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Quasi sure quadratic variation
of smooth martingales

By

Jiagang REN *

1. Introduction

Suppose that M=1Mt, tE/} is a continuous L"-martingale (p 2), where
I  is an interval of R+=[0, c o )  (may be R+ itself). B y  the well-known Doob-
Meyer decomposition theorem, there exists a unique increasing process <M>
={<M>t, tEI} such that /1/2 — <M> is a  continuous L'-martingale. More-
over, P. W. Millar [12] and D. Nualart [13] showed that the process <M> can
be obtained as the o f  sums of the form EM(ZI,), where {J,} is a
subdivision of the interval I , as max,I.Z1,1—> O.

In the present paper we propose to study the quasi sure properties of the
quadratic variation of smooth martingales, a notion introduced recently by P.
Malliavin and D. Nualart [9]. We shall prove that the process of the qua-
dratic variation of a smooth martingale admits an co-modification, which can
be constructed as the quasi sure limit of sums of the form M ( A ) .  Our tool
is the quasi sure version of Kolmogorov's criterion for the continuity of
trajectories of stochastic processes (cf. [17 ]). Necessary estimations which
enable us to apply this criterion will be obtained. This makes the subject of
section 3. In section 4 we will be able to extend the results of section 3 to the
case of two-parameter smooth martingales. At last in section 5 we discuss
possible extensions and applications. W e prove, in particular, that the
quadratic variation of the Brownian motion is quasi surely t.

The main results of this paper were announced in [21].

2. Preliminaries

Now let us recall and fix some notations and notions. We shall work on
the probability space (X , H, p), where X is the space of continuous maps
from [0, 1] to R d , null at zero; H  is the usual Cameron-Martin subspace and
p the standard Wiener measure. Denote by W21',- the Sobolev space of order
2r and of power p over X and Woo their intersection over indexes p>1 and r

For any natural number r, two equivalent norms in  W21),  are defined
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respectively by

= — LYFIlp

and

ilFli'P,2r=1117 2 r Flip+11F11p

where L is the Ornstein-Uhlenbeck operator and P. the gradient operator (cf
[8], [20]). Given an open set 0 of X , its (p, r)-capacity is defined by (cf [7])

Cp,,(0)---inf(11F6,2r; F>.0, on O ) ;

and for any subset A of X, by

Cp,r(A)=inf(Cp,,(0); 0 open and AOE 0) .

Let {ws, 0<s<1} be the d-dimensional Brownian motion realized by the
coordinate process on (X, H, it) and gt the a-algebra generated by ( Ws, 0

tl. Then any 19- 4-continuous square integrable martingale M=1/1/t, 0 t
can be represented as a stochastic integral

(1)
rtf s i d w s t  < 1

1=1/0

Following P. Malliavin and D. Nualart, we say that M  is smooth if the
following condition is fulfiled:

(C1) fsE W...(Rd ) for almost all 0<s

a n d  f —2rds< c o  for all p, r .0

(Note that we do not impose in the definition the condition guaranteeing the
quasi sure convergence in [9], since we work now on a finite time interval
instead of R+.)

3. Main results

Let M be a smooth martingale represented as (1). Then by [9, Theorem
4.2], M  admits an  œ-modification, which will be denoted still by M  for
notational simplicity. It is well known that the process of quadratic varia-
tion of M is given by

(2)
d  f t

<M> t= f s i ' d s  ,

At first we give

Theorem 3.1. <M> adm its an co-modification.
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P ro o f  By [16, Theorem 3.1 and lemma 4.1] (cf. also [17]), it is sufficient
to prove the following two facts:

II<M>t — <M>s3.-C1 t — 0 3 - 1  , t_<1

<M>E W , V tE [0, 1] a n d  sup M<M>t6.2,‹ co r .0‹t‹1

But they are both trivial from the expression (1), condition (Cl) in section 1
and Stroock's commutation formula.

Q.E.D.

Denoting still by <M> itself its co-modification, we can state the following

Theorem 3.2. T he con vergen ce:

2,1 -1

lim E ( M t1 , ,A t - 1 k f t i n A t ) 2 = < 1 k f> t

holds uniformly in  t E[0,1], q.s., where tin = i2 '.

P ro o f  To avoid surcharging the calculus, in the sequel all the constants
depending only on M , p and d , but not on n  and the param eters s ,t,--- , will
be simply denoted by C .  Put

X ( 2 - n ,  t  =  ( M t X  t  M t r A

and

X ( 2 ,  t ) + ( s - 2 - ')(2 - n —2- ( n+n) - ' (X (2 - n , t) — X(2 ',  t))

X(s, t )=
if 2 -(n + 1 )  <  <  2 -n

tfu i 2  du if s = 0 .i=1 13

Then it is sufficient to prove that X (s, t) admits an co-modification. By the
quasi sure version of Kolmogorov's criterion (cf. [16, Theorem 3.1]; also [17]
and [18]) and [16, Lemma 4.1], and taking (2) into account, we need only to
prove the following inequalities:

(3) x(s, t)— x(s', triPi11, VP .

(4) supliX(s, t)111),2,<oe , \VP •s,t

We do the proof in two steps.
Proof o f  (3). Since it is trivial to  see that

Ilx(0, t )-x o , t111'13 cIt - t'IP - '
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it is enough to prove that (note that X  is piecewise linear in s)

(5) suzplIX(2-n, t)— X ( 2 ' ,  t') C t t ' l  P 2  1  •

and

(6) suplIX(2-n, t)— X(0, t)11113,-‹ C2 - 1(19 -1)

We first look a t  (5). Put tn— 
[2 n t ]

 t n + =

 [ 2 t ]  + 1
 w h e re  [s ] denotes the2n2 n

maximal integer not bigger than s. We can of course assume t  < t '.  We will
discuss in the following two cases.
(A) T he ca se tn =tn '. In this case we have

t ) - x (2- ,

-11(m 1110 M- 2 — (M c — tn)2 B
=II(Mt — Mt ,)(Mt +  M1 — 2Mt„)111;)

— Mtf)OplIAL +M1 , - 2 M A

cll E Aldwu'Op
d  f t '

j=1.1t

__cgE(f 'IA/Nu ) } ' (by B urkhoder's inequality)

(B) T he ca se tn <tn '. In this case we have

r)-x (2 - n, t)B

---- E l(m t,- - m t,) 2 -(1111-A11„) 2 + (mtp„Ac -m t , , , , , ,
)

2 1'

CE1(M1e —  M t)(M te+ Mt — 2M1O1P  C E ( ( 11/1 A t f /0 2 )P  •

The first term of the RHS can be estimated in the same way as in the case (A),
and is bounded by tn+ — t1 P 21 . The last term can be estimated by using
Burkholder's inequality for martingales with both discrete and continuous
parameter, and in both ways:

E (  E  (M1A tAc-1WtinAt,)2)P
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<CEI E ( M tr„A tr— M ti , At , )I
2 P

i=tn+2.

= C E l f

tn ' d

E fu id w u i
i t , , ' - j=1

t '  d

C E
j= 1 uE If , 12 du

< cl r— tn +IP- 1
 .

II

Hence

X (2 ,x ( 2 — , t)IIfo< cHtn+ t1 P 2 1 + 1 r —  tn + 1P - 1 }

Combining case (A) and case (B) implies (5). For (6) we have:

2, -1 t d

E ( M tp A t — M ti"A t) 2 —  f  E fu iz d u
i=0 0 1=1

13

d

C  E
j=0

j=0

P/2

2n-1 tP“ A t  d

E ( M tr+,,t — M t, , A 02 — f E f u 'd u
i=0 tin At i

2 n - 1  d f t r r i A t

E E (Mu— M ti"A t)fu i d w u i

( - 0  j= 0  tin A t

 

(by Ito's formula)

 

2 n - l f  tr-F iAt
E (Mu — M to A O f i l i d W I l i

i=0

2"-1( f tg ,iA t

E (Mu —Mt,nA OA/WW1/ 

) 2

i=0 t

(by Burkholder's inequality for martingales
with discrete parameter)

E 2 1

j=1 i=0

t/' iA  t

J  A t
(Mu —  M t," A t)fd ic lw z /

   

(by Holder's inequality)

C 2
p  \ d  2n-1 

E 
( f  A t y t2

n - 1 ) ( M u — M t e , A t ) 2 i ) u j i 2 d uJ=1 i=o ti"At

(by Burkholder's inequality for martingales
with continuous parameter)

<  c 2 ( ,4 - 0 2 -
n q  E d  2En-1 t i r  ' A t

E l M u  M  A f uj 1P
3=1 i tin A t

(by HOlder's inequality)
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d  2 -1 / tP + IA t
C E  E (EIM.—M„,,,t1")9Elfull2P)"2du

j= 1  1 = 0  tOn t

(by Holder's inequality)

But for u E [tin  A t ,  tin+i A a we have

(8)

=-Ec  f  u  f u 'd w t /j=1 ti”At

rtr,A t
1.4 1 2 dv

• j = l U t i n A t

d f t X i A t

<C 2 - 1(P - " E
ti.At Ifyil2 Pdv

<C2 - 1 , P- n.

Substituting (8) into (7) and taking (C l) into account, we get

2n-1 t  d

E  (Mtp„o\t — MG , At) 2 —  f  Ef11' 2 du
i=0 i=1

d 2 "-lf t1 +1  A t
▪ C 2-1(P-1)E  E

j=1 1=0 tinAt (E lfs i 21 )" 2 ds

c
f l( Elfsil2P)1/2ds0

C 2 - 1 ( P - " ± ' ( f l  E l f s ird s ) 1 1 2

i = 1  0

<C2 - 1 ( P - "

as d e s ire d . (6) is thus established.

P r o o f  of ( 4 )  To prove (4) we need the following result which is easily
deduced from [6, lemma 2.2].

Proposition 3 .1 .  Let fuJ TV,...(R ) ( j 1, •-• , d, u [ 0 , 1 ] )  and d efin e

M t =  f  tfui dw il l  .i=1 0

Put f u =( f u l ,••- , fun). T h e n  w e  have

d f  t t A •
F n M t =  E  Fnfuidwd1 + n fo F n — i fu c l u  ,i=l 0

2P

(9)
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Now we turn to the proof of (4). Since it is trivial that sup

<00, it suffices to prove that

(10) sup112;'-1(MtP,At — MtiA0 2 6,2,< co VP, r.

First we look at the derivative of the second order. By the chain rule of L
it follows that

2 n -1
(11) L( (Mtp..iAt — M„A0 2 )i=0

2n-1

—  E 2(Mo,,At Mt1,A,)+11F(Mtp,,At MtinAt)11, 2

i= 0

L-Il n +12n .

By [17, lemma 4.3], LM is also an L P -martingale. Hence we have by Millar
[12] (cf. also [13]):

lim supElL n (t)1P —supEl<M, LM>,1P< 0 0  .
n—os,t

Consequently

(12) s-nupElLn(t)1P< oo

Now we deal with /2'. From Proposition 3.1 we deduce that

d f tP -F lA t A•
(13) F(Mtx, A t M t i n  A t )  =  E Ffuidwui+ Adu

j= 1  t i .A t 1 -t in A tA •

Therefore

2n-1
(14) E 1117 (M e,A t — Mt1.At)I

i= 0

f  u2 du
P,2 r

 

t r r iA t
Ffil dwuiJ te" A t

2 d  2 n -1 tr+, A t
+ jY 2du

H  j= 1  i= 0 A t

d  2n-1

< E  E
j= 1  i= 0

   

/  + / 2n2

For hi we have

   

rtP+ Int
F f d w a l

J t e , t

2 \ pd ( 2 , - - 1

.E1/21(t)IP E E  E
j = 1 i= 0

   

By Burkholder's inequality for Hilbert-valued martingales with discrete
parameter it is bounded by
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tAri Atf )

fzidwui

 

C E(s u p

i
2P

   

Therefore (again by Burkholder's inequality, but in reverse way)

(15) E /2(t)IP  C E ( 1  twfuj11,2ditY

d f  1

C E E  1117 fUi llH2 C h iP  < C O
j=1

And for I  w e  have

(16) ELEZIP  E (fo tAfu i 2  dur

f  E lf uil2Pd, < œj=1

A combination of (14), (15) and (16) yields

2n-1
supE( I117(Mtp,, A t — Mte,At)112HY < co .

Hence

2n-1

n
( M t A I A  t  —  M t
, i =0 .0211p,2<00

proving (10) for r 1.
Now we proceed to estimat the derivative of the fourth order (i.e, r 2 in

(1 0 )) . For this we need one more lemma whose proof, which we omit, can be
done in the same way as in the scalar case (cf. e.g., [8]).

Lemma 3 .1 .  Let f ,  g Woo(H). T h e n  ( f ,  g)HE Woo and

L (f, , g)=(Lf, , g)+ (f , Lg)+(F f , g)H0H .

By this lemma we have

2.-1
(17) L 2 (  E 0  ( M t 1 A t  AIWA t) 2 )

2n-1
— { 2 ( ( M t r + l A t  M t e A t ) L 2 ( M t g , , A t  M t i , A t )  (L(M tr+i A t M  A t ) ) 2

i=0

(F . (-M  lA t — M t  A  t), L(MtP,-. MA t — t i n  A t )) H

+ (LF(Mer,, t M tin n  t ) ,  F (M t» , in t  M t in A M H )

+11172(Mtg, A t M ti'A  t )11  H OH I



ftintp+A:At( • 1
L F  - -

2
F fili)dwul r

tA-1AtA•

J t i , A t A •  
Lfudu

2
H +

2

I )  •

d  2,, - 1 (

E
j = 1  i= 0

2, - 1(
j 5 n =  E

i=0

d f  tr+1 A t tA.tAtA•

E d w  + fudu
j=1 tinA t 1 .tinA t A •

2

H O H )
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5

E L ? ' •
j=1

The estimation of f in  ( j= 1 ,  2, 3) being done in a way similar to that of /in and
/2n, we first have

(18) S711pE(I/ln ± (h n IP  +1/3 n 1P )' < o e  •

For fin we write

2n-1

(19) 114721 ,;11L17(Mtp+i At — Mti.At)112H

2n-1

+  E  IIF(Mtr+, A t — MtinA t)1131
i=0

j ‘ f il + J 4 n2 •

R2 will cause no problem, as we have seen above. To estim ate  J i  we first
make the following observation:

L F ( M tP + 1A t t)

d f  t i+i A t ( 1 .) A t A•
= E LF fil/ — —

2
F A l dwu3  + Lfzidu

j=1 to At fti.AtA•

Then we obtain

2n-1

E  (11L17(Mtp+,At—mwAt)M)i=0

But the R H S  can be estimated in the same way as for 12", so we have

(20) supE 1RI P  <

Finally for J 5 ' we use the Proposition 3.1 to obtain

 

tr„ A t

.1 ,0 A  t
 F 2 f2 c / w I l

2

H O H

\r tP • in e n • 2
Ffudul tinA  t A• H O »

2 " - 1 (  d

i= 0  j= 1

 

which can also be e s tm a te d  in exactly the sam e way as for /2n. Therefore

(21 ) supE IJ51?‹ 00



a2,
H = I f E x ,  aL e x is ts  a.e. and a2 f(s, t) 

asat dsdt <cof
Rd

1/ 1

f0 0
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Combining (17) (18) (19) (20) (21) we get

2n-1
SUIOM E  ( M t p , i A t — M ) <_tinA t, 2 ..p,4 _00
n ,t i=o

proving (10) for r  = 2 . Doing the same thing for higher order derivatives, step
by step, we can complete the proof of (10).

Now the proof of Theorem 3.2 is finished.
Q.E.D.

4 .  Two-parameter smooth martingales

Different to the one-parameter case, a two-parameter Brownian martin-
gale does not alw ays admit a representation of an ordinary Ito stochastic
integral in the plane: some additional term called stochastic integral of  the
second type, w hich  seem s to  be  more difficult to handle, especially when
Malliavin calculus is involved, appears in the rep resen ta tion . It is  for this
reason that we restrict ourselves in this section to  the case of strong martin-
gales, which admit always representation of stochastic integrals of the first
type, i.e., the ordinary Ito integrals in the plane.

We still start by introducing some notions and notations. Parallel to the
one-parameter case, we now work on the probability space X = C0([0, 1] x [0,
1]—> R d ), together with its Cameron-Martin subspace

and the two-parameter standard Wiener measure tt defined on the Borel a-
algebra g  of X .  Let {w (s, t), 0 s, t 1} be the coordinate Brownian sheet
on X  and gs,t the sub-a-algebra of g  generated by the Brownian paths up to
time (s, t). Then any { g s ,t }-strong continuous L 2 -martingale has a represen-
tation (cf. [3], [11])

(22) Ms t =  f  s ib% v' j=1 0

W ith the same notations in Malliavin caculus used in section 1, we can state
the following

Definition 4 .1 .  W e say  th a t M={Ms,t, t < 1 } is  a  two-parameter
smooth martingale if

1 1
(C 2 ) fL E  W ().(R d ), for alm ost all u, v 1 and f 0 0  Ilfu,vR,2rdudv < co

r .

Analogue to  [9, Theorem 4.2], we have
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Theorem 4.1, Given a two parameter smooth martingale M represented
as (22), then

(i) M s,tE W.(1:0), f o r all 0<s, t 0.
(ii) There exists a  decreasing sequence {On, o f  open subsets o f  X

and a function R : (U n ,iO n c )x [0 ,1 ] 2 R "  such that

(a) M is continuous on On' x[0,11 2 , f o r each
(b) Cp,,(07,)->0 as n->c0 for all p , r.
(c) 11-1,,,-M s,t almost surely, f o r all 0-„<s,t <0.

Proof . Though the proof is similar to that of [9, Theorem 4.2], we give
it for completeness. First we have by Stroock's commutation formula:

d t s
v i, v

t s 1
v  - v  dw i't vICI d w  =  ff 2 }.

Hence by Burkholder's inequality for two-parameter martingales (cf. [15]), we
obtain

d  f t
f t it , v d W i t , s B , 2  f  

1 f

( E
d  

Ilf i it , v B ) d U d V  <00, V p > 1 ;
s, 0 0 0 0 .J=1

and in the same way

r t for, d

SUpli Jo f ftti,VdWiu,s1IPP Jo ( Ilf.',v1IpP,r)ditdv< 00

for all p , r .  In particular, (i) holds. Using again Burkholder's inequality we
obtain for p 2,t  t ' :

li p

<CE{
d s' t ' 1 }P12

E  f  f v - d u d vs t ' 2

/ r S ' j t '

'
a<C( t ' —  tHIS ' S D P/2-1 Ç E il 2dU dV )

:1=1 s t 

c(It' - t1P- 2 +
And in general we can prove that

Ilms,, - r -  tIP - 2 +  -  s i P - 2 ]

for all r >O. Therefore Theorem 3.1 and Lemma 4.1 of [16] apply and the
proof is complete.

Q.E.D.

The following result is the counterpart of Theorem 3.1, and we omit its



X (2 ',  s, t)+ (e-2 -n )(2 ' —2-
( n + 1 0 - 1

X(E, s, t)=

{
x (X(2 - n, s, t)— X(2 >, s, t)) if 2-(n+ 1)< E < 2-7t

k = 1  0  0
f ts f fZ ,d u d v if .
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proof.

Theorem 4 .2 .  <M>=1<M>s,t0_<s, admits an co-modification.

We still denote by M (resp. <M>) itself its co-modification Si (resp. <A>).
Our main result in this section is the following counterpart of Theorem 3.2.

Theorem 4.3. We have the following convergence:

l i m

2 - 1  2 - I

( M ( 4 3 ( s ,  t ) ) ) 2 =  
d f

tf1;,2vdudvn-00 1=0  j=0 k=1.10

uniformly in (s, t)E[0,11 2 , q.s., where J3(s, t)=[tin A t, tr_Fi A t)x [s i n A s, s7+ 1 A
s) and M (J (s , t))= Mti"At,s'i*ins  M ti+ In t ,s in n s+ M tin n t ,s in n s•

P ro o f  The idea of the proof remains the same as that of Theorem 3.2,
though the calculus is more delicate. This is why we do not give all the
details below. Our effort will be concentrated only on those terms which
didn't appear in the proof of Theorem 3.2. First, note that, as in Theorem 3.2,
we should define a random field parametrized by [0, l]  as follows:

where

2"--1

x(2 — , s, t)= E E (m(zg'i(s, t ) ) ) 2 •
i= 0  j= 0

Then we can reduce the proof to proving the following facts:

(23) supilX(E, s, t) —  X(E, s", 011p° -< Cis P21 ±  CI t

(24) sunI1
r

X(2 - n, s, t)— X (0, s, t)IIPP  < C2 n ( P 2  1 )

s ,  

(25) suplIX(s, 011p,2,< 0 9

Proof  of  (2 4 ). Put

rk ,1 (Zri(S, t ) ) = I; U2, V2)f f f f iM s , t ) 2 X ( a ' ,  
V

xfzkii,v1f22,v4W IZ I , V  d W ii2 ,V 2

where
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X( V I ; U2, V2) =
{

0  if (u i, v 1 )(u 2 ,  7)2) o r  (u2, v2) (741, vi)
1 o th e rw ise .

Then by Ito's formula for two-parameter processes (cf. [3], [11], [14]) we have

(26) su p l[X (2 ', s , t) — X(0, s ,

d2, - 1 2, - 1

E E {M(J3(s, t)) 2 —
i= 0  J = 0

2, - 1 2, - 1 (  d  r
E  E  1 E  j 2M(J(s, t)).avduhl,v

j = 0  k = 1  ,d2i(S,t)

CsupA{ 2, - 1  2 , - 1 r

X= 0  j--0 .[Lz,t(S ,t)111(A (S ' 
t )) R,VdW,V

  

d d

E  ENkA zI3(s, t ) )
k= 1  1=1

For K1, we use Burkholder's inequality for both two-parameter martingales
w ith discrete param eter (c f. [10 ]) an d  continuous param eter (cf. [15 ]) to
obtain, in the same way as in the last section,

(27) EK1C 4 - n( P1 2 - ' ) .

F o r K 2  we use  again Burkholder's inequality and  the  properties of double
stochastic integrals to obtain

(28) EIK21P

d d 2 n -1  2, - 1

C E  E  E {  E  E  N ( X i ( s , t ) ) 2 } P / 2

k=1 1=1 1 = 0  j=0

d d  2 n - 1  27 - 1

C LI n (1 )1 2 - 1 ) E E E E iN k ' l (A (S ,  t ) ) 1 P

k=1 /= I  1 = 0  j=0

d d  2, - 1  2, - 1

C4n( P'2 - ' ) E  E  E  E E
k=1 1=1 1 = 0  j=0 ffffq ; ( S, t ) 2

( V i; U 2, V2)

  

x ,f z̀i 2,2)2 dwL',,vldwL ,,v2

Pp }



C4na,12-1)16-n(P12_1) d d  2n-1 2 ,, -1  f i f f
k=1 t=1 7 = 0  i= 0 zlij(s,c)2
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x ig ,v if t liz,v21P duldvidu2dv2

<  C 4 - n ( P I 2 - 1 )  .

Combining (26), (27) and (28) we get (24).
P roo f of  (23) and ( 2 5 ) .  The proof of (23) and (25) is completely similar

to that of (4) and (5), since now we needn't to use Ito formula and so no term
with double stochastic integrals will appear (of course we should use Burkhol-
der's inequality fo r two-parameter martingales instead o f that fo r  one-
parameter martingales). We don't give the d eta ils . This completes the
proof.

Q.E.D.

5. Remarks and Applications

In this final section we would like first to remark that the above results
can extend to  m utual quadratic variation of so-called smooth semi-
martingales. To be precise, let Si and S2 be two smooth semi-martingales of
the form

d t d t
S t(t) f  as 'd w s .' + E f  b s 'c ls  ,  1 =1 , 2 , tE [0, 1] .j=1 0 1=1 0

Here a  and b  satisfy the condition (Cl). T h e n  the techniques used above
allow to prove that

(29) limE(Si(tin+i A t) — S i(t i n  A t))(S2(0+1 A t ) —  S2(ti n  A t))

d  f  t
=  E  a s i  s2 j dsj=1 oD

uniformly in tE [0, q.s.
Now we consider the case of stochastic differential equations. Suppose

we are given functions o- E Cb- (R n i I rC )R d ) and bECt7(R m -> R m ). It was
proved in [16] that the unique solution to the following SDE

Idx (t)=6(x (t))dw (t)d - b (x (t))d t
x (0)= x o

has an co-modification. We will denote it by x ( t)=(x l( t) , •••, x m (t)) . It is
easily seen that every x i ' (k =1, m )  is a smooth semimartingale. There-
fore we have by (29)
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limE(xtr,At— xt,.At)(x t;iAt — =  f  a ( x ( s ) ) o . * (x ( s ) ) d s
n - . 0 0 0

uniformly in t [0, I], q.s. In particular, in the case c==-/d, b 0, where /d is
the d x d  identity matrix, we get

(30) l i M E ( W t ; + i n t W t,
,

A t)(W t;'+1 A t W t i .A t )
*

uniformly in t [0, 1], q.s. It is remarkable that (30) establishes one more
quasi sure property of Brownian motion, of which several quasi sure prop-
erties have been already established (cf. [1 9 ]) . In the context of Dirichlet
capacity over Wiener space, i.e., in the case (p , r)=(2, 1), (30) was established
by Fukushima ([28]) using a different method (see also the recent book of
Bouleau-Hirsch [1]). Finally it is needless to say that all the above state-
ments have also their analogues in the two-parameter case.
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