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On calculation of LK(1, 2') for some Hecke characters
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§ 1. Introduction

Let LK(s, x) be the Hecke L-function for a non-trivial character z of an
ideal class group of an algebraic number field K .  The purpose of the present
paper is to express LK(1, ,c) in a form effective for numerical calculation by
computers in the case where K  and z  satisfy the following two conditions:

{ ( i)  K  is a quadratic extension field of a totally real algebraic
number field and K  has exactly two real places.

(ii) z  ramifies at all the two real places.

The methods of ours are the same as [Ko], [Ka] and [G], i.e., a generaliza-
tion of the classical Kronecker's limit formula, and Hecke's method described
in § 3 and § 5 of [Sil]. However, we calculate, rather than LK(1, 2() itself, a
suitable coefficient KK(C) o f -1((s, C ) in the Taylor expansion at s=0, where

C ) is the zeta function of an ideal class C  of K  (see (2.1)). In fact, it
suffices to obtain IcK(C) for our purpose, so the statements will be described
for KK(C).

Stark-Shintani conjecture, which is one of our motivation of the present
paper, predicts a kind of arithmeticity for LK(1, ([St1], [St2], [Sh5] and [T]).
However, the conjecture has been unsolved yet except some special cases. In
fact, the case where K  has exactly one imaginary place and z  ramifies at all
real places, which is described in [St2], is unsolved one. If K  is of degree 4
over Q, this case is contained in the case (1.1) and one can use our results to
give numerical datas in the case.

Let us explain the contents in more detail. In § 2, we recall some facts on
the order o f "k(s, C) at s=0 for a general algebraic number field k  and prove
a kind of transformation formula for ",,(s, C) (Proposition 1). It plays the
same role as the formula (92) in [Sil, p. 140], which has been used in [Ko], [Ka]
and [G ]. By virture of this formula, we can despense with Gauss sums and
the assumption on the primitivity of z, so the value icK(C) seems to be the
more natural in our computation than LK(1, z). In § 3, we define a harmonic
Hilbert modular function f .b(a, b; z ) in (3.1), which is a generalization of the
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logarithm of the Siegel function q5(a, b; z) in (4.7). It appear as the constant
term at s =0 of a  non-holomorphic Eisenstein series E(z, s) defined in  (3.2)
(Proposition 2). The term has already been calculated in [Ko], [Ka], [G] and
[A ] .  However, their results contain some numerical mistakes in the term.
Here we recalculate it in  a  suitable form for us in  this se c tio n . In  § 4, we
describe some properties of f oxr,(a, b; z) and its related functions. In § 5, we
define some kinds o f  periods of f  b ;  z )  on  cyc les Ow with respect o
arithmetic congruence subgroups of H ilbert modular groups, which will be
denoted by <O., def> . We generalize Hecke's method and express the
Dirichlet series in Proposition 1 by cbEs>, i.e., a period of E(z, s) defined
similarly (Proposition 3). In Chapter 2 of [S il], the  Kronecker's limit for-
mulas for LK(s, x) has been given for the following cases: (1) K  is an imagi-
nary quadratic field, (2) K  is a real quadratic field and x is unramified at the
two real places, (3) K is the same as (2) and x ramifies at two real p la c e s . We
can extend them in such cases where K  is any quadratic extension field of a
totally real algebraic number field F  and the archimedean conductor of x is
stable under the action of Gal(K/F), i.e., the most general cases where all the
above three c a se s  a re  contained. We introduce periods <O., dzif> a s  a
natural generalization of those in (2) and (3). In § 6, we complete our calcula-
tion of ii-K(C) and express it by < , cbf> in the most general cases as above
(Theorem 1 and Corollary 1, which contain the results of [Ko], [Ka] and [G]
as special c a se s ) . We restate the theorem as Corollary 2 and 3 in the special
case where K is a CM-field, hence <0., obf > is expressed as a special value of
f .b(a, b; z) at a CM-point. Our main purpose is attained by Corollary 5 and
6, which treat th e  c a se  (1.1). In  this case , <0., chf> is expressed a s  a
difference of the special values of f a.b(a, b; z) at suitable two points. O ne can
calculate the value of KK(C) effectively by computers by means of this expres-
sion. In  § 7, we give two numerical examples in  th e  c a se  (1.1) by using
Corollary 6 (the case (1) in this section) and, in addition, give four examples
in the case of Corollary 3, i.e., the case of [Ko] (the case (2)). Each LK(s, x)
in the examples is described as a product of other L-functions whose special
values are calculated by some classical fo rm u la s . Calculating KK(C) or LK(1,
x) by means of another formula, we ensure our formula from mistakes even
in the numerical s e n s e . We remark that our formulas are suitable for calcu-
lation of LK(1, x). In  fac t, we give each numerical d a ta  exactly with the
order of 1 0 ',  while the time we need is a few seconds in the shortest case and
less than 13 minutes even for the most longest by means of a computer with
32 b it . A s  a n  appendix, in  § 8, we consider the case where two L-functions,
one of which satisfies th e  conditons fo r  K  an d  x  described in  th e  above
paragraph fo r § 5, and the  other of which does not, coincide (Theorem 2).
Here one can know that there a re  m ore  cases , different from those of
Theorem 1, in which our formulas can be used. This section is based on [Sh
4] and is related to [I].

Finally the  author would like to express his gratitude to Professor H.
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Hijikata and Professor H. Saito for their helpful suggestions.

Notation. We denote by 91(z), ( z ) ,  z, 1z1 and WI the real part, the
imaginary part, the complex conjugation, the absolute value and the square of
absolute value of zE C respectively. Let i = i  —1 and e ( z ) =e 2 ' '  for zE C.
Let sgn(t)-= t/Itl for t ER, t O, and R+' ={ tERIt >O}. We denote by To the

Euler constant, i.e., -  k — l ogn ). For a ring I, I '  denotes the grouplimn-00(E7 

of all invertible elements of I. For two modules A, B , and for an element b
E B , A+ B  and A+ b denote the module generated by A and B , and the set
consisting of elements x + b  with x E A  respectively. For sets A, B , and for
an element b, A— B  and A— b denote the set A n Bc and A n {b}c respectively.
For a set A, #(A) denotes the order of A .  The other notations will be defined
in each section.

§ 2. Preliminaries

For an algebraic number field k , T rk ,N k , dk ,bk , Ik , Eh, Rh and Wk denote
the trace with respect to k /Q , the norm of an ideal with respect to k /Q  (also
the norm of an element, in the present paper, should be considered as that of
the ideal generated by it, which is a positive rational number), the absolute
value of the discriminant of k , the different of k , the ring of integers of k , the
group of all units of k , the regulator of k , and the group of roots of unity in
le  (or its order), respectively. For Ask, eh(A ) denotes e(T rk (A )) and A>0
means that A is positive at all real places of k .  For an integral ideal f and a
set D consisting of several real places of k E k(f ,Q) and Wk(fD) denote the
subgroup of Eh and Wk consisting o f  satisfying E. -=•1 (mod f) and Ei >0 for 1
E Q, and Iik (fQ) denotes the ideal ray class group of k  with the conductor f.Q.
If f  = Ik  or D=0, we drop it in each notation (for example, Ek(S2), Hk(f) mean
Ek(ik[2), Hk(f0), respectively). Further, if D consists of all the real places of
k , we use the notations Eh+ and Ek+(f) in place of Ek (Q) and Ek(fD) respec-
tively. We denote by hk  the class number of k  in wide sense, i.e., #(Hk(L )).
For an ideal W of k  prime to f and for CE1-1k(fS2), WC denotes the element of
Iik (fQ) containing WQ3, w here E  C . F or D, rs2 denotes the character of le
defined by rn(A)=Ili.psgn(Ai).

Let r , r2 be the number of real and imaginary places of k  (ri+2r2=[k:
Q]), and put ei=#(-(2), —  e i .  Now, we show th a t 1,(s, C) for CEHk (f ,Q)
has the following expansion:

(2.1) .„(s, [  Rhi " +Kh(0+ 0(s)L

where the term with the symbol 11- appears only when f /k  and D=0.
Since "k(s, C) is rewritten in the form of a linear combination of L k(s, x)'s

for all characters z  of Hk(fQ), we may cosider the Taylor expansion of Lk(s,
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x ) at s=0 to prove (2.1). Put

(2.2) Gk(s,fS2)— (dkNkf)(7r-ir(a e l ' ( 7 r  2

+ i
  r( +

2
 1 )) e ' ((27) - s r(s)) r 2  .

If x is primitive, set A k(s, z)=Gk(s, ft2)Lk(s, z ) .  Then, we have

(2.3) A k(s, x)= Q (Z ) •Ak(1 — s, X),

where g(x) is the Gauss sum associated with x .  By means of this equation, we
can determine the order of Lk(s, x) a t —0 from the one at s = 1 . Since the
latter is 1 or 0 as well known, the former is eH - r2-1 or c'H- r2 according as
x  is trivial or not. If x  is not primitive, Lk(s, z) can be written as Lk(ss, zo)
times Euler factors 1 — xo()N ko' for finitely many primes p, where xo is the
primitive character associated with z .  Then we know that the order we
consider is equal to or greater than that of Lk(s, zo), and that in particular, if
x  is  trivial, the order is equal to ri+ r2+ p —1, where p  is  the number of
different prime factors of f. Summing up, the order of Lk(s, z) at s=0 is

(2.4)
{n + r2 + p -1 (if z is trivial)

(if x is non-trivial)

If p=0  and e i=ri, i.e., f= /k and S2=0, he term with tt in (2.1) is derived from
the first term on the right hand side of

../ z ( s ) R k h k  1(2.5) sr 147k s  +0 (1 ).

This is a modification of Dirichlet's residue formula which is obtained from
(2.2) and (2.3) for the trivial charahoer by the fact that 9(z)=1 in this case.
Lastly (2.1) is deduced from (2.4) and (2.5).

Next, we show the following lemma related to (2.1).

Lemma 1. A ssume that e i * l .  For CEHk(fS2) and for A le` which is
multiplicatively congruent to 1 modulo f, we have

(2.6) z -9(A )k (s,(A )0=k (s, C)+ 0(s°" 1) .

Proof . The case ei=0 s trivial. Assume that ei a.2. Let A1, /12E be
elements of le  multiplicatively congruent to 1 modulo f such that (A1/.12)i <O,
(21/A2)1>0 (d1ES2—..(2— T), where T is  an fixed element in Q . W e m ay
consider that C(.11)C U (A2) CE H k (fL ).  By (2.1), we have

k(.5, (Ai)C)+ k(S,(/12) 0 =
( s, 0 ) =  0 (S e l '+ r 2 + 1 ) .

Sine rs2(/11)-- — rn(A2), this can be rewritten as
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z-D(.11) -k(s,(21)C)= rs2(A 2)k (s,(A 2)C)+ 0(s" ± r 2 + 1 )

Hence we obtain (2.6) from the above through the induction with respect to
the number of /ES2 such that .1i< O.

Before ending this section, we show a functional equation between zeta
functions of ideal classes analogous to (2.3), which will be used in the proof of
Theorem 1.

Proposition 1. L et VA, 23 be ideals of  k  which satisfy V,tV3=(fbk) - 1  and lE
Vt (i.e., V3E(fbk) - 1 ). Then, we have

(2.7) Gk(s, ft2) E rp(2) 
AeVf+1/Ek(fQ) N k (W W - 1 ) s

1 
AE93-0/Ek(fQ) Nk((/)0 - 1 ) 1 - s •  G k ( 1 ft2 ) E  r a ( A ) e , ( A )  

where both sides should be considered as the functions o f  s  after analytic
continuation to the whole s-plane.

P ro o f  For tERxrl+rz and A ek , put g(A,
where Da denotes the set of a ll  archimedean places of k  and pp=1 or 2
according as p is real or imaginary. Applying Poisson's summation formula
to g(A , t), we have

(2.8) E  g(A, t - ') = E ek(A)g(A, t) ,
AEM+1

w here u = ilp e D a tp ". Define the action of Ek(fS2) on R +" . 1 - E r 2  b y  (E • t)p=
DEPIltP (P Q.) for E h(f S2) and t E R ?+-̀

r l + r 2 . Take a fundamental domain D
of R 4 1 + r 2  b y  Ek(f,Q) such  tha t E D c D  for EER?<. B y Mellin transforma-
tion under the assumption that N(s) >1 on the left and ER(s) < 0 on the right in
(2.7) respectively, we have

(2.9) 1.h.s.=(dkNkf)INkr • f  E  g(2, t)• uf clx t ,ID ,teml-i

(d kN  kf) s  2 1 NkV ls - 1  

(2.10) r.h.s.= • f  E  ek(A )g(2, t)- u Y  clx  t ,
ie',I Nkf DAe93-0

dtpwhere clx  t =il pesaa— .
tp

Divide D into D<1 and D>1, where the former denotes

the part satisfying the condition u< 1 and the latter u a 1, and apply (2.8) to

the summation in the f  -part of (2.9) and (2.10), changing t  in to  t - 1  if

necessa ry . Then, both right hand sides of (2.9) and (2.10) can be rewritten as

ie1 1,11T h  N k (W f )
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(dkNkf) 8 2 1 NOt a  1

ie'N/Nk f
1--s E ek(A )g(A , t)•u 2 a" tfD>i ,l e 0 - 0

+ F (d k N k o s 2 iN a ts -  r i R k i
L N kf s — 1

D±(dkNkfANat s • f  E g(A, t)• d i e t ,
,1 ,1e9lf+1  

where the term with the symbol appears only when S2= 0. It is a meromor-
phic function on the whole complex s-plane and hence this completes the
proof.

3. Kronecker's limit formula

In the rest of the paper, let F  be a totally real algebraic number field of
degree n over Q . In this section, we recall the generalized Kronecker's limit
formula, which has been treated in Konno [Ko], Katayama [Ka] and Goldstein
[G].

Let S20a be the set of all (real) archimedean places of F , and we use the
notation g to express a general element of S20a . For a set X , we denote by Xa
the direct product of n-copies of X  indexed by gES20a. We set ,I=IzE  Cri,- (z )
>01. For z E (C — R )a, x , y  denote the elements of R '  such that x9 =  (T (4 ),
y 9 =(.72(4) 9 . We denote 119z9, 11911411 and 1191),91 by Nz, NMzII and Ny respec-
tively. Further, for z E (C — R )a, we denote by z+ the elements of such that
( z ) 0  = z 9  or z g  according as yg >0 or <0 respectively.

Let a and b be integral ideals of F .  Put al =bbF', c=bFab -1 , co
=bFaibi and ci =bFa- l b. For (a, b )E Fx  F, put aa=(a)a and bb=(b)b. Here
assume that aa = a if a= 0 and bb =b if b=0. Let m, n be the denominator part
of (la, bb, respectively. We use the nontations na), KF(bb) to denote F-(s,
C1), KF(C2) with CI, C2 such that aam E E HF(m), bbnE C2EHF(n), respective-
ly.

In this section, we drop the subscript F  of EF and denote it simply by E.
For a subgroup U of E  with finite index, we denote 1E: (11 by Ind(U).

For a, b and (a, b), define a function haDz-, fl.b(a, b; 4 E C  by

(3.1) f oxb(a, b; z)-= 
I n d ( E ( m ) ) N F (m c )

1 'F ( —  I, aa)2 7 0n N y

1 eF(Rb+(a8z)+) + E E,Ind( U) • fieo,-0/u o*a.,,-.+a N F((/3)bi 1)

+  

[ l
2

Ind(E(n)) . 
n /.7( i(Fb  b ) ti

where U  is a subgroup of E(m)FIE(n) with finite index (the above definition
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is well defined with respect to U), and the term with the symbol is consid-
ered only when aE

As will be shown in Proposition 2, the summations on the right hand side
of (3.1) are uniformly absolutely convergent on any compact subset in VI with
respect to z. Note that f ,b(a, b; z ) depends only on the class (a, h) mod a '
x and in fact, f  b ;  z )  is real valued (see § 4).

Further, we define Eisenstein series associated with an integral ideal fo of
F , a and b, and (a, b)Efo-i a -i x f o -i b - i as

1 (NFcoNy)s eF(aa-(3.2) E(z , s)= Ind(E(f 0)) camIxb1-(0,o)/E(f0) Ma+ dezlis  •

Proposition 2. For each z E V 1., E (z , s)  is absolutely convergent for 9i(s)
>1, and can be meromorphically continued to the whole complex s-plane. The
right hand side of (3.1) is absolutely convergent for z E a ,  and E (z ,1 +s)  has,
af ter the analytic continuation, the following expansion at s=0:

(3.3) E (2,1+ ,S)= [
2 n -

2s
R  F   it +I dF • f c,xb(a, b;

— [2n - 2  RE • flog(NFc1Ary)-2n(logr + yo)}] ' + 0(s) ,

where the terms with the symbol t  appears only when (a, b)Ea - l xb - i .

Before proving Proposition 2, we shall give some facts we need.

In the first place, we consider the integral f ( ,, d t for sE C  and $E

R , and the path P  ( = P +  or P -  according a s  $ >0 or $ < 0  respectively)
associated with the integral. P±  is defined as follows. Let e  be a positive
real number. Firstly go straight on from œ i to (1 + E)i along the imaginary
axis, secondly turn around i counterclockwise with the distance E , and lastly
go back to œ i along the imaginary a x is .  P -  is defined as the symmetric path
of P+ with respect to the real a x is .  We have the following lemma (see [Sil],
[Ko]).

e(Et)  d d  f  e ( t )Lemma 2. For Î °0 0 (t2  + 1 ) ,  t  a n  p  ( t 2 +1 ) s d t ,  which are integrable for

9 i(s )>+ and an arbitrary sE  C  respectively, the followings hold.

F (s 4 )

J  

e(Et)
— ( t 2 + 1 )

d t= F(s)

A ssume that e + O . For any  compact subset D c C , there exists a positive

fp  t
e
2
(_EF d t ($ *0 )

($ = 0)
for ( s ) >4.
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real num ber M  such that

fp
e(Et) M  

( t 2+ 1 ) ,,at
IEe ' '

( V s E D ).

(3)
1  I '  e(et) 

j_ . t 2± i d t= e l le l i )  f o r  EER.

Next, we describe the following lemma which we need to show conver-
gence of some infinite sums and integrals.

Lemma 3.(1) Fo r a lattice L  in  R a and a Positive real num ber A , there
exists a positive real num ber M  satisfying the inequality

1 E <M•nu g ,g A9 2 +1A e--u-L +w

f o r uER_`` such that u9 > A  (gE,Qoa) and wERa.

(2) For a F-lattice L in R a , w E F, real num bers A 1>1 and A 2>1, there exist
positive real num bers Mo, M1, M2(M2>1) satisfying the inequality

1 Morigug +MI 
0 , A.frIL + w ij A 2 u91.191 f i g (

u 9
m2u9)

f o r uE1:1<ci such that ug1lug2<A1 (Vgi, g2EX0a).

P ro o f  For 1E{1, — 1}a , put R =tvERalsgn(v 9 ) =  9 (g  Doa) or ug=0 (g

poa )}, V  =+-
1 L +  w  (resp. L +  w ), an d  V '  v n ir. For L=Zvi+•••Zvn,

choose vo=Nivi+•••+Nnvn E  (N1, •••, Nn Z ) and N oE Z  (No >1) such that
v.;= v,+NovoE/e for j=1, •••, n .  Then, L'= Zv1+••• Zv;: is a sublattice of L,
and IL: L'I depends only on L  and /. Thus, to prove the lemma, it is sufficient
to show the inequalities which are obtained by changing E A E v  in (1) and (2)
to E A E l i a  under the assumption that L  has generators {vi, •••, viz} such that
••-, v izE Re' and w E R e . For example, consider the case where a9 =1 for all g

p a  (also the other cases can be treated similarly). For the above •••,
val, we can take a positive real number Qo such that D={E,,A 9 v9 E R a l0 A g <
1} , Q o P  , and denote by C ov(L ) the volume of D .  The inequality in (1) is
derived from the following:

Cov(L) E , 1 , ,
—

h(x )dxH g  g A eV d  g  /tg 2
 — I— g 114, go 9 g

where h(x)— (x 2 +1) - 1  or 1 according as x O or GO. As for (2), put Vo°. =  V`r

fl [O, 2ne0A0., V9 ` =IAE V1.1 9 a2nQoAil for gE.Qoa, and  Vi°- = V0 ( =
U g Epo . V9 ' ) .  Then, we have 7  < "  7  + 7,--.A evd — g e p o 'E A E v o d •  Choose a positive
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By the above estimation, the inequality in (2) is obtained.
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real numbr Q1 such that [ — Qi, Qd"E{EgAgvgERal lA 9l<1}, and put Q2=Min
{AgIAE Vo6 ,9 E S Ia } . Since #(149<(2N+1)n, where N  is  a positive integer

2nQoAi greater than ' 
we have

1 E A  

1 
 
< ( 2 N  + 1 ) n  •

AE1, 0  g  1 -12 u -g A 2 Q 2 u g

On the other hand, by the assumption, for A E V g
6  , we have

E  u g lA g l>   Att g-i A g _  At  
A

o-1 ( ( .  g 2(n-1)(20240+ E (A g  + 2 Q 0 A 1 ) )
g *g

Since /1,--, - 2(n - 1)Q0.111>2Q0 and Ag +2Q0A1>200 for g *  , we obtain

Cov(L) • E 1  < f A2-2711fEgx° dX
A VG6  g  4 2 u g lA g i[ ( 2 0 , . ) a

Rem ark. We can take a fundamental domain D of R V ' by the action
of U  (a subgroup of E ±  with finite index) such that D c lu E R +a lu g iu g 2 <

eg2E.Q0al with a  suitable constant A1 depending only on U .  This
can be seen, for example, by [Shi]. Further, for such and an ideal t of F,
n D c[A ,,  œ ) a  with a suitable constant A2 depending only on U  and VI.

The following expansions of F ( s )  will be used in the proof, i.e.,

(3.4) F(1+Es)tm =1 — E m y o•s+ 0 (s 2 ) ,

,/7r1 (  21(3.5) r  + Es)) =1 —  em(70+21og2)•s+ 0 ( s 2 ) .

Proof of Proposition 2. Let the meanings of t, 1 be as in (3.3), (3.1),
respectively. Assume that 9 t(s )> 1 . We begin with the following equation:

(3.6) eF(aa— $b)  =  1 e F ( œ a )  
(a,g), 1.b,-(0,0)/E(f0 ) + gzils NFai2s a.,1-01E(f0) NF((a)cii-1)28

+ N 2.9
 1  N I eF(— 8b— flax) 
AT 2si v y  Bebi—o/E(fo) NA/6)2s

e F((aq +
x  E  

N  (( a  + + 1)s
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a w here  a-  gz=i3y(aid- and ai= . 
B y  (1 ) o f Lem m a 3  w ith  itsRY 

rem ark, we see that the sums on the right hand side of (3.6) are uniformly
absolutely convergent on any  compact subset in the righ t ha lf plane {sE
CIN(s)>1}. Applying Poisson's summation formla to  the inner sum of the
second term on the right hand side of (3.6), we have

eF((ai+--x—y)fiay)

a i N ((a + + 1) s

Ny • NF(R)
 E  e F (  a 2

x )  f  eF0ayt + a2t) dt
dF NFai y N(t2 + 1) s

1 The sum Ea, is rewritten by setting a= 
RY 

a2+ a as

=  
N y  •  N A /3 )  

 eF (8ax) E  eF ( aR x)11 e ( a g R g Y g t 9 )  dt
dF NFal g  f .  ( tg 2 +1 ). 9 •

0, and as (N/71-F(s-1/2)F(s) - 1 )n if a= 0, the latter of which appears only when
aEcc i . Here the criterions of Poisson's summation formula are satisfied by
(2) of Lemma 2 and (2) of Lemma 3, and so  the above transformation is
en su red . Then, (3.6) is rewritten as

1 eF(aa— d3b) ( i )+ 0 0 + ( i i i )x  ,(3.7) Ind(E(fo)) (b) Ma+13zii s

where

1 1 e F ( a a )  E(0= 
N F a

2
'  I n d ( E ( m ) ) a 1-0 1 E (m )  IV Fk (a)C 11 1 12 S

1 1 ( i i )=  
idFNFaiNF0i 2 s - Wy 2 s - '  ind(E(f0))

x  E  e F ( —  / 3 b )  
flEb,-01E(f0) Nr(0)bi 1)2s-1 („ a „ , + aE  eF ( a t3 x )II f

(Ho= 1  NITr
dF NFaiNFb

i 2 s - l N y 2 s - 1 r ( s )

1 eF(Rb) X Ind(E(n)) R eb,-olEco N F(0)bi - 92 s  1  •

e(a9/39y,t,) 
(t 9

2 + 1 )s  u `g '
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By Proposition 1, we obtain the following two equations under the assump-

tions that J ( s ) > +  and N(s) >1:

e F (a a ) 
aen 1 -0/E(m) NF((œ)t-ti 1\)2s

=(dF - 2 s.ATFm1 - ")• (2sirurs • (27r) - ( 1 - 2 s) • F(1— 2s))n • 2s, aa)

eF(db) 
D \ f ,  1 \ 2s-1

fiEbi — OIE () N F (G ) ) 1J1

=(d.F4 - 2 8 NFn2 - 2 8 )• ( -2coszs • ( 2 ) 2 2 [(2.

F (2  — 2s))n • F..(2-2s,f)b) .

We can modify (i) and (iii) by them . Then, after changing s into 1+s, (3.7)
may be rewritten as

(3.8) E(z , 1+ s)=(0' + (ii)' + ,

where

dF  (-2 7 )n= "F(1-2s, na)Ind(E(m) NF(Inc)

x ( 
 N Y   )s ( (2 \  2s  sings F(1-2s)  \n

N F (n12 C) 7rs (2 s + 1 )  J

E eF(— /3b—a,3x) (ii)' = Ind(E(f0)) pet,1-o/E(f0) 0 '+a NF((,8)bi 1)2 s+1

xrj 1
7,1:,  

 e
(

(
t9

a/fl_giY)
g
s

t!)  d t, ( NA ry c y

1 '2s bb) (HO' = 
I n d ( E ( n ) ) ( — s ) n  

(NF(n2ci)NY(27r)-2n)-s

F ( - 2 +
s

 F ( 1 - 2 s ) 

1

F(1+ s))

By means of (2) of Lemma 2 ad (2) of Lemma 3 with its remark, (0 ', (ii)' and
(iii)' can be meromorphically continued to the whole s-plane, and (ii)' becomes
an entire function. Moreover, for each sE  C, it can be seen similarly that the
right hand side of (3.8) is uniformly absolutely convergent on any compact
subset in with respect to z.

The terms ( i) ' and 0 0 ' are holom orphic a t  s = 0 ,  and the values of the
integrals in 0 0 ' at s = 0  are obtained from (3) of Lemma 2. They give (3.3) in
the case where aEta - 1 . Assume that aE  a- 1 . T o  ob tain  the terms with t  on

x (cosz s
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the right hand side of (3.3) and the term with in (3.1), we need to calculate
the Taylor expansion of (iii)' at s=0.

By using (2.1), and using (3.4), (3.5), we have

2s, bb) r  2 2RF 
L s +2nifF(bo+ o(s) ,

T ( 21 ± s) r(1 — 25)  y _
1 +  2 n (  —  lo g 2 )  •  s  +  0 ( s

2
)( cos y s 8 1 7 r F (1+s)

respectively. From the above two expansions with

(NF(n2 ci)Ny(2y) 2 n) - 8

=1 — {log(NF(n2 ci)Ny) - 2nlog2z}• s+ 0(s 2 ),

and with the remark that n= /F  and E (n )= E  if (a, b)Ecc i x6 - 1 , we obtain the
following expansion of (iii)':

(iii)'= [ 2n :RF
2 n / C F ( b b )

[2n-2 ^ F flog(NFciNy)-2n(logrc+ 70)}P + 0(s) ,

which gives the remaining parts of the right hand side of (3.3). Hence we
obtain our proposition.

§ 4. Function f n 6 x b ( a ,  h; z ) and its properties

In this section, we describe several properties and Fourier expansion of
f  o.b(a, b; z) and some functions associated with f.x6(a, b; z).

Besides the notations in the previous sections, we define more several
notations associated with (C  R ) a .  L e t  ={1, —1) be the multiplicative
group of order 2. We denote by +  the unit element of by —6 the inverse
element of c;E " ,  and put sgn(6)=11 9c,(0 a). For Z E (C  R ) a , let &- (z)
be the element of such that (zer(z)) g = s g n (Z (4 ) ) .  For (YE ,  put ..f)6 ={z
( C —R)al&'(z)= al (in particular, r = t' a ), and, for E (C — R) a , define 2 6  , f) °-

by (z9 9 = z 9  o r  z ,  according a s  ( (z ) ) ,= c f ,  o r  — Cg . T h is  definition is
consistent with 2+ in § 3.

For each O'E a ,  define a  holomorphic function V T Dz'—fg.x6(a, b; z)E C
associated with faxb(a, b; z) by

(4.1) f  L b(a, b; z)=
1 aa) sgn(c)(zOnNz

In d (E (m ) )  NF(mc)

1e F ( i 3 b +  aaz) 
Ind( U) fl.b 1-01u aen - i+ a ,? 1 (a f i)= 0 "  N F ((,3 )b 1  1 )
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LInd(1(n)) • icr: ( t/til b, ) 1I '

where the notations are as in (3.1). Then, (3.1) is written as

(4.2) f axb(a, h; z ) =  E  f `f .b(a, b; zc) .
QES'

Since f  axb(a, b; z) is absolutely convergent on .
,cr by Proposition 2, fffxb(a, b; z)

is also absolutely convergent on V .  The function A b (a, b ; z )  depends only
on the class (a, h) mod a - 1  X  b' as f  a.b(a, b; z ) does s o .  Further, for zE,fr,
put

(4.3) .0 4 (a, b ; z )= E f  L ,(a, b; z°),
crEe',cfe=1(eeS20)

w hich  is holomorphic w ith  respect t o  z e  (eE.Q0). If (a, b)Ect -1  x6 -1 ,  we
denote .gxb(a, b; z ), f  nxb(a, h; z )  and f ( a ,  b ;  z )  simply by f&b(z), .faxb(z) and
P ( z )  respectively . In this case, (4.1) and (3.1) is rewritten as

(4.4) f  gçx b(z )= sgn(a) 1' a ) (7ri)nNzArpc

E cri ((A)e, b1
_i ) e F (A 2 ,) +   K F (b )  

i (A )= 6

(4.5) f . b ( z ) = a)(N Fc 2 7r)nNy

+ E ,o - 1 ((.1)c, bi - i)eF((.1z )+)+ 2 :/erF
i c F ( b )

0*AEC - '

w here  O M  23)=E0,4-oNF() m , and m e a n s  a n d  belong to the same
class in H F (/ F ). In the case w here n=1, i.e., F =  Q, for (a, OE Q x Q, we
have

{ —log( r7)(z))
(4.6) f ;x z (a, b ; z )= 1- -

2
log "O(a b. z )

(if (a, b)E  Z  x  Z )

(if 0<a<1) •

Here 7)(z) and q5(a, b; z) are the Dedekind 7)-function and the Siegel function
defined by

22(z)=q z i f .  ri (1— q.n)
(4.7)

{  0(a, b ; z )= 
q z + 1 3 2 ( a ) ( 1 _  

qx )• H (1— qznqx)(1 —  qz n qx - 1 ) ,

n e N

n eN
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where qz=e(z ), qx=e(x), x= az+ b and B2(a)— (22 — a  + -
1  

The latter is well6
known as a modular unit (see [K-1.]). Our function fLb(a, b; z) is viewed as
a generalization of their logarithm.

By the definition, the following can easily be seen:

(4.8) 1 N a, b; z ( ')=1 1 .b (a, b ; z ')  f o r  zE(C— R)a

(4.9) f (°-.).(p)b(a, b; z)=1,%" - "(aa, Rh; ,3a- 1 z )  for

where a, R E F . .  We have also the following distribution relation, i.e.,

(4.10) E ilb(a0+ a, bo+ b; z)= fg.6(ao, bo; z) [ 
R F

   logNF( -6b- 1 )] t  ,
(a b)a l d F

where aca, 6cti, (a, b) runs over a - 1  X 6- 1 /a" X II", and the term with the
symbol t appears only when (ao, bo)E a '  x P .  The equation (4.10) is rewrit-
ten by (4.9) as

(4.11) E f lb(ao+ a, bo+ b; z)=./Lb(aao, ,3b0; [  R F    logNF(,3)] ,
(a,b) 2,1 dF

where a, ,3E IF, da- 1 » 0  and (a, h) runs over (a) - 1 a- 1  X ( 13) - l b- Va - l xb - 1 , and
the term with the symbol t  appears only when (ao, bo)E(a)'a - 1  X (,3) - 1 b- 1 .
(4.10) and (4.11) are viewed as a generalization of a distribution relation of
Siegel functions in [K-L].

To describe automorphy of f„,b(a, b; z), we introduce some more nota-

tion s. Put G = GL2(R). For A =
( a  , 3 )

E G  and z e  (r e s p .  C U{00}), wer  a
define A zE,f) (resp. C U {co}) by

(4.12)
A z={ (az+ ,3)(7z+ 8y 1( i f  detA >0)

( a  + + 6) - 1 ( i f  detA <0) .

We define the action of G on ,f) (resp. C U {co}) by AzE, (resp. C U{œ}) for
A G and (resp. C U {œ}), and the action of G a  on a  (resp. (C  {œ})a)
componentwisely. For two ideals a, b and an integral ideal fo of F, we define

a  ,3
(4.13) r . = { () E GL2(P)a, 8EIF, i3Eab -  yE ct - lb, a8 — gyEEF}r  a

a  ,3
(4.14) r„xboo )= {( )Ernxda, aE fo+ 1, ,3Eab - i fo, yEct - l bfol .

r  a
Now automorphy of f b; z), which is derived from that of E(z , s), is
described as
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(4.15) f  a,b((a, b); A z)= f .b((a, b)A ; z)

f o r  (a, b ) l a ' x 6 - 1  , axb ,

(4.16) f a x b ( ( a ,  b); Az)= f axb((a, b); z)

f o r  (a, b)Efo - l a - l x f0 V 1 , (a, b)Etct - ' X b , AEFoxb(fo) ,

2'R F .(4.17) .f. xl,(A z)---f  "f,(z)   logNII)(A, z)II
d,

fo r  AE r “ x b  ,

where j(A , z )= y z + for A =

Rem ark. A transformation law with respect to g -xb(a, b; z ) has been
calculated in [G-T] (though in a much more complicated form).

Note that the function gffxb(a, b; z) on ,V  defined by

(4.18) 9 & (a , b; z)=sgn(—  o')IVFc • ape,  f&b(a, b; z ) ,

where

(4.19) a.0.=11 a, , ag = 1  aB _ 1 ( 3 .   a  
azg azg  2  \ ax g a y gz • )

in a holomorphic modular form of weight 2 with respect to Fc,xb(fo) except the
case where n=1  and (a, b)Ea - l x b- 1 . This can easily be seen by (4.16), (4.17)
and (4.2). For the convenience of the reader, we derive the following Fourier
expansions from (4.1) and (4.4):

(4.20) g&b(a, b; z )= 
I n d ( E

1
( m ) ) N

1
;m

aa) 

•  E E NF((a)a)eF(131) + agz) ,Ind( U )  sEb - '-oru ( 0 )= 6

and if (a, b)Ecc i  x

(4.21) gg'xb(a, b; z )= F ( (--1) + E 01(We, a)eF(Az) .

§ 5. Period <0., dzf> and generalization of Hecke's method

Let K  be a quadratic extension of F .  We denote the conjugate of A K
over F by AL and the trace of A with respect to K /F by TrK iF(A ). Let Da, S2r
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and fle be the set of all archimedean, real and imaginary places of K  respec-
tively, and divide the set aa of all archimedean places of F  into the disjoint
union of a r and ac lying below D r  and D e .  Moreover we divide DOr  into two
subsets a  and a  a rb itra r ily  and consider the disjoint union S20a=S2oUa USX
a s  a n  ordered partition  of S20a, denoted by p=(S2o, Q0, Doc). H e re  w e  m a y
allow one or two of S2o, a  and S20c to  b e  em p ty . In the rest of the paper, as
g  for S20a in  § 3 and 4, we use the notations, r, e , e ' and c to express general
elements of S2or, Do, a  and ac respectively. W e denote by ro, eo, ee, and co the
number of elements contained in Q0 r , DO, a  and ac respectively (eo+ e(;= ro,
ro + co= n ) .  For a set X ,  as X ° , we denote by X r and xe the direct product
of ro- and co-copies of X  indexed by rES20r and cES20c respectively.

T ak e  w E K — F . F or each rES2or, choose and fix one of the two real
p laces o f K  above  r  (denoted  by  r  again ) in  such  a  w a y  a s  w r>e r.
Similarly, for each cES2oc, choose and fix one of the two embeddings o f  into
C which coincide with c on F  (denoted by c again) in such a way as Z(co,)>
0. W ith the above choices, we consider the embedding K A - * ( . ,  Ar, AC,
"• ') E Ca, and regard elemnts of K  as those of Ca through this injection. N ote
that this injection depends on w.

F or w EK — F, put

(5.1) dzpo= A dze , cloiz vo = A d.ze ,  , choz e= (0 Je' w  
2 (2 e ,  W  e , ) (Z e , —  CO'  e')

(5.2) 3Q0=1-13e (see (4.19) as to  ae).

For a  function f  on V t , we define an  ro-differential form  dztf (Z1=((o, p), 10 =
(Do, Q.0'  S209) on , Ict by

(5.3)d A f  = asa(•-- , z r, •  •  •  , (pc, • • •)dzsa 0 A ciwzz

Note that if S2.0=S2c;= 0, then dzif = Act)), which is an element o f  C.
P u t Gwa={AE GalA w=w, = w t }  (se e  (4.12) a s  to  A u ) ) .  In general,

fo r  a  subgroup H  o f  G a , w e se t H .=H rl  ao a, 1-1+=fAEHIdetA 9  >0 (gE
Sal a )1 110) + = H + r1 G ,a, an d  denote  by  H  th e  im a g e  o f  H  b y  th e  natural
projection Ga4 Ga/(the  center of G a ). Let Fo be a discrete subgroup o f G a .
Put

(5.4) rt(ro )=y,a (r) ,
harmonic

Vi C f (A z )= f (z )  for A E n ,
where r  runs over all subgroups of Fo with finite index, and 'harmonic' means

a2
rea l C- -class and vanishing by the operation of „ —  for a ll gEfloa. We

dZgd Za

can all element o f  (.f-') a harmonic modular function on with respect to F.
We define a  se t ow(ro) of 77o-chains on .fr by



( a g  fi COg)(W g `g (0.)g

7g  a g 1 1 1
(5.8)

0
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(5.5) 0 .(r .)— {z (r , t, D )= 1
l  

D
rw

t, DI ,

where F  is a subgroup of (Fo)+ with a fundamental domain of the orbit Ggt
of t  by F w . Let f  be an element of 9R (F0). For F  such that f (F )  and for
Z = Z ( F ,  t, D ) 0 ,a (F 0 ), we set

(5.6) < Z  c le f> =  f dal (if ro>0)
1 or

# ( ( r ) )
•  c h f  ( i f  r o = 0 )  ,

which depends only on t  in the former case and is independent of Z  in the
latter.

If we put f  (z )=  f b (a , h; z), which belongs to R(Faxb), the value <Z, clAf >
for Z E  0 (F a .b ) is independent also of the choice of t  (see, Proposition 3).
Here we denote it also by <Ow, d.df >.

In the rest of this section, we shall generalize Hecke's method which is
developed in Chapter 2 of [S il].

Put / = { 0 E R
1

101< -

4
e( 0)1 0E/1 and 03= S  x X-̀ , which may

 

be regarded as the complex right half plane through the correspondence of (
$)E03 to Put Kax =(R)< X Rx)r X Cxc. For 7)=(•••, 717-, ••-, 77c, •••)E.Ka x , let
7gi TJri or 7)C, 72o2=77,2 or ria according as g r  o r  c ,  where 77r = (7)r1, 7ir2).

Through the injection KxD/1----)7) -- - (.••, (Ar, A`r), •••, Ac, •— )EKax (r, c are
defined as before), we identify elements of K x with those of K a x . We define
the action of Kax on 0 "  by 72-u=(..•,(7)r1171rOur, •••, uc, or (.••, — ( 7)r1/ 7)r2 )

U r, itc , •  • ') ( 72E K a x , u E 6 a ) according as 72,1/7/7.2> 0  or <O.
Next, for w E K —  F , define çoa,: 03aDul— zer by

WrU r i + W t r 
Z r  =  

Uri+ 1 (U
Z r  0.1t r 

(7" E a r )
Z r  CO r(5.7)

2c = W c ( ceDoe) ,

and the embedding Ow :A E G a  by

where A g =
( a s  l e g )

. I t can  eas ily  b e  seen  th a t 0 ,a(K ax )= Gwa, and the
7 9  89

actions of Kax on 03a  and G a  on r  are compatible with respect to ço,a, namely,
s9 w( 7) • u ) = 0 ( ) 5 0 ,0(u).

Let a, b be ideals of F .  If a+00) is an ideal of K , then Oca(EK)=(Fa.b)a,
and 0 ( E F ) — ( r . ) .  n (the center of G a ). For an integral ideal fo of F  , let
E it= { E E E K IE E '> 0 } a n d  El(f0)=IEEEk"IE - 1(mod fo)). Then, w e  have
0 ,a ( E k ) =( r ..b)w+ and 0 . (E ( f o ) ) = r „ . b ( f . ) . + . In particular, we have 1EK:
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EFEk(f0)1=1EKIEF: EFEZ(f0)1EF1= r ..b (f 0 ) .+

For (a, )3)E F x  F -(0 , 0 ), put /1- = a+ dco and v = / T u .  Then we have

(5.9) (  Y e '  5 d cole ,  =
1 (  coe, - cò e, y  2 ( 1  y   dve,  

4 I /Te, ;%•,I ve,+ ve ,l / V e'

(5.10) ae( Y e )  d z e
Mae+Rezel!

1  ( We We  ) s . s ( 1  )

8 - 1

47C\ 12e/Tel \Ve+ Ve - 1

vei dve 
(vei+sgn(L /T e)) 2  v e

s
s  d y e , \  2 )

2(5.11) f  2

( ye' + v;,1v e ,F ( s )

(5.12)
(vei+sgn(iTe/P-e))2

e ( 1 ).5 —1 V ei
r(  s+1V

dve \  2  ) 
ve  = s g n (X e / T e9  r ( s )V e+  V e  I

where S  (the right hand side of (5.11), (5.12) are independent of
E S), see [Sil].

Proposition 3. Let be an ideal of  K , f an integral ideal of  K , and put
fo=  n F. A ssum e that Q3c(fbK) - 1  an d  3bF =olio + bp.0 with two ideals a, b of F

and v o , N E K . Put a= TrK1F(vo), b= - TrKIF(Po) and co= . For a disjointvo
union S2or =  D o U  , Put p=(S2o, a, Doc) and 4 =(c o , p ) . Further, f o r E(z , s)
in (3.2) associated with the above fo, a, b , a and b, define the function Es: V 1 - >
C  by z i - E ( z ,  s ) .  Then, we have

(5.13) 1 rs)(2)eif(A) 
IEK:EK(f ,(2)1A.o-R,(fD)NK((/1) -1 )s

TD(110) Gx(s, f
4 "N K fZ7rno- s)r(s)n

..(2) <O., ctiEs> .

Here <Ow, dzEs> is independent of  the choice of  Z E  Ow .

P ro o f  For (a, ,e) cli xbi, put A= avo+ (3,a0E3, /i =illy°, and

A  r .h (u , /T)=112(ue , + ue , - 1 ) - slIs(ue+ ue-91-suei(uei+sgn(L/Te9)-2 d u  
e'e r  U r

Here we consider that h(u, ; 0 = 1  if r o = 0 .  By (5.9) and (5.10), we have

(5.14) c b [ I I  ) s i= 4 ro z
1, 02 ,0s ( f i g

i
l
v

c
i
°; (

1
G -o w; g1 ) sh( /i • u, X) .
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Choose Z=Z(F.xb(f0) + , to, D )  Ow and put U = 9 . - '( z ) ,  u 0 = ( , $ ) ) - - --Sow - 1 (to).
Then, we obtain the following from (5.14) with e F(aa R b)—  e and N/TK

W gNK(( vo)- 1 3 ) =NFc011

(5.15) <Z,cleEs>

1 
,
K

s

IEF: EF(f0)1
a  2 eK(A) r

EF(f0)_ K s , - /4 ,-.7.1."e0 2 cos A E 0 _ 0 / N  (( 2 )23j u h 0 -  • u, / T ) .

Here we should consider that the integral f h( /i • u , 21- ) is equal to IEK: EFI -1  if

ro = 0 . The sum 7 on the right hand side of (5.15) may be considered
as E A e0 -0 / E K *(f0 )E cE E K *(f0 )/ E F (fo ) changing /1 into /le. Then, we have

E
f  h ( A .( E - u ) ,;f  •  E ) = 1EK : E F1 E lt(f0 )I fOR,- ' r h ( " '

EEEK*(foPEF(fo) U

r (  s v e e  s+1\2e°
rs2(.1)r12(vo) \2  1 2  )  

IEK: E F E t ( f 0 ) 1 r ( s ) r °

b y  (5.11) and (5 .12 ). Since Et(fo)(1EF=EF(fo) and s o  IEK: E FE (f0 )11E F :

EF(f0)I = IE K : EZ(fo)I, the right hand side of (5.15) can be rewritten as

r ( r (  s+1) 2 e 0

rs2(vo) dK 2 2 ) \  2  rs2(.1)eK(A) 
1EK: E t (f0 )1  4  ro Irn+eo2cos r ( S ) r ° ,le3-0/EK*(fo) NK((/1) 93 1 ) s

Here we may change E ( f 0 )  into EK(fS2), and by the definition of GK(s, fS2) in
(2.2), we can obtain (5.13).

§ 6. Description of KK(C) by f a.b(a, h; z)

Let K /F  be as in  § 5. We denote by bK/K the relative different with
respect to K IF, and put RKIF = RK1(2 n  2 R FW K ), which is equal to IEK: E F I if K
is a  C M -field . Let D be a  subset of Dr , f  an ideal of K , and put fo=f (1 F.
Throughout this section, we keep in mind that terms with the symbol t , t t  are
considered only when f=/K, f =/K  and S2= 0, respectively. For CEHK(fS2),
(2.1) is rewritten as follows:

(6.1) -1‘(,51 C) R K  1  ] I t  
+  K K ( C ) +  0 ( s )  .

s
2eo'+co W K  S

We - use the notation WK(C)=IEK: EK(f-Q)I - 1 KK(C).

Theorem 1. A ssume that D  is stable under the action of  Gal(K/F) and
consider p—(S20, Q , ac) f or the subsets Do and a  of  S20r lying below D and Dr

—D respectively. F o r C H K (f  D ) , choose W EC - 1  such that lE k  an d  take
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ideals a, b of  F  and elements p, i) of K  such that Wf=a - 1  p+b - i v. In the case
where f=IK  and S 2=0, let Vi1=W(b - 1 ( v ) ) ' .  Put co = p / i ,  L I=(a), p), and let
(a, h) be the element of  fo'a - l x fo- l b- 1  determined by 1= ap+ b2). Then, with

= ø ( F )  and  f (z )= f ..b(a, b; z ), K K (C) can be expressed as follows:

(6.2) T.S1(V) • EK(C) = 11  dF<Ow, d,if> — [2 n - 2  R K • T r

where

R K IK 1 O gN a l+  e , ,,, KOco, delog( ( e ')  »  ( i f  Do=o)
CO e,  — COL e f

(6.3) T = 1 <1),,,, chilog(ze— coe)(ze— co`e)> (if  a={0)
O( i f  e0_2).

R em ark . By means of the definition of di, in (5.3) with (4.2), (4.3), we can
substitute g?b(a, b; z ) as f  for f  xb(a, b; z) in (6.2). Recall that A )b(a, b; z) is
holomorphic with respect to ze(eES20 ).

P ro o f  Put 3=(?IfbK) - 1 , po=g`l(gv `— ti`v ) and vo= v  ̀I (pv` —  p`v). It can
easily be seen that the conditions 1 E W, Wf —a- ip+b'v, 1= ag+ bu, and co= glv
induce 0 c(fbK) - 1 , 93=aiv0+big0, a= TK IF(vo) and b= — TK IF(po), and co`=
go/vo, respectively, which are the conditions of Proposition 3 considering co' as
co. Note that z-9(110)=(-1)e°z -9(v) since vo= v - 1 (co— co0- 1 .

By means of Proposition 1 with (2.1) and Lemma 1, we have

F RK  11 "

(6.4)
WK

+  IC K (C )+  0 (S )L S

-= 1 GK(1— S,fS2)E rD(A )eK(A ) 
s 2eo, + co I-24 e , i n

( - 4) e ° NKOL ‘ - ' 1 (  .  l ' ' . . )  AE0-01EKOD)NKYM3  9 1 - s  •

Then, by Proposition 3 and (2.2), (6.4) can be rewritten as

[ 111,7)Ki c  l s ] "(6.5) +1-D(v)ieK(C)+ 0(s)

= <O., cl4E1-s>( s  
- 2 e o '

 1 1 S  " -7 r )  F ( 1 ±  2 ) ("T r r (2 + 2 )) 
2eo

N/-2dc : N2 nKf \ 8

x ro. + sycom  —sr .

Here we calculate the Taylor expansion on the right hand side of (6.5).
Applying Proposition 2 to <0., cLEi_s>, we obtain

<ø, cl4E1-s> =  [—  2n - 2 RF< 0 ., e lD D .Is ]  t
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+,/dF< Ow, d4f) — [2n - 2 RFE<Ow, delogy g >l t

[2" - 2 RF(logNFe1 log7r 2 n —2n70)• <Œ, c/41>] +  0 ( s ) .

On the other hand, applying (3.4) and (3.5) to the remaining part, we have

22e0+ co 7r2n

(second line of r.h.s. of (6.5))=1+ (log
a K N  

+2ny0)-s+ 0(s 2 ) .
v Kf

Then, we obtain the following expansion of (6.5) as follows:

(6.6) [ Rw KK . 1s ] "  T Q , ) k " K (C)+0(s)

= [- 2 n - 2 RF<0.,c141>• 1
] t

 +,1 dF< , clef>

—[2n - 2 RF (ow, ciAlogl( cog 2 cog tg )Ao g l

—[2n- 2 RFlog(4e°N011)• <Ow, ,

where p l or 2 according as gES2or or gES2or. (6.6) shows (6.3) in the case
where f*/K.

Assume that f --- /K . Comparing the coefficients of s both sides of
(6.6), we have

RK (if S2=0, i.e., e0=0)
(6.7) 2"-2RF<Ow, d41>=1  W

K

0 (if S2*0, i.e., eo>0),

which we can also obtain by a direct elementary calculation of < 0., CIA>.

Further, (O ., cblog Y g 
i(cog —  w `g)/Pg1) 

vanishes in the following cases: (i) gE

Doc; (ii) e() 2; (iii) S20={0 (eo =1) and g *  e .  If it does not vanish, we can use
the following equation, i.e.,

Y r l(Z r—  W r)(Z r —  CO`r)i (6.8)
r

(cor_cotry •cos Or ,
CÒ r

where 19 is  the element o f I "  derived from ç20,- 1 (z )  in  § 5. Note that
associated with z E Z  depends only on Z .  (6.8) is obtained from the latter
equation for rES2or in (5.7), see [ S i l ] .  Hence we obtain (6.3) in the case
where f =1 -K and our proof is completed.

Corollary 1. L et the assumption on ,S2 be as  in  Theorem 1 .  Fo r C E

HK (D), let a, b be ideals of  F  and co an element of  K — F such that bKIF- 1 C
D%—a+ba). Put f ( z )=1 ,.b (z )  and 0 ,0 = 0 . ( F , ,b ) .  Then, we have
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(6.9) ( -1)€°• RK(C)=-, tŒF <O., cbf> —212 - 2 RF • T ,

where

,T.,(ze) V-ta- 1 )+

(i f  SI= 95) 

(O ., cblog(
We, —  (d e  /

RK I FlogNK( 

(6.10)T = —
1

<0., delog(ze— coe)(ze —  ee)>2
(if  S20={0)

0 ( if  eoa2) .

Rem ark. In the case where f—/K and S2= çb, each term of Ee ,  in (6.3) and

(6.10) can be rewritten by (6.8) a s  ( Z ,  d  (Ze , —  CO e)(Ze' C O '  z, (a)6,— Wte')2
,  where Z =

Z ( F , t e ,  D )  O. with te  such that —(te , — we, ) - 1 (te , —  Ẁe, ) E i R +  This expres-
sion corresponds to Heck's, see [Sil].

P ro o f  Take Ae(tbK,F) - 1  such that /11>0  (1E,(2) (A*0 if Q = q ), and put
v=/1 - 1 (w— i i = e 2 i .  Then, w e  have (A)VDKIFEC, ((/1)abKiF) - 1 =a - i p
+6 - 1 1) and W=/1/v. Considering ((.1)WbK/F) - 1  a s  V1 in Theorem 1, 2ti in the
theorem becomes /F+a - l b e , whose norm is equal to that of 2ta- 1 .=/F+a - lba).
Since rp(v)= ra(a)—  co`)=(—  i) e° a n d  <O., dilf> = < Ow, ch f >, we obtain our
corollary from Theorem 1.

In particular, if K  is a CM-field, Theorem 1 and Corollary 1 are restated
as follows:

Corollary 2 .  Let K  be a C M -f ie ld . F o r  C E H K (f ), let notations and
assumptions be as in Theorem 1. Then, we have

(611) KK(c)=IEK: EK(f)I 
I
E EFI • ts, dF f  axb(a, b; co) —{2n- 2 RFlogNAL] t ) .

Corollary 3. Let K  be a  CM-field. For CEHK (/K ), let notations and
assumptions be as in Corollary 1. Then, we have

(6.12) KK(C)= IEK 1: FF1
f.b(w) — 2' RFlogNK (W a - 1 )) .

Rem ark. Corollary 2 includes the Katayama's result in [Ka] on the case
of CM-fields as our special case (i.e. the case n=2), and Corollary 3 corre-
sponds to the Konno's in [K o ]. In particular, if n =1 , i.e., F =  Q and K  is an
imaginary quadratic field, (6.11) and (6.12) are rewritten as

1(6.13) KK(C)= loglIsb(a, b; a))11 if f*/K ,WK
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(6.14) K K (C )= logII2n-iNK([1, w]) 272 (c0)11 if f =1-K ,

which are classical results. Note that the values in II II on the right hand side
of (6.13) and (6.14) give rise to units in  a  class field of K  which is related to
f, see [R], [K-L].

If K  is a  totally real and S2= Qa, it is known that KK(C)E Q by Klingen
[K1], Siegel [Si2], [Si3] and Shintani [S h i] . T h e n , we have

Corollary 4. For g x b(a, b; z ) defined in  (4.18), le t  d g  =if b; z)
A g dz g . I f  K =F (w )  is a  totally real quadratic ex tension of  F, a+bw is an
ideal o f  K , and  a= + , then, <0 ., d g >E ,I ( IF Q.

Remark. Corollary 4 holds also for an arbitrary (YE a  with a suitable
change  o f the  definition o f  O.. Probably the  second  assumption in  the
corollary seems not to be required.

In this case, Goldstein carried out the same calculation of KK(C) as ours
in [G] for the purpose of obtaining the rationality of KK(C) and an explicit

form ula for it. H e asserted in  § 5 of [G] that <Ow, d4f> (=f  ao e fdzsh .)  was

described by sums and differences of finitely many special values of f  at some
points associated with Z. However, it has a  mistake in  general except the
case n = 1 .  In the case n=1, this integral may be expressed as a difference of
two special values of  f ,  which is one of elementary properties of holomorphic
functions. Of course, it is possible also in the cases where S2,3= 0 and #(.(2.0)=
1.

Now, we assume that a= o and ,(2.0= { 0 .  In this case, K  has two real
and (n— 1)-imaginary places, and the archimedean conductor .S2 consists of the
two real places of K.

F or CE HK(fS2), let a, b, (a, b) and co be as in Theorem 1, Put EK,F= feE
EKlee`=1, e>01 and  E K / F ( f ) = I E E E K / F I E E - -- 1 ( m o d  p l .  N ote that their ranks
as abelian groups a re  1. L et E  be the generator of EK,F(f) such that ee >1
(where e  should be considered as an  element of D a s  in  § 5), and put A =
0 . - '(e) where O. is as in § 5. Take toE •  and put ti =Aeto. For co, let wo and
col be the elements of ,f)a defined by

(6.15) (w o ),_ { to
(0c

(if g= e) , It' (if  g= e)
(wog —(if g= cES20`) , c (if g=cES209 .

We can take a  path in  f)(' from coo to col as Z E D  in Theorem 1.

Corollary 5. For C EH K (f S 2), let notations and assumptions be as in
Theorem 1 and as above. Put f (z )= b; z). T h e n ,  we have
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EK: EK(fS 2 )   j (f(wIc /7/F (6.16) K K ( c ) =  r . ( v )  

IEK: EFEK /F(01
0)—f(a),))— [2 ' R F T ] t }

where

(6.17) T =  
1

. l o g  
(to — we)(to —  cò e) 

4 i — we)(ti — co t e)

Here the branch of  logz is taken in such a way as 0<arg(z)<271-.

Note that the right hand side of (6.16) is independent of the choice of to
In particular, we can take to and ti as

(6.18) to=  (EgO t e —  ee (0e )+ (a le —  W ee ) i (EgO e—  egO e.e)± (We —  W ee)Z.  Ee— ti=
Ee E e

For such to and t1, we have T  = 71 a n d

Corollary 6. F o r C E H K (9 ), let notations and assumptions be as in
Corollary 1 and as abov e (i.e ., a-0  and S 2 0 = 1 0 ) .  L et coo, ah be as in (6.15)
associated with co in the corollary and with to, ti in (6.18). Then, we have

(6.19) K K ( C ) =  
K: EK(D)I  {8 ti/T  

IE K : E FE K /FI • 27ri ( f g24(coi)— f 0)) + 2 RF' f .

Rem ark. S ta rk  conjectured in  [S tl] a n d  [St2] that fo r  a n  algebraic
number field k, if the  value  e ; r2 in  (2.1) is equal to 1 ,K k (C )  (for K.k(C)E
Hk(f S2)) would be expressed as a form qlogIcI, where q E Qx and E  is a unit in
the  class field corresponding to the  unit element o f  H k ( f S 2 ) .  (In fact, the
conjecture holds if k= Q and k is an imaginary quadratic field, the former of
which is the classical result and the latter the result in  [Stn. Corollaries 5
and 6 in the case n=2 shows that a difference of two special values of f c,%(a,

27ri b; z) would express a  value of the  form
T

 logI€1 , a n d  hence f *b(a, b; z)
81, F

seems to describe class fields of K, where K  is quartic with two real and one
imaginary places, i.e., the case where ei =2 (e0=1), e (= e6)=0 and r2 (= co)
= 1 .  The case where eç=1 and r2-=0 is treated by Shintani in [Sh2], [Sh3] and
[Sh4] besides the  above papers. H e has shown in  them that K k (C ) can be
expressed by special values of multiple gamma functions in  this c a s e .  We
may consider that our function f .9 )6(a, b; z) takes the  p lace of a  m ultip le
gamma function in  Shintani's c a se . In  general, fo r arithmeticity o f  K k (C),

Stark-Shintani conjecture predicts that K k (C ) would be expressed as a homo-
geneous polynom ial in  the logarithm o f  several units which belong to a
suitable class field related to C's, where the polynomial is of degree e-F- r2,
and with Q-coefficients. (For example, (6.13), (6.14) and Corollary 3 are such
cases as Stark-Shintani conjecture holds, see [Sh5], [5t2], [T].) Here it is
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conjectured that the difference of two special values of f ..%(a, h; z) in Corol-
laries 5  and 6  for an arbitrary n  would be expressed a s  a  homogeneous
polynomial in the logarithm of several units with above conditions.

§ 7. Numerical examples

In this section, we shall give several numerical examples.
We consider the Artin L-function LL/K (s, x ) with an abelian extension

LIK  of finite degree, where K is a quadratic extension of a real quadratic field
F, (i.e., the case =2 in Theorem 1 ), L  is the maximal unramified (with respect
to all finite places) extension of K  (and so f=/K), and x  is  a non-trivial
character of Gal(L/K) of degree 1 satisfying the condition that the subfield of
L  corresponding to x  is totally imaginary (and so sx=0). This case is
classified into three cases in view of archimedean places of K .  Now we
consider the following two cases: (1) K has two real and one imaginary places;
(2) K  is a C M -field . The cases (1) and (2) correspond to Corollary 6 and 3
respectively, and in each case, the coefficient of the leading term in the Taylor
expansion of L L/ K (s , x ) a t  s= 0  (simply say 'the leading term' below) is
calculated by each corollary. If LL/K(s, x) is expressed as a product of Hecke
L-functions on Q or on imaginary quadratic fields, the leading term is calcu-
lated also by means of classical results. In such a case, we can compare two
computational datas by the different methods and make sure our formula for
icK (C ) holds in the numerical sense. The formulas for  LL /K(1, x )  in the case
(2) have already appeared in [Ko], [Ka], however, they have some numerical
mistakes. Furthermore, to the author's knowledge, the case (1 ) has not
appeared in the literature y e t .  Thus it seems to be meaningful that such
numerical examples are given here.

We take Q(/ ) as F  in the case (1), and Q(A/2) in the case (2). In boh
case, we have h F = 1 , and so we can take f (z) _FX.F(z )  as f , . b ( z )  in the
corollaries. We denote by f (z) the function which is obtained from f ( z )  by
eliminating the third term in (4.5), and by [11, v] the ideal IF,a+IFy of K .  In
the following, we denote by Co (or Co) and b y  C1 (or CI) the unit and a
generator of an ideal class group when it is cyclic. We note that a represen-
tative of CI-7 E HK(/K) (where C1 0 =C0) can be given in the form [1, ad with co,
E K - F.

The case (1): Assume that F =  Q ( , I ) .  Corollary 6 says that

(7 .1) IE K .  E K(S2 )1  1
K K ( C )

=  I „ I r) •  ( f  " ■
)
>%(W 1) — f g'<)b(coo)) + —

4
log(2+ id)}.2.F.E.K/F1 4,9ri

with the notation in the corollary. Note that we can substitute an arbitrary
subgroup U  of EK /F with finite index for E K I F .

Now we consider, as K , K I=F(,11+,1) and K2
=  F(V In this

case, hif, = hic,= 1 and L = — 1)=  K A NI — 1), which is biquadratic over F,
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and intermediate fields of L IE are K1, K2 and F ( ,/ - 1 ) .  Here we have

(7.2)
{ L L /K ,(s, x i)=K 2(s)F(s) - 1 • Q ( , )(s g(2(

LL/K2(s, x2)= "Ici(s) F(s) - 1 • "e( ,i )(s) - e(

Put s o =2 +1 j, /j+11 + 6.2=1+1—  1+  fd, E3 = El 2 E O  and E4= E22

which are all totally positive. EF, EK, and E K 2  are generated by {so, — 1}, {si,
so, —1}, and {62, so, —11 respectively. Let U K „ U K 2  be the subgroups of E K „

E K 2 generated by 53, Sit respectively. W e have IEK,: EFUK,I =2 and
IEK2: EZ2I — IEK: EFUK2I — 2. Let I/K (IK ,S2,)= {Cm, ( j= 1  or 2).For (oK, =
V i+ f j . and coK2=V —1 + fj, we have /K ,= [1, WK,], bK/F=((oK, — coK ,`)EC,i, and
KK,( KK,(C,0) by Lemma 1. Then the leading terms $1, E2 on the left
hand side of (7.2) are given by — 25K1(C11), — 25K2(C21) respectively. Applying
wK, and E3, or (OK. and E4 to co and E in (6.18), we calculate KK,(Cii), KK2(C21)
by (7.1) as

Ki(C11)
= — 0.2127811447300575700642565273358697126237563459662281—

KK2(C21)
= — 0.3129693092540155665711898484819018815478296777114764--

and hence

(7.3) le1=0.4255622894601151401285130546717394252475126919324562-•
$2=0.6259386185080311331423796969638037630956593554229528-- .

On the other hand, w e have RK,/RF=logeo+21ogs, (j=1, 2). B y (2.5), we
obtain the leading terms on the right hand side of (7.2), i.e.,

(7.4)

1 log(
s o s 2 2 )6

=0.425562289460115140128513054671739425247512691932455-•
—1 log(sosi 2)6

=0.625938618508031133142379696963803763095659355422952-• .

Comparing (7.3) with (7.4), we can see the coincidence of the leading terms on
both sides of (7.2) up to 1 0 ' .

The case (2): Assume that F = Q(A,12). Corollary 3 says that if EK = E F .
for KK*(C)=KK(C) — ,/2 K F ( /F ) ,  we have

(7.5) KK*(C)=2 /(co)— log(1+4-)log(N((co)) ,
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where N(.;5.(co))=11,(co g )1. Then, the leading term  of LL/K (s, x ) can be
obtained by calculating a  linear combination of K K *(C)'s. In the following
examples (a), (b), (c) and (d), EK =EK  always holds.

(a) K= F(A l —5). In this case, hK=2 and L =K ( Al —1), which is an abelian
extension over Q with Gal(L/Q) - Z/2Z x Z /2Z  x Z l 2 Z .  For the non-trivial
character x  of Gal(L/K), we have

(7.6) LL/K(s, X) .=  . Q(a/ ) ( S )  . t1( -4r ) (S ) (1 ( .X " ) (S ) Q(.5-0 )(S) (S ) -4  .

The leading term $  on the left hand sie is given by KK*(C0) —KK*(Ci) where
IIK(/K)={Co, C1}. Applying coo=(,[2+V-10)/2, coi=(1 + .12+V —5)/2 to co in
(7.5), we have

KK*(C0)=3.9278827203222198310271864413133726465350480297968095—
KK*(C1)=3.052824780901983178316318716026002713542025127849507—

and hence

(7.7) $=0.8750579394202366527108677252873699329930229019473024••• .

On the other hand, as for the right hand side of (7.6), the leading term is
calculated by (2.5), i.e.,

(7.8) lo ge  +
2`f )lo g (3 + 1 0 )

=0.875057939420236652710867725287369932993022901947305....

Comparing (7.7) with (7.8), the leading terms on both sides of (7.6) coincide up
to 1 0 ' .

(b) K  F ( .1  — 7). In this case, hK =2 and L =K (1 — 1-F 2.,/2), which is a
cyclic extension of degree 4 over M= Q(/-14). For the non-trivial charac-
ter x  of Gal(L/K) and the two characters xi, x2 of order 4 of Gal(L/M), we
have

(7.9) LL,K(s, x)=LL/m(s, xi)LL/m(s, x2).

Let $, $1, $2 be the leading term of LL/K(s, x), LL/m(s, LL/m(s, x2), respec-
t iv e ly . The value $  is g iven  by ICK* ( C o ) —  ICK* ( C i )  where HK(IK)={Co, Cil.
Applying coo=(1 +.V-7)/2 and col =(3 +212+ V-7)/6 to co in (7.5), we have

{

KK*(C0)=3.3859723632817484986710368066602305429134572725709138—
KK*(C1)=2.9853158745138455868059914503895437350639298386473064...

and hence

(7.10) $=0.4006564887679029118650453562706868078495274339236073-- .
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On the other hand, for HM (IM )={ o, C12 , C- 12 ) , w e have Km(C1)=Km(C1 3 ),
and Km(C'o), Km(C12 ) are calculated by (6.14) as

KM(Co)

=0.1212501601371234360066241337818133003516516638459467 •
KM(C12 )

= —0.5117241590638240141415591122983726297212060338426609— .

Since ei = $2= Km( Co) — KM( C1 2 ) ,  we have

El= $2=0.6329743192009474501481832460801859300728576976886077—

and hence

(7.11)
e1E2=0.4006564887679029118650453562706868078495274339236077— .

Comparing (7.10) with (7.11), we see that e=e1$2, i.e., the leading terms on
both sides of (7.9) coincide up to the order of 1 0 ' .

(c) K = F(1 — 23). In this case hK =6 and L = Q(X 4 — 2X 2 + 3X2 -2X — 1,
X 3 — X -1), i.e., the minimal splitting field of (X 4 — 2X3 +3X 2 - 2 X - 1 ) (X 2 — X
—1) over Q . Put Lo= Q(X 4 — 2X-2 + 3X2 — 2 X -1 ) . L o  is a quadratic exten-
sion of K , and also the maximal unramified extension over M= Q(%/-46).
Conditions for Lo, K  and M  are the same as those in (b) considering Lo in
place of L in (b), and so x i ,  x2, x  and E, E 2  are defined similarly. Here

(
7

•
12

) L L0/K(S, X )  LL 0/M(S, XI)LL 0/M(S, X 2 )  •

The value E is given by ICK* ( C0) - 2KK* ( C1)+ 2KK*(C12 ) — KK*(Ci 3 ) where H.K(/K)
={Co, Ci, C1 2 , C13 , C14 , H ere note th a t  K K *(C1)=K K *(C1 5 ), KK* ( C12 ) =
KK*(C1 4 ). A pply ing coo=(1 + 1 -2 3 )/ 2 , w i= (5 - 4 A/2+1-23)/20, w2=(-1
+.1-23)/4 and coo =(5 — 4A/2+1-23)/10 to co in (7.5), we have

KK*(Co)=6.9792724034334644446271047637334173064623806025009698•••
KK* ( CO = 4.2462196909262662045317872487601167803272898837408798 - •

KK*(C12 )=3.2126390796650919834647791924318587073611049726520265•••
KK*(C12)=2.8699665884185365533224492998725257305756149878429133•••

and hence

(7.13) E=2.0421445924925794491706393512043754299543957924803498••• .

On the other hand, by (6.14), we have
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=1.7133426084586759719629071391792362302581562159403944 - •

Km( 012 )
=0.284306362419906159972730280893088263417401184241208 - -

and so,

$1 = E2 = 1.4290362460387698119901768582861479668407550316991864 - -  .

Hence

(7.14)
$1 E2 =2.0421445924925794491706393512043754299543957924803598- - .

Comparing (7.13) with (7.14), it can be seen that $=$1$2 up to 10 3 .

(d) K = F ( Al  — 1 9 ) .  In this case, hK =3 and L = K ( X 3 —  X 2 — 2X  —2) which
is also the maximal unramified extension over M =  Q(../ -38)  ( h m = 6 ) .  For a
character x  of order 3 of Gal(L/K) and x6, x3 of order 6, 3 of Gal(L/M), we
have

(7.15) L L ,K (s, x )— L L /m (s, x 6)L L /m (s, X3) •

Let $, $6, $3 be the leading terms of L L /K (s, x ), L L /m (s, x6), L L /m (s, x3), respec-
t iv e ly . The value $ is given by KK*(C0)— KK*(C1) where H K (/K )={ C o , C1, C12 1.
Here note th a t KI( * ( C 1) =  KK* ( Ci2 ). Applying wo=(1 + V-19)/2 and wi=(3
+2V2+V-19)/6 to co in (7.5), we have

KK *( Co)
=5.9847217123898470953760192574064415961079112013200125-•

KK*(C1)

=2.8735263359188580647426788258234058428307329236962379•••

and hence

(7.16) $=3.1111953764709890306333404315830357532771782776237746••• .

On the other hand, for Hm (IM )=1CO3 CI, C12 , C13 , C14 , CM, we have Km(C- 1)=
Km( CO), K M (  C12 ) = Km( C M  a n d  Es= Km( Co) + Km( 01) —  Km( C12 ) — /CM( C13 ), $ 3 =
K A ,(0- 0 )

— Km(01) — Km(01 2 ) +K m (01 3 ). By (6.14), we obtain
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Km( Co)
=1.3898025578262189301416488548961650358620747270771627-• •

Km( CI)
—0.2126801854238964940821098131037417906185779640517278—

/CM( 012 )
= — 0.4056264989477767907408058039190398286067828489416381--

K M (  
3)

=0.1225363437589153115916475482857766508575046290357065•-•

and so

{$6= 1.4602125275911839152086972974256864229927749829313664 ---
$3=2.1306455859568075265562120202047233059449401691062352- • .

Hence

(7.17)
$6e3=3.1111953764709890306333404315830357532771782776237756••• .

Comparing (7.16) with (7.17), it can be seen that $=$6e3, i.e., the leading terms
on both sides of (7.15) coincide up to 10 .

§ 8. Appendix. Coincidence of L-functions

L K ( S  X) 
s eo +coFor a c h a r a c t e r  of 1-1K(fS2), the value l im o  2 can be expressed

as a linear combination of (6.2) by Theorem 1, in which we need the assump-
tion that Q  is stable under the action of Gal(K/F).

In th is section, we consider the c a s e :hs,where is not necessarily stable

s eo, +,0under the action of Gal(K/F) and lims-o has the same expression as

above (Theorem 2). (Note that if is primitive, the value is the coefficient of
the leading term of LK(s, 2c) in the Taylor expansion a t  s = 0 . )  The ideas in
this section are based on Shintani [Sh4].

Though the following lemma seems to be essentially contained in Ishii [I],
we shall write down it in a suitable form for the proof of Theorem 2.

Lemma 4. F o r a  non-abelian f inite group G  w ith its center Z  an d  its
commutator D, the followings hold:
(1) I f  G  has an  abelian subgroup H  with index 2 , then Hp Z.
(2) A ssume that there exists H  as in  (1) satisfy ing 1H: Z1=2. Then, there are
exactly three abelian subgroups o f  G  with index 2.
(3) A ssume that there exist H  as in  (1) and  an  element dEH —  Z o f  order 2
in  G .  For LEG— H, p u t 6`= r i at and J= {1, a, a', co- }. Then the following
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(i), (ii) are equivalent: (i) J D; (ii)1H: Z1=2. I f  (i), (ii) hold, then D={1,
aa}cZ.
(4) A ssume that there exist H  an d  a as  in  (3) satisfying (i), (ii).  For a
character xo of Z  of degree 1, non-trivial on D, there exists a unique irreducible
character 0 of  G  of  degree 2 such that Reg0=2x0. 0  is expressed as Indfix
where x  is a  character o f  H  of degree 1 such that Resix=xo. IncViz is
independent of the choice o f  three H's and two x's f o r each H.

P ro o f  (1), (2), (3) are elementary. Here we only give the proof of (4).
Let xo be a character of Z of degree 1, non-trivial on D, and x a character

of H  of degree 1 such that Resfix=x0. F o r  LE  G — H , define f  a s  xt(h)=
x(eht - 1 ) for h E H . Then, x` is also a  character of H  of degree 1 such that
Reg& =x0. Since xo is non-trivial on D and so x(60- ) =x0(ao.0*1 by (3), we
have x * x t .  P ut 0=Indfix. Then, Resg0=x+xt, Reg0=2xo, and we have

<0, 0>G=<Indfix, 0>G=<x, Resg0>H=<x, x+x`>ll=1

This shows that 0 is irreducible and it satisfies the condition in (4).
Next, assume that there exists an irreducible character 0 of G of degree

2 such that ResC0=2260. Let ResgO = + x2 with two characters xi and x2 of
H  o f  degree 1. From th e  calculation with respect to inner products of
characters:

1 <0, Ind >G=<Rest10, x.7>H=<X1 +X2, X.7>if =1 + <xi, x2>ll 1 ,

we obtain <0, In d f ix ,> G = 1
 ( j = 1 ,  2), <xi, 262> H =0, and so 0=Indfixi=Indfix2,

*x2. By the assumption ResC0=2xo, we have Reski=Resfix2=xo. It shows
that the  expression of 0  in  (4) is  possible and such a  0  a s  we consider
associated with a given xo is unique.

Let Q u a ,  r c  and S2a, S2r, S2r be as § 5 and § 6, and we modify decompo-
sition of S2or and D r as follows. We decompose Dor into disjoint three subsets

s20 and Dos. Let D be the set of all the places of K lying above a, a
respectively. Further, we decompose the set of real places of K lying above
Dos into two subsets DS', DS in such a way as one of the two places lying above
a  p la c e  o f  S20s belongs to DS a n d  th e  other belongs to Qs Hence the
archimedean places of F  and K  are described as follows:

U ,f2s

K : •••R  R --- — 1? R•••
\ / \ /

F :
s-As S20e .

By the assumptions, we have #(Sr)=#(S2 8 )=---#(Dos ). Put  Q u Q U Q s  and .Qu'
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= S2' U Os' .
Let Î  be a primitive character of 1-/K(fS2u), and L the class field corre-

sponding to the kernel of x .  Note that the archimedean places of L above
S2'' are real and the others imaginary. If Do8 * 0 , L /F  is not a Galois exten-
s io n . Let L o/F be the maximal Galois extension in L /F, L1 the Galois closure
of LIF, and put G=Gal(Li/F), H=Gal(Li/K). Then, L1 =LL and L o=L  n
L(IE G —  H ). Also note that the archimedean places of Lo above S-24; U Dos
and Doc are real and imaginary respectively.

For 7) H, let 7)̀ =c - 1 7)tE H .  Here we shall describe Theorem 2.

Theorem 2 .  A ssum e that co l ,  [L : L0]= 2  an d  L oIF  i s  an  abelian
extension. T h e n , there exist a quadratic extension k of  F, an integral ideal r
o f  k", a  subset S2-  o f  real places of  k-  w hich is stable under the action of
Gal(K/F), and a prim itive character y  of HR( FS2), which satisfy LK(s, z)=
Lk(s, y).

P ro o f  Regarding Î  a s  a  character of H  through the Artin map, we
consider L K (s, x ) also as Artin L-function L L ,/K (s, x ). By the assumption,
Li/Lo is a biquadratic extension with intermediate fields L, L .  Let a be a
generator of G al(Li/L). Then, a' is a generator of Gal(Li/L9, and since L o/F
is abelian extension, J=Gal(Li/Lo)= {1, 6, a', del contains the commutator D
of G .  Thus, we see that H  satisfies the assumption (1) of Lemma 4, and J
satisfies (ii) (and so (0) in (3) of the lemma. By (2) of the lemma, there exist
two abelian subgroups of G with index 2, besides H  itself. Choose one of
such two subgroups H . In the case co=l, choose it so that cc, w h e r e
ac is a Frobenius automorhism corresponding to the place in S20c. Let k-  be
the invariant field of H .  B y  (4) of the lemma with the fact that x (aa`)= —1,
there exists a character y of II of degree 1 such that In d z = In d j.  By using
properties of Artin L-functions, we see that

LL,,K(s, x)=Li.,/F(s, Indfix)=LL.,/F(s, Ina" .±- ) =LL,Ig(s, y).
L et rs)" be the conductor of the ideal group of K  corresponding to LI.
Regarding y  a s  a  character of Hk( FS)) through the Artin map, and we
consider Artin L-function LL,/k(s, Î )  a s  Hecke L-function L k- ( s , ./) again.
This shows the equation in Theorem 2.

Hereafter we consider whether an element of Doa is real or not on 1.? or
L I. W e m ay assume that e q  f I .  For gES20a, le t  a ,  be the Frobenius
automorphism of Gal(Li/F) corresponding to g. Note that a9 = a9

1 and a9 E
Z (=the center of G) are euivalent.

If g S2c; , then the places of L1 lying above g and so those of I? are all real
since those of L and L' are all real.

If gES20`, then our choice of fl shows that the places of I? lying above g
and so those of L1 are all imaginary.

Consider the case where gES2os . Since each real place of Lo lying above
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D ' is imaginary on L  and real on L ', each Frobenius automorphism with
respect to Li/K  corresponding to a place in ,f2S or Sr is all equal to a  or a
respectively. (3) of Lemma 4 shows that ad' belongs to Z, and the fact a*
d' shows that a, d'EH— Z .  Since H n i-l= z , we obtain a, c H .  Hence
the places of k" lying above Dos are all imaginary.

Lastly, let gES20. Then, cg  is  non-trivial and so the places of L1 lying
above g are all im aginary. Assume that ag *a g t. Since a, d'EH, we have
ag , ag `EH — Z and so cg , a9 H .  This means that the places of k-  lying
above g are all im aginary. If ag = ay ', it belongs to Z  and so belongs to H.
Then, the places of k-  lying above g are all real.

By all the above consideration, we see that the archimedean part Q of the
conductor of the ideal group of k  corresponding to L1 is stable under the
action of G a l(K /F ) . On th other hand, since xo is faithful on H  by the choice
of L , 1 is also faithful on II and so the archimedean part of the conductor of
2" is equal to Q. This completes the proof.

Remark. The first part of the above proof is contained in  [1]. The
latter part can be regarded as a generalization of the proof of Proposition 5.1
in the paper.
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