can easily find a map h": Y- Sg, A X such that
Jim =h'ge[W. Sgz,, A X] and (ix A Dhy, = (g A )h"e[Y. KOZ, A X] since
(tx A D) fipy = (g A D h{ge[W, KOZ, A X]. Note that the rationalizations of i’
and h" coincide. Using [B1, Proposition 2.10] we then obtain a unique map
h:Y— Sg A X such that h, =h"e[Y, Sgz,, A X1 and he, = hipe, €LY, Sgz11/m A X
where p° denotes the complement of the single prime set {p}. Evidently this
map h satisfies the desired equality hg = fe[W. S A X] because h"g = f, e [W.
Skzy A X1 and hipeg = fipe €[W. Skzi1pm A X1

If the old map h': Y— Sx A X is a quasi Sg,-equivalence. then it induces an
isomorphism h: K, Y— K, Sx A X < K, X where K = KU or KO. This implies
that hy: KZ,, Y > KZ ) Skz,, N X <KZ,,X is an isomorphism because
(1g A 1),y = (ix A 1)h". Therefore we can observe that hy: K, Y — K, Sg A X «
K,X is an isomorphism since hg, =h" and hg e, = h{x. Thus the new map
h: Y-S A X becomes a quasi Si,-equivelence, too.
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Putting Lemmas 3.1 and 3.2 together we obtain

Proposition 3.3. Letr W, X and Y be CW-spectra with W finite, and
fiWoScAX, g: WY and W' Yo Sg A X be maps related by the equality
(g A=A Dhge[W. KO A X]. Assume that the following three conditions
are satisfied for a certain prime p:i) [Z*W, SQAX]=0=[Z'Y, SQAX],
i) [Z'W. KOAXI®Z[1/p1=0 and ii) g*:[Z'Y. KOZ,AX]->[2'W.
KOZ,, A X] is an epimorphism. Then there exists a map h: Y — Sy A X satisfying
f=hge[W, Sx A X]. Further the map h is taken to be a quasi Sg,-equivalence
whenever h' is so.

Proof. Take J in Lemma 3.1 as the set p° of all primes but only the prime
p and f in Lemma 3.1 as the map f— h'g. Then Lemma 3.1 asserts that
Sy = Mo g €W, Skzi1ym A X]. Since the assumptions in Lemma 3.2 are all
satisfied, we can now apply Lemma 3.2 to get a desired map h: Y — Sy A X.

As an immediate result of Proposition 3.3 we can show

Corollary 3.4. Let W, X and Y be CW-spectra with W finite, and f: W— X
and g: W—'Y be maps. Assume that the conditions 1), 1) and iii) stated in
Proposition 3.3 are all satisfied for a certain prime p. If there exists a quasi
Sky-equivalence h':'Y — Sg A X satisfying (1o A 1)f = (1ix A )h'ge[W, KO A X].
then the cofiber C(f) is quasi S,-cquivalent to C(y).

3.2. Concerning the conditions i), ii) and iii) stated in Proposition 3.3 we
have

Lemma 3.5. Let Y be a CW-spectrum which is quasi KO -equivalent to the
Sollowing spectrum X : 1) Z° v SZ/4m, 2) Z* v V,,., 3) M,,.. 4) X% v X287 /4m.
5) 22v 2 ., 6) X7 2My,. 7) SZ/2% or 8) X72SZ/2°. Let g: Z° > Y be a
map satisfving the following condition: ¢,(1)=(0, N'e KU, Y=Z D Z/4m in the
case 1); g, (1) =(0.2meKUyY=Z @ Z/4m in the cases 2)-6); g,(1)=1/2¢€
KUyY > Z/2® in the cases T)-8). Then KO, Y® Z[1/2]=0=[2'Y, SQ A Y]
and g*: [2'Y, KOA Y] [2Z', KO A Y] is an epimorphism.

Proof. 1t is obvious that KO, Y® Z[1/2] = KO, X ® Z[1/2] =0 and [2Y,
SOAY]=[[Hom(n_, Y®Q. 1, Y® Q) =0 because KO,;,; Y® Q = KO,;,, X

® Q =0 for each j. As is observed in the proofs of Lemmas 1.1 and 1.2, we
can choose a certain map f: X°— X such that (1, A 1)f = hg with a suitable
quasi KO,-equivalence h: Y- KO A X. For any CW-spectrum W the quasi
KO,-equivalence h induces an isomorphism h*: [X, KO A W] - [Y, KO A W]
defined by h*(x) = (1 A 1)(1 A x)h where u: KO A KO — KO denotes the multiplica-
tion of KO. Therefore it is sufficient to show that the map f: 2% — X in place
of g: 2° > Y induces an epimorphism f*: [Z!'X, KOA X]—[2', KOA X]. In
the cases 2), 3) and 7) our assertion is trivial because KO, X =0for X =2* v 1},
M,, or SZ/2*.



Stunted real projective spaces 537

In the non-trivial cases we recall that the map f: 2°— KO A X is chosen
in the proofs of Lemmas 1.1 and 1.2 as follows: 1) (0.i): 2°— X% v SZ/4m;
4) (0, fap): 20> X2 v 272SZ/4m; 5) (0. fiy am): 20— X2V 272,00 6) iyliam:
205" My 8) ju i 20> 2 7285Z/2%. As is easily checked. the induced
homomorphisms i*: [Z1SZ/4m, KO A(XE° v SZ/4m)]—>[Z'. KOA(Z°v SZ/
4m)], Nf.: [2'SZ/4m, KO ASZ/4m]—>[23. KO ASZ/4m], 7f am: [Z Vi
KO AV, 1> [Z% KO A V). ik [Z1M,,, KO AM,,] - [E'SZ/4m, KO A M,,]
and 7%,:[2'SZ/4m, KO A M,,]1—[2*, KO AM,,] are all epimorphisms.
Further j¥ .:[2'SZ/2*, KOASZ/2*]—>[X'SZ/2, KO ASZ/2*] and #*:
[X'SZ/2, KOASZ/2*] - [23, KO ASZ/2*] are isomorphisms, because there
exists an isomorphism [W. KO A SZ/2*] = Hom (KO, W. Z/2*) for any CW-
spectrum W(use [Y1, (3.1)] or [An]). Consequently we can verify that f*: [2! X,
KOAX]-[2', KOAX] is also an epimorphism in the non-trivial cases
1), 4), 5), 6) and 8).

Fix non-negative integers m and r, and then for simplicity set the elementary
spectra appearing in Theorem 2.7 as follows:

Yor = Cligys1Ham+ar+1) Yor = Clligps1 A D Mypsarss)
Yoo = Cliy ar+20am+ar+2) Yo5 = Cliy.ar+2%am+ar+a)
Yo3 = Cliy ar+3Mam+ar+3) Yo3 = Cliv.ar+ 3tam+ar+s)
(3.2) You = Cligy+a%msar+a) Y0 = C(igpsa A D)damiarse)
. Yi1=Cliyar+19am+ar+2) Y5, = Cliv.ar+ 1 %am+ar+a)
Y2 = Cliy ar+2Mam+ar+s) Y3, = Cliv.ar+ 2Mam+ar+s)
Yis = Cligy+3%m+ar+a) Y3 = Cligy+3 A Dgmrarse)
Yie = Cligrsalam+ar+s) Yo = Clligrsa A D Mgpsarsq)

The elementary spectrum Y,; is quasi KO,-equivalent to M,u.i, 2% v Viaroo,
M.y or 2°v SZ/2%** according as j=1,2.3 or 4, and Y;; is quasi
KO, -equivalent to Z* v Vyurri. Myarsa, 20 v SZ/2* "> or Mya. s according as
j=1,2,3 or 4 On the other hand. Y,; and Y;; are respectively quasi
KO,-equivalent to Z*Y,; and Z*Y,; for each j (1 <j<4).

For each pair (i,j), 0<i<3 and | <j<4, we consider the following
COCXLENSIONS (P apsiars ;s 20" 2 = Wasrrs given in (1.14):

Gy arsy: 28" — SZ 241 Qam+2.4r+1" Xemra L, S7Z2YTUACWH)
Lam v ar+2: 28— Wy Aam+2.0.4r+2° 28— Uyara
Tmy.ares: &0 — Vyirea Agpmsr.v.are3: 22" — Ujyur s
33 Ly ar+a’ 8 — SZ/2M+4 Agms2.ar+4" et — Sz/z‘tr+4 A Cn)
) Ramsrvarer: 22— Voot Mgy varen 28— Uy

~ . 8m+2 by . 8m+6
Ham+1,v.ar+2t & — Viarer Mlgpazvars2t & — Uzare
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ﬂ4m+1.4r+3: 28m+2 I SZ/24r*3 n~14m+3‘4r+3: 28m+6 - SZ/24r+3 A C(V_])

ﬂ4m+l,4r+4: I8tz —, SZ/24r+4 ';l4m+3.4r+4: Zemee —, SZ/24r+4 A C(ﬁ)

By composing the canonical inclusion i;: Wa.; — Y,; after the above map

Pam+iar+j: 22" 2 = Waarey, we introduce the following map

Z‘8m+2| e %4'_ L — X_/

(3.4) gij = iij(»b4m+i,4r+j:

From (1.15) it follows that all the maps g;;: Z®""* - Y; satisfy the following
condition:

(3.5) Gije(1) = (0, 2™ e KUy, Y, = Z @ Z/2% .

Set Yy, = Yo =8Z/2% and Y, = Y5, = SZ/2° A C(1), and consider the
following maps g;,,: 28" "2 > Y. given in (1.18):
(3.6) Jow = Tamor Yrw = Ham+1.mr 920 = Qams2.00 Y3m = Mam+3,00-

Then Lemma 3.5 with (3.5) and (1.19) implies

Lemma 3.6. i) KO, Y;®Z[1/2]=0=[2"Y,;. SQ A Y;], and
i) the maps g;: X8 ¥ Y, given in (3.4) and (3.6) induce epimorphisms
g5 [Z1 Y KO A Y] [Z8" 2% KO A Y] if (i, ) is neither (0, 4) nor (2, 4).

3.3. We next discuss the maps goq = igafamarsa: 2" —>SZ/24 4 5 Y,
and g,4 = 4lamszareat 25" SZ 2% A C() > Yau. Recall that %, 414
=2 A I8 > Z8"SZ )2 5 SZ[2 > SZ[2q and dypyg.ar+q = hygp Ayis 28T
— I8 T4SZ)2 5 24SZ)2 > SZ[2q A C(7) with q=2%"3 where j,,, is the
obvious map and h,,,, is the extension of h obtained in (1.13). Using the cofiber
sequences (3.1) it is easily computed (cf. [B1, Corollary 4.5] or [R, Theorem 8.5])
that

(37) meSx=n, KO®n, KO=Z®Z/2,
oSk ANSZ/2 = 115, Sk ASZ/2 = K04, SZ/2® KOq4,,+1SZ/2=Z/28 Z/2.
TSk ANSZ/2q=Z/2""' ® Z/2 = KO4,,SZ/2q ® KOy,,.,SZ/2q
>7Z/2q® Z/2 and
Tam+aSk ANSZ[2q A CiN) = Z/8@ Z/2
< KOgp4+4SZ/2qACN) @ KOy, s sSZ/2qAC)=Z/2qD Z/2

where v = Min {4r + 3, v,(8m)} with v,(8m) the exponent of 2 in the prime power
decomposition of 8m. Further we can compute that

(3.8) TgmSk A Yo3 = Z/2""' < KOy, Yoy = Z/q.
Tgm+aSk A Ya3 =Z/8 < KOgi 4 Ya3 = Z/qg,
TgmSk A Yoo, = Z/2°" ' D Z/2® Z/2 = KOy, Yy, ® KOg,, 11 You
=Z®Z2qDZ/2®Z/2 and
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Mgm+aSk A You = Z/8DZ/2DZ/2 < KOgp sy V24 ® KOy, 45 Yoy
~x7Z@®Z/2qDZ/2®Z/2

where u = Min {4r + 2, v,(8m)} and v = Min {4r + 3, v,(8m)}, because Y} =1
on KOoYy; =Z/q. Yk =k* on KO,Y,3=Z/q, Yk = Ay amsar+a o0 KOg Yo, =
Z®Z/2q and Yk = k* Ay sppiar+6 ON KO, You = Z @ Z/2¢q for any k prime to 2
(see [Y5, (2.1) and Lemma 2.2 i)]).

Lemma 3.7. The maps gos: 28" — Yy, and ¢,,: 28" - Yy, satisfy that
Goax (1, 0)=(2°,0, 0)eng, Sk A You = Z/2"" '@ Z/2@®Z/2 and g,4,(1,0)=(4, 0, 0)
ENMgneaSk A You = Z/8DZ/2@® Z/2 where (1,0 engSx = Z @ Z/2 stands for the
element represented by the localization map li: S — Sk.

Proof. A routine computation shows that the cofiber C(l,,,,) is quasi
KO,-equivalent to Z*SZ/q since C(7) and C(h) are quasi KO,-equivalent to
X% As is easily seen, the induced homomorphisms j, ,,.: 7, Sk A SZ/2 -
TgmSk A SZ/2q and hyg 5y Mg Sk A SZ[2 = Tg,+aSx A SZ[2q A C(if) are respec-

4 0
8):2/2@2/2—»2/2"”@2/2 and (O 0>:Z/2(43

Z/2-Z/8@® Z/2. Using these expressions we verify immediately that the
induced homomorphisms ggu,: TSk = TgnSk A You and g4, oSk = Mgm+aSk A

v

tively expressed as (0

20 4 0
Y, are expressed as | 0 O | :Z@®Z/2-Z/2""'@®Z/2®Z/2 and | 0 O
0 0 00

Z@®Z2-Z/|8@®Z/2@® Z/2 respectively.

By virtue of Corollary 3.4 and Lemmas 3.6 and 3.7 we finally determine the
K, -local types of RP35*#*! as the last part of our main result.

Theorem 3.8. The stunted real projective space X' RP3E+**1 (0 <t < o) has
the same K,-local type as the cofiber of the map tabled below:

SN 4r 4r + 1
4m lar+ 1 Mam+ar+1 Y Xamar+1 Iy ars28ameare2 V Xamarc2
Am+ 1 iy aye 1 Gameare2 V lams 1v.ar1 ear+2Mamear+3 vV Ham+1.v.ar+2
Am + 2 [ (igre 1 A DMy iare3 V Qame2.4r+1 Toarv2%am+arva vV Qamse2.U.dr 2
Am+ 3 | a1 Yamearca VY Mame 304041 Tyoar-2Ham s ar+s ¥V Mamr3.0.4r 2
s\ ! 4r + 2 4r+3
am v arv3Mam+ar+3 YV Qamy ar+3 Tar+a%amiarva vV Xamar+a
4m + 1 lar+3%am+ar+a vV Ham+1.ar+3 Larvallam+ares vV Ham+1.4rva
Am 4+ 2 | iy ar-3Mamsarss V Qame2.0.ar+ 3 (lar+a A Ddamiarie VY Qame2.ar:a

4m+3 | (igpe3 A Dlamearse V M. 3.4r43 (lgrea AN D)Mypcgres V My 3ara
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NS dm  4dm+1 4m+2 4m+3

o Lam.x  Hamv1., Qam+2,5 Mam+3.«

Proof. The t =0 case is obvious because RP3:*! =32 v X% So we
may assume that t > 1. When (s, t + 1)=(4m +1i, 4r +j) or (4m + i, o0) we
shall show that Z'RP3***! has the same K,-local type as the cofiber C(g;))
of the map g;;: I "% - Y; given in (3.4) or (3.6). because the cofiber C(g;;)
coincides with the cofiber of the map tabled in the theorem (use [Y2. Lemma
I1.1.1]). We first take the maps f and ¢ in Corollary 3.4 as the canonical
inclusion f,,: 27! —» RP3*2'*! and the above map g;;: Z®"* ' - Y, respectively
where (s, t + 1) =(@m + i, 4r +j) or (4m+ i, o). According to Theorem 2.7
Z'RP3EY*! has the same K,-local type as the spectrum Y. Note that
Tyee  RPETZ*1® Q = 0 whenever t > 1. Then Lemma 3.6 shows that all of the
conditions 1), ii) and iii) stated in Proposition 3.3 are satisfied for the prime 2
unless (s, t) = (2n, 4r + 3). Therefore we can apply Corollary 3.4 to observe that
Z'RP3T#* ! and C(g;;) have the same K ,-local type unless (s, t) = (2n. 4r + 3).

We shall next show that our assertion is valid even in the case when (s,
ty=(2n, 4r + 3). Consider the commutative diagram

S5 4n+8r+5 IKe 4n+8r+5
ToSk — Mau—1 Sk A RP4 Y — KOy, RP3TY

ll l l

4n+8r+7 4n+8r+7
7o Sk _’f7 Tan-1Sx A RP T _’K KOy, RP3; 1Y
* *

where f,: 24"~ ! — RP§" 8%k (k =5, 7) denotes the canonical inclusion. Recall
that Z'RP{*3 "% (k=5 and 7) are respectively quasi Sg,-equivalent to Y,
and Yo, when n is even, and they are quasi Sg,-equivalent to Y,3 and Y,
when n is odd. From (3.7) and (3.8) it follows that n,Sxy=Z® Z/2,
Tay_ Sy A RPEFSS = 70041 and 7o S A RPHS T~ 72 § 7/2@ Z)2
where u = Min {4r + 2, v,(4n)} and v = Min {4r + 3, v,(4n)}. Since fs,(1)=
24*2e KO, RPLTE*5 = Z/2%*3 it is easily seen that f5,(1,0) = 2“€en,,_, Sk
ARPQEY*S >~ 7Z/2“%1 This implies immediately that f;,(1,0)=(2",0,0)e
Tgn—1Sg ARPINISHT ~ 7YV @ Z/2@® Z/2. On the other hand. Lemma 3.7
asserts that the map g;,: 2% "% - Y, (i = 0. 2) satisfies the equality g,4,(1,0) =
(2", 0, 0)€ERg+2:Sk A Yy = Z/2" ' @D Z/2@® Z/2 where v = Min {4r + 3, v,(8m)}
or 2 according as i=0 or 2. Theorefore the map (Iga1)fy: T4 - S A
ZYRPiER T coincides with the map (Ix A 1) gq: 282 5 S A Y, for i=0 or
2 when Sg A ZTRPT3 7 s identified with Sg A Y, (i = 2n — 4m) via a suitable
quasi Sg,-equivalence. Hence we can easily observe that Z'RP3:*¥"*7 has the
same K, -local type as the cofiber C(go4) or C(y,4) according as n = 2m or 2m + 1.
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