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Generating functions and integral representations for the
spherical functions on some classical Gelfand pairs

By

Shigeru Watanabe

Introduction

Let F be R, C or H and a+— a the usual conjugation in F. We define
the following quadratic form in F"*'.

(%, y)- = —XoYo + X1y + "+ X,V -

Let U(1, n; F) be the group of the linear transformations g in F"*! which satisfy
(gx, gy)- = (x,y)_ for all x, ye F"*!. We define the group G as follows.
1. If F =R, G is the connected component of the unit element in U(l1, n; R),
ie. G =S0y(1,n).
2. If F=C, G is the group of all the elements g € U(1, n; C) of determinant
one, i.e. G =SU(1,n).
3. fF=H, G=U(,n;H), ie. G=Sp(l,n).
Let B(F") be the unit ball in F* and S(F") be the unit sphere in F". The
group G acts transitively on B(F") and S(F") as follows: for & =1¢&,,..., ) e F"
and g = (g,)o<p.q<n € G, We define

¢ =98,
where &' =&, ..., &), with

n n -1
& = (g,,o + Zl g,u,éq> <goo + Zl goqéq> , l<p<n.
q= q=

Let K be the isotropy group of O € B(F") in G. Then K is a maximal
compact subgroup of G and G/K = B(F"). Let G = KAN be the corresponding
Iwasawa decomposition and M be the centralizer of A in K. Then M is the
isotropy group of e; =1,0,...,0)e S(F") in K and K/M = S(F") is the Martin
boundary on G/K = B(F"). Except for the case of real numbers, K/M is not a
symmetric space, but it is known that (K, M) is a Gelfand pair, i.e. the convolution
algebra of functions on K bi-invariant by M is commutative. As is well known,
the spherical functions on K/M play an important role in the harmonic analysis
on G/K.
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50(n) F=R
K=< U(n) F=C

L Sp(1) x Sp(n) F=H

(so(n —1) F=R
M=x=<U®m-1) F=C

Sp(l)x Spn—1) F=H

Let ¢ be a zonal spherical function of the real case SO(n)/SO(n — 1) = S(R").
Then ¢ depends only on n, (n="n,,...,n,) € S(R")) and there exists a unique
nonnegative integer p such that

o(n) = Cr=22(n)/Co-22(1),  n=1,....,n.) SR,

where C'"27 is the Gegenbauer polynomial. It is well known that a generating
function for the Gegenbauer polynomials C&'~ 22, p=0, 1, 2, ..., is given as
follows.

(1 =2tz 4 t3)~ -2 = Z Cy=22(z)t?, —1<z<1, —1l<t<1.

This formula also gives a generating function for the zonal spherical functions of
SO(n)/SO(n — 1).

The first purpose of this paper is to show that we can also give generating
functions for the zonal spherical functions in the complex and the quaternion
cases (The conclusions were announced in [6]). In case of F = C, H, however,
the zonal spherical functions on K/M are determined by two parameters while
those of the real case are determined by one parameter p. So we have to extend
the definition of generating function to the case of a system of functions which
has two parameters. If F = C, we consider the function F(z, w) defined in the
following as a generating function for functions G,,(z) (z € D, D is a subset of C).

= Y G,lz)wPw?,
p.q=0

where the right hand side absolutely converges for some we C, w# 0. Then
we see that

1 or+e
qu(z) g [W (z, W):|w=0 .

This is one reason why we consider the function F(z, w) as a generating function.
In the generating function expansion, if we put w = re®, then we have

M8

F(z, re'®) =

p,

. qu(z)rp+qei(p-q)6 .

=

We now remark that the function e*® (k is an integer) is a spherical function
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on U(1) = S(R?). Therefore the expansion of F(z, re®®) by the powers of r and
the spherical functions of U(1) = S(R?) can be considered to give a generating
function expansion for the functions G,,. This interpretation for generating func-
tion will be adapted to the quaternion case, i.e. let E(z, w) be a function defined
on a subset of H x H and we set w=ru (r >0,ue Sp(l)). When we expand
the function E(z, ru) by the powers of r and the spherical functions of Sp(1) =~
S(R*) = (Sp(1) x Sp(1))/4(Sp(1) x Sp(1)), E(z,ru) is considered as a generating
function for the functions of z which appear as the coefficients in that expansion.

The second purpose of this paper is to give integral representations for the
zonal spherical functions on K/M in the complex and the quaternion cases. In
particular, those in the complex case will give formulas which are analogous to
Rodrigues’ formulas.

Suppose that n > 2 throughout this paper.

1. Complex case

L.1. Generating function for the spherical functions on K/M. Let H", denote
the space of restrictions to S(C") of harmonic polynomials f(&, &) on C" which
are homogeneous of degree p in ¢ and degree g in & Then it is known that
(cf. [2], [4]) H(, is U(n)-irreducible and moreover L*(S(C")) = @2, -0 HY,. Let
@, be the zonal spherical function which belongs to H{",. Then a generating
function for the functions ¢!, is given in the following theorem.

Theorem 1.1. If w, zeC, |w| <1, |z|] <1, then
(1 —2Re(wz) + |w|?) io a2y wrw , (1.1)
=
where
Qi) = ¢p(n),  neSC),

and

4 — I'n+p-1) I'ln+q-1)
o TIm—NDI(p+ 1) I(n—1)I(g+1)

The series on the right hand side converges absolutely and uniformly for |z| <1
and |w| < p for each p < 1.

Proof. The function f defined by
fE) =1IE—ey*72,

is harmonic and M-invariant in B(C"). Thus we have the following expansion
which uniformly converges on every compact subset of B(C"),

&) =S hie),
/=0
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where the function h, is a harmonic polynomial on R?" which is homogeneous
of degree # and M-invariant on B(C"). On the other hand, the function h, is
expressed on B(C") as follows,

h/(é) = Z hpq(éa E) ’
ptq=/(
where the function h,, is a harmonic polynomial on C" which is homogeneous
of degree p in ¢ and degree g in &
For ne S(C") and we C, |w| < 1, if we put ¢ =wn, then we obtain

flwn) =2, h/(wn)

\
ir1s

(NgE]

Y. hy(wn, i)

/=0 ptq=¢

i Z prthq("’ 7).

/=0 ptqg=/

The function f(wn) is M-invariant as a function of ne S(C"), and so are the
functions h,,(n, 7). Thus there exist constants al € C such that

h,,(n, 1) = aoeld(n),  for all ne S(C").

‘l(ppq
Therefore we have
Q0
fop =Y | Y anepmwrw? ).
(=0 \p+q=/
Putting n = e,, we can determine the constants a$,.
[
H—wP =Y ¥ anwrw),
(=0 \p+tq=¢
so we see that

1 [o* of
(n) _ _ 2-2n
Qas = S1p1 [6w" owh 1= wl ]w=o '

On the other hand,

o o yy 07 L
Aoy L= WP = (L= W) T g (L= W)

Thus we obtain

I'n+a-—1) rm+p-1)
Y% = PO+ ) In—DIB+ 1)

If we put 1 =%2,0,...,0,/1 —1z/*) e S(C") for a fixed zeC, |z| <1, we
have the following:
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(1 — 2 Re (wz) + |w|?) Z < Y aRow(zywrwe )
(=0 \p+q=/
Finally, it follows from the definitions of ¢f;) that |Q%)(z)| <1 for |z| <1,
which implies the second assertion.

In the formula (1.1), if we put w = re®® then we have

(1 — 2r Re (e%z) + r? i anQ(z)el P~ oppra (1.2)
pq=0

This formula can be interpreted as follows. The zonal spherical functions %

appear as the coefficients in the expansion of the left hand side of (1.2) by the

powers of r and the spherical functions of U(1) = S(R?). This interpretation for

generating function will be adapted to the quaternion case. See the formula (2.1).

1.2. Generalization of the formula (1.1). Let v be a positive number. Sup-
pose that z, we C and |w|? + 2|zw| < 1. Then we have the following expansion
which absolutely converges:

(1 —2Re(wz) + |w?)¥ = i Gy (2)wPw?,

p,q=0

where the functions G,, are polynomials of z and Z.
Lemma 1.1. The function G,, has the following expression:

; _min(p.q) I'v+p+qg—k)
Gpol2) = IZ.O (p — k)\(g — k)'k!T'(v)

Proof. We denote (1 — wz — wz + |w|?) by a(z, w) and (x(z, w))™¥ by A(z, w).

It is easy to see that
. 1 arte
Gpal2) = plq! [6w"aw”A(z W)]

(= kzpkza—k,

w=0

By the way

p
WA(Z, wy=vv+1)...v+p— 1)(z—wP(afz,w) "7,

owak

ptq —k
%WA(Z’ w=vv+1)...(v+p— i < )6_"(2 w)P a_q — (otz, w)) ¥ 7P

min (p,q) p k= —x v p—atk
= L Apaslz = WPTHE = Wl ) T,

where

o wf9\ P T +p+q—k
Ap g =(=1) <k)(p—k)! ) )
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Therefore

6P+q A( ) _ min(p,q) p!q!r(v +p4+q— k)
owiow” av weo k20 (p—k)\(g — k)k!T(v)

k,p—ksq—k
(= 1)zP7"z97%,
which implies our assertion.

Lemma 1.2. Suppose that p>gq. Then for —1 < x <1 we have

| (—Tv+p) . .
v — _ . _ 1. .
Gq(x) F(V)F(p—q+1)q'x ZFI( QsV+P,p q+ ;X )

Proof. From Lemma 1.1, we see that

q F(v+p+q k)
Z K)l(q — kKt

( )k p+q—2k

I'v+p+?)
=o(p—q+2)g— )

M-n

(_ l)q—/xp—q+2/

C(—1)xre g Tv+p+¢) (
T A Tp—q+¢+D)I(g—¢+ 1))

—1)’x?

_EDNPT L T4 p+ (=9 o
vy ~Ip—q+¢+ gt

which implies the assertion.

We remark that
1. Gp(e2) = e'P™9°G} (z) for 6eR and zeC, |z| < 1.
2. GL(x)=G(x) for —1<x<1.

Proposition 1.1.  The functions G, have the following orthogonality relation:

I'(p+v)(q+v)
Gr(2) G D)1 — |212) " dxdy = 8, Spg — ,
ﬁ“l o2 Gy ()1 = 2 dxdy = Oy boa 1 L T

with z = x + iy.

Proof. First of all,

f Gpo(2)Gy o (2)(1 — |2]2) "'dxdy
|zl<1

2n 1
= f AL R G R [ J Gyo(NGy (r(1 — r?)tdr.
0 0

This integral is obviously equal to zero when p—q #p' —¢q".

We now suppose that p—gq=p'—q ' andset m=p—q=p' —q,a=m+v
and y=m+ 1. If m>0, by Lemma 1.2, we have
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(=1)T'(v + p)

G0 = Tormg " ).
— 17T !
Gra) = W”_'Gqf(a, %),

where the functions G,(a, y; £) are the Jacobi polynomials defined by
Gyo, 75 ¢8) = JFi(—q, 2+ g;7; &)

_rp)E gy de

Forg gl o,

and have the following orthogonality relation:
1
j &ML = &P TGy, y; §) Gy, y; €)dE
V]

_ ,q!l“(q+a—v+1)[1"(?)]2
T (a+29la+ )l (y +9q)

Thus we see that

Vo e (C)T 4 IO+ p)
L Goa(1) G Il = 1) = s Tty

1
X f G, (o, y; r3) Gy (o, y; r)r* (1 — r?)"dr
0
_ I'lp+vI(g+v)
C2p+ g+ VplgIT )]

This indicates that our assertion is true for m > 0. For m < 0, our assertion is
proved by the formula G,,(r) = G,,(r).

1.3. Integral representations and Rodrigues’ formulas for the functions Q).

Let v be a positive number. For z, £, n e C, we define the function F,(¢, 1, z) by
FGn2=0—-8¢z—nz+ ).
If |z] <1, then we have
Iz +nz —&nl < (IE1+ D(Inl+ 1) — 1.

Thus for a fixed ze C, |z| < 1, the function F,(, n, z) is holomorphic on U =
{(¢&,n) e C*|&| < 1/3, 0] < 1/3} with respect to &, n and has the following Taylor
expansion on U:

F&n2) = Y F2&m?,

p,q=0

where
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1 [ orte
F.(¢&, ,2)] .
P!q Lafpa'lq 1 E=n=0
On the other hand, from the proof of Lemma 1.1, we see that

opt+a 7] oPta
I: 0EPon° F,(&n, 2) ¢=,,=0=|:WA(Z’ W)] >

w=0

Fpy2) =

with A(z, w) = (1 — wz — wz 4+ |w|?)™*. So we obtain that
Fuu(2) = Gpy(2) .
And from the Cauchy integral formula, if 0 <r,, r, < 1/3, we have

1 F.(&n, 2)
F — ———d&d
pq( ) (zni)z J]{I=n Jlrl|='z cpﬁnqﬂ 6 g

0, [ o)
2mip! Jipi=r, nitt

dn .

We suppose that v=n — 1. Then we have
Fp'(2) = Gy (2) = aQ()

which implies

(n—1) (z—n)F
mOn(z) = P . 1.3
B T (R A (-
Let |z| < 1. If we make the substitution
z j—
(=",
—nz

then (1.3) transforms into the following integral:

€ -2

with r>0. The formula (1.4) gives an integral representation for Q\). And
moreover, from (1.4), we see that

5 _ 1ynta—2
a(n)Q(n)( ) ( l)p(lzlz _ 1)2_"j M—dc , (14)
Ttlp. C-z|=r

oo = " Doqer — o] e — iy |

n—=1 _, 07

= p,—q,"(IZI2 - 1) "apalelez - 1yre?],

=z

where

o _1(2 .2 e
52._56_)( ay, zZ=X y.

This formula gives Rodrigues’ formula for Q).
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Theorem 1.2. The function Q% has the following integral representation and
Rodrigues’ formula.

paQra(z _1)” 2—12-"J Sl
apaQpal 3ip] (2] ) e E = ¢

=u’(|z|2 1)2-n [z”(lz|2 1)r+a-2q,

a‘l

where |z| < 1.

2. Quaternion case

2.1. Generating function for the spherical functions on K/M. A zonal spheri-
cal function ¢ of K/M depends only on #,, more precisely on Re(1,) and |n,|
(n ="y, ..., n,) € S(H"), and there uniquely exists a pair of nonnegative integers
(p, q) such that

Re
oln) = CI( |(|))|’71|p2F( GpHa+2n—1p+2in).
1
where
(—1¥(p + 2), .
=—————— C 1
CWI (2(n )) [ ()]

See Theorem 3.1 in [4], p. 144 and the formula (16) in [1], p. 170 and we
follow the notations in [S]. From now on, we denote ¢ by ¢{. When we
denote {f* @l |f e L*(K/M)} by H{",, HJ", is K-irreducible and moreover H{*" ~

p,q’
@B+ 20= HI LASH") = P2, -0 Hf,,"ll, where H{*" is the space of restrictions

to S(R*") of harmonic polynomials on R*" which are homogeneous of degree
k. A generating function for the functions ¢ is given in the following theorem.

Theorem 2.1. If zeH, |z| <1, ueSp(l) and 0 <r < 1, then

f [1 —2rRe(wzo'u)+r?]'""dv = Y BWRM(z)Ch(Re (w)rP*2e, (2.1)
Sp(1)

p,4=0
where dv is the normalized Haar measure on Sp(1) and
R3(n) = @0, neSH"),

and

w_ P+l @n—1),,02n-2),
"o Ip+q+2 q! '

The series on the right hand side converges absolutely and uniformly for |z| <1,
ueSp(l) and r < p for each p < 1.
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Proof. The function f defined by
Q) = 11E — ey l27%7,

is harmonic in B(H"). Therefore we have the following expansion which
uniformly converges on every compact subset of B(H"),

&= 3 h(),
(=0
where the function h, is a harmonic polynomial on R*" which is homogeneous

of degree ¢.
For n e S(H"), ue Sp(l) and 0 < r < 1, if we set £ = rnqu, then we obtain that

flrnu) = ’h/(nu)

uMS

First of all, we put u =1,

fmy= % r'h(n).

ng

The function n — f(rn) is M-invariant, and so are the functions n — h,(n). Thus
there exist constants ol) € R such that

hm= Y /a‘”’qo},'.',’(ﬂ), for all ne S(H").

pt2q=

So we see that
flrnu) = Z ; , apl(nu) . (2.2)
= 7=

We now determine the coefficients ol using the following formula. See [3].
If v>1>0, then we have

C)(1) = Z v, 'UC}—zq([),

where

A+ -29) (Vg (v = 4)
A+¢—aq V- ab

Putting n = e, in (2.2), we obtain

PO, 4) =

(1 —2rRe(u) +r3)' "= Z Y, aWC(1)]TICh(Re ()

pt2q=/
=S Y BUCHRe ),
/=0 pt2g=¢

with g% = oW[C)(1)]7'. On the other hand, we have
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(1—2rRe(w)+r¥)2"= % C"'(Rem)r’.
/=0

So we can conclude that

C 'Re) = ﬂL’;’C,,(Re( u),

p+2q=

and moreover

— p+1 (2n — 1),,,(2n = 2),

oI(p+q+2) q!

Next we think of the integral

J @pg (mn)u)dm .

Put

and n =ke,, ke K. Then (mn)u = k'(mn) = k'mke,. By the function equation

for ¢, we obtain that

J o1 (mm)u)dm =J o (k'mke,)dm

(k'ey )@l ()
= C,(Re ) [Ch()] ol(n) .

Taking the average of (2.2) over M about 5, we see that

J f(r(mn)uydm = Z r’ Y BRCr(Re )y (n) .

p+2g9=(

On the other hand, we have

J Sflr(mn)uydm = J [1 —2r Re (vy, v u) + r*]*"2"do .
M Sp(1)

Thus we obtain that
j [l —2rRe(@zo'u) +r*]* 2"dv=Y r’ Y ﬂ‘"’C (Re (w))R%)(2) .
Sp(1) (=0 p+2q=

Finally, it follows from the definitions of ¢{% that |RY)(z)| < R%)(1) =1 for
|z| <1, which implies the second assertion.

The formula (2.1) means that the zonal spherical functions () appear as
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the coefficients in the expansion of the left hand side of (2.1) by the powers of
r and the spherical functions of Sp(1) =~ S(R*). So we can consider that (2.1)
gives a generating function for the functions ¢

2.2. Generalization of the formula (2.1). For a fixed n > 2, we suppose
that v>2n — 1. First of all, for ue Sp(1), 0<r<1 and zeH, |z| < 1,

j [l —2rRe(vzo'u) +r*]dv =) r" J C’(Re (vzv 'u))dv. (2.3)
Sp(1) m=

Sp(1)
Using the following formula,

[m/2)
Ch(x) = Z Y, 2n — (%),

9=

we have

J C)(Re (vzv™'u))dv = Z P (v, 2n — I)J CAry (Re (vzv~'u))dv . (2.4)
Sp(1)

Sp(1)

And it follows from the formula (2.1) that

f C2*~1(Re (vzv~'u))dv = BMCL(Re (u)R(z) . (2.5)
Sp(1) k+2f=m
From (2.4) and (2.5), we obtain that
J Cu(Re (vzvo 'u))dv = Y W, 2n — 1) BMCE(Re (u)RY(z)
Sp(1) p+t2g=m k+2/=p

= X Z %, 2n — DBYL-, Ci(Re (W) RY—,(2)

k+2s=mr=

= Z l:i k+2s)(v n — l)ﬂ(")R("’ :|Ck(Re ). (2.6)
k+2s=m | r=0

Here we have

S

Z W, 2n — DR ()

S TR )
! z|

Il

pO(k, n,v), Fi(—r. k+r+2n—1;k+2;|z%), 2.7)

V)l._.

where
(s)(k n, v)

(=TsICn =1+ k+ 20k +r+2n—1)(v—2n+ 1), (k+ 5+ V),
(s—=mr!l(k+s+r+2n ’
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Lemma 21. If o, 8, y>0, B —y+ 1 >0, then we have

Gula 150 = 3 o B NGB 7:10).

where

stB+2nr(B+re+s)(f—a+r—s+1)_,

o7, . v) = =B +r+st )

In particular, putting a =k + 2 (A>0), f=k+2n—1, y =k + 2, we have
Gyk+ A k+2;t) = Z Pk, n, A)G.(k +2n— 1,k + 2;1),

where
(s)(k n, A)

(—1y75s12n — 1+ k+ 20Tk + 71+ 2n — )(A — 2n + 1),_,(k + s + 4),
(s—rWr'l(k +s+r+2n) ’

Proof. We define c(¢, r) by

4
Z: c(Z,NG,(B, v 1)

We have

clt,r) = jl t'G.(B, y; )t 1 (1 — t)f rdt x [Jl [G.(B,y; 1>t (1 — t)”"dt]_1 .
0 0

First of all,

rifr+ g —y+ H[II']1?

B+2r)C(B+r)(y+7)

jl (G(By; )11 (1 — 0)f vde =
0

(see the proof of Proposition 1.1). Secondly

1
{G : y—1 l _ y+r 1 1 ﬂ+r—y
Lt,w»tn 1= op e = O L o

_(=yroyre+1y !
T Ty+nl¢—-r+1)),

(=TI + ) +)T(B+r—y+1)
T TG+ —r+ DI+ B +r+1)

e — P e

So we obtain that

(—1yI(¢ + ) +9)(B+20T(B+ 1)
T)I¢ —r+ DI + B +r+ Dr!

cZ,r)=

Thus
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Gyla, y; 1) = 2 Fy(—s,a + 5595 0)
-3 3 e nGi .

Here we have

— (B + 21 (B + (=9 + ),

_(
oy 0= PT(B + 2r + 1)

i SMa+w

X Fi(—s+ro+s+rf+2r+1;1)

_siB+2nIr(B+n@+s)(B—a+r—s+1),_,
- (s=nr'rB+r+s+1) '

This implies our first assertion.
Next, putting a=k+ 4, f=k+2n—1, y=k+2, it follows from
B—a+r—s+1)_,=(—1F""(A—2n+ 1),_, that our second assertion.

From (2.7) and Lemma 2.1, we obtain that
Z P, 2n — 1) BERE(2)

Re (2)
|z|

We now define ¢, (v), B,,(v) and &,, by

(V)k +s5

= =D

[Ci(l)]"Ci< )IZI"zFl(-S,k+S+V;k+2; |21?).

—1) 2
el = RG]
B (V) — p + 1 (v)p+q(v - l)q
pq 4

I'p+q+2) q!

Re (z)
|z

D,,(2) = C,,q(V)C,§< >|Z|p2F (=g p+a+vip+2z?).

Then we have

Z Y290y 20 — 1)BIRI(z) = B (V) DL(2) .

Therefore from (2.6),

f Cu(Re (vzvT'u)dv = 3 Bi(v)Cic(Re () Pii(2) .
Sp(1)

k+2s=m

This equality holds also for Re (v) > 1 because of the analyticity with respect to
ve C.
Thus, from (2.3), we obtain the following theorem.
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Theorem 2.2. If v > 1, then we have

f [1 —2r Re(vzo 'u) + r¥] vdv =
Sp(1)

3
flagt

r" HZ Bis(V)Ci (Re () Py(2) ,

2s=m
for ueSp(l), 0<r<1and zeH, |z|] < 1.

Here we give the orthogonality relation of the functions &,,. We set ¥, =
BoaV)Ppy-

Proposition 2.1. For v > 1, we have

rp+q+v(g+v—1)
‘TP +29+vaT(p+q+2)°

J Vo2 ()1 — |2|?) 2dz = 6,6,
lzI<1

where dz = dz,dz,dz dz,, z =z, + z,i + 25 + z,k.

Proof. By the definitions of @,

q°

j ¥(2) P (2) (1 — |2|2) " 2dz
lz|<1

o (D)) g (= 1) (s 22
TP o+ )lg! (k+ 1))

1
% f tp+l(1 _ t)"_qu(p +v,p+ 2; t)G/(p +v,p+ 2; t)dl .
0

This completes the proof.

2.3. Integral representations for the functions R{). We consider integral rep-
resentations for the spherical functions RY). First of all, we shall give relations
between the functions R{) and Q{Z”. In what follows, we shall use the following
notation for ze H:

z=2zy+izy 4+ jz3 + kz, ,
where z,(1 <v<4)eR.

Proposition 2.2. For ze H, |z| <1, we have

BIRE(z) = a2, , 02, /(2 + i(vzv™),)dv
Sp(1)

- agz—nl).k+/+l Q}z—"l),k+/+l(zl + i(UZU_l)z)dU
Sp(1)

with Q%" ., =0 and a®P,,, = 0.

Proof. In Theorem 2.1, if we put u = e e R), then we have

j [1—2rRe(wzolu)+r*]'"2dv="3Y r™ Y BWRM(z)Cl(cos ). (2.8)
Sp(1) m=0

k+2/=m
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On the other hand, by Theorem 1.1,

I [1 — 2r Re (vzo~'u) + r?]* " *"dv
Sp(1)

j [1 — 2r Re {(z; + i(vzv™"),)e®} + r?] " >"dv
Sp(1)

a0
Z’o rm Y alZreitem e L " Q2"(z, + i(vzv™'),)dv . 2.9
m= p

p+tq=m
Comparing the coefficients of r™ in (2.8) and (2.9), then we obtain
Y aﬁ,zq"’e“"_"""[ 02"z, + i(vzv™'),)dv
ptq=m Sp(1)

= Y BOIRIN2)Ci(cos 6)

k+2/=m
[m/2] m—2¢ ,i(2r+2¢-m)8 —i(2r+2¢-m)6
% RO, ) e +e
m—=2(,(m—-2/, 2 2
/=0 r=0

Here we used the following formula:
k .
Ci(cos 9) = Z cos (2r — k)8 .
Thus we see that

m
2 2p— . -
Y apm-pe """J Cm-plz1 + i(vzv™1);)dv
p=0 Sp(1)
m min (p,m—p) () 2 "
n -m
=Z Z 2//Rm2/()ep .
p=0 (=0

Comparing the coefficients of e“**™? in both sides, then we obtain that

2 2 . min (p,m—p)
a(p ™ p Q(p,':n)—p(zl + i(vzv™'),)dv = Z r(:)—Zl,/Rs::)—Zl,l(Z) )
Sp(1)

. . . m
in particular, if 0 <p < 7|
2 2 : 1 — (
agim - Qm—plzy + i(vzv” 2)dv = Z Bo s, R 20, /(2)
Sp(1)

which implies our assertion.

An integral representation for the function R{) is given in the following
theorem.

Theorem 2.3. For zeH, |z| < 1, we have
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a(2n) n .

BMRI(z) = —”;“ 00, Az, + i\/2z3 + 23 + 24 cos 0) sin 6d0
]
a(/z—nl),k+l+l " (2n) . 2 2 2 .

5 Q9 wvrr1(zy +i/25 + 25 + z4 cos 0) sin 6d6

0o
= J TP(z, +i/z3 + 23 + z2 cos 0) sin 646,

where the functions T,%(&) are defined for & € C as follows:
TP(&) = SPE&) — S 0),  €21)
T3(C) = S3(&)
and

4 _
spney = T et o B Rkt £tk L1,

Proof. If z =1z, +iz,, ie. z;3 =z, =0, by Proposition 2.2,

. (2
BOREz, + iz) — a2, f @0, 2, + iz3(ger))dg
S0(3)

2 .
- a$z—nl).k+/+1 J Q({—"l).k+/+l(zl + iz,(ge,)1)dg
50(3)
=a?y,, 0%, (zy + izyb,)da,(b)
S(R3)

2 .
—a® i j 0% wsr+1(zy + izyby)dos(b)
S(R?)

(2n)
a . .
2 k” J QP0, Az, + iz, cos 0) sin 6dO

(2n n

a,—% J 0%" w+e41(zy + iz, cos 6) sin 0d6 ,
0

where dg is the normalized Haar measure on SO(3) and do,(b) is the normalized

element of surface area on S(R3).
On the other hand, the function R{? is real-valued, so we see that

(2n)
BORENz, + iz,) = a’;”J Re [Q¥, /(z, + iz, cos 0)] sin 6d0

(2n) n

a® .

- %J‘ Re [0 4 4s41(zy + iz5 cos 0)] sin 6d0 .
o

From Lemma 1.1, for £ € C,
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247, , Re [Q%, ()]
= a, (Q, /(8) + Q% (9))
Ek+ B L Fn—1+k+20—m)

= __1ym 2/-2m
I2n—1),20 (¢ —m)k + ¢ — m)im! (=Del
_ G+ L Tran—1+k+/+p) _
(2"— l) g (k+p)'(/ p)| (_1)/ plflzt’
(= (E+ 8 i( ),,F(2n—1+k+t’+p)|§|2p
~r@en— 1t % (k + p)p!
—2n —
= %(C“ + &), F (=6, 2n— 1+ k+ £k + 15[E7).

This completes the proof.

We should notice that our assertions for £ = 0 are nothing but the integral
representations for C; which are well known. See the formula (31) in [1], p. 177.
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