The K_{*}-localizations of the stunted real projective spaces

By
Zen-ichi Yosimura

0. Introduction

Given an associative ring spectrum E with unit, a $C W$-spectrum X is said to be quasi E_{*}-equivalent to a $C W$-spectrum Y if there exists a map $f: Y \rightarrow E \wedge X$ such that the composite $(\mu \wedge 1)(1 \wedge f): E \wedge Y \rightarrow E \wedge X$ is an equivalence where $\mu: E \wedge E \rightarrow E$ denotes the multiplication of E. We call such a map $f: Y \rightarrow E \wedge X$ a quasi E_{*}-equivalence. Let $K O$ and $K U$ be the real and the complex K-spectrum respectively. Since there is no difference between the $K O_{*^{-}}$and $K U_{*}$-localizations, we denote by S_{K} the K_{*}-localization of the sphere spectrum $S=\Sigma^{0}$. Recall the smashing theorem [B1, Corollary 4.7] (or [R]) that the smash product $S_{K} \wedge X$ is actually the K_{*}-localization of X. This implies that two $C W$-spectra X and Y have the same K_{*}-local type if and only if X is quasi $S_{K *}$-equivalent to Y.

In [Y2] we studied the quasi $K O_{*}$-equivalence, and moreover in [Y 3] and [Y4] we determined the quasi $K O_{*}$-types of the real projective spaces $R P^{\prime \prime}$ and the stunted real projective spaces $R P^{n} / R P^{m}=R P_{m+1}^{n}$. In this note we shall be interested in the quasi $S_{K *}$-equivalence in advance of the quasi $K O_{*}{ }^{-}$ equivalence. The purpose of this note is to determine the K_{*}-local types of the stunted real projective spaces $R P^{n} / R P^{m}$ along the line of [Y5], in which we have already determined the K_{*}-local types of the real projective spaces $R P^{n}$ [Y5, Theorem 3]. Our proof will be established separately in the following three cases;

$$
\begin{aligned}
& \text { i) } R P^{2 s+n} / R P^{2 s}(2 \leq n \leq \infty), \quad \text { ii) } \quad R P^{2 s+2 t} / R P^{2 s-1}(t \geq 1) \quad \text { and } \\
& \text { iii) } R P^{2 s+2 t+1} / R P^{2 s-1}(0 \leq t \leq \infty) \text {. }
\end{aligned}
$$

In the proof of [Y5, Theorem 3] we first investigated the behavior of the Adams operations ψ_{C}^{k} and ψ_{R}^{k} for the real projective spaces $R P^{n}$, and then applied a powerful tool due to Bousfield [B2, 9.8] (or see [Y5, Theorem 4]). By a quite similar argument to the old case we shall determine the K_{*}-local types of $R P_{2 s+1}^{2 s+n}(2 \leq n \leq \infty)$ and the Spanier-Whitehead duals $D R P_{2 s}^{2 s+2 t}(t \geq 1)$ (Theorem 2.7 and Proposition 2.8). Since two finite spectra X and Y have the same K_{*}-local type if and only if their duals $D X$ and $D Y$ have the same K_{*}-local type [Y5, Lemma 4.7], it is easy to determine the K_{*}-local types of $R P_{2 s}^{2 s+2 t}(t \geq 1)$
(Theorem 2.9). In order to observe the rest case we shall construct maps $g_{s t}: \Sigma^{2 s} \rightarrow Y_{s t}$ modelled on the bottom cell inclusions $i: \Sigma^{2 s} \rightarrow \Sigma^{1} R P_{2 s-1}^{2 s+2 t+1}$, where $Y_{s t}$ is a certain elementary spectrum with a few cells appearing in Theorem 2.7 admitting the same K_{*}-local type as $\sum^{1} R P_{2 s-1}^{2 s+2 t+1}$. By proving that each cofiber $C\left(g_{s t}\right)$ has the same K_{*}-local type as $\sum^{1} R P_{2 s}^{2 s+2 t+1}$ we shall determine the K_{*}-local types of $R P_{2 s}^{2 s+2 t+1}(1 \leq t \leq \infty)$ (Theorem 3.8).

1. Some elementary spectra with a few cells

1.1. The Moore spectrum $S Z / n$ of type $Z / n(n \geq 2)$ is constructed by the cofiber sequence $\Sigma^{0} \xrightarrow{n} \Sigma^{0} \xrightarrow{i} S Z / n \xrightarrow{j} \Sigma^{1}$. Let $M_{2 m}, M_{2 m}^{\prime}, P_{2 m}$ and $P_{2 m}^{\prime}$ denote the cofibers of the maps $i \eta: \Sigma^{1} \rightarrow S Z / 2 m, \eta j: S Z / 2 m \rightarrow \Sigma^{0}, \tilde{\eta}_{2 m}: \Sigma^{2} \rightarrow S Z / 2 m$ and $\bar{\eta}_{2 m}: \Sigma^{1} S Z / 2 m \rightarrow \Sigma^{0}$ respectively [Y2, I.4.1]. Here $\eta: \Sigma^{1} \rightarrow \Sigma^{0}$ is the stable Hopf map of order 2 , and $\bar{\eta}_{2 m}$ and $\tilde{\eta}_{2 m}$ are an extension and a coextension of η satisfying $\bar{\eta}_{2 m} i=\eta$ and $j \tilde{\eta}_{2 m}=\eta$. Hereafter the subscript " 2 " in the symbols $\bar{\eta}_{2}$ and $\tilde{\eta}_{2}$ are dropped as $\bar{\eta}$ and $\bar{\eta}$. Notice that $P_{4 m}^{\prime}$ and $P_{4 m}$ are respectively quasi $K O_{*}$-equivalent to $\Sigma^{2} M_{2 m}$ and $\Sigma^{-1} M_{2 m}^{\prime}$, and $P_{2}^{\prime}=C(\bar{\eta})$ and $P_{2}=C(\tilde{\eta})$ are respectively quasi $K O_{*}$-equivalent to Σ^{4} and Σ^{-1} (see [Y2, Corollary I. 5.4] and [Y5, (1.2)]). More precisely, it follows from [Y5, Theorem 1.2 i)] that $\Sigma^{-3} C(\tilde{\eta})$ has the same K_{*}-local type as $C(\bar{\eta})$.

Denote by $V_{2 m}, V_{2 m}^{\prime}, U_{2 m}$ and $U_{2 m}^{\prime}$ the cofibers of the maps $i \bar{\eta}: \Sigma^{1} S Z / 2 \rightarrow$ $S Z / m, \quad \tilde{\eta} j: \Sigma^{1} S Z / m \rightarrow S Z / 2, \bar{\eta}_{4 m / 2}: \Sigma^{2} S Z / 2 \rightarrow S Z / 4 m$ and $\tilde{\eta}_{4 m / 2}: \Sigma^{2} S Z / 4 m \rightarrow$ $S Z / 2$ respectively where $\bar{\eta}_{4 m / 2}$ is a coextension of $\bar{\eta}$ with $j \bar{\eta}_{4 m / 2}=\bar{\eta}$ and $\tilde{\eta}_{4 m / 2}$ is an extension of $\tilde{\eta}$ with $\tilde{\eta}_{4 m / 2} i=\tilde{\eta}$. Then they are exhibited by the following cofiber sequences

$$
\begin{array}{ll}
\Sigma^{0} \xrightarrow{m \bar{i}} C(\bar{\eta}) \xrightarrow{i_{V}} V_{2 m} \xrightarrow{j_{\nu}} \Sigma^{1}, & \Sigma^{2} \xrightarrow{i_{V}^{\prime}} V_{2 m}^{\prime} \xrightarrow{j_{\nu}^{\prime}} C(\tilde{\eta}) \xrightarrow{m \tilde{\eta}} \Sigma^{3}, \tag{1.1}\\
C(\bar{\eta}) \xrightarrow{m \bar{\lambda}} \Sigma^{0} \xrightarrow{i_{U}} U_{2 m} \xrightarrow{j_{U}} \Sigma^{1} C(\bar{\eta}), & \Sigma^{3} \xrightarrow{m \tilde{\lambda}} C(\tilde{\eta}) \xrightarrow{i_{U}^{\prime}} U_{2 m}^{\prime} \xrightarrow{j_{U}^{\prime}} \Sigma^{4} .
\end{array}
$$

Here $\bar{i}: \Sigma^{0} \rightarrow C(\bar{\eta})$ and $\tilde{j}: C(\tilde{\eta}) \rightarrow \Sigma^{3}$ denote the bottom cell inclusion and the top cell projection, and $\bar{\lambda}: C(\bar{\eta}) \rightarrow \Sigma^{0}$ and $\tilde{i}: \Sigma^{3} \rightarrow C(\tilde{\eta})$ satisfy the equalities $\bar{i} \bar{i}=4$ and $\tilde{j} \tilde{\lambda}=4$. By virtue of [Y5, Theorem 1.2 ii) with (1.3) and (1.4)] we observe that $\Sigma^{-2} V_{2 m}^{\prime} \wedge C(\bar{\eta}), U_{2 m} \wedge C(\bar{\eta})$ and $\Sigma^{-3} U_{2 m}^{\prime}$ have the same K_{*}-local type as $V_{2 m}$.

Denote by $M P_{2 m}$ the cofiber of the map $i \eta \vee \tilde{\eta}_{2 m}: \Sigma^{1} \vee \Sigma^{2} \rightarrow S Z / 2 m$. By use of [Y2, Lemma II.1.1] we have a cofiber sequence

$$
\begin{equation*}
\Sigma^{2} \xrightarrow{i_{M} \tilde{I}_{2 m}} M_{2 m} \xrightarrow{i_{M P}} M P_{2 m} \xrightarrow{j_{M P}} \Sigma^{3} \tag{1.2}
\end{equation*}
$$

where $i_{M}: S Z / 2 m \rightarrow M_{2 m}$ denotes the canonical inclusion. Note that $\Sigma^{4} M P_{2 m}$ is quasi $K O_{*}$-equivalent to $M P_{2 m}$ [Y4, Corollary 2.7]. In [Y2, Propositions I.4.1, I.4.2, II.1.2 and II.1.3 and Corollary I.4.6] the $K U$ - and $K O$-homologies of some elementary spectra with a few cells are computed. In particular, for $X=M_{2 m}$, $M_{2 m}^{\prime}, V_{2 m}$ and $M P_{2 m}$ we have
(1.3) i) The $K U$-homologies $K U_{i} X(i=0,1)$ are tabled as follows:

i	0	1	i	$=$	0	1
$K U_{i} M_{2 m} \cong Z \oplus Z / 2 m$	0		$K U_{i} M_{2 m}^{\prime} \cong$	Z	$Z / 2 m$	
$K U_{i} V_{2 m} \cong Z / 2 m$	0		$K U_{i} M P_{2 m} \cong Z \oplus Z / m$	Z		

ii) The $K O$-homologies $K O_{i} X(0 \leq i \leq 7)$ are tabled as follows:

i	$=0$	1	2	3	4	5	6	7
$K O_{i} M_{2 m} \cong Z / 2 m$	0	$Z \oplus Z / 2$	$Z / 2$	$Z / 4 m$	0	Z	0	
$K O_{i} M_{2 m}^{\prime} \cong Z$	$Z / 4 m$	$Z / 2$	$Z / 2$	Z	$Z / 2 m$	0	0	
$K O_{i} V_{2 m} \cong Z / m$	0	$Z / 2$	$Z / 2$	$Z / 4 m$	$Z / 2$	$Z / 2$	0	
$K O_{i} M P_{2 m} \cong Z / 2 m$	0	Z	Z	$Z / 2 m$	0	Z	Z	

Consider the two composite maps
$i_{\infty}=j_{2, \infty} i: \Sigma^{0} \longrightarrow S Z / 2 \longrightarrow S Z / 2^{\infty}, \quad \tilde{\eta}_{\infty}=j_{2, \infty} \tilde{\eta}_{2}: \Sigma^{2} \longrightarrow S Z / 2 \longrightarrow S Z / 2^{\infty}$
where the map $j_{2, \infty}: S Z / 2 \rightarrow S Z / 2^{\infty}$ is the obvious map associated with the inclusion $Z / 2 \subset Z / 2^{\infty}$. Evidently $i_{x * *}(1)=1 / 2 \in K U_{0} S Z / 2^{\infty} \cong Z / 2^{\infty}$ and $\tilde{\eta}_{\infty *}(1)$ $=1 / 2 \in K U_{2} S Z / 2^{\infty} \cong Z / 2^{\infty}$. Since $\left[S Z / 2^{\infty}, \Sigma^{2} K O\right]=0$, it is immediately shown that
(1.5) the cofiber $C\left(i_{\infty}\right)$ is quasi $K O_{*}$-equivalent to the wedge sum $\Sigma^{1} \vee S Z / 2^{x}$.

On the other hand, the $K U$ - and $K O$-homologies of the cofiber $C\left(\tilde{\eta}_{\infty}\right)$ are easily computed as follows:
i) $K U_{0} C\left(\tilde{\eta}_{\infty}\right) \cong Z / 2^{\infty}$ and $K U_{1} C\left(\eta_{\infty}\right) \cong Z$.
ii) $K O_{i} C\left(\tilde{\eta}_{\infty}\right) \cong Z / 2^{\infty}, 0,0, Z$ according as $i \equiv 0,1,2,3 \bmod 4$.
1.2. Let X and Y be $C W$-spectra which admit the same quasi $K O_{*^{-}}$ type. Let $f: \Sigma^{0} \rightarrow X$ and $g: \Sigma^{0} \rightarrow Y$ be maps related by the equality $\left(l_{U} \wedge 1\right) f=$ $\left(\varepsilon_{U} \wedge 1\right) h y$ for a suitable quasi $K O_{*}$-equivalence $h: Y \rightarrow K O \wedge X$ where $l_{U}: \Sigma^{0} \rightarrow$ $K U$ denotes the unit of $K U$ and $\varepsilon_{U}: K O \rightarrow K U$ the complexification. Thus $f_{*}(1) \in K U_{0} X$ and $g_{*}(1) \in K U_{0} Y$ coincide when $K U_{*} X$ and $K U_{*} Y$ are identified via the quasi $K O_{*}$-equivalence h. If $\varepsilon_{U_{*}}: K O_{0} X \rightarrow K U_{0} X$ is a monomorphism, then there holds the equality $\left(t_{0} \wedge 1\right) f=h g$ where $t_{O}: \Sigma^{0} \rightarrow K O$ denotes the unit of $K O$. In this case it is easily seen that
(1.7) the cofiber $C(f)$ is quasi $K O_{*}$-equivalent to $C(g)$.

Consider the cofiber sequence $\Sigma^{0} \xrightarrow{m i} S Z / 2 m \xrightarrow{i c} C(m i) \xrightarrow{j c} \Sigma^{1}$. The cofiber $C(m i)$ is evidently decomposed into the wedge sum $\Sigma^{1} \vee S Z / m$. Since the composite $i_{c} i \bar{\eta}: \Sigma^{1} S Z / 2 \rightarrow C(m i)$ is expressed as $(0, i \bar{\eta}): \Sigma^{1} S Z / 2 \rightarrow \Sigma^{1} \vee S Z / m$, we obtain two cofiber sequences

$$
\begin{equation*}
\Sigma^{0} \xrightarrow{m k_{\nu}} V_{4 m} \longrightarrow \Sigma^{1} \vee V_{2 m} \longrightarrow \Sigma^{1} \text { and } \Sigma^{0} \xrightarrow{2 m k_{M}} M_{4 m} \longrightarrow \Sigma^{1} \vee M_{2 m} \longrightarrow \Sigma^{1} \tag{1.8}
\end{equation*}
$$

where $k_{V}: \Sigma^{0} \rightarrow S Z / 2 m \rightarrow V_{4 m}$ and $k_{M}: \Sigma^{0} \rightarrow S Z / 4 m \rightarrow M_{4 m}$ denote the bottom cell inclusions. Choose a map $\tilde{\eta}_{V, 4 m}: \Sigma^{2} \rightarrow V_{4 m}$ with $j_{V} \tilde{\eta}_{V, 4 m}=\eta$. Then [Y5, Lemma 3.6] asserts that
(1.9) the cofiber $C\left(\tilde{\eta}_{V, 4 m}\right)$ is quasi $K O_{*}$-equivalent to $\Sigma^{4} P_{4 m}$.

By the aid of (1.7) we show
Lemma 1.1. Let Y be a $C W$-spectrum which is quasi $K O_{*}$-equivalent to the following spectrum X : 1) $\Sigma^{0} \vee S Z / 4 m$, 2) $\Sigma^{4} \vee V_{4 m}$, 3) $M_{4 m}$, 4) $\Sigma^{-2} \vee \Sigma^{-2} S Z / 4 m$, 5) $\Sigma^{2} \vee \Sigma^{-2} V_{4 m}$ or 6) $\Sigma^{-2} M_{4 m}$. If a map $g: \Sigma^{0} \rightarrow Y$ satisfies that $g_{*}(1)=$ $(0,2 m) \in K U_{0} Y \cong Z \oplus Z / 4 m$, then its cofiber $C(g)$ is quasi $K O_{*}$-equivalent to the following spectrum W : 1) $\Sigma^{0} \vee \Sigma^{1} \vee S Z / 2 m$, 2) $\Sigma^{4} \vee \Sigma^{1} \vee V_{2 m}$, 3) $\Sigma^{1} \vee M_{2 m}$, 4) $\Sigma^{-2} \vee \Sigma^{-2} P_{4 m}$, 5) $\Sigma^{2} \vee \Sigma^{2} P_{4 m}$ or 6) $\Sigma^{-2} M P_{4 m}$ corresponding to each of the above cases 1)-6).

Proof. In each case of 1)-6) we consider the map $f: \Sigma^{0} \rightarrow X$ given as follows: 1) $\left.\left.(0,2 m i): \Sigma^{0} \rightarrow \Sigma^{0} \vee S Z / 4 m, 2\right)\left(0, m k_{V}\right): \Sigma^{0} \rightarrow \Sigma^{4} \vee V_{4 m}, 3\right) 2 m k_{M}: \Sigma^{0}$ $\rightarrow M_{4 m}$, 4) $\left(0, \tilde{\eta}_{4 m}\right): \Sigma^{0} \rightarrow \Sigma^{-2} \vee \Sigma^{-2} S Z / 4 m$, 5) $\left(0, \tilde{\eta}_{V .4 m}\right): \Sigma^{0} \rightarrow \Sigma^{2} \vee \Sigma^{-2} V_{4 m}$, 6) $i_{M} \tilde{\eta}_{4 m}: \Sigma^{0} \rightarrow \Sigma^{-2} M_{4 m}$. By means of (1.2). (1.8) and (1.9) we observe that each cofiber $C(f)$ is itself the spectrum W stated in the lemma except the case 5), and it is quasi $K O_{*}$-equivalent to $W=\Sigma^{2} \vee \Sigma^{2} P_{4 m}$ in the rest case 5). Then it is easily seen that $K U_{0} C(f) \cong Z \oplus Z / 2 m$ and $K U_{1} C(f) \cong Z$, and hence $f_{*}(1)=(0,2 m) \in K U_{0} X \cong Z \oplus Z / 4 m$. Since $K O_{7} X=0$ in the cases 1), 2), 3), 5) and 6), (1.7) implies our result immediately except the case 4).

In the case 4) we shall next show that (1.7) remains still valid although $\varepsilon_{U *}: K O_{2} \Sigma^{0} \vee S Z / 4 m \rightarrow K U_{2} \Sigma^{0} \vee S Z / 4 m$ is never a monomorphism. The map $f=\left(0, \tilde{\eta}_{4 m}\right): \Sigma^{0} \rightarrow \Sigma^{-2} \vee \Sigma^{-2} S Z / 4 m$ satisfies that $f_{*}(1)=(0,1,0) \in K O_{2} \Sigma^{0} \vee S Z /$ $4 m \cong K O_{2} \Sigma^{0} \oplus K O_{1} \Sigma^{0} \oplus K O_{2} \Sigma^{0} \cong Z / 2 \oplus Z / 2 \oplus Z / 2$. Identify $K O_{*} Y$ and $K U_{*} Y$ with $K O_{*} \Sigma^{-2} \vee \Sigma^{-2} S Z / 4 m$ and $K U_{*} \Sigma^{-2} \vee \Sigma^{-2} S Z / 4 m$ respectively via a quasi $K O_{*}$-equivalence $h: Y \rightarrow K O \wedge\left(\Sigma^{-2} \vee \Sigma^{-2} S Z / 4 m\right)$. Then it is easily seen that $g_{*}(1)=(a, 1, b) \in K O_{0} Y \cong Z / 2 \oplus Z / 2 \oplus Z / 2$ for some a and b because $g_{*}(1)=$ $(0,2 m) \in K U_{0} Y \cong Z \oplus Z / 4 m$ by our assumption. Here both a and b may be taken to be 0 by replacing the quasi $K O_{*}$-equivalence h without the change of the complexification $\left(\varepsilon_{U} \wedge 1\right) h: Y \rightarrow K U \wedge\left(\Sigma^{-2} \vee \Sigma^{-2} S Z / 4 m\right)$. Thus $f_{*}(1)$ and $y_{*}(1)$ have the same expression in $K O_{0} Y \cong K O_{2} \Sigma^{0} \vee S Z / 4 m \cong Z / 2 \oplus Z / 2 \oplus Z / 2$ as desired.

Similarly to Lemma 1.1 we obtain
Lemma 1.2. Let Y be a $C W$-spectrum which is quasi $K O_{*}$-equivalent to the following spectrum: 1) $S Z / 2^{\infty}$ or 2) $\Sigma^{-2} S Z / 2^{\infty}$. If a map $g: \Sigma^{0} \rightarrow Y$ satisfies that $g_{*}(1)=1 / 2 \in K U_{0} Y \cong Z / 2^{\infty}$, then its cofiber $C(g)$ is quasi $K O_{*}$-equivalent to the following spectrum: 1) $\Sigma^{1} \vee S Z / 2^{\infty}$ or 2) $\Sigma^{-2} C\left(\tilde{\eta}_{x}\right)$ corresponding to each of the above cases 1) and 2).

Proof. Set $f=i_{\infty}: \Sigma^{0} \rightarrow S Z / 2^{\infty}$ in the first case and $f=\tilde{\eta}_{\infty}: \Sigma^{0} \rightarrow \Sigma^{-2} S Z / 2^{x}$ in the second case. Then we can apply (1.7) to show our result since $K O_{7} S Z / 2^{\infty}=0=K O_{1} S Z / 2^{\infty}$.
1.3. Let $f: \Sigma^{2 t-1} X \rightarrow Y$ be a map of order 2 and $\bar{f}: \Sigma^{2 t-1} X \wedge S Z / 2 \rightarrow Y$ and $\tilde{f}: \Sigma^{2 t} X \rightarrow Y \wedge S Z / 2$ be its extension and coextension with $\bar{f}(1 \wedge i)=f$ and $(1 \wedge j) \tilde{f}=f$. Then there exist maps

$$
\varphi: \Sigma^{-2 t-1} C(\bar{f}) \longrightarrow X \quad \text { and } \quad \psi: Y \longrightarrow C(\tilde{f})
$$

of order 2 whose cofibers $C(\varphi)$ and $C(\psi)$ coincide with $\Sigma^{-2 t} C(f)$ and $\Sigma^{1} C(f)$ respectively. The bottom cell inclusion $i: \Sigma^{0} \rightarrow S Z / 2$ has an extension $i_{2 g}: C(2 g)$ $\rightarrow X \wedge S Z / 2$ whose cofiber is $\Sigma^{1} C(g)$ for any map $g: W \rightarrow X$. Similarly the top cell projection $j: S Z / 2 \rightarrow \Sigma^{1}$ has a coextension $\tilde{j}_{2 g^{\prime}}: Y \wedge S Z / 2 \rightarrow C\left(2 g^{\prime}\right)$ whose cofiber is $C\left(g^{\prime}\right)$ for any map $g^{\prime}: Y \rightarrow W$. Consider the composite maps

$$
\begin{array}{ll}
i_{g} \varphi: \Sigma^{-2 t-1} C(\bar{f}) \longrightarrow C(g), & \psi j_{g^{\prime}}: \Sigma^{-1} C\left(g^{\prime}\right) \longrightarrow C(\tilde{f}), \\
\bar{f}_{2 g} i_{2 g}: \Sigma^{2 t-1} C(2 g) \longrightarrow Y, & \tilde{j}_{2 g^{\prime}} \tilde{f}: \Sigma^{2 t} X \longrightarrow C\left(2 g^{\prime}\right)
\end{array}
$$

where $i_{g}: X \rightarrow C(g)$ and $j_{g^{\prime}}: \Sigma^{-1} C\left(g^{\prime}\right) \rightarrow Y$ denote the canonical inclusion and the canonical projection respectively. By use of Verdier's lemma we can easily show the following equalities among the cofibers of the above maps.

Lemma 1.3. $C\left(i_{g} \varphi\right)=\Sigma^{-2 t} C\left(\bar{f} \bar{i}_{2 g}\right)$ and $C\left(\psi j_{g^{\prime}}\right)=C\left(\tilde{j}_{2 g^{\prime}}, \tilde{f}\right)$.
Choose maps $\bar{h}: \Sigma^{3} S Z / 2 \rightarrow C(\bar{\eta}), \bar{k}: \Sigma^{5} S Z / 2 \rightarrow C(\bar{\eta}), \bar{h}: \Sigma^{1} C(\tilde{\eta}) \rightarrow S Z / 2$ and $\tilde{k}: \Sigma^{3} C(\tilde{\eta}) \rightarrow S Z / 2$ such that $\bar{j} \bar{h}=\tilde{\eta} j, \bar{j} \bar{k}=\tilde{\eta} \bar{\eta}, \tilde{h} \tilde{i}=i \bar{\eta}$ and $\tilde{k} \tilde{l}=\tilde{\eta} \bar{\eta}$ where $\bar{j}: C(\bar{\eta}) \rightarrow$ $\Sigma^{2} S Z / 2$ and $\tilde{i}: S Z / 2 \rightarrow C(\tilde{\eta})$ denote the canonical projection and the canonical inclusion respectively. The maps \bar{h} and \tilde{h} have order 2 and the maps \bar{k} and \tilde{k} have order 4 (use [AT, §4]). Using a fixed Adams' K_{*}-equivalence $A_{2}: \Sigma^{8} S Z / 2$ $\rightarrow S Z / 2$ [Ad2] we can obtain seven kinds of maps $f_{t}(t \geq 1)[\mathrm{Y} 5,(1.13)]:$

$$
\begin{array}{rlrl}
\alpha_{4 r} & =j A_{2}^{r} i: \Sigma^{8 r-1} \longrightarrow \Sigma^{0}, \\
\mu_{4 r+1} & =\bar{\eta} A_{2}^{r} i: \Sigma^{8 r+1} \longrightarrow \Sigma^{0}, & \mu_{4 r+1}^{\prime}=j A_{2}^{r} \tilde{\eta}: \Sigma^{8 r+1} \longrightarrow \Sigma^{0}, \\
a_{4 r+2} & =\bar{h} A_{2}^{r} i: \Sigma^{8 r+3} \longrightarrow C(\bar{\eta}), \quad a_{4 r+2}^{\prime}=j A_{2}^{r} \tilde{h}: \Sigma^{8 r} C(\tilde{\eta}) \longrightarrow \Sigma^{0}, \tag{1.10}\\
m_{4 r+3} & =\bar{k} A_{2}^{r} i: \Sigma^{8 r+5} \longrightarrow C(\bar{\eta}), \quad m_{4 r+3}^{\prime}=j A_{2}^{r} \tilde{k}: \Sigma^{8 r+2} C(\tilde{\eta}) \longrightarrow \Sigma^{0} .
\end{array}
$$

Denote by $\bar{f}_{t}: \Sigma^{2 t-1} S Z / 2 \rightarrow W$ the map obtained by omitting the " i " from the composite components of the map $f_{t}: \Sigma^{2 t-1} \rightarrow W$ for $f_{t}=\alpha_{4 r}, \mu_{4 r+1}, a_{4 r+2}$ or $m_{4 r+3}$, and similarly by $\tilde{f}_{t}: \Sigma^{2 t} W \rightarrow S Z / 2$ the map obtained by omitting the " j " from the composite components of the map $f_{t}^{\prime}: \Sigma^{2 t-1} W \rightarrow \Sigma^{0}$ for $f_{t}^{\prime}=\alpha_{4 r}, \mu_{4 r+1}^{\prime}$, $a_{4 r+2}^{\prime}$ or $m_{4 r+3}^{\prime}$ (see [Y5, (2.3) and (3.2)]). Then there exist eight kinds of maps

$$
\begin{equation*}
f_{-t}: \Sigma^{-2 t-1} C\left(\bar{f}_{t}\right) \longrightarrow \Sigma^{0} \text { and } f_{-t}^{\prime}: \Sigma^{0} \longrightarrow C\left(\tilde{f}_{t}\right) \tag{1.11}
\end{equation*}
$$

as given in [Y5, (2.5) and (3.4)]. Among the cofibers of these maps there hold the equalities as $C\left(f_{-t}\right)=\Sigma^{-2 t} C\left(f_{t}\right)$ and $C\left(f_{-t}^{\prime}\right)=\Sigma^{1} C\left(f_{t}^{\prime}\right)$.

Choose a coextension $\bar{h}_{2 / 2}: \Sigma^{4} S Z / 2 \rightarrow S Z / 2 \wedge C(\bar{\eta})$ of \bar{h} with $(j \wedge 1) \bar{h}_{2 / 2}=\bar{h}$ and an extension $\tilde{h}_{2 / 2}: \Sigma^{1} S Z / 2 \wedge C(\tilde{\eta}) \rightarrow S Z / 2$ of \tilde{h} with $\tilde{h}_{2 / 2}(i \wedge 1)=\tilde{h}$. Setting $\bar{a}_{4 r+2}^{\prime}=j A_{2}^{r} \tilde{h}_{2 / 2}: \Sigma^{8 r} S Z / 2 \wedge C(\tilde{\eta}) \rightarrow \Sigma^{0}$ and $\tilde{a}_{4 r+2}=\bar{h}_{2 / 2} A_{2}^{r} i: \Sigma^{8 r+4} \rightarrow S Z / 2 \wedge C(\bar{\eta})$, we obtain the following maps similar to (1.11):

$$
\begin{equation*}
b_{-4 r-2}: \Sigma^{-8 r-5} C\left(\bar{a}_{4 r+2}^{\prime}\right) \longrightarrow \Sigma^{-3} C(\tilde{\eta}) \text { and } b_{-4 r-2}^{\prime}: C(\bar{\eta}) \longrightarrow C\left(\tilde{a}_{4 r+2}\right) \tag{1.12}
\end{equation*}
$$

such that $C\left(b_{-4 r-2}\right)=\Sigma^{-8 r-4} C\left(a_{4 r+2}^{\prime}\right)$ and $C\left(b_{-4 r-2}^{\prime}\right)=\Sigma^{1} C\left(a_{4 r+2}\right)$ (see $[\mathrm{Y} 5,(2.5)$ and (3.4)]).

Since $\left[\Sigma^{3} S Z / 2, \Sigma^{0}\right] \cong\left[\Sigma^{5} S Z / 2, \Sigma^{0}\right] \cong\left[S Z / 2, \Sigma^{1} C(\bar{\eta})\right] \cong Z / 2$ and $\left[\Sigma^{1} S Z / 2\right.$, $C(\bar{\eta})]=0$, the maps $j: S Z / 2 \rightarrow \Sigma^{1}, \bar{\eta}: \Sigma^{1} S Z / 2 \rightarrow \Sigma^{0}, \bar{h}: \Sigma^{3} S Z / 2 \rightarrow C(\bar{\eta})$ and $\bar{k}: \Sigma^{5} S Z / 2 \rightarrow C(\bar{\eta})$ give rise to the following two kinds of coextensions:

$$
\begin{array}{ll}
j_{2,2 m}: S Z / 2 \longrightarrow S Z / 2 m, & j_{V, 4 m / 2}: S Z / 2 \longrightarrow V_{4 m}, \\
\bar{\eta}_{4 m / 2}: \Sigma^{2} S Z / 2 \longrightarrow S Z / 4 m, & \bar{\eta}_{V \cdot 2 m / 2}: \Sigma^{2} S Z / 2 \longrightarrow V_{2 m}, \tag{1.13}\\
\bar{h}_{2 m / 2}: \Sigma^{4} S Z / 2 \longrightarrow S Z / 2 m \wedge C(\bar{\eta}), & \bar{h}_{U, 4 m / 2}: \Sigma^{4} S Z / 2 \longrightarrow U_{4 m}, \\
\bar{k}_{4 m / 2}: \Sigma^{6} S Z / 2 \longrightarrow S Z / 4 m \wedge C(\bar{\eta}), & \bar{k}_{U, 4 m / 2}: \Sigma^{6} S Z / 2 \longrightarrow U_{4 m}
\end{array}
$$

such that $j j_{2,2 m}=j, \quad j_{V} j_{V, 4 m / 2}=j, \quad j \bar{\eta}_{4 m / 2}=\bar{\eta}, \quad j_{V} \bar{\eta}_{V, 2 m / 2}=\bar{\eta}, \quad(j \wedge 1) \bar{h}_{2 m / 2}=\bar{h}$, $j_{U} \bar{h}_{U, 4 m / 2}=\bar{h},(j \wedge 1) \bar{k}_{4 m / 2}=\bar{k}$ and $j_{U} \bar{k}_{U, 4 m / 2}=\bar{k}$. Here $j_{2,2 m}$ is the obvious map associated with the inclusion $Z / 2 \subset Z / 2 \mathrm{~m}$.

Compose the above eight maps after the map $\tilde{\alpha}_{4 r}=A_{2}^{r} i$, and also the first two maps after the map $\tilde{\mu}_{4 r+1}^{\prime}=A_{2}^{r} \tilde{\eta}, \tilde{a}_{4 r+2}^{\prime}=A_{2}^{r} \tilde{h}$ or $\tilde{m}_{4 r+3}^{\prime}=A_{2}^{r} \tilde{k}$. Then we obtain the following several coextensions given into the concrete forms:

$$
\begin{array}{clll}
\tilde{\alpha}_{4 r, l}: \Sigma^{8 r} & \longrightarrow S Z / 2^{l}, & \tilde{\alpha}_{4 r, V, l}: \Sigma^{8 r} & \longrightarrow V_{2^{\prime}}, \\
\tilde{\mu}_{4 r+1, l}: \Sigma^{8 r+2} & \longrightarrow S Z / 2^{l}, & \tilde{\mu}_{4 r+1, V, l}: \Sigma^{8 r+2} & \longrightarrow V_{2^{\prime}}, \\
\tilde{a}_{4 r+2, l}: \Sigma^{8 r+4} & \longrightarrow S Z / 2^{l} \wedge C(\bar{\eta}), & \tilde{a}_{4 r+2, U, l}: \Sigma^{8 r+4} & \longrightarrow U_{2^{\prime},}, \tag{1.14}\\
\tilde{m}_{4 r+3, l}: \Sigma^{8 r+6} & \longrightarrow S Z / 2^{l} \wedge C(\bar{\eta}), & \tilde{m}_{4 r+3, U, l}: \Sigma^{8 r+6} & \longrightarrow U_{2^{\prime}}, \\
\tilde{\mu}_{4 r+1, l}^{\prime}: \Sigma^{8 r+2} & \longrightarrow S Z / 2^{l}, & \tilde{\mu}_{4 r+1, V, l}^{\prime}: \Sigma^{8 r+2} & \longrightarrow V_{2^{\prime}}, \\
\tilde{a}_{4 r+2, l}^{\prime}: \Sigma^{8 r+1} C(\tilde{\eta}) \longrightarrow S Z / 2^{l}, & \tilde{a}_{4 r+2, V, l}^{\prime}: \Sigma^{8 r+1} C(\tilde{\eta}) \longrightarrow V_{2^{\prime}}, \\
\tilde{m}_{4 r+3, l}^{\prime}: \Sigma^{8 r+3} C(\tilde{\eta}) \longrightarrow S Z / 2^{l}, & \tilde{m}_{4 r+3, V, l}^{\prime}: \Sigma^{8 r+3} C(\tilde{\eta}) \longrightarrow V_{2^{\prime}}
\end{array}
$$

whenever $l \geq 2$. All the maps $\tilde{\varphi}_{t, l}: \Sigma^{2 t} X \rightarrow W_{2^{\prime}}$ given in (1.14) satisfy the following condition:

$$
\begin{equation*}
\tilde{\varphi}_{t, l *}(1)=2^{l-1} \in K U_{2 t} W_{2^{\prime}} \cong Z / 2^{l} \tag{1.15}
\end{equation*}
$$

For the Moore spectrum $S Z / 2^{l}$ of type $Z / 2^{l}$ the bottom cell inclusion $i: \Sigma^{0} \rightarrow S Z / 2^{l}$ and the top cell projection $j: S Z / 2^{l} \rightarrow \Sigma^{1}$ are sometimes written as i_{l} and j_{l} with the subscript "l". Similarly the maps $i_{W}, i_{W}^{\prime}, j_{W}$ and $j_{W}^{\prime}(W=U$ or V) appearing in (1.1) are written as $i_{W, l}, i_{W, l}^{\prime}, j_{W, l}$ and $j_{W, l}^{\prime}$ with the subscript " l " when $2 m=2^{l}$. Applying Lemma 1.3 to the maps given in (1.11), (1.12) and (1.14), we now obtain

Lemma 1.4. i) $C\left(f_{-t}^{\prime} j_{l-1}\right)=C\left(\tilde{f}_{t, l}^{\prime}\right)$ and $C\left(f_{-t}^{\prime} j_{V, l-1}\right)=C\left(\tilde{f_{t, V, l}^{\prime}}\right)$ for $l \geq 2$, where $f_{t}^{\prime}=\alpha_{4 r}^{\prime}, \mu_{4 r+1}^{\prime}, a_{4 r+2}^{\prime}$ or $m_{4 r+3}^{\prime}$ with $\alpha_{4 r}^{\prime}=\alpha_{4 r}$.
ii) $C\left(b_{-4 r-2}^{\prime}\left(j_{l-1} \wedge 1\right)\right)=C\left(\tilde{a}_{4 r+2 . l}\right)$ and $C\left(b_{-4 r-2}^{\prime} j_{U, l-1}\right)=C\left(\tilde{a}_{4 r+2, U, l}\right)$ for $l \geq 2$.

By virtue of [Y5, Lemma 3.6 ii)] we can show
(1.16) i) $C\left(\tilde{\mu}_{4 r+1, l}\right)$ and $C\left(\tilde{\mu}_{4 r+1, V, l}\right)$ have the same K_{*}-local types as $C\left(\tilde{\mu}_{4 r+1, l}^{\prime}\right)$ and $C\left(\tilde{\mu}_{4 r+1, V, l}^{\prime}\right)$ respectively.
ii) $C\left(\tilde{m}_{4 r+3, l}\right)$ and $C\left(\tilde{m}_{4 r+3 . U .1}\right)$ have the same K_{*}-local types as $C\left(\tilde{m}_{4 r+3 . V .1}^{\prime}\right)$ and $C\left(\tilde{m}_{4 r+3, l}^{\prime}\right)$ respectively.

Similarly to (1.13) the maps $j: S Z / 2 \rightarrow \Sigma^{1}, \bar{\eta}: \Sigma^{1} S Z / 2 \rightarrow \Sigma^{0}, \bar{h}: \Sigma^{3} S Z / 2 \rightarrow$ $C(\bar{\eta})$ and $\bar{k}: \Sigma^{5} S Z / 2 \rightarrow C(\bar{\eta})$ give rise to the following maps:

$$
\begin{array}{ll}
j_{2, \infty}: S Z / 2 & \bar{\eta}_{2, \infty}: \Sigma^{2} S Z / 2 \longrightarrow S Z / 2^{\infty}, \tag{1.17}\\
\bar{h}_{2, \infty}: \Sigma^{4} S Z / 2 \longrightarrow S Z / 2^{\infty}, \\
& \longrightarrow C(\bar{\eta}), \\
\bar{k}_{2, \infty}: \Sigma^{6} S Z / 2 \longrightarrow S Z / 2^{\infty} \wedge C(\bar{\eta}) .
\end{array}
$$

Composing the above four maps after the map $\tilde{\alpha}_{4 r}$, and also the obvious map $j_{2, \infty}$ after the map $\tilde{\mu}_{4 r+1}^{\prime}, \tilde{a}_{4 r+2}^{\prime}$ or $\tilde{m}_{4 r+3}^{\prime}$, we obtain seven kinds of maps as follows:

$$
\begin{array}{cl}
\tilde{\alpha}_{4 r, \infty}: \Sigma^{8 r} \longrightarrow S Z / 2^{\infty}, & \\
\tilde{\mu}_{4 r+1, \infty}: \Sigma^{8 r+2} \longrightarrow S Z / 2^{\infty}, & \tilde{\mu}_{4 r+1, \infty}^{\prime}: \Sigma^{8 r+2} \longrightarrow S Z / 2^{\infty}, \\
\tilde{a}_{4 r+2, \infty}: \Sigma^{8 r+4} \longrightarrow S Z / 2^{\infty} \wedge C(\bar{\eta}), & \tilde{a}_{4 r+2, \infty}^{\prime}: \Sigma^{8 r+1} C(\tilde{\eta}) \longrightarrow S Z / 2^{\infty}, \tag{1.18}\\
\tilde{m}_{4 r+3, \infty}: \Sigma^{8 r+6} \longrightarrow S Z / 2^{\infty} \wedge C(\bar{\eta}), & \tilde{m}_{4 r+3, \infty}^{\prime}: \Sigma^{8 r+3} C(\tilde{\eta}) \longrightarrow S Z / 2^{\infty} .
\end{array}
$$

All the maps $\tilde{\varphi}_{t, \infty}: \Sigma^{2 t} X \rightarrow W_{\infty}$ given in (1.18) satisfy the following condition:

$$
\begin{equation*}
\tilde{\varphi}_{t, \infty *}(1)=1 / 2 \in K U_{2 t} W_{\infty} \cong Z / 2^{\infty} . \tag{1.19}
\end{equation*}
$$

2. The K_{*}-localizations of $R P_{2 s+1}^{2 s+n}$ and $R P_{2 s}^{2 s+2 t}$

2.1. Let $X_{n}(n \geq 1)$ denote the suspension spectrum $\Sigma^{-n} S P^{2} S^{n}$ whose n-th term is the symmetric square $S P^{2} S^{n}$ of the n-sphere as in [Y3, §2] or [Y5, §4], and X_{∞} denote the union of X_{n}. In other words, X_{∞} is the spectrum whose n-th term is $S P^{2} S^{n}$ for each $n \geq 1$. For every $n \geq 1$ the Spanier-Whitehead dual $D X_{n}$ is denoted by X_{-n} for convenience sake. From [U. Theorem 3.3] (or [Y3, Proposition 2.6 i$)]$) we recall the $K U$-homologies of $X_{n}(n \neq 0)$ that $K U_{0} X_{n} \cong Z$, $Z \oplus Z$ or $Z[1 / 2]$ according as $n=2 t-1,2 t$ or ∞ and $K U_{1} X_{n}=0$. For each $k \neq 0$ the complex Adams operation ψ_{c}^{k} behaves in $K U_{0} X_{n}(n \neq 0)$ as follows (see [Y5, Lemma 4.1 i) and Corollary 4.2 i)]):
(2.1) $\psi_{c}^{k}=A_{k, t}$ or 1 according as $n=2 t$ or otherwise.

Here $A_{k, t}=\left(\begin{array}{cc}1 / k^{t} & 0 \\ 1-k^{t} / 2 k^{t} & 1\end{array}\right)$, which operates on $(Z \oplus Z) \otimes Z[1 / k]$ as left action.

For each $n(1 \leq n \leq \infty)$ the real projective n-space $R P^{n}$ is related to the above spectrum X_{n+1} by a cofiber sequence $R P^{n} \rightarrow \Sigma^{0} \rightarrow X_{n+1} \rightarrow \Sigma^{1} R P^{n} \quad$ [JTTW]. Therefore the stunted real projective space $R P^{n} / R P^{m}(0 \leq m<n \leq \infty)$ is exhibited by the following cofiber sequence

$$
\begin{equation*}
R P^{\prime \prime} / R P^{m} \longrightarrow X_{m+1} \longrightarrow X_{n+1} \longrightarrow \Sigma^{1} R P^{n} / R P^{m} \tag{2.2}
\end{equation*}
$$

For simplicity $R P^{n} / R P^{m}$ is often abbreviated to be $R P_{m+1}^{n}$ as usual. we first investigate the behavior of the complex Adams operation ψ_{C}^{k} on $K U_{*} R P_{m+1}^{n}$ and $K U^{*} R P_{m+1}^{n}$ (cf. [Ad 1]).

Lemma 2.1. i) The $K U$-homologies $K U_{*} R P_{m+1}^{n}(0 \leq m<n \leq \infty)$ and their Addans operations ψ_{C}^{k} for each $k \neq 0$ are tabled as follows:

X	$=R P_{2, ~}^{2 s+1}+2 t+1$	$R P_{2 s+1}^{2 s+2 t}$	$R P_{2 s+1}^{x}$	$R P_{2 s}^{2 s+2 t+1}$	$R P_{2 s}^{2 s+2 t}$	$R P_{2 s}^{x}$
$K U_{0} X$	0	0	0	Z	Z	Z
ψ_{C}^{k}	$=$			$1 / k^{s}$	$1 / k^{s}$	$1 / k^{s}$
$K U_{-1} X$	$\cong Z \oplus Z / 2^{t}$	$Z / 2^{\text {l }}$	$Z / 2^{\text {x }}$	$Z \oplus Z / 2^{\text {t }}$	$Z / 2^{\text {l }}$	$Z / 2^{\text {c }}$
ψ_{C}^{k}	$=A_{k, s+1+1}$	1	1	$A_{k, s+1+1}$	1	1

ii) The $K U$-cohomologies $K U^{*} R P_{m+1}^{n} \quad(0 \leq m<n \leq \infty)$ and their Adams operations. ψ_{c}^{k} for each $k \neq 0$ are tabled as follows:

$$
\begin{array}{rlcccccc}
X & =R P_{2 s+1}^{2 s+2 t+1} & R P_{2 s+1}^{2 s+2 t} & R P_{2 s+1}^{\infty} & R P_{2 s}^{2 s+2 t+1} & R P_{2 s}^{2 s+2 t} & R P_{2 s}^{\infty} \\
K U^{0} X & \cong & Z / 2^{t} & Z / 2^{t} & \hat{Z}_{2} & Z \oplus Z / 2^{t} & Z \oplus Z / 2^{t} & Z \oplus \hat{Z}_{2} \\
\psi_{C}^{k} & = & 1 & 1 & 1 & A_{k,-s} & A_{k,-s} & A_{k,-s} \\
K U^{-1} X & \cong & Z & 0 & 0 & Z & 0 & 0 \\
\psi_{C}^{k} & = & k^{s+t+1} & & & k^{s+t+1} & &
\end{array}
$$

where \hat{Z}_{2} denotes the 2-completion of the integers.
Proof. i) The $s=0$ case has been proved in [Y5, Lemma 4.1 ii)]. Recall that $K U_{0} R P_{2 s+1}^{2 s+n}=0$ and the sequence $0 \rightarrow K U_{-1} R P^{2 s} \rightarrow K U_{-1} R P^{2 s+n} \rightarrow$ $K U_{-1} R P_{2 s+1}^{2 . s+n} \rightarrow 0$ is exact for each n. Since the Adams operation ψ_{C}^{k} on $K U_{-1} R P^{2 s+n} \otimes Z[1 / 2]$ behaves as $\psi_{c}^{k}=A_{k, s+t+1}$ or 1 according as $n=2 t+1$ or otherwise, the $X=R P_{2 s+1}^{2 s+n}$ case follows immediately. On the other hand, the cofiber sequence $\Sigma^{2 s} \rightarrow R P_{2 s}^{2 s+n} \rightarrow R P_{2 s+1}^{2 s+n} \rightarrow \Sigma^{2 s+1}$ induces two isomorphisms $K U_{-1} R P_{2 s}^{2 s+n} \xlongequal{\cong} K U_{-1} R P_{2 s+1}^{2 s+n}$ and $K U_{0} \Sigma^{2 s} \xlongequal{\cong} K U_{0} R P_{2 s}^{2 s+n}$ for each n. Hence the $X=R P_{2 s}^{2 s+n}$ case is immediate, too.
ii) The $s=0$ case has been proved in [Y5, Corollary 4.2 ii)]. Note that there exist isomorphisms $K U^{-1} R P_{2 s+1}^{2 s+n} \xlongequal{\leftrightharpoons} K U^{-1} R P^{2 s+n}$ and $K U^{-1} R P_{2 s+1}^{2 s+n}$ $\cong K U^{-1} R P_{2 s}^{2 s+n}$ for each n. On the other hand, the cofiber sequence (2.2) induces an exact sequence $0 \rightarrow K U^{-1} R P_{2 s+\varepsilon}^{2 s+n} \rightarrow K U^{0} X_{2 s+n+1} \rightarrow K U^{0} X_{2 s+\varepsilon+1} \rightarrow$ $K U^{0} R P_{2 s+n}^{2 s+n} \rightarrow 0$ for each n where $\varepsilon=0$ or 1 . Our result is now immediate from [Y5, Corollary 4.2].
2.2. In [Y5] we dealt with $C W$-spectra X satisfying the following property:
$\left(\mathrm{I}_{2 m}\right) \quad K U_{0} X \cong Z / 2 m$ on which $\psi_{c}^{k}=1$ and $K U_{1} X=0$;
($\mathrm{I}_{2 \infty}$) $K U_{0} X \cong Z / 2^{\infty}$ on which $\psi_{c}^{k}=1$ and $K U_{1} X=0$; or
$\left(\mathrm{II}_{2 m}\right)_{t} \quad K U_{0} X \cong Z \oplus Z / 2 m$ on which $\psi_{c}^{k}=A_{k, t}$ and $K U_{1} X=0$
where $A_{k, t}=\left(\begin{array}{cc}1 / k^{t} & 0 \\ 1-k^{t} / 2 k^{t} & 1\end{array}\right)$, which operates on $(Z \oplus Z / 2 m) \otimes Z[1 / k]$ as left action. As an immediate result of Lemma 2.1 we notice that
(2.3) $\Sigma^{1} R P_{2 s+1}^{2 s+2 t}, \Sigma^{1} R P_{2 s+1}^{\infty}, \Sigma^{1} R P_{2 s+1}^{2 s+2 t+1}$ and $D R P_{2 s}^{2 s+2 t}$ satisfy the property $\left(\mathrm{I}_{2^{\prime}}\right),\left(\mathrm{I}_{2^{\infty}}\right),\left(\mathrm{II}_{2^{\prime}}\right)_{s+t+1}$ and $\left(\mathrm{II}_{2^{\prime}}\right)_{-s}$ respectively.

In order to determine the quasi $K O_{*}$-types of $R P_{2 s+1}^{2 s+n}(1 \leq n \leq \infty)$ and $D R P_{2 s}^{2 s+2 t}(t \geq 0)$ we need the following calculations (see [FY] or [Y4, Lemma 3.4]).

Lemma 2.2. i) $K O_{4 m} R P_{4 m+1}^{4 m+n}=0=K O_{4 m} R P_{4 m-1}^{4 m+n}$ if $n \equiv 1,2,3,4,5 \bmod 8$, and hence if $n=\infty$.
ii) $K O_{4 m+4} R P_{4 m+1}^{4 m+n}=0=K O_{4 m+4} R P_{4 m-1}^{4 m+n}$ if $n \equiv 0,1,5,6,7 \bmod 8$, and hence if $n=\infty$.
iii) $K O_{4 m+6} R P_{4 m+1}^{4 m+n}=0=K O_{4 m+6} R P_{4 m-1}^{4 m+n}$ for all n.
iv) $K O^{4 m-3} R P_{4 m}^{4 m+2 t}=0=K O^{4 m-3} R P_{4 m-2}^{4 m+2 t}$ if $t \equiv 1,2 \bmod 4$.
v) $K O^{4 m-7} R P_{4 m}^{4 m+2 t}=0=K O^{4 m-7} R P_{4 m-2}^{4 m+2 t}$ if $t \equiv 0,3 \bmod 4$.
vi) $K O^{4 m-5} R P_{4 m}^{4 m+2 t}=0=K O^{4 m-5} R P_{4 m-2}^{4 m+2 t}$ for all t.

Proof. The first three parts have been shown in [Y4, Lemma 3.4]. The latter three parts are similarly shown by a dual argument.

Proposition 2.3 (cf. [Y4, Theorem 2 i) and iii)]). i) $\Sigma^{-4 m+1} R P_{4 m+1}^{4 m+n}$ is quasi $K O_{*}$-equivalent to $S Z / 2^{4 r}, M_{2^{4 r}}, V_{2^{4 r+1}}, \Sigma^{4} \vee V_{2^{4 r+1}}, V_{2^{4 r+2}}, M_{2^{4 r+2}}, S Z / 2^{4 r+3}$, $\Sigma^{0} \vee S Z / 2^{4 r+3}$ according as $n=8 r, 8 r+1, \ldots, 8 r+7$. In addition, $\Sigma^{-4 m+1} R P_{4 m+1}^{\infty}$ is quasi $K O_{*}$-equivalent to $S Z / 2^{\infty}$.
ii) $\Sigma^{-4 m+1} R P_{4 m-1}^{4 m+2-2}$ is quasi $K O_{*}$-equivalent to $S Z / 2^{4 r}, \quad \Sigma^{0} \vee S Z / 2^{4 r}$, $S Z / 2^{4 r+1}, \quad M_{2^{4 r+1}}, \quad V_{24 r+2}, \quad \Sigma^{4} \vee V_{2^{4 r+2}}, \quad V_{2^{4 r+3}}, \quad M_{2^{4 r+3}}$ according as $n=8 r$, $8 r+1, \ldots, 8 r+7$. In addition, $\Sigma^{-4 m+1} R P_{4 m-1}^{\infty}$ is quasi $K O_{*}$-equivalent to $S Z / 2^{\infty}$.
iii) $\Sigma^{4 m} D R P_{4 m}^{4 m+2 t}$ is quasi $K O_{*}$-equivalent to $\Sigma^{0} \vee S Z / 2^{4 r}, \Sigma^{0} \vee \Sigma^{4} V_{2^{4+1}}$, $\Sigma^{0} \vee \Sigma^{4} V_{2^{4 r-2}}, \Sigma^{0} \vee S Z / 2^{4 r+3}$ according as $t=4 r, 4 r+1,4 r+2,4 r+3$.
iv) $\Sigma^{4 m} D R P_{4 m-2}^{4 m+2 t-2}$ is quasi $K O_{*}$-equivalent to $M_{2^{4 r}}, M_{2^{+r+1}}, \Sigma^{4} M_{2^{4 r+2}}$, $\Sigma^{4} M_{2^{4 r+3}}$ according as $t=4 r, 4 r+1,4 r+2,4 r+3$.

Proof. Use Lemmas 2.1 and 2.2, and then apply [Y3, Theorem 2.5] when n or t is finite and [B2, Theorem 3.3] when n is infinite.

Proposition 2.4 (cf. [Y4, Theorem 2 ii) and iv)]. i) $\Sigma^{-4 m+1} R P_{4 m}^{4 m+n}$ is quasi $K O_{*}$-equivalent to $\Sigma^{1} \vee S Z / 2^{4 r}, \Sigma^{1} \vee M_{2^{4 r}}, \Sigma^{1} \vee V_{2^{4 r+1}}, \Sigma^{1} \vee \Sigma^{4} \vee V_{2^{4 r+1}}, \Sigma^{1} \vee$ $V_{2^{4 r-2}}, \Sigma^{1} \vee M_{2^{4 r+2}}, \Sigma^{1} \vee S Z / 2^{4 r+3}, \Sigma^{1} \vee \Sigma^{0} \vee S Z / 2^{4 r+3}$ according as $n=8 r$, $8 r+1, \ldots, 8 r+7$. In addition, $\Sigma^{-4 m+1} R P_{4 m}^{\infty}$ is quasi $K O_{*}$-equivalent to $\Sigma^{1} \vee$ $S Z / 2^{\infty}$.
ii) $\Sigma^{-4 m+1} R P_{4 m-2}^{4 m+n-2}$ is quasi $K O_{*}$-equivalent to $P_{2^{4 r+1}}, \Sigma^{0} \vee P_{2^{4 r+1}}, P_{2^{4 r+2}}$, $\Sigma^{4} M P_{2^{4 r+2}}, \Sigma^{4} P_{2^{4 r+3}}, \Sigma^{4} \vee \Sigma^{4} P_{2^{4 r+3}}, \Sigma^{4} P_{2^{4 r+4}}, \Sigma^{4} M P_{2^{4 r+4}}$ according as $n=8 r$, $8 r+1, \ldots, 8 r+7$. In addition, $\Sigma^{-4 m+5} R P_{4 m-2}^{\infty}$ is quasi $K O_{*}$-equivalent to $C\left(\tilde{\eta}_{\infty}\right)$.

Proof. According to [Y2, Corollary I.1.6], X is quasi $K O_{*}$-equivalent to Y if and only if the Spanier-Whitehead dual $D Y$ is quasi $K O_{*}$-equivalent to $D X$. Hence Proposition 2.3 iii) and iv) imply immediately our result when n is even. We next use the cofiber sequences $\Sigma^{2 s-1} \xrightarrow{\delta_{s, t}} R P_{2 s-1}^{2 s+2 t+1} \rightarrow R P_{2 s}^{2 s+2 t+1} \rightarrow \Sigma^{2 s}$ and $\Sigma^{2 s-1} \xrightarrow{f_{s, \infty}^{\infty}} R P_{2 s-1}^{\infty} \rightarrow R P_{2 s}^{\infty} \rightarrow \Sigma^{2 s}$. From Lemma 2.1 i) it follows that $f_{s . t *}(1)$ $=\left(0,2^{t}\right) \in K U_{2 s-1} R P_{2 s-1}^{2 s+2 t+1} \cong Z \oplus Z / 2^{t+1}$ and $f_{s . \infty *}(1)=1 / 2 \in K U_{2 s-1} R P_{2 s-1}^{x} \cong$ $Z / 2^{\infty}$. Applying Lemmas 1.1 and 1.2 with the aid of Proposition 2.3 i) and ii) we can easily obtain our result when n is odd or infinite.
2.3. Recall the behavior of the real Adams operation ψ_{R}^{k} on $K O_{i} X_{n} \otimes Z[1 / k]$ $(0 \leq i \leq 7)$ for each $k \neq 0$ (see [Y5, (4.3)]):
(2.4) i) When n is odd or infinite, $\psi_{R}^{k}=k^{2}$ or 1 according as $i=4$ or otherwise; ii) When $n=4 s+2, \psi_{R}^{k}=1,1 / k^{2 s}, k^{2}$ or $1 / k^{2 s-2}$ according as $i=0,2,4$ or 6 ;
iii) When $n=4 s \neq 0, \psi_{R}^{k}=A_{k .2 s}, k^{2} A_{k .2 s}$ or 1 according as $i=0,4$ or otherwise.

We here investigate the behavior of the real Adams operation ψ_{R}^{k} for $R P_{2 s+1}^{2 s+n}$ $(1 \leq n \leq \infty)$ and $D R P_{2 s}^{2 s+2 t}(t \geq 0)$, which is useful to determine their K_{*}-local types.

Proposition 2.5. When $X=\Sigma^{-4 m+1} R P_{4 m+1}^{4 m+n}, \Sigma^{-4 m+1} R P_{4 m-1}^{4 m+n}, \Sigma^{4 m} D R P_{4 m}^{4 m+2 t}$ or $\Sigma^{4 m} D R P_{4 m-2}^{4 m+2 t}$, the Adams operation ψ_{R}^{k} acts on $K O_{i} X \otimes Z[1 / k](0 \leq i \leq 7)$ for each $k \neq 0$ as follows:
i) The $X=\Sigma^{-4 m+1} R P_{4 m \pm 1}^{4 m+n}$ cases: 1) When n is even or infinite, $1 / k^{2 m} \psi_{R}^{k}=$ k^{2} or 1 according as $i=4$ or otherwise; 2) When $n=4 s+1,1 / k^{2 m} \psi_{R}^{k}=1 / k^{2 m+2 s}$. $k^{2}, 1 / k^{2 m+2 s-2}$ or 1 according as $i=2,4,6$ or otherwise : 3) When $n=4 s+3$, $1 / k^{2 m} \psi_{R}^{k}=A_{k, 2 m+2 s+2}, k^{2} A_{k, 2 m+2 s+2}$ or 1 according as $i=0,4$ or otherwise.
ii) The $X=\Sigma^{4 m} D R P_{4 m}^{4 m+2 t}$ case: $k^{2 m} \psi_{R}^{k}=A_{k,-2 m}, k^{2} A_{k,-2 m}$ or 1 according as $i=0,4$ or otherwise.
iii) The $X=\Sigma^{4 m} D R P_{4 m-2}^{4 m+2 t}$ case: $k^{2 m} \psi_{R}^{k}=k^{2 m}, k^{2}, k^{2 m+2}$ or 1 according as $i=2,4,6$ or otherwise.

Proof. Use the cofiber sequence $R P_{m+1}^{n} \rightarrow X_{m+1} \rightarrow X_{n+1} \rightarrow \Sigma^{1} R P_{m+1}^{n}$ of (2.2) and its dual sequence $\Sigma^{-1} D R P_{m+1}^{n} \rightarrow X_{-n-1} \rightarrow X_{-m-1} \rightarrow D R P_{m+1}^{n}$. By a quite similar argument to [Y5, Lemma 4.4] with the aid of (2.4) our result is easily shown.

To determine the K_{*}-local types of $R P_{2 s}^{2 s+n}(0 \leq n \leq \infty)$ we shall not need to investigate the behavior of their real Adams operations ψ_{R}^{k}. Neverthless we dare to give the following result, whose proof is almost the same as in Proposition 2.5 (or [Y5, Lemma 4.4]).

Proposition 2.6. When $X=\Sigma^{-4 m+1} R P_{4 m}^{4 m+n}$ or $\Sigma^{-4 m+1} R P_{4 m-2}^{4 m+n}$ the Adams
operation ψ_{R}^{k} acts on $K O_{i} X \otimes Z[1 / k](0 \leq i \leq 7)$ for each $k \neq 0$ as follows:
i) The $X=\Sigma^{-4 m+1} R P_{4 m}^{4 m+n}$ case: 1) When n is even or infinite, $1 / k^{2 m} \psi_{R}^{k}=$ $1 / k^{2 m}, k^{2}, 1 / k^{2 m-2}$ or 1 according as $i=1,4,5$ or otherwise ; 2) When $n=4 s+1$. $1 / k^{2 m} \psi_{R}^{k}=1 / k^{2 m}, \quad 1 / k^{2 m+2 s}, \quad k^{2}, \quad 1 / k^{2 m-2}, \quad 1 / k^{2 m+2 s-2}$ or 1 according as $i=1,2,4,5,6$ or otherwise; 3) When $n=4 s+3,1 / k^{2 m} \psi_{R}^{k}=A_{k, 2 m+2 s+1}, 1 / k^{2 m}$, $k^{2} A_{k, 2 m+2 s+1}, 1 / k^{2 m-2}$ or 1 according as $i=0,1,4,5$ or otherwise.
ii) The $X=\Sigma^{-4 m+1} R P_{4 m-2}^{4 m+n}$ case: 1) When n is even or infinite, $1 / k^{2 m} \psi_{R}^{k}=$ $1 / k^{2 m-2}, k^{2}, 1 / k^{2 m-4}$ or 1 according as $i=3,4,7$ or otherwise; 2) When $n=4 s+1,1 / k^{2 m} \psi_{R}^{k}=1,1 / k^{2 m+2 s}, 1 / k^{2 m-2}, k^{2}, 1 / k^{2 m+2 s-2}, 1 / k^{2 m-4}$ according as $i=0,2,3,4,6$ or 7 ; 3) When $n=4 s+3,1 / k^{2 m} \psi_{R}^{k}=A_{k .2 m+2 s+2}, 1 / k^{2 m-2}$, $k^{2} A_{k .2 m+2 s+2}, 1 / k^{2 m-4}$ or 1 according as $i=0,3,4,7$ or otherwise.

We now determine the K_{*}-local types of $R P_{2 s+1}^{2 s+n}$ as the first part of our main result (cf. [DM, Theorem 4.2]).

Theorem 2.7. The stunted real projective space $\sum^{1} R P_{2 s+1}^{2 s+n}(2 \leq n \leq \infty)$ has the same K_{*}-local type as the elementary spectrum tabled below:

$s n^{2}$	$8 r$	$8 r+1$	$8 r+2$	$8 r+3$
$4 m-1$	$S Z / 2^{4 r}$	$C\left(i_{4 r} \alpha_{4 m+4 r}\right)$	$S Z / 2^{4 r+1}$	$C\left(i_{4 r+1} \mu_{4 m, 4 r+1}\right)$
$4 m$	$S Z / 2^{4 r}$	$C\left(i_{4 r} \mu_{4 m+4 r+1}\right)$	$V_{2^{+r+1}}$	$C\left(i_{V \cdot 4 r+1} i_{4 m+4 r+2}\right)$
$4 m+1$	$S Z / 2^{4 r} \wedge C(\bar{\eta})$	$C\left(\left(i_{4 r} \wedge 1\right) a_{4 m+4 r+2}\right)$	$S Z / 2^{4 r+1} \wedge C(\bar{\eta})$	$C\left(\left(i_{4 r+1} \wedge 1\right) m_{4 m+4 r+3}\right)$
$4 m+2$	$S Z / 2^{4 r} \wedge C(\bar{\eta})$	$C\left(\left(i_{4 r} \wedge 1\right) m_{4 m+4 r+3}\right)$	$U_{2^{4 r+1}}$	$C\left(i_{U, 4 r+1} \alpha_{4 m+4 r+4}\right)$

$s>n$	$8 r+4$	$8 r+5$	$8 r+6$	$8 r+7$
$4 m-1$	V_{2+r+2}	$C\left(i_{V .4 r+2} a_{4 m+4 r+2}\right)$	V_{2+r+3}	$C\left(i_{v, 4 r+3} m_{4 m+4 r+3}\right)$
4 m	$V_{2^{4 r+2}}$	$C\left(i_{V, 4 r+2} m_{4 m+4 r+3}\right)$	$S Z / 2^{4 r+3}$	$C\left(i_{4 r+3} \chi_{4 m+4 r+4}\right)$
$4 m+1$	$U_{2^{4 r+2}}$	$C\left(i_{U, 4 r+2} \chi_{4 m+4 r+4}\right)$	U_{2+r+3}	$C\left(i_{U, 4 r+3} \mu_{4 m+4 r+5}\right)$
$4 m+2$	$U_{2^{4 r+2}}$	$C\left(i_{U, 4 r+2} \mu_{4 m+4 r+5}\right)$	$S Z / 2^{4 r+3} \wedge C(\bar{\eta})$	$C\left(\left(i_{4 r+3} \wedge 1\right) a_{4 m+4 r+6}\right)$

| n | | | |
| :--- | :---: | :---: | :---: | :---: |
| \propto | $4 m-1$ $4 m$ $4 m+1$ | $4 m+2$ | |
| $S Z / 2^{x}$ | $S Z / 2^{\prime}$ | $S Z / 2^{\prime} \wedge C(\bar{\eta})$ | $S Z / 2^{x} \wedge C(\bar{\eta})$ |

Proof. Put (2.3) and Propositions 2.3 and 2.5 together and then apply [Y5, Theorems 1.2 and 2.6 with (2.8)] as in the $R P^{n}$ case [Y5, Theorem 4.6 ii)].

Applying [Y5, Theorem 2.6 with (2.8)] we can similarly obtain
Proposition 2.8. The Spanier-Whitehead dual $D R P_{2 . s}^{2 . s+2 t}(t \geq 1)$ has the same K_{*}-local type as the cofiber of the map tabled below:

According to [Y5, Lemma 4.7], two finite spectra X and Y have the same K_{*}-local type if and only if their Spanier-Whitehead duals $D X$ and $D Y$ have the same K_{*}-local type. As a dual of Proposition 2.8 we can show immediately the second part of our main result by using Lemma 1.4 and (1.16) with the aid of [Y5, (2.7) and (3.7)].

Theorem 2.9. The stunted real projective space $\sum^{1} R P_{2 s}^{2 s+2 t}(t \geq 1)$ has the same K_{*}-local type as the cofiber of the map tabled below:

s	t	$4 r$	$4 r+1$	$4 r+2$
$4 m$	$\tilde{\alpha}_{4 m, 4 r+1}$	$\tilde{\alpha}_{4 m, V, 4 r+2}$	$\tilde{\alpha}_{4 m, V, 4 r+3}$	$\tilde{\alpha}_{4 m, 4 r+4}$
$4 m+1$	$\tilde{\mu}_{4 m+1, V, 4 r+1}$	$\tilde{\mu}_{4 m+1, V, 4 r+2}$	$\tilde{\mu}_{4 m+1,4 r+3}$	$\tilde{\mu}_{4 m+1,4 r+4}$
$4 m+2$	$\tilde{a}_{4 m+2,4 r+1}$	$\tilde{a}_{4 m+2, V, 4 r+2}$	$\tilde{a}_{4 m+2, U, 4 r+3}$	$\tilde{a}_{4 m+2,4 r+4}$
$4 m+3$	$\tilde{m}_{4 m+3, U, 4 r+1}$	$\tilde{m}_{4 m+3, U, 4 r+2}$	$\tilde{m}_{4 m+3,4 r+3}$	$\tilde{m}_{4 m+3,4 r+4}$

3. The K_{*}-localizations of $R P_{2 s}^{2 s+2 t+1}$

3.1. Let p be a fixed prime and r be a positive integer such that $r \equiv \pm 3$ $\bmod 8$ when $p=2$ and r generates the group of units of Z / p^{2} when p is odd. Denote by $\mathscr{J}_{(p)}$ the fiber of the map $\psi_{R}^{r}-1: K O Z_{(p)} \rightarrow K O Z_{(p)}$ where $K O Z_{(p)}=K O \wedge S Z_{(p)}$ is the real K-spectrum with coefficients $Z_{(p)}$. Consider the map $\kappa_{(p)}: \mathscr{J}_{(p)} \rightarrow \Sigma^{-1} S Q$ inducing an isomorphism $\kappa_{(p) *}: \pi_{-1} \mathscr{J}_{(p)} \otimes Q \stackrel{\approx}{\rightrightarrows} \pi_{0} S Q \otimes$ Q. According to [B1, Theorem 4.3] (or [R]) the fiber of the map $\kappa_{(p)}$ is actually the $K Z_{(p) *}$-localization of the sphere spectrum S. Thus we have cofiber sequences
i) $S_{K Z_{(p)}} \xrightarrow{l_{1}} \mathscr{J}_{(p)} \xrightarrow{K_{(p)}} \Sigma^{-1} S Q \xrightarrow{\pi_{1}} \Sigma^{1} S_{K Z_{(p)}}$
ii) $\mathscr{J}_{(p)} \xrightarrow{l_{2}} \mathrm{KOZ}_{(p)} \xrightarrow{\psi_{\mathrm{R}}^{r}-1} K O Z_{(p)} \xrightarrow{\pi_{2}} \Sigma^{1} \mathscr{J}_{(p)}$
where $S_{K Z_{(p)}}=S_{K} \wedge S Z_{(p)}$ for the K_{*}-localization S_{K} of S. The unit $l_{O}: S \rightarrow K O$ is factorized through S_{K} as $t_{O}=t_{K} l_{K}$ for the K_{*}-localization map $l_{K}: S \rightarrow S_{K}$. Note that the composite $l_{2} l_{1}: S_{K Z_{(p)}} \rightarrow K O Z_{(p)}$ is just the map $l_{K}: S_{K} \rightarrow K O$ smashed with $S Z_{(p)}$.

Let J be a set of primes. The obvious map $l_{(J)}: S \rightarrow S Z_{(J)}$ associated with the inclusion $Z \subset Z_{(J)}$ gives rise to the $S Z_{(J) *}$-localization map $l_{(J)} \wedge 1: X \rightarrow$ $S Z_{(J)} \wedge X$. For each map $f: Y \rightarrow X$ we denote by $f_{(J)}: Y \rightarrow S Z_{(J)} \wedge X$ the J-local map given by the composite $\left(l_{(J)} \wedge 1\right) f$.

Lemma 3.1. Let J be a fixed set of primes, W and X be $C W$-spectra with W finite and $f: W \rightarrow S_{K} \wedge X$ be a map such that the composite $\left(t_{K} \wedge 1\right) f: W \rightarrow$ $K O \wedge X$ is trivial. Assume that $\left[\Sigma^{2} W, S Q \wedge X\right]=0$ and $\left[\Sigma^{1} W, K O Z_{(p)} \wedge X\right]=0$ for each prime $p \in J$. Then the J-local map $f_{(J)}: W \rightarrow S_{K Z_{(J)}} \wedge X$ becomes trivial.

Proof. Under our assumptions it is immediate that $\left(l_{K} \wedge 1\right)_{*}:\left[W, S_{K z_{(p)}} \wedge X\right]$ $\rightarrow\left[W, K O Z_{(p)} \wedge X\right]$ is a monomorphism for each $p \in J$. Therefore the p-local map $f_{(p)}: W \rightarrow S_{K Z_{(p)}} \wedge X$ becomes trivial for each $p \in J$. Since there exists an isomorphism $\left[W, S_{K} \wedge X\right] \otimes Z_{(p)} \stackrel{\cong}{\rightarrow}\left[W, S_{K Z_{(p)}} \wedge X\right]$ under the assumption that W is finite, we can find a positive integer n_{p} prime to p such that $n_{p} f=0 \in[W$, $\left.S_{K} \wedge X\right]$ for every $p \in J$. Consequently we get a positive integer n prime to all $p \in J$ such that $n f=0 \in\left[\begin{array}{ll}W, & S_{K} \wedge X\end{array}\right]$. This implies that the J-local map $f_{(J)}: W \rightarrow S_{K Z_{(J)}} \wedge X$ is trivial as desired.

Lemma 3.2. Let p be a fixed prime and W, X and Y be $C W$-spectra. Let $f: W \rightarrow S_{K} \wedge X, g: W \rightarrow Y$ and $h^{\prime}: Y \rightarrow S_{K} \wedge X$ be maps such that f and $h^{\prime} g$ coincide when they are carried into $\left[W, S_{K Z[1 / p]} \wedge X\right]$ and $[W, K O \wedge X]$. Assume that $\left[\begin{array}{cc}\Sigma^{2} W, & S Q \wedge X\end{array}\right]=0=\left[\begin{array}{lll}\Sigma^{1} Y, & S Q \wedge X\end{array}\right]$ and $g^{*}:\left[\begin{array}{ll}\Sigma^{1} Y, & K O Z_{(p)} \wedge X\end{array}\right] \rightarrow\left[\Sigma^{1} W\right.$, $\left.K O Z_{(p)} \wedge X\right]$ is an epimorphism. Then there exists a map $h: Y \rightarrow S_{K} \wedge X$ satisfying $f=h g \in\left[W, S_{K} \wedge X\right]$. Further the map h is taken to be a quasi $S_{K *}{ }^{-}$ equivalence whenever h^{\prime} is so.

Proof. Consider the commutative diagram

in which the left vertical arrow g^{*} and the right upper arrow $\left(t_{1} \wedge 1\right)_{*}$ are epimorphisms and the right lower arrow $\left(l_{1} \wedge 1\right)_{*}$ is a monomorphism. By a routine diagram chasing we can easily find a map $h^{\prime \prime}: Y \rightarrow S_{K Z_{(p)}} \wedge X$ such that
 $\left(l_{K} \wedge 1\right) f_{(p)}=\left(l_{K} \wedge 1\right) h_{(p)}^{\prime} g \in\left[W, K O Z_{(p)} \wedge X\right]$. Note that the rationalizations of h^{\prime} and $h^{\prime \prime}$ coincide. Using [B1, Proposition 2.10] we then obtain a unique map $h: Y \rightarrow S_{K} \wedge X$ such that $h_{(p)}=h^{\prime \prime} \in\left[Y, S_{K Z_{(p)}} \wedge X\right]$ and $h_{\left(p^{c}\right)}=h_{(p)}^{\prime} \in\left[Y, S_{K Z[1 / p]} \wedge X\right]$ where p^{c} denotes the complement of the single prime set $\{p\}$. Evidently this map h satisfies the desired equality $h g=f \in\left[W, S_{K} \wedge X\right]$ because $h^{\prime \prime} g=f_{(p)} \in[W$, $\left.S_{K Z_{(p)}} \wedge X\right]$ and $h_{(p)}^{\prime} g=f_{(p c)} \in\left[W, S_{K Z[1 / p]} \wedge X\right]$.

If the old map $h^{\prime}: Y \rightarrow S_{K} \wedge X$ is a quasi $S_{K *}$-equivalence, then it induces an isomorphism $h_{*}^{\prime}: K_{*} Y \rightarrow K_{*} S_{K} \wedge X \leftleftarrows K_{*} X$ where $K=K U$ or $K O$. This implies that $h_{*}^{\prime \prime}: K Z_{(p) *} Y \rightarrow K Z_{(p) *} S_{K Z_{(p)}} \wedge X 亡 K Z_{(p) *} X$ is an isomorphism because $\left(l_{K} \wedge 1\right) h_{(p)}^{\prime}=\left(l_{K} \wedge 1\right) h^{\prime \prime}$. Therefore we can observe that $h_{*}: K_{*} Y \rightarrow K_{*} S_{K} \wedge X 亡$ $K_{*} X$ is an isomorphism since $h_{(p)}=h^{\prime \prime}$ and $h_{\left(p^{c}\right)}=h_{\left(p^{c}\right)}^{\prime}$. Thus the new map $h: Y \rightarrow S_{K} \wedge X$ becomes a quasi $S_{K *}$-equivelence, too.

Putting Lemmas 3.1 and 3.2 together we obtain
Proposition 3.3. Let W, X and Y be $C W$-spectra with W finite, and $f: W \rightarrow S_{K} \wedge X, g: W \rightarrow Y$ and $h^{\prime}: Y \rightarrow S_{K} \wedge X$ be maps related by the equality $\left(l_{K} \wedge 1\right) f=\left(t_{K} \wedge 1\right) h^{\prime} g \in[W, K O \wedge X]$. Assume that the following three conditions are satisfied for a certain prime $p: i)\left[\Sigma^{2} W, S Q \wedge X\right]=0=\left[\Sigma^{1} Y, S Q \wedge X\right]$, ii) $\left[\Sigma^{1} W, K O \wedge X\right] \otimes Z[1 / p]=0$ and iii) $g^{*}:\left[\Sigma^{1} Y, K O Z_{(p)} \wedge X\right] \rightarrow\left[\Sigma^{1} W\right.$, $\left.K O Z_{(p)} \wedge X\right]$ is an epimorphism. Then there exists a map $h: Y \rightarrow S_{K} \wedge X$ satisfying $f=h g \in\left[W, S_{K} \wedge X\right]$. Further the map h is taken to be a quasi $S_{K *}$-equivalence whenever h^{\prime} is so.

Proof. Take J in Lemma 3.1 as the set p^{c} of all primes but only the prime p and f in Lemma 3.1 as the map $f-h^{\prime} g$. Then Lemma 3.1 asserts that $f_{\left(p^{c}\right)}=h_{\left(p^{c}\right)}^{\prime} g \in\left[W, S_{K Z[1 / p]} \wedge X\right]$. Since the assumptions in Lemma 3.2 are all satisfied, we can now apply Lemma 3.2 to get a desired map $h: Y \rightarrow S_{K} \wedge X$.

As an immediate result of Proposition 3.3 we can show
Corollary 3.4. Let W, X and Y be $C W$-spectra with W finite, and $f: W \rightarrow X$ and $g: W \rightarrow Y$ be maps. Assume that the conditions i), ii) and iii) stated in Proposition 3.3 are all satisfied for a certain prime p. If there exists a quasi $S_{K *}$-equivalence $h^{\prime}: Y \rightarrow S_{K} \wedge X$ satisfying $\left(l_{O} \wedge 1\right) f=\left(l_{K} \wedge 1\right) h^{\prime} g \in[W, K O \wedge X]$, then the cofiber $C(f)$ is quasi $S_{K *}-e q u i v a l e n t ~ t o ~ C(g)$.
3.2. Concerning the conditions i), ii) and iii) stated in Proposition 3.3 we have

Lemma 3.5. Let Y be a $C W$-spectrum which is quasi $K O_{*}$-equivalent to the following spectrum X : 1) $\Sigma^{0} \vee S Z / 4 m$, 2) $\Sigma^{4} \vee V_{4 m}$, 3) $M_{4 m}$, 4) $\Sigma^{-2} \vee \Sigma^{-2} S Z / 4 m$. 5) $\Sigma^{2} \vee \Sigma^{-2} V_{4 m}$, 6) $\Sigma^{-2} M_{4 m}$, 7) $S Z / 2^{\infty}$ or 8) $\Sigma^{-2} S Z / 2^{\infty}$. Let $g: \Sigma^{0} \rightarrow Y$ be a map satisfying the following condition: $g_{*}(1)=(0,1) \in K U_{0} Y \cong Z \oplus Z / 4 m$ in the case 1$) ; g_{*}(1)=(0,2 m) \in K U_{0} Y \cong Z \oplus Z / 4 m$ in the cases 2$\left.)-6\right) ; g_{*}(1)=1 / 2 \in$ $K U_{0} Y \cong Z / 2^{\infty}$ in the cases 7)-8). Then $K O_{1} Y \otimes Z[1 / 2]=0=\left[\Sigma^{1} Y, S Q \wedge Y\right]$ and $g^{*}:\left[\Sigma^{1} Y, K O \wedge Y\right] \rightarrow\left[\Sigma^{1}, K O \wedge Y\right]$ is an epimorphism.

Proof. It is obvious that $K O_{1} Y \otimes Z[1 / 2] \cong K O_{1} X \otimes Z[1 / 2]=0$ and $\left[\Sigma^{1} Y\right.$, $S Q \wedge Y] \cong \prod_{i} \operatorname{Hom}\left(\pi_{i-1} Y \otimes Q, \pi_{i} Y \otimes Q\right)=0$ because $K O_{2 j+1} Y \otimes Q \cong K O_{2 j+1} X$ $\otimes Q=0$ for each j. As is observed in the proofs of Lemmas 1.1 and 1.2, we can choose a certain map $f: \Sigma^{0} \rightarrow X$ such that $\left(I_{o} \wedge 1\right) f=h g$ with a suitable quasi $K O_{*}$-equivalence $h: Y \rightarrow K O \wedge X$. For any $C W$-spectrum W the quasi $K O_{*}$-equivalence h induces an isomorphism $h^{\#}:[X, K O \wedge W] \rightarrow[Y, K O \wedge W]$ defined by $h^{\sharp}(x)=(\mu \wedge 1)(1 \wedge x) h$ where $\mu: K O \wedge K O \rightarrow K O$ denotes the multiplication of $K O$. Therefore it is sufficient to show that the map $f: \Sigma^{0} \rightarrow X$ in place of $g: \Sigma^{0} \rightarrow Y$ induces an epimorphism $f^{*}:\left[\Sigma^{1} X, K O \wedge X\right] \rightarrow\left[\Sigma^{1}, K O \wedge X\right]$. In the cases 2), 3) and 7) our assertion is trivial because $K O_{1} X=0$ for $X=\Sigma^{4} \vee V_{4 m}$, $M_{4 m}$ or $S Z / 2^{\alpha}$.

In the non-trivial cases we recall that the map $f: \Sigma^{0} \rightarrow K O \wedge X$ is chosen in the proofs of Lemmas 1.1 and 1.2 as follows: 1) ($0, i$): $\Sigma^{0} \rightarrow \Sigma^{0} \vee S Z / 4 m$; 4) $\left(0, \tilde{\eta}_{4 m}\right): \Sigma^{0} \rightarrow \Sigma^{-2} \vee \Sigma^{-2} S Z / 4 m$; 5) $\left(0, \tilde{\eta}_{V, 4 m}\right): \Sigma^{0} \rightarrow \Sigma^{2} \vee \Sigma^{-2} V_{4 m}$; 6) $i_{M} \tilde{\eta}_{4 m}$: $\Sigma^{0} \rightarrow \Sigma^{-2} M_{4 m}$; 8) $j_{2, \infty} \tilde{\eta}: \Sigma^{0} \rightarrow \Sigma^{-2} S Z / 2^{\infty}$. As is easily checked, the induced homomorphisms $i^{*}:\left[\Sigma^{1} S Z / 4 m, K O \wedge\left(\Sigma^{0} \vee S Z / 4 m\right)\right] \rightarrow\left[\Sigma^{1}, K O \wedge\left(\Sigma^{0} \vee S Z /\right.\right.$ $4 m)], \quad \tilde{\eta}_{4 m}^{*}:\left[\Sigma^{1} S Z / 4 m, \quad K O \wedge S Z / 4 m\right] \rightarrow\left[\Sigma^{3}, \quad K O \wedge S Z / 4 m\right], \quad \tilde{\eta}_{V .4 m}^{*}: \quad\left[\Sigma^{1} V_{4 m}\right.$, $\left.K O \wedge V_{4 m}\right] \rightarrow\left[\Sigma^{3}, K O \wedge V_{4 m}\right], i_{M}^{*}:\left[\Sigma^{1} M_{4 m}, K O \wedge M_{4 m}\right] \rightarrow\left[\Sigma^{1} S Z / 4 m, K O \wedge M_{4 m}\right]$ and $\tilde{\eta}_{4 m}^{*}:\left[\Sigma^{1} S Z / 4 m, K O \wedge M_{4 m}\right] \rightarrow\left[\Sigma^{3}, K O \wedge M_{4 m}\right]$ are all epimorphisms. Further $j_{2, \infty}^{*}:\left[\Sigma^{1} S Z / 2^{\infty}, \quad K O \wedge S Z / 2^{\infty}\right] \rightarrow\left[\Sigma^{1} S Z / 2, \quad K O \wedge S Z / 2^{\infty}\right]$ and $\tilde{\eta}^{*}:$ $\left[\Sigma^{1} S Z / 2, K O \wedge S Z / 2^{\infty}\right] \rightarrow\left[\Sigma^{3}, K O \wedge S Z / 2^{\infty}\right]$ are isomorphisms, because there exists an isomorphism $\left[W, K O \wedge S Z / 2^{\infty}\right] \cong \operatorname{Hom}\left(K_{4} W, Z / 2^{\infty}\right)$ for any $C W$ spectrum W (use $[\mathrm{Y} 1,(3.1)]$ or $[\mathrm{An}])$. Consequently we can verify that $f^{*}:\left[\Sigma^{1} X\right.$, $K O \wedge X] \rightarrow\left[\Sigma^{1}, K O \wedge X\right]$ is also an epimorphism in the non-trivial cases 1), 4), 5), 6) and 8).

Fix non-negative integers m and r, and then for simplicity set the elementary spectra appearing in Theorem 2.7 as follows:

$$
\begin{array}{ll}
Y_{01}=C\left(i_{4 r+1} \mu_{4 m+4 r+1}\right) & Y_{21}=C\left(\left(i_{4 r+1} \wedge 1\right) m_{4 m+4 r+3}\right) \\
Y_{02}=C\left(i_{V, 4 r+2} a_{4 m+4 r+2}\right) & Y_{22}=C\left(i_{U, 4 r+2} \alpha_{4 m+4 r+4}\right) \\
Y_{03}=C\left(i_{V, 4 r+3} m_{4 m+4 r+3}\right) & Y_{23}=C\left(i_{U, 4 r+3} \mu_{4 m+4 r+5}\right) \\
Y_{04}=C\left(i_{4 r+4} \alpha_{4 m+4 r+4}\right) & Y_{24}=C\left(\left(i_{4 r+4} \wedge 1\right) a_{4 m+4 r+6}\right) \tag{3.2}\\
Y_{11}=C\left(i_{V, 4 r+1} a_{4 m+4 r+2}\right) & Y_{31}=C\left(i_{U, 4 r+1} \alpha_{4 m+4 r+4}\right) \\
Y_{12}=C\left(i_{V, 4 r+2} m_{4 m+4 r+3}\right) & Y_{32}=C\left(i_{U, 4 r+2} \mu_{4 m+4 r+5}\right) \\
Y_{13}=C\left(i_{4 r+3} \alpha_{4 m+4 r+4}\right) & Y_{33}=C\left(\left(i_{4 r+3} \wedge 1\right) a_{4 m+4 r+6}\right) \\
Y_{14}=C\left(i_{4 r+4} \mu_{4 m+4 r+5}\right) & Y_{34}=C\left(\left(i_{4 r+4} \wedge 1\right) m_{4 m+4 r+7}\right) .
\end{array}
$$

The elementary spectrum $Y_{0 j}$ is quasi $K O_{*}$-equivalent to $M_{2^{4 r+1}}, \Sigma^{4} \vee V_{2^{4 r+2}}$, $M_{2^{4 r+3}}$ or $\Sigma^{0} \vee S Z / 2^{4 r+4}$ according as $j=1,2,3$ or 4 , and $Y_{1 j}$ is quasi $K O_{*}$-equivalent to $\Sigma^{4} \vee V_{2^{4 r+1}}, M_{2^{4 r+2}}, \Sigma^{0} \vee S Z / 2^{4 r+3}$ or $M_{2^{4 r+4}}$ according as $j=1,2,3$ or 4 . On the other hand, $Y_{2 j}$ and $Y_{3 j}$ are respectively quasi $K O_{*}$-equivalent to $\Sigma^{4} Y_{0 j}$ and $\Sigma^{4} Y_{1 j}$ for each $j(1 \leq j \leq 4)$.

For each pair $(i, j), 0 \leq i \leq 3$ and $1 \leq j \leq 4$, we consider the following coextensions $\tilde{\varphi}_{4 m+i, 4 r+j}: \Sigma^{8 m+2 i} \rightarrow W_{2^{4 r+j}}$ given in (1.14):

$$
\begin{array}{ll}
\tilde{\alpha}_{4 m, 4 r+1}: \Sigma^{8 m} \longrightarrow S Z / 2^{4 r+1} & \tilde{a}_{4 m+2,4 r+1}: \Sigma^{8 m+4} \longrightarrow S Z / 2^{4 r+1} \wedge C(\bar{\eta}) \\
\tilde{\alpha}_{4 m, V, 4 r+2}: \Sigma^{8 m} \longrightarrow V_{2+r+2} & \tilde{a}_{4 m+2, U, 4 r+2}: \Sigma^{8 m+4} \longrightarrow U_{2^{4 r+2}} \\
\tilde{\alpha}_{4 m, V, 4 r+3}: \Sigma^{8 m} \longrightarrow V_{2++3} & \tilde{a}_{4 m+2, U, 4 r+3}: \Sigma^{8 m+4} \longrightarrow U_{2^{4 r+3}} \\
\tilde{\alpha}_{4 m, 4 r+4}: \Sigma^{8 m} \longrightarrow S Z / 2^{4 r+4} & \tilde{a}_{4 m+2,4 r+4}: \Sigma^{8 m+4} \longrightarrow S Z / 2^{4 r+4} \wedge C(\bar{\eta}) \\
\tilde{\mu}_{4 m+1, V, 4 r+1}: \Sigma^{8 m+2} \longrightarrow V_{2^{4 r+1}} & \tilde{m}_{4 m+3, U, 4 r+1}: \Sigma^{8 m+6} \longrightarrow U_{2^{4 r+1}} \tag{3.3}\\
\tilde{\mu}_{4 m+1, V, 4 r+2}: \Sigma^{8 m+2} \longrightarrow V_{2^{4 r+2}} & \tilde{m}_{4 m+3, U, 4 r+2}: \Sigma^{8 m+6} \longrightarrow U_{2^{4 r+2}}
\end{array}
$$

$$
\begin{aligned}
& \tilde{\mu}_{4 m+1,4 r+3}: \Sigma^{8 m+2} \longrightarrow S Z / 2^{4 r+3} \quad \tilde{m}_{4 m+3.4 r+3}: \Sigma^{8 m+6} \longrightarrow S Z / 2^{4 r+3} \wedge C(\bar{\eta}) \\
& \tilde{\mu}_{4 m+1,4 r+4}: \Sigma^{8 m+2} \longrightarrow S Z / 2^{4 r+4} \tilde{m}_{4 m+3,4 r+4}: \Sigma^{8 m+6} \longrightarrow S Z / 2^{4 r+4} \wedge C(\bar{\eta}) .
\end{aligned}
$$

By composing the canonical inclusion $i_{i j}: W_{2^{4 r+j}} \rightarrow Y_{i j}$ after the above map $\tilde{\varphi}_{4 m+i, 4 r+j}: \Sigma^{8 m+2 i} \rightarrow W_{2^{4 r+j}}$, we introduce the following map

$$
\begin{equation*}
g_{i j}=i_{i j} \tilde{\varphi}_{4 m+i, 4 r+j}: \Sigma^{8 m+2 i} \longrightarrow W_{24 r+j} \longrightarrow Y_{i j} . \tag{3.4}
\end{equation*}
$$

From (1.15) it follows that all the maps $g_{i j}: \Sigma^{8 m+2 i} \rightarrow Y_{i j}$ satisfy the following condition:

$$
\begin{equation*}
g_{i j *}(1)=\left(0,2^{4 r+j-1}\right) \in K U_{8 m+2 i} Y_{i j} \cong Z \oplus Z / 2^{4 r+j} \tag{3.5}
\end{equation*}
$$

Set $Y_{0 \infty}=Y_{1 \infty}=S Z / 2^{\infty}$ and $Y_{2 \infty}=Y_{3 \infty}=S Z / 2^{\infty} \wedge C(\bar{\eta})$, and consider the following maps $g_{i \infty}: \Sigma^{8 m+2 i} \rightarrow Y_{i \infty}$ given in (1.18):

$$
\begin{equation*}
g_{0 \infty}=\tilde{\alpha}_{4 m, \infty}, \quad g_{1 \infty}=\tilde{\mu}_{4 m+1, \infty}, \quad g_{2 \infty}=\tilde{a}_{4 m+2, \infty}, \quad g_{3 \infty}=\tilde{m}_{4 m+3, \infty} . \tag{3.6}
\end{equation*}
$$

Then Lemma 3.5 with (3.5) and (1.19) implies
Lemma 3.6. i) $K O_{1} Y_{i j} \otimes Z[1 / 2]=0=\left[\Sigma^{1} Y_{i j}, S Q \wedge Y_{i j}\right]$, and
ii) the maps $g_{i j}: \Sigma^{8 m+2 i} \rightarrow Y_{i j}$ given in (3.4) and (3.6) induce epimorphisms $g_{i j}^{*}:\left[\Sigma^{1} Y_{i j}, K O \wedge Y_{i j}\right] \rightarrow\left[\Sigma^{8 m+2 i+1}, K O \wedge Y_{i j}\right]$ if (i, j) is neither $(0,4)$ nor $(2,4)$.
3.3. We next discuss the maps $g_{04}=i_{04} \tilde{\alpha}_{4 m, 4 r+4}: \Sigma^{8 m} \rightarrow S Z / 2^{4 r+4} \rightarrow Y_{04}$ and $g_{24}=i_{24} \tilde{a}_{4 m+2,4 r+4}: \Sigma^{8 m+4} \rightarrow S Z / 2^{4 r+4} \wedge C(\bar{\eta}) \rightarrow Y_{24}$. Recall that $\tilde{\alpha}_{4 m, 4 r+4}$ $=j_{2,2 q} A_{2}^{m} i: \Sigma^{8 m} \rightarrow \Sigma^{8 m} S Z / 2 \rightarrow S Z / 2 \rightarrow S Z / 2 q$ and $\tilde{a}_{4 m+2,4 r+4}=\bar{h}_{2 q / 2} A_{2}^{m} i: \Sigma^{8 m+4}$ $\rightarrow \Sigma^{8 m+4} S Z / 2 \rightarrow \Sigma^{4} S Z / 2 \rightarrow S Z / 2 q \wedge C(\bar{\eta})$ with $q=2^{4 r+3}$ where $j_{2,2 q}$ is the obvious map and $\bar{h}_{2 q / 2}$ is the extension of \bar{h} obtained in (1.13). Using the cofiber sequences (3.1) it is easily computed (cf. [B1, Corollary 4.5] or [R, Theorem 8.5]) that

$$
\begin{align*}
& \pi_{0} S_{K} \cong \pi_{0} K O \oplus \pi_{1} K O \cong Z \oplus Z / 2 \tag{3.7}\\
& \pi_{0} S_{K} \wedge S Z / 2 \cong \pi_{8 m} S_{K} \wedge S Z / 2 \cong K O_{8 m} S Z / 2 \oplus K O_{8 m+1} S Z / 2 \cong Z / 2 \oplus Z / 2 \\
& \pi_{8 m} S_{K} \wedge S Z / 2 q \cong Z / 2^{r+1} \oplus Z / 2 \subset K O_{8 m} S Z / 2 q \oplus K O_{8 m+1} S Z / 2 q \\
& \cong Z / 2 q \oplus Z / 2 \text { and } \\
& \quad \cong \\
& \pi_{8 m+4} S_{K} \wedge S Z / 2 q \wedge C(\bar{\eta}) \cong Z / 8 \oplus Z / 2 \\
& \quad \subset K O_{8 m+4} S Z / 2 q \wedge C(\bar{\eta}) \oplus K O_{8 m+5} S Z / 2 q \wedge C(\bar{\eta}) \cong Z / 2 q \oplus Z / 2
\end{align*}
$$

where $v=\operatorname{Min}\left\{4 r+3, v_{2}(8 m)\right\}$ with $v_{2}(8 m)$ the exponent of 2 in the prime power decomposition of 8 m . Further we can compute that

$$
\begin{align*}
& \pi_{8 m} S_{K} \wedge Y_{03} \cong Z / 2^{u+1} \subset K O_{8 m} Y_{03} \cong Z / q . \tag{3.8}\\
& \pi_{8 m+4} S_{K} \wedge Y_{23} \cong Z / 8 \subset K O_{8 m+4} Y_{23} \cong Z / q, \\
& \pi_{8 m} S_{K} \wedge Y_{04} \cong Z / 2^{\prime \prime+1} \oplus Z / 2 \oplus Z / 2 \subset K O_{8 m} Y_{04} \oplus K O_{8 m+1} Y_{04} \\
& \cong Z \oplus Z / 2 q \oplus Z / 2 \oplus Z / 2 \text { and }
\end{align*}
$$

$$
\begin{aligned}
\pi_{8 m+4} S_{K} \wedge Y_{24} \cong Z / 8 \oplus Z / 2 \oplus Z / 2 \subset & K O_{8 m+4} Y_{24} \oplus K O_{8 m+5} Y_{24} \\
& \cong Z \oplus Z / 2 q \oplus Z / 2 \oplus Z / 2
\end{aligned}
$$

where $u=\operatorname{Min}\left\{4 r+2, v_{2}(8 m)\right\}$ and $v=\operatorname{Min}\left\{4 r+3, v_{2}(8 m)\right\}$, because $\psi_{R}^{k}=1$ on $K O_{0} Y_{03} \cong Z / q, \psi_{R}^{k}=k^{2}$ on $K O_{4} Y_{23} \cong Z / q, \psi_{R}^{k}=A_{k, 4 m+4 r+4}$ on $K O_{0} Y_{04} \cong$ $Z \oplus Z / 2 q$ and $\psi_{R}^{k}=k^{2} A_{k, 4 m+4 r+6}$ on $K O_{4} Y_{24} \cong Z \oplus Z / 2 q$ for any k prime to 2 (see [Y5, (2.1) and Lemma 2.2 i)]).

Lemma 3.7. The maps $g_{04}: \Sigma^{8 m} \rightarrow Y_{04}$ and $g_{24}: \Sigma^{8 m+4} \rightarrow Y_{24}$ satisfy that $g_{04 *}(1,0)=\left(2^{v}, 0,0\right) \in \pi_{8 m} S_{K} \wedge Y_{04} \cong Z / 2^{v+1} \oplus Z / 2 \oplus Z / 2$ and $g_{24 *}(1,0)=(4,0,0)$ $\in \pi_{8 m+4} S_{K} \wedge Y_{24} \cong Z / 8 \oplus Z / 2 \oplus Z / 2$ where $(1,0) \in \pi_{0} S_{K} \cong Z \oplus Z / 2$ stands for the element represented by the localization map $l_{K}: S \rightarrow S_{K}$.

Proof. A routine computation shows that the cofiber $C\left(\bar{h}_{2 q / 2}\right)$ is quasi $K O_{*}$-equivalent to $\Sigma^{4} S Z / q$ since $C(\bar{\eta})$ and $C(\bar{h})$ are quasi $K O_{*}$-equivalent to Σ^{4}. As is easily seen, the induced homomorphisms $j_{2,2 q *}: \pi_{8 m} S_{K} \wedge S Z / 2 \rightarrow$ $\pi_{8 m} S_{K} \wedge S Z / 2 q$ and $\bar{h}_{2 q / 2 *}: \pi_{8 m} S_{K} \wedge S Z / 2 \rightarrow \pi_{8 m+4} S_{K} \wedge S Z / 2 q \wedge C(\bar{\eta})$ are respectively expressed as $\left(\begin{array}{ll}2^{v} & 0 \\ 0 & 0\end{array}\right): Z / 2 \oplus Z / 2 \rightarrow Z / 2^{v+1} \oplus Z / 2$ and $\left(\begin{array}{ll}4 & 0 \\ 0 & 0\end{array}\right): Z / 2 \oplus$ $Z / 2 \rightarrow Z / 8 \oplus Z / 2$. Using these expressions we verify immediately that the induced homomorphisms $g_{04 *}: \pi_{0} S_{K} \rightarrow \pi_{8 m} S_{K} \wedge Y_{04}$ and $g_{24 *}: \pi_{0} S_{K} \rightarrow \pi_{8 m+4} S_{K} \wedge$ Y_{24} are expressed as $\left(\begin{array}{cc}2^{\prime \prime} & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right): Z \oplus Z / 2 \rightarrow Z / 2^{v+1} \oplus Z / 2 \oplus Z / 2$ and $\left(\begin{array}{cc}4 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right)$: $Z \oplus Z / 2 \rightarrow Z / 8 \oplus Z / 2 \oplus Z / 2$ respectively.

By virtue of Corollary 3.4 and Lemmas 3.6 and 3.7 we finally determine the K_{*}-local types of $R P_{2 s}^{2 s+2 t+1}$ as the last part of our main result.

Theorem 3.8. The stunted real projective space $\Sigma^{1} R P_{2 s}^{2 s+2 t+1}(0 \leq t \leq \infty)$ has the same K_{*}-local type as the cofiber of the map tabled below:

s	t	$4 r$
$4 m$	$i_{4 r+1} \mu_{4 m+4 r+1} \vee \tilde{x}_{4 m, 4 r+1}$	$4 r+1$
$4 m+1$	$i_{V, 4 r+1} a_{4 m+4 r+2} \vee \tilde{\mu}_{4 m+1, V, 4 r+1}$	$i_{V, 4 r+2} a_{4 m+4 r+2} \vee \tilde{\alpha}_{4 m, 4 r+2}$
$4 m+2$	$\left(i_{4 r+1} \wedge 1\right) m_{4 m+4 r+3} \vee \tilde{a}_{4 m+2,4 r+1}$	$i_{U, 4 r+2} x_{4 m+4 r+4} \vee \tilde{\mu}_{4 m+1, V, 4 r+2}$
$4 m+3$	$i_{U, 4 r+1} \alpha_{4 m+4 r+4} \vee \tilde{m}_{4 m+2, U, 4 r+2}$	
		$i_{U, 4 r+2} \mu_{4 m+4 r+5} \vee \tilde{m}_{4 m+3, U, 4 r+2}$

$s \\) & \(t$	$4 r+2$	
$4 m$	$i_{V, 4 r+3} m_{4 m+4 r+3} \vee \tilde{\alpha}_{4 m . l .4 r+3}$	$i_{4 r+4} \alpha_{4 m+4 r+4} \vee \tilde{\alpha}_{4 m .4 r+4}$
$4 m+1$	$i_{4 r+3} \alpha_{4 m+4 r+4} \vee \tilde{\mu}_{4 m+1.4 r+3}$	$i_{4 r+4} \mu_{4 m+4 r+5} \vee \tilde{\mu}_{4 m+1.4 r+4}$
$4 m+2$	$i_{U .4 r+3} \mu_{4 m+4 r+5} \vee \tilde{a}_{4 m+2 . U .4 r+3}$	$\left(i_{4 r+4} \wedge 1\right) a_{4 m+4 r+6} \vee \tilde{u}_{4 m+2.4 r+4}$
$4 m+3$	$\left(i_{4 r+3} \wedge 1\right) a_{4 m+4 r+6} \vee \tilde{m}_{4 m \cdot 3.4 r+3}$	$\left(i_{4 r+4} \wedge 1\right) m_{4 m+4 r+7} \vee \tilde{m}_{4 m+3.4 r+4}$

Proof. The $t=0$ case is obvious because $R P_{2 s}^{2 s+1}=\Sigma^{2 s} \vee \Sigma^{2 s+1}$. So we may assume that $t \geq 1$. When $(s, t+1)=(4 m+i, 4 r+j)$ or $(4 m+i, \infty)$ we shall show that $\Sigma^{1} R P_{2 s}^{2 s+2 t+1}$ has the same K_{*}-local type as the cofiber $C\left(g_{i j}\right)$ of the map $g_{i j}: \Sigma^{8 m+2 i} \rightarrow Y_{i j}$ given in (3.4) or (3.6), because the cofiber $C\left(g_{i j}\right)$ coincides with the cofiber of the map tabled in the theorem (use [Y2, Lemma II.1.1]). We first take the maps f and g in Corollary 3.4 as the canonical inclusion $f_{s, t}: \Sigma^{2 s-1} \rightarrow R P_{2 s-1}^{2 s+2 t+1}$ and the above map $g_{i j}: \Sigma^{8 m+2 i} \rightarrow Y_{i j}$ respectively where $(s, t+1)=(4 m+i, 4 r+j)$ or $(4 m+i, \infty)$. According to Theorem 2.7 $\sum^{1} R P_{2 s-1}^{2 s+2 t+1}$ has the same K_{*}-local type as the spectrum $Y_{i j}$. Note that $\pi_{2 s+1} R P_{2 s-1}^{2 s+2 t+1} \otimes Q=0$ whenever $t \geq 1$. Then Lemma 3.6 shows that all of the conditions i), ii) and iii) stated in Proposition 3.3 are satisfied for the prime 2 unless $(s, t)=(2 n, 4 r+3)$. Therefore we can apply Corollary 3.4 to observe that $\Sigma^{1} R P_{2 s}^{2 s+2 t+1}$ and $C\left(g_{i j}\right)$ have the same K_{*}-local type unless $(s, t)=(2 n, 4 r+3)$.

We shall next show that our assertion is valid even in the case when (s, $t)=(2 n, 4 r+3)$. Consider the commutative diagram

where $f_{k}: \Sigma^{4 n-1} \rightarrow R P_{4 n-1}^{4 n+8 r+k}(k=5,7)$ denotes the canonical inclusion. Recall that $\sum^{1} R P_{4 n-1}^{4 n+8 r+k}(k=5$ and 7$)$ are respectively quasi $S_{K *}$-equivalent to Y_{03} and Y_{04} when n is even, and they are quasi $S_{K *}$-equivalent to Y_{23} and Y_{24} when n is odd. From (3.7) and (3.8) it follows that $\pi_{0} S_{K} \cong Z \oplus Z / 2$, $\pi_{4 n-1} S_{K} \wedge R P_{4 n-1}^{4 n+8 r+5} \cong Z / 2^{u+1}$ and $\pi_{4 n-1} S_{K} \wedge R P_{4 n-1}^{4 n+8 r+7} \cong Z / 2^{v+1} \oplus Z / 2 \oplus Z / 2$ where $u=\operatorname{Min}\left\{4 r+2, \prime_{2}(4 n)\right\}$ and $v=\operatorname{Min}\left\{4 r+3, v_{2}(4 n)\right\}$. Since $f_{5 *}(1)=$ $2^{4 r+2} \in K O_{4 n-1} R P_{4 n-1}^{4 n+8 r+5} \cong Z / 2^{4 r+3}$, it is easily seen that $f_{5 *}(1,0)=2^{u} \in \pi_{4 n-1} S_{K}$ $\wedge R P_{4 n-1}^{4 n+8 r+5} \cong Z / 2^{n+1}$. This implies immediately that $f_{7 *}(1,0)=\left(2^{c}, 0,0\right) \in$ $\pi_{4 n-1} S_{K} \wedge R P_{4 n-1}^{4 n+8 r+7} \cong Z / 2^{n+1} \oplus Z / 2 \oplus Z / 2$. On the other hand, Lemma 3.7 asserts that the map $g_{i 4}: \Sigma^{8 m+2 i} \rightarrow Y_{i 4}(i=0,2)$ satisfies the equality $g_{i 4 *}(1,0)=$ $\left(2^{\prime \prime}, 0,0\right) \in \pi_{8 m+2 i} S_{K} \wedge Y_{i 4} \cong Z / 2^{\prime \prime+1} \oplus Z / 2 \oplus Z / 2$ where $v=\operatorname{Min}\left\{4 r+3, v_{2}(8 m)\right\}$ or 2 according as $i=0$ or 2 . Theorefore the map $\left(l_{K} \wedge 1\right) f_{7}: \Sigma^{4 n} \rightarrow S_{K} \wedge$ $\sum^{1} R P_{4 n-1}^{4 n+8 r+7}$ coincides with the map $\left(l_{K} \wedge 1\right) g_{i 4}: \Sigma^{8 m+2 i} \rightarrow S_{K} \wedge Y_{i 4}$ for $i=0$ or 2 when $S_{K} \wedge \Sigma^{1} R P_{4 n-1}^{4 n+8 r+7}$ is identified with $S_{K} \wedge Y_{i 4}(i=2 n-4 m)$ via a suitable quasi $S_{K *}$-equivalence. Hence we can easily observe that $\sum^{1} R P_{4 n-1}^{4 n+8 r+7}$ has the same K_{*}-local type as the cofiber $C\left(g_{04}\right)$ or $C\left(g_{24}\right)$ according as $n=2 m$ or $2 m+1$.

References

[Ad 1] J. F. Adams, Vector fields on spheres, Ann. of Math., 75 (1962), 603-622.
[Ad2] J. F. Adams, On the groups $J(X)$-IV, Topology, 5 (1969), 21-71.
[An] D. W. Anderson, Universal coefficient theorems for K-theory, mimeographed notes, Berkeley.
[AT] S. Araki and H. Toda, Multiplicative structures in $\bmod q$ cohomology theories I, Osaka J. Math., 2 (1965), 71-115.
[B1] A. K. Bousfield, The localization of spectra with respect to homology, Topology, 18 (1979), 257-281.
[B2] A. K. Bousfield, A classification of K-local spectra, J. Pure and Applied algebra, 66 (1990), 121-163.
[DM] D. M. Davis and M. Mahowald, Homotopy groups of some mapping telescopes, Annals of Math. Studies, Princeton, 113 (1987), 126-151.
[FY] M. Fujii and T. Yasui, K_{o}-groups of the stunted projective spaces, Math. J. Okayama Univ., 16 (1973), 47-54.
[JTTW] I. M. James, E. Thomas, H. Toda and G. W. Whitehead, On the symmetric square of an sphere, J. Math. and Mech., 12 (1963), $771-776$.
[R] D. C. Ravenel, Localization with respect to certain periodic homology theories, Amer. J. Math., 106 (1984), 351-414.
[U] J. J. Ucci, On symmetric maps of spheres, Invent. Math., 5 (1968), 8-18.
[Y1] Z. Yosimura, Universal coefficient sequences for cohomology theories of $C W$-spectra, Osaka J. Math., 12 (1975), 305-323.
[Y2] Z. Yosimura, Quasi K-homology equivalences, I and II, Osaka J. Math., 27 (1990), 465-498 and 499-528.
[Y3] Z. Yosimura, The quasi $K O$-homology types of the real projective spaces. Proc. Int. Conf. at Kinosaki, Springer-Verlag, 1418 (1990), 156-174.
[Y4] Z. Yosimura, The quasi $K O$-homology types of the stunted real projective spaces, J. Math. Soc. Japan, 42 (1990), 445-466.
[Y5] Z. Yosimura, The K_{*}-localizations of Wood and Anderson spectra and the real projective spaces, Osaka J. Math., 29 (1992), 361-385.

