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On calculation of Lx(1, x) for some Hecke characters
By

Yoshihito HARA

§1. Introduction

Let Lk(s, x) be the Hecke L-function for a non-trivial character y of an
ideal class group of an algebraic number field K. The purpose of the present
paper is to express Lx(1, ) in a form effective for numerical calculation by
computers in the case where K and y satisfy the following two conditions:

(i) K is a quadratic extension field of a totally real algebraic
(1.1) number field and K has exactly two real places.
(ii) x ramifies at all the two real places.

The methods of ours are the same as [Ko], [Ka] and [G], i.e., a generaliza-
tion of the classical Kronecker’s limit formula, and Hecke’s method described
in § 3 and § 5 of [Sil]. However, we calculate, rather than Lk(1, x) itself, a
suitable coefficient kx(C) of ¢x(s, C) in the Taylor expansion at s=0, where
¢k(s, C) is the zeta function of an ideal class C of K (see (2.1)). In fact, it
suffices to obtain «x(C) for our purpose, so the statements will be described
for /CK(C).

Stark-Shintani conjecture, which is one of our motivation of the present
paper, predicts a kind of arithmeticity for Lx(1, x) ([St1], [St2], [Sh5] and [T]).
However, the conjecture has been unsolved yet except some special cases. In
fact, the case where K has exactly one imaginary place and y ramifies at all
real places, which is described in [St2], is unsolved one. If K is of degree 4
over Q, this case is contained in the case (1.1) and one can use our results to
give numerical datas in the case.

Let us explain the contents in more detail. In § 2, we recall some facts on
the order of &(s, C) at s=0 for a general algebraic number field 4 and prove
a kind of transformation formula for (s, C) (Proposition 1). It plays the
same role as the formula (92) in [Sil, p. 140], which has been used in [Ko], [Ka]
and [G]. By virture of this formula, we can despense with Gauss sums and
the assumption on the primitivity of yx, so the value «x(C) seems to be the
more natural in our computation than Lk(1, x). In § 3, we define a harmonic
Hilbert modular function faxe(a, b; z) in (3.1), which is a generalization of the
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logarithm of the Siegel function ¢(a, b; z) in (4.7). It appear as the constant
term at s=0 of a non-holomorphic Eisenstein series E(z, s) defined in (3.2)
(Proposition 2). The term has already been calculated in [Ko], [Ka], [G] and
[A]. However, their results contain some numerical mistakes in the term.
Here we recalculate it in a suitable form for us in this section. In §4, we
describe some properties of f.xe(a, b; z) and its related functions. In §5, we
define some kinds of periods of f.xe(a, b;2) on cycles @, with respect o
arithmetic congruence subgroups of Hilbert modular groups, which will be
denoted by <@, dsf>. We generalize Hecke’s method and express the
Dirichlet series in Proposition 1 by <@, d4Es>, i.e., a period of E(z, s) defined
similarly (Proposition 3). In Chapter 2 of [Sil], the Kronecker’s limit for-
mulas for Lk(s, x) has been given for the following cases: (1) K is an imagi-
nary quadratic field, (2) K is a real quadratic field and y is unramified at the
two real places, (3) K is the same as (2) and y ramifies at two real places. We
can extend them in such cases where K is any quadratic extension field of a
totally real algebraic number field F' and the archimedean conductor of y is
stable under the action of Gal(K/F), i.e., the most general cases where all the
above three cases are contained. We introduce periods <@, dsf> as a
natural generalization of those in (2) and (3). In § 6, we complete our calcula-
tion of kx(C) and express it by (@, dsf> in the most general cases as above
(Theorem 1 and Corollary 1, which contain the results of [Ko], [Ka] and [G]
as special cases). We restate the theorem as Corollary 2 and 3 in the special
case where K is a CM-field, hence <®@., d.f> is expressed as a special value of
Ffaxela, b; z2) at a CM-point. Our main purpose is attained by Corollary 5 and
6, which treat the case (1.1). In this case, (@, dsf> is expressed as a
difference of the special values of f.xs(a, b; 2) at suitable two points. One can
calculate the value of xx(C) effectively by computers by means of this expres-
sion. In §7, we give two numerical examples in the case (1.1) by using
Corollary 6 (the case (1) in this section) and, in addition, give four examples
in the case of Corollary 3, i.e., the case of [Ko] (the case (2)). Each Lx(s, x)
in the examples is described as a product of other L-functions whose special
values are calculated by some classical formulas. Calculating «x(C) or L«(1,
x) by means of another formula, we ensure our formula from mistakes even
in the numerical sense. We remark that our formulas are suitable for calcu-
lation of Lk(1,x). In fact, we give each numerical data exactly with the
order of 107*®, while the time we need is a few seconds in the shortest case and
less than 13 minutes even for the most longest by means of a computer with
32bit. As an appendix, in § 8, we consider the case where two L-functions,
one of which satisfies the conditons for K and yx described in the above
paragraph for § 5, and the other of which does not, coincide (Theorem 2).
Here one can know that there are more cases, different from those of
Theorem 1, in which our formulas can be used. This section is based on [Sh
4] and is related to [I].

Finally the author would like to express his gratitude to Professor H.
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Notation. We denote by R(z), 3(z), z,|z| and |zl the real part, the
imaginary part, the complex conjugation, the absolute value and the square of
absolute value of zE€ C respectively. Let i=,/—1 and e(z)=¢e*™* for z€C.
Let sgn(¢)=¢/|¢| for tER, t+0, and R.*={tER|t>0}. We denote by 7, the

Euler constant, i.e., limnm(EZq%—logn). For a ring I, I denotes the group

of all invertible elements of I. For two modules A, B, and for an element b
€B, A+B and A+ b denote the module generated by A and B, and the set
consisting of elements x+ & with x& A respectively. For sets A, B, and for
an element b, A—B and A — b denote the set AN B°and AN{b}° respectively.
For a set A, #(A) denotes the order of A. The other notations will be defined
in each section.

§ 2. Preliminaries

For an algebraic number field &, T7x, Ni, dx, d, Ir, Ex, Rx and W, denote
the trace with respect to 4/Q, the norm of an ideal with respect to £/Q (also
the norm of an element, in the present paper, should be considered as that of
the ideal generated by it, which is a positive rational number), the absolute
value of the discriminant of %, the different of £, the ring of integers of %, the
group of all units of k&, the regulator of &, and the group of roots of unity in
k> (or its order), respectively. For A€k, ex(A) denotes e( T#x(1)) and >0
means that A is positive at all real places of £ For an integral ideal f and a
set 2 consisting of several real places of k, Ex(f2) and W.(f2) denote the
subgroup of Ex and W, consisting of ¢ satisfying e=1 (mod f) and &,>0 for /
€2, and H.(f2) denotes the ideal ray class group of £ with the conductor 2.
If f=1I. or 2= ¢, we drop it in each notation (for example, E.(2), H:(f) mean
E.(1:2), H.(f9), respectively). Further, if 2 consists of all the real places of
k, we use the notations E.* and E:*(f) in place of E.(2) and Ex(fR2) respec-
tively. We denote by %, the class number of % in wide sense, i.e., #(H.(12)).
For an ideal % of % prime to f and for C€ H.(f2), A C denotes the element of
H.(fQ) containing AB, where BEC. For 2, 1o denotes the character of £*
defined by Z'.Q(A)=Hzegsgn(/11).

Let 71, 72 be the number of real and imaginary places of £ (r+2r.=[k:
Q)), and put ei=#(RQ), ei=r—e1. Now, we show that &(s, C) for CE€ H.(fR)
has the following expansion:

(s, C) _[_ Re L]”
(21) gertre W s +Kk(c)+0(3) ,
where the term with the symbol T appears only when f=1, and 2=¢.
Since & (s, C) is rewritten in the form of a linear combination of Lx(s, x)’s
for all characters y of Hx(fR2), we may cosider the Taylor expansion of L(s,
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x) at s=0 to prove (2.1). Put
22 Gils, 1) =N tr(3))" (= r(S5L)) (@mr (o).
If x is primitive, set Ax(s, x)=Gx(s, f2)L:(s, x). Then, we have

_ 8 a5
(2.3) Aw(s, )= N Ax(l=s, %),

where g(x) is the Gauss sum associated with y. By means of this equation, we
can determine the order of Lx(s, ) at =0 from the one at s=1. Since the
latter is 1 or 0 as well known, the former is e{+#7:—1 or e{+ 7, according as
x is trivial or not. If y is not primitive, Lx(s, ¥) can be written as Lx(s, xo)
times Euler factors 1— xo(p)Nxp~° for finitely many primes p, where o is the
primitive character associated with xy. Then we know that the order we
consider is equal to or greater than that of Lx(s, x0), and that in particular, if
x is trivial, the order is equal to n+7+p—1, where p is the number of
different prime factors of f. Summing up, the order of Lx(s, x) at s=0 is
(2.4) n+rnto—1 (if x is trivial)

’ Zel+ 7 (if x is non-trivial)|

If po=0and ei=mn, i.e., f=1, and £=¢, he term with 1 in (2.1) is derived from
the first term on the right hand side of

é‘k(s) _ Rl L

(2-5) Tt We s

+0(1).

This is a modification of Dirichlet’s residue formula which is obtained from
(2.2) and (2.3) for the trivial charahoer by the fact that g(x)=1 in this case.
Lastly (2.1) is deduced from (2.4) and (2.5).

Next, we show the following lemma related to (2.1).

Lemma 1. Assume that es#1. For CEH(IQ) and for AS k> which is
multiplicatively congruent to 1 modulo §, we have

(2.6) 2a(D) (s, (D) C)=&u(s, C)+ O(s"+72+1) |

Proof. The case e1=0 s trivial. Assume that e;=2. Let A, LE£™ be
elements of £* multiplicatively congruent to 1 modulo f such that (/) <0,
(M/A):>0 (VIEQ=0Q—T), where [ is an fixed element in 2. We may
consider that C(A))CU(A)CE Hu(f2). By (2.1), we have

&e(s, (A) C)+ &(s, (A2) C) = &i(s, C‘)z O(se+re+1y |

Sine ro{A)= — ra(A), this can be rewritten as
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To(A) &(s, (M) C)=1a(A2) &u(s, (A2) C) + O(seV+7241) |

Hence we obtain (2.6) from the above through the induction with respect to
the number of /€ such that A,<0.

Before ending this section, we show a functional equation between zeta
functions of ideal classes analogous to (2.3), which will be used in the proof of
Theorem 1.

Proposition 1. Let U, B be ideals of k which satisfy UB=(for) ™" and 1€
A (i.e., BC(for)™"). Then, we have

za(A)

@7) Gals, fQ)AE?IHgEh(f.Q) N((DA1)°

-1 . _to(Dex(d)
N "Gl f'Q)aam—?)z/E.(m) N((D)B)'

where both sides should be considered as the functions of s after analytic
continuation to the whole s-plane.

Proof. For t€R*"* and A€k, put g(A, £)=TLicalkit2)I pegae P> %%,
where £2°¢ denotes the set of all archimedean places of 2 and pp=1 or 2
according as p is real or imaginary. Applying Poisson’s summation formula
to g(4, t), we have

l

e'x/z W(Uf) i<

where u=1Ilpecqat,’?. Define the action of E«(f2) on RX™*" by (e*t)p=
leolts (HE Ra) for e€ Ex(f2) and t€RY™*™. Take a fundamental domain D
of R¥™*™ by E.(fR) such that EDCD for E&ER}. By Mellin transforma-
tion under the assumption that R(s)>1 on the left and R(s)<0 on the right in
(2.7) respectively, we have

28 B o )= Se(gh 1),

(2.9) Lh.s.=(duNaf) S N2 - / S g ) usd*t
D eNf+1

(2.10) rhs—(d"NZ‘{? JZN N 2 el - Tae,
kf b

where d*t =11 pe,oa%. Divide D into D« and Dsi, where the former denotes
the part satisfying the condition # <1 and the latter =1, and apply (2.8) to
the summation in the /l; -part of (2.9) and (2.10), changing ¢ into ¢7' if

necessary. Then, both right hand sides of (2.9) and (2.10) can be rewritten as
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1-s

51 s-1
(duNef) 2 Na¥ .L)lAE\zB}_Oek(/l)g(/l, t)euz d*t

' /Nkf
(AN TN 2R,
+[ iV Nf s—1 ]

H(@NDINC [ 5 g, - ubd e,
D>y A€¥i+1
where the term with the symbol I appears only when 2=¢. It is a meromor-
phic function on the whole complex s-plane and hence this completes the
proof.

3. Kronecker’s limit formula

In the rest of the paper, let F be a totally real algebraic number field of
degree n over Q. In this section, we recall the generalized Kronecker’s limit
formula, which has been treated in Konno [Ko], Katayama [Ka] and Goldstein
[G].

Let £° be the set of all (real) archimedean places of F, and we use the
notation g to express a general element of ° For a set X, we denote by X*
the direct product of #-copies of X indexed by gE6%*. We set $={z€ C|%(2)
>0}. For z&(C—R)% x, y denote the elements of R? such that xys=(R(z)),
v=(Z(2))s. We denote [1,24, 1ol 24l and I14|ysl by Nz, N|z| and Ny respec-
tively. Further, for z&(C — R)?, we denote by z* the elements of $° such that
(2%)g=z, or 2z, according as y,>0 or <0 respectively.

Let a and b be integral ideals of F. Put ay=abr"!, bi=bbr"", c=brab™?, co
=bdraib1 and c;=bdra7'b. For (a, b)EF X F, put az=(a)a and b,=(5)b. Here
assume that a,=a if =0 and b,=b if 5=0. Let m, n be the denominator part
of aq, bs, respectively. We use the nontations (s, aq), xr(bs) to denote &r(s,
C1), kr(C2) with Ci, C; such that a;mE CiE Hr(m), bsnE C.E Hr(n), respective-
ly.

In this section, we drop the subscript F' of Er and denote it simply by E.
For a subgroup U of E with finite index, we denote |E: U| by Ind(U).

For a, b and (a, b), define a function H?>z- fuxs(a, b; 2)E C by

1 §F(—1, a) n
maEm) Netm) (20" Ny

1 er(Bb+(aBz)")
T Ind(U) .ﬁeblz—:OIU O*anw“ﬂz Ne((8)b,7Y)

1 . anfp(bb) 1
+[Ind(E(n)) Jdr ] '

(3.1 Ffoxla, b; 2)=

where U is a subgroup of E(m)N E(n) with finite index (the above definition
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is well defined with respect to U), and the term with the symbol | is consid-
ered only when a€a™.

As will be shown in Proposition 2, the summations on the right hand side
of (3.1) are uniformly absolutely convergent on any compact subset in $° with
respect to z. Note that f.xe(a, b; 2) depends only on the class (@, b) mod a™
xb~!, and in fact, fuxs(a, b; 2) is real valued (see § 4).

Further, we define Eisenstein series associated with an integral ideal fo of
F,aand b, and (g, &)=l 'a ' Xfo 67! as

1 (NrcoNy)® 3 er(@a—pb)

3.2) E(z s)= Ind(E(f o)) ) " (a,Beaxbi=0/e6) N|a+ Bz|°

Proposition 2. For each z£9°, E(z, s) is absolutely convergent for R(s)
>1, and can be mevomorphically continued to the whole complex s-plane. The
vight hand side of (3.1) is absolutely convergent for zE9®, and E(z,1+s) has,
after the analytic continuation, the following expansion at s=0:

33  Ez 1+s)=[@]* Ve focla, b; 2)

—[2"2Rr-{log(NrciNy)—2n(logm + 7o)} 1T + O(s) ,
where the terms with the symbol T appears only when (a, b)Sa™ ' Xb™!,

Before proving Proposition 2, we shall give some facts we need.
In the first place, we consider the integral f (—ﬁ%dt for s€ C and £

R, and the path P (=P* or P~ according as £>0 or £<0 respectively)
associated with the integral. P* is defined as follows. Let € be a positive
real number. Firstly go straight on from oo7 to (1+¢)7 along the imaginary
axis, secondly turn around 7 counterclockwise with the distance &, and lastly
go back to o7 along the imaginary axis. P~ is defined as the symmetric path

of P* with respect to the real axis. We have the following lemma (see [Sil],
[Ko]).

Lemma 2. For —%dt nd e(ét)sa’t, which are integrable for
—w(t24+1) P (t2+1)

S‘i(s)>7 and an arbitrary s< C vespectively, the followings hold.

1
) ey !
1) [ & dt— (s for H(s)> .
[ f(ftl))s _est) (£40)

(2) Assume that E+0. For any compact subset DC C, there exists a positive
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real number M such that

|| <

|§|e”'e' (Vs€D).

(3) %f f(ith—e(léli) for EER.

Next, we describe the following lemma which we need to show conver-
gence of some infinite sums and integrals.

Lemma 3.(1) For a lattice L in R® and a positive real number A, there
exists a positive real number M satisfying the inequality

1
Ael2L+wl;I /192+1 <M l_quG '
for uER:® such that ugs>A (9€52%) and we Re.

(2) For a F-lattice L in R*, wEF, real numbers A1>1 and A:>1, there exist
positive real numbers Mo, M\, Mo(M,>1) satisfying the inequality

1 MoIl gue+ M
P o L | M O VA

for uE RX® such that ug [ug,<A: (Va, V< Xo%).

Proof. For o<{1, —1}2, put R°={vER|sgn(vy)=0,(gE 2") or uys=0 (g
€29}, V——L+w (resp. L+w), and V°=VNR°. For L=2Zvy+Zva,

choose UO—NIUI+ “+ N ER® (N, -+, NoEZ) and Ny Z (No>1) such that
vi=v;+NovoE R’ for j=1, -+, n. Then, L'=Zvi+:--Zv; is a sublattice of L,
and |L: L'| depends only on L and 6. Thus, to prove the lemma, it is sufficient
to show the inequalities which are obtained by changing X.icv in (1) and (2)
to 2ieve under the assumption that L has generators {1, ***, v»} such that v,

-, 1nER% and wE R°. For example, consider the case where og=1forall g
€82 (also the other cases can be treated similarly). For the above {v,, -,
va}, we can take a positive real number o such that D={3,4,0,E R|0=< A, <
1}C[0, @o]%, and denote by Cov(L) the volume of D. The inequality in (1) is
derived from the following:

Cov(l) | <o 1 <1;[[Z_Ooh(xg)dxg,

Hg“g AevVao g /1g2+1

where #(x)=(x®+1)"' or 1 according as x =0 or <0. As for (2), put ,’=V°
N[0, 27260A1)?, V,P={A€ V0 Ae22nQA:} for gE82° and VI°=V— 1% (=
Ugeaoa V5?). Then, we have 2icve< Dicvort 2geaoa2ievse. Choose a positive
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real numbr @, such that [— @i, @ ]°C{3Asv.E R |A¢|<1}, and put Q.=Min
{A]AE VL%, g€ 2. Since #(1,7)<(2N+1)", where N is a positive integer

greater than % we have

1 no__ 1
> I;IW<(2N+1) HgAZQzua .

AE V0

On the other hand, by the assumption, for A€ V,?, we have
N uteldel > EEF N =L (25— 2(n— 1) QAN+ 2 (A +2QuA)) .
g Al g Al g+g
Since Ag—2(n—1)QuA1>26% and A, +260A1>2Q, for g+ §, we obtain
. # ~-Les,zg
COV(L) /16517'9‘71_9[ Azugl/\gl <-/[-Oo,°°)"A2 . ax

_ 1 1
GOgAZ)n Hg(ugAz%ug)'

By the above estimation, the inequality in (2) is obtained.

Remark. We can take a fundamental domain D of RX® by the action
of U (a subgroup of E* with finite index) such that DC{uE R} ug, [ug, <
AV g, V g€ 82 with a suitable constant A, depending only on U. This
can be seen, for example, by [Shl]. Further, for such and an ideal % of F,
AN DC[ A2, ©)* with a suitable constant A. depending only on U and .

The following expansions of I'(s) will be used in the proof, i.e.,
(3.4) I'(1+&)"=1—Emyors+ O(s?),
35 (F=r(5+8)) =1-m(n+2log) s+ 0(s")
Jr o \2
Proof of Proposition 2. Let the meanings of T, I be as in (3.3), (3.1),

respectively. Assume that R(s)>1. We begin with the following equation:

2 er(aa—pb) 1 er(aa)
(a,8)€a;xb;—(0,0)/E (f) N||a+ ,82'"s NFCI123 aea,—0/E (fp) NF(((I)01_1)28

(3.6)

1 er(—Bb— Bax)
t Ny?*® aebl—zwz(n,) Nr(B)*

el 2
@i N((aﬁ%)zﬂ)s ’
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where a+,6’z=,8y<al+%+i> and a1=b%. By (1) of Lemma 3 with its

remark, we see that the sums on the right hand side of (3.6) are uniformly
absolutely convergent on any compact subset in the right half plane {s&
C|R(s)>1}. Applying Poisson’s summation formla to the inner sum of the
second term on the right hand side of (3.6), we have

oo 2)or)

2 s
A

— Ny Ne(B) _ 2\ [ erlBayttast)
x/d_FNFCll aze%n"el:< azy)ﬁa N(t2+1)s dt .

The sum 2., is rewritten by setting a=ﬁafz+a as

:M(_B.)_ _ ww
Jdr Neay < B 5 el agn)l] [ 4 GE P .

By means of (1) of Lemma 2, the integrals j: may be rewritten as /; if o=+

0, and as (7 I'(s—1/2)I"(s)™")" if =0, the latter of which appears only when
a€a”'. Here the criterions of Poisson’s summation formula are satisfied by
(2) of Lemma 2 and (2) of Lemma 3, and so the above transformation is
ensured. Then, (3.6) is rewritten as

st exlaa—B0) _ )4 G5i) + (i)t

(37) Ind(E(fo)) (@B N||a+ BZ"s

where

. er(ea)
(1) NFQZS Ind(E(m)) aenzO:IE(m) NF((a/)(ga 1)28 ’

. 1 L
O NeauNeo TNy Tnd(E ()

__er(=Bb) _ e(@sfYots)
X o Do N BT, B, er(— ao)] [ EPise dty

1 /J;F(S_%) )

(iii)= /a'_pra1NFblzs_1Ny2s_l\ I'(s)

2 eF(Bb)
Ind(E(n)) pev, S0 Ne((B)br1)*71 -
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By Proposition 1, we obtain the following two equations under the assump-

tions that ER(s)>% and R(s)>1:

5 er(aa)
eea S0/eem Ne((@)ai ')

=(dF%‘zsNle"Zs) <(2sinzs-(27)" 2. (1—25))"+ &r(1—25, aq) ,

___ex(Bb)
5551—20:/5(‘0 N((B)b, 1) !

=(dp%"2szn2‘23) «(—2cosms+(2m)" %2 '(2—28))" &r(2—25, by) .

We can modify (i) and (iii) by them. Then, after changing s into 1+s, (3.7)
may be rewritten as

(3.8) E(z, 1+s)=0G) + (i) +3ii)*,
where

S Jde _(—2n)"
O =Tl By Ne(moy o1~ 25:00)

() (Capesinm LAY

o Jdr er(—pBb—apzx)
(i) = Ind(E(fo)) ﬂeb120/5(f0) o=aeEa“+a Ne((B)b, 1)z +!

1 e(asB4yats) ( Nrc >s
XH b (t92+1)s+1 dtg Ny y

(111)’: Ind(%’?(n)) é:F(( Zss)nbb)/NF(n Cl)Ny(zﬂ') 2n)—

1
y F(?“) ra—2s)\"
COS TS /; F(]."‘S) .

By means of (2) of Lemma 2 ad (2) of Lemma 3 with its remark, (i)', (ii)’ and
(iii)’ can be meromorphically continued to the whole s-plane, and (ii)’ becomes
an entire function. Moreover, for each s€ C, it can be seen similarly that the
right hand side of (3.8) is uniformly absolutely convergent on any compact
subset in £ with respect to z.

The terms (i)’ and (ii)’ are holomorphic at s=0, and the values of the
integrals in (ii)’ at s=0 are obtained from (3) of Lemma 2. They give (3.3) in

the case where a€a™'. Assume that a€a™!. To obtain the terms with T on
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the right hand side of (3.3) and the term with 1 in (3.1), we need to calculate
the Taylor expansion of (iii)’ at s=0.
By using (2.1), and using (3.4), (3.5), we have

é]r((__z‘s\s),nbb) :[ Z"ZRF ] ' +2"kr(6s) + OC(s) ,

1
r(i+ "
(cosm <\2/; s> 1;5(11:_235))) =1+2n(y—1log2) s+ O(s?),

respectively. From the above two expansions with
(Nr(n®e))Ny(27)~2")~*
=1—{log(Nr(n®c:)Ny) —2nlog2r}-s+ O(s?),

and with the remark that n=1Ir and E(n)=E if (a, b)Ea~' Xb~!, we obtain the
following expansion of (iii)":

n-2 t
(iii)’z[z——sﬁ] + 274 (1)

—[2"?Rr{log(Nrc1Ny) —2n(log m+ 70)}]" + O(s)

which gives the remaining parts of the right hand side of (3.3). Hence we
obtain our proposition.

§4. Function f%(a, b; z) and its properties

In this section, we describe several properties and Fourier expansion of
Ffaxs(a, b; 2) and some functions associated with faxe(a, ; 2).

Besides the notations in the previous sections, we define more several
notations associated with (C—R)® Let &={1, —1} be the multiplicative
group of order 2. We denote by + the unit element of €¢, by — ¢ the inverse
element of 0€&* and put sgn(o)=I140,(c€&*). For 2&(C—R)*, let & (z)
be the element of & such that (@ (z))s=sgn(%(z,)). For c€&°, put H°={z&
(C—R)"w(z)=o0} (in particular, §*=99), and, for €(C — R)?, define z°€H°
by (2%)¢=2, or z, according as (@(z))¢=0, or —o,. This definition is
consistent with z* in § 3.

For each 6€6¢, define a holomorphic function $72z+f%(a, b; z2)€C
associated with fuxs(a, b; 2) by

(4.1) foala, by 2) =1 & é(m)) g?i,:(}r’wa)“)sgn(o)(ni)”Nz

5 s er(Bb+afz)
Ind( U) Beb,—0/U aca'+a,@(af)=0 Np((ﬂ)hl l)
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[Ind(]lE(n)) K}@]

where the notations are as in (3.1). Then, (3.1) is written as
(4.2) fola, b;2)= 2, fl(a, b; 2°).

Since fuxe(a, b; 2) is absolutely convergent on $¢ by Proposition 2, f&(a, b; z)
is also absolutely convergent on $°. The function f%:(a, b; z) depends only
on the class (g, b) mod a ' Xb™! as fuxe(a, b; 2) does so. Further, for zE9¢,
put

(4.3) f2(a, b; 2)= 2 f&ola, b; 2%) ,

oeG®,0c=1(e€90)

which is holomorphic with respect to z. (e€). If (a, b)Ea'Xb™!, we
denote f%(a, b; 2), foxela, b; 2) and f2%(a, b; z) simply by f%e(2), faxs(2) and
72%(2) respectively. In this case, (4.1) and (3.1) is rewritten as

44)  Foulz)=sgn(o)E(=1a) la)(m)"Nz

o~} {((A)e, bl‘l)ep(/lz)+/i7—((l,—2)— ,

rec L w)=0

@5 fua) =2l amyny
£ 2 0 ((We b er((1)) + 2] j;—(f),

where 0™(¥, B)=Dsus~sNr(€)", and € ~B means € and B belong to the same
class in Hr(Ir). In the case where =1, i.e., F=Q, for (a, H)EQ X Q, we
have

—log(v27 7(2)) (if (a, b)EZ X Z)

(4.6) fmuz,b;z):l —logd(a, b2)  (if 0<a<)

Here 7(z) and ¢(a, b; z) are the Dedekind »-function and the Siegel function
defined by

77(2)24221_4' I1(1—q.")
(47) { neN

#(a, b; 2)=q.2"* (1~ gz)- nl;IN(l —q"q=)(1—¢"q=7"),
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where g:=e(2), gz=e(x), r=az+ b and Bx(a)=a —a-i-%. The latter is well

known as a modular unit (see [K-L]). Our function f%(a, &; 2) is viewed as
a generalization of their logarithm.
By the definition, the following can easily be seen:

(4.8) &8 (a, b; 25)=f%(a, b; z2°) for z€(C—R)*,
(4.9) Floaxanla, b; 2)=F3¥* " (aa, Bb; Ba'z) for z€9°,

where @, BEF*. We have also the following distribution relation, i.e.,

(4.10) (E)fgxb(do'i'(l, bo+ b; 2)=fExi(ao, bo; 2)— [zrlogNF(bb 1)]

where @Ca, 6CH, (g, b) runs over d 'Xb'/a"'Xb™!, and the term with the
symbol T appears only when (ao, b)Ed ' Xb™!. The equation (4.10) is rewrit-
ten by (4.9) as

(411) (E)fgxb(ao'f‘a, bo+ b; Z) faxb(a’do, Bbo; Ba/_lz) [sz—IOgNF(B):I

where a, B€Ir, Ba™'>0 and (a, b) runs over (@) 'a™ ' X(8)™'67'/a"'xb7}, and
the term with the symbol T appears only when (ao, b)E(a@)'a !X (8)™ 6%
(4.10) and (4.11) are viewed as a generalization of a distribution relation of
Siegel functions in [K-L].

To describe automorphy of fuxe(a, b; 2), we introduce some more nota-

tions. Put G=GL:(R). For A=<Z g)EG and z€9 (resp. CU{c0}), we
define Az€ 9 (resp. C U{}) by

(4.12) A _|(02+,8)(7z+ &)™ (if detA>0)

N(ez+B)(yz+8)  (f detA<0).

We define the action of G on § (resp. C U{o0}) by Az€ 9 (resp. C U{c0}) for
AE G and z€9 (resp. C U{o}), and the action of G* on $* (resp. (C U{co})?)
componentwisely. For two ideals a, b and an integral ideal fo of F, we define

(4.13) Pm={(: g)eGLz(F)Ia, SEIr, fEab™!, yEa™'b, aa—ﬂyeEF},

(4.14) Faxb(fo)z{((; §)€F<1xb|a, s€f+1, fEab o, 760“bf0}.

Now automorphy of fuxs(a, b; 2), which is derived from that of E(z,s), is
described as
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(4.15) faxs((a, b); Az)=Fuxs((a, b)A; 2)
for (a, b)¢a'xb™', AETlx,
(4.16) foxs((a, b); Az)=fuxe((a, b); 2)
for (a, b)Efla X", (@, b)¢a X", AEx(fo),

(4.17) Faxs(AZ) = Faxe(2) — 2':/-;—RF logN|j(A, 2)|

for A€,

where j(A, z)=yz+§ for AZ(C; g)

Remark. A transformation law with respect to f&s(a, b; z) has been
calculated in [G-T] (though in a much more complicated form).

Note that the function F&s(a, b; z) on H? defined by
(4.18) F(a, b; 2)=sgn(— 0)Nrc* 0geafela, b; 2)

where

(4.19) doe=T[3s, 3= 1 o 0 —1( 0 _ ;.0 )

T 27 0zg' 0z 2\ 0xg g

in a holomorphic modular form of weight 2 with respect to I".xs(fo) except the
case where #=1 and (@, b)Ea"'xb~!. This can easily be seen by (4.16), (4.17)
and (4.2). For the convenience of the reader, we derive the following Fourier
expansions from (4.1) and (4.4):

7 )= 1 (=1, aq)
4200 Fhele b =og(EGm) - 2Nem

1 . = Y Ne((@)a)er(Bb+aBz),

Ind( U) Beb™'—0/U aca”'+a,W(aB)=0

and if (g, b)Ea'Xb™?,

421)  Foula b 2)=ECL L S (e aer(da).
2 recL,wm)=0
§5. Period <@, dsf> and generalization of Hecke’s method

Let K be a quadratic extension of /. We denote the conjugate of A€ K
over F by A and the trace of A with respect to K/F by Trx;r(A). Let Q¢ Qr
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and £2° be the set of all archimedean, real and imaginary places of K respec-
tively, and divide the set £* of all archimedean places of F into the disjoint
union of " and £»° lying below 2" and £2¢. Moreover we divide £" into two
subsets £ and £ arbitrarily and consider the disjoint union £0*=2U £ U Q¢
as an ordered partition of £ denoted by o=(, &, 25). Here we may
allow one or two of &, £ and £F to be empty. In the rest of the paper, as
g for £ in § 3 and 4, we use the notations, 7, e, ¢ and ¢ to express general
elements of £", £, & and £° respectively. We denote by 7, e, € and co the
number of elements contained in ", £, £ and £° respectively (e + es= 7o,
ro+co=n). For a set X, as X° we denote by X" and X° the direct product
of 7- and co-copies of X indexed by »€ " and cE £° respectively.

Take wEK—F. For each r&€£", choose and fix one of the two real
places of K above » (denoted by » again) in such a way as wr> ‘.
Similarly, for each c€2°, choose and fix one of the two embeddings of into
C which coincide with ¢ on F (denoted by ¢ again) in such a way as $(w.)>
0. With the above choices, we consider the embedding K 2A=(:*-, 4, -+, Ac,
---)& C*, and regard elemnts of K as those of C®through this injection. Note
that this injection depends on w.

For w€K—F, put

_ _ _ _(we’_ (I)Le')dZe'
(51) dZ.Qo—QdZe s de.Qo—/e\dee’ , dwzer= 2(Ze'_(l)e')(2e’_CULe') ,

(5.2) da,=110e (see (4.19) as to 0.).

For a function f on $¢ we define an »o-differential form d.f (4=(w, ), 0=

(£, &, $)) on $° by
(5.3) dif=0a,f (-, 2r, -+, We, " )d2a0 N\ dw2as .

Note that if 2=£5=¢, then d.f=/f(w), which is an element of C.

Put G.*={AE€E GlAv=0, Av‘*=w"} (see (4.12) as to Aw). In general,
for a subgroup H of G¢ we set Ho=HN G H*={AE€H|detA,>0 (9
2%}, Ho2*=H*N G,* and denote by H the image of H by the natural
projection G%- G°/(the center of G%). Let I, be a discrete subgroup of G°.
Put

harmonic

(5.4) M(o)=UXT), A ={f:9°— Clf(Az)=/(2) for AET},

where I' runs over all subgroups of /o with finite index, and ‘harmonic’ means
2

real C™-class and vanishing by the operation of 82832_ for all g€2°. We
g a

can all element of (I") a harmonic modular function on $¢ with respect to I'.
We define a set @.(I5) of 7-chains on $° by
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_ _ 1
(5.5) @w(ﬂ))—{Z(F, t, D)—WT—"D‘F, t, D} ,

where I' is a subgroup of (/3)* with a fundamental domain of the orbit G&¢
of ¢ by I',. Let f be an element of M(v). For I' such that F€J(I") and for
Z=Z(I', t, D)E 0.,(I}), we set

_ : 1 e
(5.6) (Z. duf> L dof GF 70>0) or gy duf (if 7=0),

which depends only on ¢ in the former case and is independent of Z in the
latter.

If we put f(z2)=f.xs(a, b; 2), which belongs to M(I"axs), the value <Z, duf>
for Z&€ @u(Iaxs) is independent also of the choice of ¢ (see, Proposition 3).
Here we denote it also by @, daf>.

In the rest of this section, we shall generalize Hecke’s method which is
developed in Chapter 2 of [Sil].

Put I={0€R‘ |a|<%}, S={¢t= e(§)|§I} and ®=S X RY, which may

be regarded as the complex right half plane through the correspondence of (¢,
E)EG to L& Put KJ*=(R*XR*)"X C*°. For 7=(-=, pr, **, 7¢c, = )EKJ", let
Ng1=17r1 O 7, 7g2=17r2 OF 7c according as g=7 or ¢, where 7,=(7r1, 7r2).
Through the injection K*3A=p=(:, (Ar, A%), =, A, " )EK (7, ¢ are
defined as before), we identify elements of K* with those of K.*. We define
the action of Ko* on ®® by n-u=(+-, (7-1/7-2)tr, =+, te, *+) or (=, —(771/7r2)
Ur, o Ue, ) (PEK S, uE®®) according as 7-1/7-2>0 or <0.
Next, for o€ K —F, define ¢.: 8*>u—2E€9H* by

z, = a)rurl.‘l'a)tr (u l-:_Zr_Cl)Lr>
(5.7) ’ uri+1 4 Zr —wr
Rc—Wc (CE'QOC) ’

(refn)

and the embedding ¢.: K*2n—AE G* by

ag Bo\[ we 'y Wy W' g1 0
oo (g )
@z B
Ys Og
actions of K.* on ®® and G on $° are compatible with respect to ¢, namely,
Pu(7*u)=du(n)pu(n).

Let a, b be ideals of F. If a+bw is an ideal of K, then ¢u(Ex)=(Iaxs)w
and ¢w(Er)=(axs)wN (the center of G¢). For an integral ideal fo of F , let
Ef={ e€Ek|lee>0} and E%(fo)={e=E¥%le=1(modfo)}. Then, we have
o(EX)=(Tuxs)o” and ¢u(E%(fo))=I"uxs(fo)o*. In particular, we have |Ex:

where Ag=( ) It can easily be seen that ¢u(K.*)=Gw? and the
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EFE;'(‘(fO)|=|EK/EF: EFE;(fO)/EA:'(Faxbiw: Paxb(f05w+|. ~
For (a, B)EFXF—(0,0), put A=a+Bw and v=A-u. Then we have

Yer 1<a)e~ ~cu ) . 1 )s dve
(5.9) < 0’e’Be'Ze’"> duze= |/1 Aé 2( Vet vat Ver '

(510 <“ae'gz)e2e||)dze_11—< :T~ e> <ve+lve“>s_l

Vel dve
(vez+sgn(/1 AL))? ve

(5.11) A ‘“’“"2< 1 >sa’ve'=F (%)

Vet vat) ve Ir(s) -
P<s+l)2
feoo 1 -1 Vel dve _ 7T 2
(512) l S( Ue+ve_1> (Uel.+Sgn(/Te/TLe))2 Ve _Sgn(/ie/]e) F(s) y

where &, £ S (the right hand side of (5.11), (5.12) are independent of &, &
€S), see [Sil].

Proposition 3. Let B be an ideal of K, f an integral ideal of K, and put
fo=fNF. Assume that BC(fox)™! and Bdr=aw+buo with two ideals a, b of F
and vo, K. Put a= Triir(w), b=— Trrr(wo) and w=%. For a disjoint

union 2"=2U 8%, put 0=(8, %, 2°) and 4=(w, p). Further, for E(z,s)
in (3.2) associated with the above o, a, b, a and b, define the function Es: H°—
C by z—E(z,5). Then, we have

o(A)ex(A)
(5.13) Ex: EK(f.Q)IAEB %Lx(fm J\Z/—K((/S% )*

B . 4r0NKf§7tn(l—s)[v(s)n
— TS)(VO/ GK(S, f.Q)

Qu, dsEs) .

Herve @y, dsEs> is independent of the choice of ZE Q.
Proof. For (@, B)Ea1Xby, put A=ave+ BreEB, A=A/, and

Wu, )= HZ(ue +uet)” sHs(ue+ue NS0t (uei +sgn( Aede))” 2/\ du'.

Here we consider that 4(u, A)=1if n=0. By (5.9) and (5.10), we have

10 g a) T (M) 1 2.
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Choose Z=2Z(Iws(fo)*, to, D)E @ and put U= 9" (Z), uo=(&, &)= pu""(t).
Then, we obtain the following from (5.14) with er(aa— 8b)=ex(A) and /dx
Nik((vo)'B) = Nrcoll ol wg — w'l:

(5.15) {Z, dsEs>

dKZ _ex(A)
BB TR OE,EF<fD>NK((A)% e J A, D).

Here we should consider that the integral /Uh(/f- u, A) is equal to |Ex: Er|™" if

7=0. The sum Xies-o/£i, on the right hand side of (5.15) may be considered
as ZAEQS—OIEK*(EO)ZeEEk*(fo)/EF(fo) changing A into Ae. Then, we have

~ ~ _ 1 ~
e D J A& 0. A=ty [ e D)

= 7o(A) 7o(W0) ]"(%)2%'1_1( s _51 >2e0
[Ex: ErE(fo)] oK y

by (5.11) and (5.12). Since E¥(fo)NEr=Er(fo) and so |Ex: ErE%(fo)l|Er:
Er(fo)|=|Ex: EX(fo)|, the right hand side of (5.15) can be rewritten as

_i 2eq S _|_1 2eo
Z’!)(Vo) dK—g— F( 2 > < 2 ) Z'.Q(/l)ex(/i)
|EK3 E§(f0)| 4rogrreopcos F(S)m A€B-0/Ex*(fo) NK((/D}B_I)S ’

Here we may change E%(fo) into Ex(f2), and by the definition of Gk(s, fR2) in
(2.2), we can obtain (5.13).

§ 6. Description of «x(C) by fuxe(a, b; 2)

Let K/F be as in §5. We denote by bk, the relative different with
respect to K/F, and put Rxr=Rx/(2"*RrWkx), which is equal to |Ex: Er| if K
is a CM-field. Let £ be a subset of 2", f an ideal of K, and put fo=fNF.
Throughout this section, we keep in mind that terms with the symbol f, {T are
considered only when f=1Ik, f=1Ix and 2=¢, respectively. For C& Hx(fQ),
(2.1) is rewritten as follows:

6.1) ng(ei Q—[ ﬁ,’; -%]”+KK(C)+ 0(s) .

We-use the notation #x(C)=|Ex: Ex(2)| ' kx(C).

Theorem 1. Assume that 2 is stable under the action of Gal(K/F) and
consider 0=_(52, 8, $°) for the subsets S and §% of %" lying below 2 and Q"
—Q vespectively. For CEHk(§2), choose AE C™" such that 1EN, and take
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ideals 0,5 of F and elements p, v of K such that Af=a'u+b6"'v. In the case
where f=1Ix and Q=¢, let \y=AO"'(v))"". Put w=pnlv, 4=(w, p), and let
(a, b) be the element of fo'a™ ' Xfo 67! determined by 1=au+by. Then, with
@u=0u(Iaxe) and f(2)=fuxela, b; 2), kx(C) can be expressed as follows:

(6.2) 2o(v) Bx(C)=Vdr{ Pu, dsf>—[2"*Rs+ T]",

where
RurlogNiti+ 3 (00, dulog(—222)) (i =)
(6.3) T= %< Do, dilog(ze— we)(ze— w'e)> (if D={e))
0 (if e22).

Remark. By means of the definition of d, in (5.3) with (4.2), (4.3), we can
substitute f2%(a, b; z) as f for fuxs(a, b; 2) in (6.2). Recall that f%%(a, b; 2) is
holomorphic with respect to z.(e€£).

Proof. Put B=Ufok)", o=p/(uv*— p*v) and ve=v"/(uv*— x*v). It can
easily be seen that the conditions 1€, Uf=a~'u+b"'y, 1=au+ by, and w=pu/v
induce BC(fox)™!, B=avo+bi, a= Trir(vo) and b= — Tk;r(w), and w‘=
o/ vo, respectively, which are the conditions of Proposition 3 considering w* as
w. Note that ro(vo)=(—1)ro(v) since vo=v (w—w*)™"

By means of Proposition 1 with (2.1) and Lemma 1, we have

(6.4) [—RW’; %]” +kx(C)+ O(s)

1 Gx(1—s,{9Q) 5 za(A)ex(4)
(—4)oNgfz S Gk(s, 12) sew-trtia Nx(()B71)'

Then, by Proposition 3 and (2.2), (6.4) can be rewritten as

6.5) [— Ry -i]' "+ 20(1) B (C)+ O(s)

Wk s
=<{ 0o, dAEl_s>(%%f)sF (1 +%>_m<ﬁf (%J“%))_m

XI'(1+s)=r(1—s)".

Here we calculate the Taylor expansion on the right hand side of (6.5).
Applying Proposition 2 to <@, d+E1-s>, we obtain

1 t
(D, dAEx_s>=[—2"-2RF<a>w, d01>-;]
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+Vdr{Du, duf)—[2"*Rr 34 D0, dslogys)]!

—[272Rr(log Nrc1 —log 72" —2n70) { D, da1>]"+ O(s) .

On the other hand, applying (3.4) and (3.5) to the remaining part, we have

2220+Co 7.[,271

(second line of r.h.s. of (6.5))=1+<logJ—a——ﬂ+2nyo>-s+ 0(s?) .
KIVK

Then, we obtain the following expansion of (6.5) as follows:

(6.6) [—%’;—-—13—]' "+ ro(v)- #(C)+ O(s)

=[—2”‘2RF<(I)w, d41>-is]' VA D, duf>

Monee Yg !
[2 RF; <@w, d4108m> ]
—[2"2Rrlog(4°Nx2,) < @u, dsD)]"

where p,=1 or 2 according as gE 2" or gE°. (6.6) shows (6.3) in the case
where =+ Ik.

Assume that f=7x. Comparing the coefficients of s™' on both sides of
(6.6), we have

Rk . .

f 2=4¢,ie., =0

(67) 2n—2RF<¢w, d41>={ Wk (1 P, i.e., e )
0 (if 2+#0, i.e., @>0),

which we can also obtain by a direct elementary calculation of @, d41>.

Further, <d)w, dslog Ve, > vanishes in the following cases: (i) g€
(wg w a)/Pg

% (ii) eo=2; (iii) ={e} (eo=1) and g#e. If it does not vanish, we can use

the following equation, i.e.,

(6.8) v lzr— )@=l .

(Ur‘_Cl)Lr ((l)r—(l)Lr)2

cosfr,

where 6 is the element of I derived from ¢. '(z) in §5. Note that 6
associated with zEZ depends only on Z. (6.8) is obtained from the latter
equation for €2 in (5.7), see [Sil]. Hence we obtain (6.3) in the case
where f=1Ix and our proof is completed.

Corollary 1. Let the assumption on Q be as in Theorem 1. For CE
Hy(Q), let a, b be ideals of F and w an element of K—F such that dx;r'C
SUA=a+bw. Put f(2)=fuxe(2) and Ouw=Qu([axs). Then, we have
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(6.9) (=1 kx(C)=Vdr{Pu, dsf >—2"?Rp* T

where
' RiirlogNe(Ua™)+ 3 <$w, ddlog<%>>
(if 2=¢)
(6.10) r= %( Du, dslog(ze— we)(ze— w'e)>
(if Q={e})
0 (if en=22).

Remark. Inthe case where f=1Ix and 2= ¢, each term of X in (6.3) and

(6.10) can be rewritten by (6.8) as <Z ddi (ze (ac)uez(z)ee)za) e)|> , where Z=

Z(I', te, D)E @, with te such that —(te— we) (te— w'e)EiR}. This expres-
sion corresponds to Heck’s, see [Sil].

Proof. Take A€(Udx,r)”" such that A, >0 (/€2) (10 if 2=¢), and put
v=A"Yw—w")"!, t=wv. Then, we have (A)Ubk,r=C, (A)Ubk/r)'=a'x
+57'y and w‘=p/v. Considering (()Udk,;r)~" as ¥ in Theorem 1, %, in the
theorem becomes Ir+a~'bw*, whose norm is equal to that of Ya '=Ir+a 'bw.
Since ro(v)=rto(w—w*)=(—1) and {Qu, dsf>=<{D:, dsf>, we obtain our
corollary from Theorem 1.

In particular, if K is a CM-field, Theorem 1 and Corollary 1 are restated
as follows:

Corollary 2. Let K be a CM-field. For CEHk(f), let notations and
assumptions be as in Theorem 1. Then, we have

(611) /cK(C)—J—]';;—KL(flZL AV dr faxs(a, b; @) —[2"2RrlogNxk2:]'} .

Corollary 3. Let K be a CM-field. For C&€ Hk(Ix), let notations and
assumptions be as in Corollary 1. Then, we have

(6.12) KK(C)=‘|—Eﬁ['{x/d_pfaxb(w)—2"_2RplogNK(?Ia_l)} .

Remark. Corollary 2 includes the Katayama'’s result in [Ka] on the case
of CM-fields as our special case (i.e. the case #=2), and Corollary 3 corre-
sponds to the Konno’s in [Ko]. In particular, if =1, i.e., F=@ and K is an
imaginary quadratic field, (6.11) and (6.12) are rewritten as

(6.13) kx(C)= ——7rlogllé(a, b; W)l if f+ 1k,

W WD
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(618) (O =—ptogl2ayNelll, D7)l if =1«

which are classical results. Note that the values in | || on the right hand side
of (6.13) and (6.14) give rise to units in a class field of K which is related to
f, see [R], [K-L].

If K is a totally real and 2=2¢, it is known that «(C)E @ by Klingen
[K1], Siegel [Si2], [Si3] and Shintani [Shl]. Then, we have

Corollary 4. For F%(a, b; z) defined in (4.18), let dF =F%(a, b; 2)
Nodze. If K=F(w) is a totally rveal quadratic extension of F, a+bw is an
ideal of K, and o=+, then, {Qu, dF></dr Q.

Remark. Corollary 4 holds also for an arbitrary 6¢&&* with a suitable
change of the definition of @.. Probably the second assumption in the
corollary seems not to be required.

In this case, Goldstein carried out the same calculation of «x(C) as ours
in [G] for the purpose of obtaining the rationality of xx(C) and an explicit

formula for it. He asserted in § 5 of [G] that <@, d4f> <=£agoafdzaoa> was

described by sums and differences of finitely many special values of f at some
points associated with Z. However, it has a mistake in general except the
case n=1. In the case n=1, this integral may be expressed as a difference of
two special values of f, which is one of elementary properties of holomorphic
functions. Of course, it is possible also in the cases where 2= ¢ and #(£)=
1.

Now, we assume that 2=¢ and £={e}. In this case, K has two real
and (#—1)-imaginary places, and the archimedean conductor 2 consists of the
two real places of K.

For CE Hk(fR), let a,b, (a, ) and » be as in Theorem 1, Put Ex,r={cE
Exlee*=1, >0} and Ex/r(f)={eEEk/rle=1(mod f)}. Note that their ranks
as abelian groups are 1. Let € be the generator of Ek,(f) such that e.>1
(where e should be considered as an element of 2 as in §5), and put A=
¢ (€) where ¢uisasin § 5. Take HLEH and put h=Aet. For w, let wo and
w1 be the elements of $* defined by

t (lf g=e)
we (f g=cE2),

t (if g=e)

(6.15) (wo)g={ we (f g=cER").

(a)l)az{

We can take a path in §°® from wo to w1 as Z€ @, in Theorem 1.

Corollary 5. For CEHk(fQ), let notations and assumptions be as in
Theorem 1 and as above. Put f(2)=fe%(a, b; 2). Then, we have
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616 (O =ral) B B (S (1(00)— (0~ [27 2 Re T}

where

_ 1 1 (to_we)(tO—Cl)Le)
(6.17) T = o8t )t~y -

Here the branch of logz is taken in such a way as 0<arg(2)<2m.

Note that the right hand side of (6.16) is independent of the choice of £HE
». In particular, we can take % and 4 as

(618) fo= (fe(l)Le_eLe(Ue)_i’L((Ue_(l)Le)l' ’ h= (Gea)e_ €Le(l)Le)'|'L(CUe_wLe)i )
€Ee—€E¢e €e— €.

For such 4 and #, we have T=L and

4 ’

Corollary 6. For CEHk(RQ), let notations and assumptions be as in
Corollary 1 and as above (i.e., X%=¢ and o={e}). Let wo, w: be as in (6.15)
associated with @ in the corollary and with to, th in (6.18). Then, we have

(6.19) kx(C)=

'lEE:g:lgf/il' -{ 2701,’; (fg)’?b(wl)—fg?b(a)o))+2"_4RF} .

Remark. Stark conjectured in [Stl] and [St2] that for an algebraic
number field k&, if the value ei+7 in (2.1) is equal to 1,k(C) (for x.(C)E
H.(f2)) would be expressed as a form glog|e|, where ¢ Q™ and ¢ is a unit in
the class field corresponding to the unit element of H.(fR2). (In fact, the
conjecture holds if 2= @ and £ is an imaginary quadratic field, the former of
which is the classical result and the latter the result in [St2]). Corollaries 5
and 6 in the case #=2 shows that a difference of two special values of f%%(a,

b; z) would express a value of the form 27 loglel, and hence f&%(a, b; 2)
Jdr

seems to describe class fields of K, where K is quartic with two real and one
imaginary places, i.e., the case where e1=2 (e=1), ei (=e)=0 and 7. (=co)
=1. The case where e{=1 and ».=0 is treated by Shintani in [Sh2], [Sh3] and
[Sh4] besides the above papers. He has shown in them that «x(C) can be
expressed by special values of multiple gamma functions in this case. We
may consider that our function f&%(a, b; z) takes the place of a multiple
gamma function in Shintani’s case. In general, for arithmeticity of #.(C),
Stark-Shintani conjecture predicts that «(C) would be expressed as a homo-
geneous polynomial in the logarithm of several units which belong to a
suitable class field related to C’s, where the polynomial is of degree e+ 7,
and with Q-coefficients. (For example, (6.13), (6.14) and Corollary 3 are such
cases as Stark-Shintani conjecture holds, see [Sh5], [St2], [T].) Here it is
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conjectured that the difference of two special values of f2%(a, b; z) in Corol-
laries 5 and 6 for an arbitrary # would be expressed as a homogeneous
polynomial in the logarithm of several units with above conditions.

§7. Numerical examples

In this section, we shall give several numerical examples.

We consider the Artin L-function L./x(s, x) with an abelian extension
L/K of finite degree, where K is a quadratic extension of a real quadratic field
F, (i.e., the case =2 in Theorem 1), L is the maximal unramified (with respect
to all finite places) extension of K (and so f=Ik), and x is a non-trivial
character of Gal(L/K) of degree 1 satisfying the condition that the subfield of
L corresponding to x is totally imaginary (and so £=¢). This case is
classified into three cases in view of archimedean places of K. Now we
consider the following two cases: (1) K has two real and one imaginary places;
(2) K is a CM-field. The cases (1) and (2) correspond to Corollary 6 and 3
respectively, and in each case, the coefficient of the leading term in the Taylor
expansion of Lik(s, x) at s=0 (simply say ‘the leading term’ below) is
calculated by each corollary. If L.«(s, x) is expressed as a product of Hecke
L-functions on @ or on imaginary quadratic fields, the leading term is calcu-
lated also by means of classical results. In such a case, we can compare two
computational datas by the different methods and make sure our formula for
tx(C) holds in the numerical sense. The formulas for L./«(1, x) in the case
(2) have already appeared in [Ko], [Ka], however, they have some numerical
mistakes. Furthermore, to the author’s knowledge, the case (1) has not
appeared in the literature yet. Thus it seems to be meaningful that such
numerical examples are given here.

We take Q(/3) as F in the case (1), and Q(,/2) in the case (2). In boh
case, we have hr=1, and so we can take f(2)=fixi:(2) as fuxs(z) in the
corollaries. We denote by f(z) the function which is obtained from f(z) by
eliminating the third term in (4.5), and by [z, v] the ideal Irp+Irv of K. In
the following, we denote by Co, (or Co) and by C: (or C:) the unit and a
generator of an ideal class group when it is cyclic. We note that a represen-
tative of Ci’€ Hx(Ix) (where C.°=C,) can be given in the form [1, w,] with w;
eK-F.

The case (1): Assume that F=Q(y/3). Corollary 6 says that

1D Q)= EEEDL I ) f () + Hog(2+ V3]

with the notation in the corollary. Note that we can substitute an arbitrary
subgroup U of Ex,r with finite index for Ek/r.

Now we consider, as K, Ki=F(/1+3) and K.=F(/—1—/3). In this
case, hx,=hg,=1 and L=Ki(y/—1)=K:(/—1), which is biquadratic over F,
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and intermediate fields of L/F are Ki, K; and F(,/—1). Here we have

(7.2) {LL/Kx(S, 20=Ek:(8) Er($) 7"+ C@umy(s) Cav=a(s) £ ()2
' Lk, 22)= k() &r($) ™" E@umy(s) Cav=m(s) £ (s)72.

Put e0=2+/3, ei=/3+/1+/3, e2=1+/—1+/3, a=ce and e=ele,
which are all totally positive. Er, Ex, and Ek, are generated by {eo, —1}, {e1,
o, —1}, and {ez, &0, —1} respectively. Let Ux,, Ux, be the subgroups of Ex,,
Ex, generated by es, €4 respectively. We have |Ex,: E#,|=|Ex: ErUx,|=2 and
|EK22 E;?zl:IEKZ EFUK2|=2. Let HK,([K,.Q,‘)={C;'0, le} (le or 2).F01‘ Wk, =
J1+y/3 and wk,=/ —1+/3, we have Ix,=[1, wk,], bx/r=(wk,— wx,)E Cj, and
kx(Ci)=—kx,(Cj) by Lemma 1. Then the leading terms &, & on the left
hand side of (7.2) are given by —2#x,(Cu1), —24x,(Ca) respectively. Applying
wx, and &3, or wx, and €4 to w and € in (6.18), we calculate xx,(Ci1), kx2(Ca1)
by (7.1) as

le(Cu)
=—0.2127811447300575700642565273358697126237563459662281 -+

/CKz(CZl)
=—0.3129693092540155665711898484819018815478296777114764--- ,

and hence

(7.3) {51 =0.4255622894601151401285130546717394252475126919324562- -

£2:=0.6259386185080311331423796969638037630956593554229528--- .

On the other hand, we have Rx;j/Rr=logeo+2loge; (7=1,2). By (2.5), we
obtain the leading terms on the right hand side of (7.2), i.e.,

(7.4)

%log( €o€2’)
=0.425562289460115140128513054671739425247512691932455---

%log(eoelz)
=0.625938618508031133142379696963803763095659355422952-+- .

Comparing (7.3) with (7.4), we can see the coincidence of the leading terms on
both sides of (7.2) up to 107",

The case (2): Assume that F=@Q(/2). Corollary 3 says that if Ex=EF,
for kx*(C)=kx(C)—2kr(Ir), we have

(7.5) ki *(C)=242 f () —log(1++2)log(N(3(w)) ,
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where N(X))=I14¢/Xwg)l. Then, the leading term of L.«(s, x) can be
obtained by calculating a linear combination of #x*(C)’s. In the following
examples (a), (b), (c) and (d), Ex=Er always holds.

(a) K=F(/—=5). Inthiscase, hx=2and L=K(/—1), which is an abelian
extension over Q with Gal(L/Q)=Z/2Z X Z|2Z X Z|2Z. For the non-trivial
character x of Gal(L/K), we have

(7.6) Luk(s, )= e ()L aw)(8) Eaum(s) Eautm(s) E(s) ™.

The leading term & on the left hand sie is given by «x*(Co)— kx*(C:) where
Hx(Ix)={Co, C\}. Applying wo=(/2+/—=10)/2, o.»=(1+/2+,/—5)/2 to w in
(7.5), we have

kx*(Co)=3.9278827203222198310271864413133726465350480297968095---
kx*(C1)=3.052824780901983178316318716026002713542025127849507 - ,

and hence

(7.7) £=0.8750579394202366527108677252873699329930229019473024--- .

On the other hand, as for the right hand side of (7.6), the leading term is
calculated by (2.5), i.e.,

(7.8) 1og(1i2@)log(3+ﬁ6)

=0.875057939420236652710867725287369932993022901947305--- .

Comparing (7.7) with (7.8), the leading terms on both sides of (7.6) coincide up
to 1075

(b) K=F(/=7). In this case, hix=2 and L=K(,/—1+2/2), which is a
cyclic extension of degree 4 over M=Q(,/—14). For the non-trivial charac-
ter x of Gal(L/K) and the two characters yi, x. of order 4 of Gal(L/M), we
have

(7.9) Lix(s, x)=Lum(s, x)Lun(s, x2) .

Let &, &, & be the leading term of Lik(s, x), Lim(s, x1), Lim(s, x2), respec-
tively. The value € is given by #x*(Co)— kx*(C1) where Hx(Ix)={Co, Ci}.
Applying we=(1+,/—7)/2 and en=(3+2,/2+,/—=7)/6 to w in (7.5), we have

kx*(Co)=3.3859723632817484986710368066602305429134572725709138---
kx*(C1)=2.9853158745138455868059914503895437350639298386473064---

and hence

(7.10) £=0.4006564887679029118650453562706868078495274339236073--- .
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On the other hand, for Hu(In)={C,, Ci, C:%, C:3}, we have xu(Ci)=ru(C:?),
and «u(Co), km(Ci2) are calculated by (6.14) as

/CM( C~0)
=(0.1212501601371234360066241337818133003516516638459467 -

ICM( C.lz)
=—0.5117241590638240141415591122983726297212060338426609--- .

Since &=&=u(Co) — ku(C:?), we have
£51=£,=0.6329743192009474501481832460801859300728576976886077--- ,

and hence

(7.11)
£:£:=0.4006564887679029118650453562706868078495274339236077--- .

Comparing (7.10) with (7.11), we see that £=£&&,, i.e., the leading terms on
both sides of (7.9) coincide up to the order of 10,

(¢) K=F(/—23). In this case hix=6 and L=Q(X*—2X*+3X*—2X—1,
X?— X —1), i.e., the minimal splitting field of (X*—2X3*+3X?—2X—-1)(X*— X
—1) over Q. Put Lo=Q(X*—2X*+3X*—2X—1). L,is a quadratic exten-
sion of K, and also the maximal unramified extension over M= Q(,/—46).
Conditions for Lo, K and M are the same as those in (b) considering Lo in
place of L in (b), and so C;'s, x1, x2, x and &, &, & are defined similarly. Here

(7-12) LLo/K(sv X)ZLLo/M(Sv XI)LLo/M(sv Xz) .

The value £ is given by «x*(Co) —2kx*(C1) + 245 *(Ci®) — kx*(Ci%) where Hx(Ix)
={Co, C1, Ci%, C3, Ci*, C\°}. Here note that kX (C)=kx*(C°), w*(C®)=
k*(Ci*). Applying wo=(1+/-23)/2, o1=(5—4/2+,/—23)/20, w.=(—1
+/—23)/4 and ws=(5—4,/2+,—23)/10 to w in (7.5), we have

Kk *(Co)=6.9792724034334644446271047637334173064623806025009698---
kx*(C1)=4.2462196909262662045317872487601167803272898837408798: -
kx*(C1?)=3.2126390796650919834647791924318587073611049726520265-
kx*(C1?)=2.8699665884185365533224492998725257305756149878429133-- ,

and hence
(7.13) £=2.0421445924925794491706393512043754299543957924803498--- .

On the other hand, by (6.14), we have



Calculation of Lk(1, x) 893

/{M(CO)
=1.7133426084586759719629071391792362302581562159403944 -+«

KM(CIZ)
=0.284306362419906159972730280893088263417401184241208:-- ,

and so,
£1=£,=1.4290362460387698119901768582861479668407550316991864 - .
Hence

(7.14)
£1£,=2.042144592492579449170639351204 375429954 3957924803598 .

Comparing (7.13) with (7.14), it can be seen that £=&&; up to 107

(d) K=F(/=19). In this case, hx=3 and L=K(X*— X*—2X —2) which
is also the maximal unramified extension over M= Q(/—38) (hx=6). For a
character y of order 3 of Gal(L/K) and s, xs of order 6, 3 of Gal(L/M), we
have

(7.15) Li(s, x)=Luim(s, x6)Lrm(s, xs) .

Let &, &, & be the leading terms of Li/x(s, x), Lim(s, xs), Lim(s, xs), respec-
tively. The value £ is given by «x*(Co) — kx*(C1) where Hx(Ix)={Co, C1, Ci}.
Here note that «*(Ci)=xx*(C:?). Applying wo=(1+,/—19)/2 and w:1=(3
+2/2+,/=19)/6 to w in (7.5), we have

kx*(Co)
=5.9847217123898470953760192574064415961079112013200125---

/CK*(CI)
=2.8735263359188580647426788258234058428307329236962379--- ,

and hence
(7.16) £=23.1111953764709890306333404315830357532771782776237746--- .

On the other hand, for Hu(In)={C,, C, ~C~12, C3, ?14, C~15},~we have~/cM(C~‘1)=
KM(C~15), KM(§12)=KM£C14) ang Es=/CM(Co)+/CM(C1)—/CM(C12)—KM(C13), 53:
KM(CO)—KM(CI)_KM(CIZ)+KM(C13). By (6.14), we obtain



894 Yoshihito Hara

( KM(CO)
=1.3898025578262189301416488548961650358620747270771627---
KM(CI)
=—0.2126801854238964940821098131037417906185779640517278---
/CM( C~12)
=—0.4056264989477767907408058039190398286067828489416381 -+
KM(Cls)
=0.1225363437589153115916475482857766508575046290357065---

and so

£6=1.4602125275911839152086972974256864229927749829313664---
£3=2.1306455859568075265562120202047233059449401691062352-- .

Hence

(7.17)
£6£3=23.1111953764709890306333404315830357532771782776237756- .

Comparing (7.16) with (7.17), it can be seen that £=&:&;, i.e., the leading terms
on both sides of (7.15) coincide up to 10~%.

§8. Appendix. Coincidence of L-functions

For a character x of Hk(f2), the value limsﬁo%g%)— can be expressed

as a linear combination of (6.2) by Theorem 1, in which we need the assump-
tion that 2 is stable under the action of Gal(K/F).
In this section, we consider the case where £ is not necessarily stable

under the action of Gal(K/F) and lims~ogz(i,l+xc?, has the same expression as

above (Theorem 2). (Note that if x is primitive, the value is the coefficient of
the leading term of Lx(s, x) in the Taylor expansion at s=0.) The ideas in
this section are based on Shintani [Sh4].

Though the following lemma seems to be essentially contained in Ishii [I],
we shall write down it in a suitable form for the proof of Theorem 2.

Lemma 4. For a non-abelian finite group G with its center Z and its
commutator D, the followings hold:
(1) If G has an abelian subgroup H with index 2, then HDOZ.
(2) Assume that there exists H as in (1) satisfying |H: Z|=2. Then, there are
exactly three abelian subgroups of G with index 2.
(3) Assume that therve exist H as in (1) and an element cEH —Z of order 2
in G. For «€G—H, put 6*=t""'ot and J={1, 0, 0*, 00*}. Then the following



Calculation of Lk(1, x) 895

(1), (ii) are equivalent: (i) JDOD; (i) |H: Z|=2. If (i), (i) hold, then D=({1,
00*}CZ.

(4) Assume that theve exist H and o as in (3) satisfying (i), (it). For a
character xo of Z of degree 1, non-trivial on D, there exists a unique irreducible
character ® of G of degree 2 such that Rest®@=2yx,. @ is expressed as Indfix
where x is a chavacter of H of degree 1 such that Resix=jyx. Indfyx is
independent of the choice of three H’s and two x’s for each H.

Proof. (1), (2), (3) are elementary. Here we only give the proof of (4).
Let xo be a character of Z of degree 1, non-trivial on D, and x a character
of H of degree 1 such that Resfx=x. For (=G—H, define x* as x‘(h)=
x(che™) for h€H. Then, x° is also a character of H of degree 1 such that
Resfx‘=x0. Since xo is non-trivial on D and so x(006*)=xo(00*)*1 by (3), we
have y+yx‘. Put ®=Indfix. Then, Resé®=yx+ x‘, Resé® =2y, and we have

O, 0>c=[{Indfix, ?>c=<x, Res€®>u=<x, x +xO>u=1.

This shows that @ is irreducible and it satisfies the condition in (4).

Next, assume that there exists an irreducible character @ of G of degree
2 such that Res20=2y,. Let Resf®=y,+ x. with two characters y: and xz of
H of degree 1. From the calculation with respect to inner products of
characters:

120, Ind§x;>c=<Resf®, x>u=<n1+ xz, x:>u=1+<x1, x2>u =1,

we obtain <@, Indfx,>c=1 (j=1, 2), <x1, 22>x=0, and so @ =Indfy=Indfixz, x1
#x.. By the assumption ResZ®=2y,, we have Resiyi=Resfy.=xo. It shows
that the expression of @ in (4) is possible and such a @ as we consider
associated with a given yo is unique.

Let £5¢, &7, £° and ¢ 027, 2¢be as § 5 and § 6, and we modify decompo-
sition of £" and 2" as follows. We decompose " into disjoint three subsets
£, 2 and £°. Let £2’, 2 be the set of all the places of K lying above £, £
respectively. Further, we decompose the set of real places of K lying above
£2,° into two subsets 2%, £2° in such a way as one of the two places lying above
a place of £° belongs to £2° and the other belongs to £2°. Hence the
archimedean places of F' and K are described as follows:

o 2 yue° Q°

—

K : R R--- R R-- R R--- e Ceee
| NS NS NS |

F: «+ R o+ v R+ v R v iR
2% £ £2° £

By the assumptions, we have #(2°)=#(2°)=#(2°). Put 2*=Q2UL2° and 2%
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=Q'U0*.

Let x be a primitive character of Hk(f2%), and L the class field corre-
sponding to the kernel of . Note that the archimedean places of L above
2% are real and the others imaginary. If °+¢, L/F is not a Galois exten-
sion. Let Lo/F be the maximal Galois extension in L/F, L, the Galois closure
of L/F, and put G=Gal(L./F), H=Gal(L,/K). Then, Li=LL‘and Lo=LN
L(ce G—H). Also note that the archimedean places of Lo above 25U °
and £° are real and imaginary respectively.

For n€H, let n*=¢"'nueH. Here we shall describe Theorem 2.

Theorem 2. Assume that co<1, [L: Lo]=2 and Lo/F is an abelian
extension. Then, therve exist a quadratic extension K of F, an integral ideal |
of K, a subset @ of real places of K which is stable under the action of
Gal(K/F), and a primitive character 7 of Hi({Q), which satisfy Lk(s, x)=
Lz(s, ¥).

Proof. Regarding x as a character of H through the Artin map, we
consider Lk(s, x) also as Artin L-function L.,«(s, x). By the assumption,
L,/L, is a biquadratic extension with intermediate fields L, L*. Let ¢ be a
generator of Gal(L:/L). Then, ¢*is a generator of Gal(L./L*), and since Lo/F
is abelian extension, /=Gal(L./L.)={1, o, ¢*, 66*} contains the commutator D
of G. Thus, we see that H satisfies the assumption (1) of Lemma 4, and J
satisfies (ii) (and so (i)) in (3) of the lemma. By (2) of the lemma, there exist
two abelian subgroups of G with index 2, besides H itself. Choose one of
such two subgroups H. In the case co=1, choose it so that oc, o€ H, where
oc is a Frobenius automorhism corresponding to the place in £°. Let K be
the invariant field of H. By (4) of the lemma with the fact that y(g0*)=—1,
there exists a character 7 of H of degree 1 such that Ind§xy=Ind5 7. By using
properties of Artin L-functions, we see that

Liuk(s, x)=Lr.yr(s, Indfix)=Lryr(s, Indf F)=Lr.&(s, ¥) .

Let £ be the conductor of the ideal group of K corresponding to L..
Regarding ¥ as a character of Hz({@) through the Artin map, and we
consider Artin L-function L.,z(s, ¥) as Hecke L-function Lz(s, ¥) again.
This shows the equation in Theorem 2.

Hereafter we consider whether an element of ¢ is real or not on K or
L,.. We may assume that (¢ H. For gE£° let o, be the Frobenius
automorphism of Gal(L,/F) corresponding to g. Note that d,=0,' and 0,E
Z (=the center of G) are euivalent.

If g€ £, then the places of L, lying above ¢ and so those of K are all real
since those of L and L¢ are all real.

If g, then our choice of H shows that the places of K lying above g
and so those of L; are all imaginary.

Consider the case where g€ £%°. Since each real place of Lo lying above
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Q¢ is imaginary on L and real on L‘, each Frobenius automorphism with
respect to L,/K corresponding to a place in 2° or 2° is all equal to ¢* or ¢
respectively. (3) of Lemma 4 shows that oo* belongs to Z, and the fact o+
o* shows that 0, *€H —Z. Since HNH=Z, we obtain o, ‘¢ H. Hence
the places of K lying above £° are all imaginary.

Lastly, let g&$%». Then, oy is non-trivial and so the places of L, lying
above g are all imaginary. Assume that o,#0,‘. Since o, c*€H, we have
0o, 0, EH—Z and so 0y, 0/ H. This means that the places of K lying
above g are all imaginary. If 0,=0", it belongs to Z and so belongs to H.
Then, the places of K lying above g are all real.

By all the above consideration, we see that the archimedean part £2 of the
conductor of the ideal group of K corresponding to L, is stable under the
action of Gal(K/F). On th other hand, since o is faithful on H by the choice
of L, 7 is also faithful on H and so the archimedean part of the conductor of
7 is equal to £. This completes the proof.

Remark. The first part of the above proof is contained in [1]. The
latter part can be regarded as a generalization of the proof of Proposition 5.1
in the paper.
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