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The analytic continuation of the scattering
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operator with a penetrable wall interaction
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§ O. Introduction

A penetrable wall interaction (8 sphere interaction) is described by the
Schr6dinger operator formally given by

(0.1) H= — q(x)8(1x1 —  a) i n  L2(R 3 ) ,

where q(x ) is real and smooth on Sa= {x; Ix= a}  (a >0) and 8 denotes the
one-dimensional delta function. This has a long history mainly in nuclear
physics (Petzold [8], Nussenzveig [7], Antoine-Gesztesy-Shabani [1] and refer-
ences therein).

The first problem one meets is that of the selfadjoint realization of the
formal expression (0 .1 ). As a rigorous selfadjoint operator H corresponding
to (0.1), we adopt one uniquely determined by the following quadratic form h:

(0.2) h[u, v ]=(F u,F v )+ <ow, yv> , Dom [h]= H 1 (1e) ,

where 7 is the trace operator from 111(W) to L2(Sa), Dom[h] denotes the form
domain of h, (  ,  )  means the L2(W) inner product, < , > the L2(Sa) inner
product, and Hm(G) the Sobolev space of order m over G .  It is seen that H
is characterized as follows (Ikebe-Shimada [4, Theorem 1.7]):

(0.3) Dom(H)={ u  H2(R3\ sa) n HI(R3); 
1 3 u

 aaur  = q y ul

Hu= —  J u  i n  R 3 \ S a  f o r  uEDom(H),

where (aU 
O r ) ±  

means the trace of the radial derivative au 
87- to L2(Sa) from

>a} and {x< a}, respectively. Another way of selfadjoint realization of
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172 S. Shimada

(0.1) may be found in Antoine et a l. [1] and also in Shimada [10] for the
approximation problem. Another type of penetrable wall interaction (8'
sphere interaction) has been discussed in Antone et al. [1] and Ikebe [3 ]. If
we put q(x).----=-0 in  (0.2), the resulting operator Ho is seen to be the free
Hamiltonian:

(0.4) Ho= — , Dom(Ho)--H2 (W) .

The scattering matrix Sr(r >0) associated with the pair H  and Ho is
defined by

(0.5) (Sru)(co)= u(co)—  ir f F (r, co , co ')u (co ')da l f o r  uEL2(Si)

whre F (r , co, c(1) which is called th scattering kernel (amplitude) for the
scattering from the initial direction co' to the final direction co at energy r 2 , can
be represented as

(0.6) F (r , co, co')=
8 2

 <(1 — q ( x ) e i r w . x >  ,

(Shimada [11, Theorem 1.4, Lemma 1.7]). Here D I C  is  an integral operator
with a complex parameter K  defined by

(0.7) t u ( x ) =    y )u (y )d sy  f o r  uEL2(Sa) ,Js, — 31

which is seen to be a compact operator on L2(Sa) for all KE C (Ikebe-Shimada
[4, Lemma 2.4]).

In the present paper, we shall study the analytic poperties of the scatter-
ing kernel F (r, co, a l) with respect to r. Dolph-McLeod-Thoe [2] investigat-
ed this problem for SchrOdinger operators with exponentially decaying poten-
tials and further, yet at the formal level, dealt with the case that q(x)—= const.
Our procedure can be carried out rigorously including non-spherically sym-
metric potentials. In § 1 we obtain the analytic continuation of F (r , , co, co') to
the whole complex plain as a meromorphic function of r .  In § 2 we discuss
the poles of F (r , co, co') in ¶ r>0 ( g  r —imaginary part of r). In T r  0 ,  the
poles can appear only on the imaginary ax is. In  ET r >0, they correspond to
the negative eigenvalues of H, and on g  r  =0, they produce zero resonance if
a n y . In § 3 we examine the region in which no poles can appear and deal with
the case that q (x )  c o n s t .  in § 4.

1. Analytic continuation of the scattering kernel

As mentioned in § 0, the scattering kernel F (r , co, co') has the form:
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(1.1) F ( r , , a), a l)= 81e  <(1 —  r ) ' ( e ' ),

f o r  (r , w , w') (0, 00) x S,x S1.

We shall show that it can be continued analytically to the whole complex
plain C.

Theorem 1.1. The scattering kernel F ( r , , a), al) can be continued to the
whole complex p lain  C  as  a  C(Si X S i) - v a lu e d  m e r o m o r p h i c  function in  r,
where C (G ) denotes the B a n a ch  space o f  continuous functions o n  G  with
maximum norm.

P ro o f  We have only to show that

t ) - 1 ( e i Kw'•x), q(x)e° >

is a  C(Si x Si)-valued meromorophic function on C .  First we note that for
each coE Si, K e " '  is an L2(Sa)-valued entire function and K 1— *  q (X )e 2 K 0 .  x

an L2(Sa)-valued anti-analytic entire function:

(1.2) e i l C O . Y • X = e i K o a l f • X e i ( K - K 0 ) ( 0 ' • X

.=  1!E zi(co' • x) 1(K— K O ' i n  L2(Sa) ,L=0 

(1.3) q(x)eiKw.x=q(x)e'''xei(K -K°)`°*x

_ E   q ( x ) e ' ' ' ' '  .,„z  (w •  x )m (K  K o r  i n  L2(Sa) ,

f o r  ( K, Ko, c o ')E C x C x S ix S i.

Since it is seen that K 1— * T i c  is a B(L2(Sa))-valued entire function such that T.
is compact for each KEG, K [—* (1 —  -1-1) - 1  turn out to be a  B(L2(Sa))-valued
meromorophic in  C  by the analytic Fredholm theorem (e.g. Reed-Simon [9,
Theorem VI. 1 4 ]) . Here B (X , Y) denotes the Banach space of linear bound-
ed operators from X  to  Y  (B (X , X )=B (X )). Thus for each KoE C , there
exists po >0 such that for 0 < K  /Col <  po

(1.4) ( 1 —  "'X i =  i n A,(K— ico)i i n  B(L2(Sa)) ,

where AJEB(L2(S a )) an n  is  a  nonnegative integer. From (1.2), (1.3) and
(1.4) it follows that for each (co, co')E S i X S i  <(1 t ) - 1 (e"'""x), q(x)e.'"*x> has
the following Laurent expansion on 0 < I K  /ail <  Po:

m=0 m!

(1.5) q(x)ei"•.r>
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<A i e 'x (c o ' •  x ) 1, q(x)e x(a)• X ) m >
j -n,1=0,m=0

K— K 
l!m!

It is easily seen that each term of (1.5) is continuous in  (co, w ') S i x Si and
(1.5) converges in the C(Si x Si)-topology, if we note that

Ilew'x( co • )x,1„L2(s) a te aigc 4 7 r  
21+1

and Cauchy's inequality:

ilAillB(L2(sa»< max 1K1- )
i ll

„B(L2(s.»P •
1K- 101=P

Hereafter by F(K, co, co') we denote th e  continued scattering kernel.
Thus (1.1) holds for (K, co, co')E C x S1X Si. We should remark that the poles
of F(K, co, co') are necessarily those of (1— t) - 1 , while the converse is not true
in  general (see Theorem 2.3 a n d  a  remark there). Further th e  analytic
Fredholm theorem asserts that lc is a pole of (1— T O ' if and only if (1— TK)u
=0 has a nonzero solution.

Lemma 1.2. For each (w, colE S ix  S i w e have

(1.6) F(K, co, co')=F(—  i ,  (D ,  a) .

In particular, the poles are symmetrically placed with respect to the imaginary
axis, if  they  exist.

P ro o f  Assume that Ko is not a  pole  of (1— T ) ' .  Then since it holds
that

(1.7) T K u (x )=  t u (x ) ,

(1— =0 implies (1— t o )fi =0 i.e. U = 0 .  Thus it follows that — Ko is not
a pole of (1— T O '.  Again using (1.7) we have

(1.8) (1—  TK 0 ) - i u  = (1 —  1  )  1

from which (1.6) holds in this case.
Assume that Ko is a pole of (1— TK) - '. Then there exists a sequence {K.,}:7=0

which converges to Ko such that each KJ  is  ot a pole o (1— -1"0- 1 . Since (1.6)
holds for each lc=  letting j  tend to cc, (1.6) holds for K= Ko, where Ko is a pole
of F(K, co, co') or not.
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2. Poles of the scattering kernel in  9 - -

We shall discuss the poles of F(K, co, cd) in the region g  K> O. F ir s t  in g
K >0 we have

Theorem 2 .1 .  In the region g K >0, there are no poles o F(K, co, co') except
on the imaginary axis, and on the imaginary axis at m ost a f inite num ber of
Poles can occur. Further if  i/1(.1>0) is a pole of F(K, co, co'), —A 2 is a negative
eigenvalue of  H.

Imitating the proof of the theorem, we can show that iA(A >0) is a pole of
(1— -1,c) - 1  if and only if —A 2 is  a negative eigenvalue of H .  We also remark
that F(K, co, cd) actually has a pole in gK  >0 where q(x )=. Vo(const .)< —1/a
(see § 4).

Proof  o f  Theorem 2 . 1 .  Assume that Ko is a pole of F(K, w, cd). Then
since Ko is a pole of (1— TO', there exists a nonzero vector u  in L2(Sa) such
that (1— t o )u =0 by the analytic Fredholm theorem. Thus from Lemma 2.12
in Ikebe-Shimada [4] it follows that Ko 2 is an eigenvalue of H , which implies
,2<O because H has no positive eigenvalue by Theorem 5,2 in Ikebe-Shimada
[4]. Therefore Ko must be pure im aginary. Since H  is bounded from below
(Ikebe-Shimada [4, Theorem 1.5]), we have gKo<A(-21 2 (A >0) is a  lower
bound of H ) .  Thus it is seen that only a finite number of poles can appear on
the positive imaginary axis.

Theorem 2 .2 .  In the region K >0, the poles o f  F(K, co, co') are simple.

Proof . We have only to show that the poles of (1—  t ) '  are simple. Let
us recall the following identity (Ikebe-Shimada [4, (7.2)]): for K such that gK
>0 and K2 E p(H)

(2 .1 ) ( H  —  0 - 1 =  
(H 0  K 2)-1 +  T K (1 To-17(H 0  K2)1,

where p(H ) denotes the resolvent set of H , T , the integral operator with a
complex parameter K defined by

(2.2) T ,u(x )=  r  —  y lq (Y )u(Y )dS y  (x R3)

f o r  uEL 2(Sa)

which is a bounded operator from L2(Sa) to I-M R ') if gic >0 (Ikebe-Shimada
[4, Lemma 2.6]). After operating 7 from left on the both sides of (2.1) and
using t = 7T , (Ikebe-Shimada [4, Lemma 2.7]), we have by operating (H0— K2 )
from right

(2.3)( 1 —  T )_ ' 7= 7(H — K2 ) - 1 (Ho— K2 ) o n  112 (1e) .
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Assume that Ko(g/co >0) is a pole of (1— Then since Kb' is an eigenvalue
of H  by Theorem 2.1, (H — K2 ) - ' has the following Laurent expansion near Ko:

E({ K021)  (2.4) (H — K2 ) - ' — _L

Ko2  — K2l c  '

where E (•)  denotes the spectral measure associated with H  and A (K ) is an
operator valued analytic funtion near Ko. Noting that Range(H— K2 ) - '
E H i (W )  and Range(E({K02 }))CH 1(W ), we have Range(A(K))OE I / 1 (V ) ,  so
that

7(H ?Ea
KO

2  

K
2

/cep 
 + 7 A ( K )  .(2.5)

On the other hand, (1— TX' has the following form near Ko

(2.6) (1 A—n A — n + 1  
(Ko — ( Ko— K) n - 1 +

where A 1EB (L 2(S a)) (1= — n, — n + 1 , • • . ) .  Compared with (2.3), (2.5) and
(2.6), we obtain

(2.7) A _ y = 0  o n  H A W ) if n> 2 ,

Since 71-12 (1e) is dense in L2(Sa) and A - n bouned on L2(Sa), (2.7) implies

(2.8) A , = 0  o n  L 2 (S a)  if n 2 ,

from which the assertion follows.

Theorem 2 .3 .  In the region g K =0 (real axis), F(K , a), al) m ay  o r may
not have a pole, w hich is necessarily  sim ple, only  at the  origin . Further 0 is
a pole of  F(K , co, al) if  an d  on ly  if  it is  a zero resonance of  H.

For the zero resonance, see Jensen-Kato [5] and Shimada [11].

P ro o f  If K>0 is a pole of F(K , co, co'), by the analytic Fredholm theorem
there exists a nonzero vector u  such that

(2.9) (1— t ) u = 0

But (2.9) implies that u= 0 by Lemma 7.8 in Ikebe-Shimada [4], which is a
contradiction. Thus noting Lemma 1.2, it turns out that F(K , co, co') has no
pole on the real axis except for the origin. The rest of the statement follows
from Theorems 5.1-5.4 in Shimada [11].

Taking into account Theorems 5.1-5.4 in Shimada [11], we can show that
when H  has zero resonance (in fact, it occurs e.g. if q (x )=- F ( K ,  a), al)
has the following Laurent expansion at K=0:
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(2.10) F(K, CO, (01= 2 IrKi

On the other hand, in general (1— has the following form at K=0:

(2.11) (1— TO-1= C   ±  C -1   +
K K

In this case, it is seen that C_2*0 in B (L 2(S a)) is if and only if H  has a zero
eigenvalue.

3. Poles of the scattering kernel in i f  ,c< 0

In this section we shall examine the region in which no pole e x is ts .  If 1
— TK has the inverse in some region D c  C, F(K , co, al) has no pole in D by (1.1)
and the analytic Fredholm theorem . Therefore w e shall seek the region on
which K satisfy 11 t 2 11ll.s.<1, where 11111.s. denotes the Hilbert-Schmidt norm.
It is  know n tha t for each  KE C , 1",,2 be longs to  the Hilbert-Schmidt class
(Ikebe-Shimada [4, Lemma 2.8]). The same idea has been used to prove the
exponential decay of the solution for the w ave equation in Mochizuki [6].
We shall prove the next

Lemma 3 .1 .  For (K , e)EC x (0,112), w e  have

(3.1) TK2115/.S.-- Ce8 a 1 9 -K 1 ( 6 2 110ge
2 + 6 21K12

w h ere  C  is  a constant w h ich  is  in d ep en d en t of  (K, e)

Our main theorem of his section is

Theorem 3 .2 .  Let K= X + iy  and let 0 <  < 1. Then there exists a con-
stant C8 >0 such that in the region:

y> 1 -
+  C 88a

lx1>i 1 , y  <0  ,

F(K, co, ol) has no pole.

P roo f of  Theorem  3 . 2 .  If 11 f,,2 11H.s.<1, since 11 TK2 11 11 H .S.<1 (I TI is the
operator norm of T ), it is seen that (1— TK2 ) '  exists and belongs to B (L 2(S a))
using the Neumann s e r ie s . This assures us tha t (1— T K Y 1  also exists by the
relation

(3.2) (1 -  TK) - 1 = ( 1 -  72) - 1 (1+ ,

which implies that K is not a pole of F(K, a), a)') as mentioned above.
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Now let ic= x +  (IxI >4, y < 0) and let 0< 8 < 1. Since ellogel is bound-
ed for EE(O, 1/2), we have taking E=1x1- 1 / 2  in Lemma 3.1

(3.3) Ce8alg-K1 1 
lx 126 .2(1+6 ))

= 2Ce- 8 a Y 1X1- ( 1 - 8 )

where C is independent of (K, e), however, may depend on 6. Since the R.H.
S. of (3.3)< 1 if and only if

1— 8 
 lo g l x 1 +  

log(2C)— 1 (3.4)y > 8a 8a

F(K , co, col has no pole in the region on which K= X + iy stisfies lxI >4, y <0 and
(3.4).

We will devote the rest of this section to prove Lemma 3.1. We write the
integral kernel K (x , y) of 1'2 as

1 )2 f e i K l x - 2 1  
qe(3.5) K (x ,  y )= ( 47rs a dS z  ix _ z i (z )

iz — Yi a (Y )

( 1  )2 iaowx-,01+10)-wyl)
e

4 z  fs,
clw

q ( a w ) q ( a w Y ) '

where x= acox, y= acoy and ---- aco(cox, coy , N E  S i) .  Thus we have

(3.6) II t 2113c.s.= a 4 f dwidco2IK(acol, aco2)12 ,Jsixsi

a
) m axlq (x )rf dwida)21/(coi, (02)1 2

4, r )  x.sa si.s.

where
iwokoi-w1+1,(021)

(3.7) /(coi, co2)=f do) e 
10i - 0)11w - 0)2i a ( " ) .si

We will show Lemma 3.1 by proving a series of lemmas. First we have

Lemma 3 .3 .  L et 0 <  e < 1 .  T hen  w e have for K C

(3.8) fp dcoicia)2 (01/(w i, 2)12
 cesalu-Kielloger

,

w here C is a constant w hich  is independen t of  (K , e)E  C  x(0,1) and D i= D i(e )
denotes

(3.9) Di( €) = {(a)i, w2)ES 1 x Si; W1—W2 2 e .}
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U o h )E  x  SI; (021 2 (1 —  6 2 )} .

P ro o f Here and in the sequel, we use the same letter C  to denote a
constant, which may be different but independent o f (K, E)E C x (0, 1/2).
First we note by (3.7)

1 (3.10) 0)2)1 C e " I 'K I f  cico
(01160 — cod

< Ce 4 1 " 1(1+11ogicoi— 0)D .

0Let us introduce the polar coordinates (r, 0, g5) such that 'col —  cod =2sin-

2  
i.e.

the z-axis is taken as the ah-direction and 0 denotes the angle between ah and
. A . 0 2(02. L e t  A  and 02 be such that sin =e- an d  sin7= 1—  E2 ,  respectively.

Then we have by (3.10) and Fubini's theorem

(3.11) fD l dWl 2
1

( w l , co2) 12

<ce 8algiclf  d w i ( f f r
)dOsin0(1+.3, 0 02

A simple computation shows that

log( 2sin ti)2

(3.12) fo
0 dOsin0(1+ ) CE2 110 E12 ,

\2
log(2sin4)

log(2sin4) 
) 2

‹  Ce2 .(3.13) fe:dOsin0(1+

    

The assertion follows from (3.11), (3.12) and (3.13).

We shall proceed to the case 2e< cud <2(1 —  e2 ). Let D2=D2(E) be a
subset of S lx  Si defined by

(3.14) D2= {(ah, W2) S1 x Si; 2e<lah — ahl< 2(1 — € 2 )}

Lemma 3 .4 .  Let (col, co2)ED2 and let €E(0, 1/2). Then

(3 1 
2

.15) dandah .
Dz W i  W 21 

. • 0 2P ro o f Let A and 02 be such that sin- -=  e and sin- - = 1— e2 , respective-
ly. T hen using the polar coordinates ( r ,  0, q5) introduced in the proof of
Lemma 3.3, we have by Fubini's theorem
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10 2
(3.16) dwidco2=f

, 
dco127rf  dOsina n

f o 2 1 , 0 , - 12 s 0, •. 2 2 U4sm —
2

f dcoi27r(log(1— 0— loge)si

Let 291 (0< çai<i) be the angle between coi and co2 i.e.

(3.17) I (021= 2sin çoi .

We introduce the new coordinate system, under which coi and co2 are represent-
e d  a s  coi = (cos 91, sinçoi, 0) and co2= (cos çoi, —sin9i, 0), respectively. Under
this we write coE Si, using the polar coordinates, as

(3.18) = (sin acos 9, sin Osinço, cos a) , 0  <  <  , —  7r < 7r .

Let 7i(i=1, 2) be the angle between co, and co. Then we have

(3.19) cos yi = co • coi =sin acos( —

(3.20) cos y2= co • oh = sin acos( 9 + gal)

and by the change of variables: col—,  (a , 9 )

f e2zalc(sin + s ir ly )

(3.21) /(coi, co2)= . 1.  dço da sinaq(a, 9)
—n 07 i 72 4s m— s in-

2 2

dçof dc9/09, 9) .0

Let xi(i=1, 2, 3, 4) be smooh functions on R such that

(3.22)

(3.23)

suppx1(3)OE [E, —  e]U[1+ e, 7r —

xl(0)=1 on [2e, 1-26] U [1+26,

lx(t9)1 <— on [E, 2E] U [7r —2e, 7r —

suppx3(so)c [ + E , 0 < X3(

X3( SO) 1 on [ — z+ 2 6 , — 2 el ,

0‹ xi(t9) <1 ,

7r —2E],

,

<1 ,
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1X(T)1<—  o n  {-71- +E , —7r+2e1U[7r-2e, Jr— E],

and

(3.24) X2( 9)=1-261(0), x4(90) =1 — X3(0.

Then we have by (3.21) and (3.24)

(3.25) /(wi, w 2 )=f  7dçof IrdS(xi+x2)(x3+X4)f
0

= f7T 7T 7T

d
0 -

ço dt9x1x3.f+f
7T

 d

f
ço dz9(x2x3+x4)f

- 7T R

--= -7C O 2 )  I 2 ( W i ,  W2) •

Lemma 3.5 . Let eE (0,112) and K E C .  Then

(3.26) L 112(  a)1 , w2)12 dco dw2 c e 8al loge]

P ro o f Let E0=supP(X2x3+x4) and let E± be subsets defined by

(3.27) E .,(E _)={ (9, T)EE0; ço 0(ço<0)} .

By (3.22)-(3.24), we note that

(3.28) m (E0)<CE,

where m (•) denotes the Lebesgue measure on W . S in ce  2sin =lw —  w212
1 7i 1

> -

2
1(01 — (021 on E+ and 2sifl-

2
=1w —  wi1 -

2
1(01—  w21 on E_, we have

(3.29) 112( 0)1, (02)1 < fE o dOdsolfl

< c e .talu-Kil coi ( 0 2 1-1(f  s ina s i n s  d c it9 ço + f dc9dço .yi E -  •  72s i n -
2

By the change of variables D; (0 , ço)I---) w E S I, we have

(3.30)f  sim9  dOdço=f2
2

(E+)1w— c ia l •

Again, using the polar coordinates introduced in the proof of Lemma 3.3, we
obtain
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(3.31) I .Q (E * )  c o  1 coil  dco _ f   sin% 
d 0 d 0

2sin-2-

0= f  cos— dOdq5 CE2

where E+ denotes the region corresponding to ..(2(E+) by the above transfor-
mation, so that m (rg+ ) CE by (3.2). Similarly we have

(3.32)f  sim972 cic9dç o C e ,
sin 2

By (3.29)-(3.32), we have for (col, co2)ED2

(3.33) 1/2(coi, co2)1<cee
4alg- Kil

co21

The assertion follows from Lemma 3.4 and (3.33) immediately.

Let

u=2( s i n + s i n )2 2

and

y= 2(sin  7 1  s i n 7
2
2 ) .2

Consider the map F: (8, (u , y). Then we can easily check the next.

Lemma 3.6. The map F: (0, 01—* (u, v) is injective on (0, 7112)x (-7r, 7r)
and  (7rI2, 7r)x(— 7r, 7r), respectively.

Lemma 3 .7 .  L et J  be the Jacobian o f  F .  Then

(3.34) J =  
sin(29i)sin8cos 

2 2

Pro o f   By (3.19) and (3.20) we have

(3.35) . ay , =cosocos(so—so,),

(3.36) • ar2 —sin72 .30 =cos8cos(s0+ soi),

and hence
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(3.37) au7 1   371 , 72  4972
Do —Cos 2 a a  +cos 2 D o

— c o s y  s in -
2

cos(ço— çoi)+sintcos(ço+ TO} .yi y22sin ---sin2 2

Similarly we have

Du_ sint9 (3.38) { 7 2sin— sin(ço çai)+sin 7
2

1sin(ço+çoi)}aço ri2sin—sin 7 2 2
2 2

— c o s °  { •  72sin cos(ço — —sin-cos(ço+ TO} ,
2 s in is in t

Dv —(3 .4 0 )

2sin is in fDç Is in2sin (q , col) s i n 7 1  sin(ço+ TO} ,27
2 

From (3.37)-(3.40), (3.34) follows immediately.

Lemma 3.8 . Let (ah, w 2)ED 2. Then

(3.41)
J -

isin(ço — Soi)l av < 8 ,
K • yis in -

2

(3.42) r'Isin(ço+Soi)I 
• 27sin 2

P ro o f  In view of (3.19), we have

isin(ça— Soi)
dço(3.43) f_Jr

2

( f  : +1 i Jr 12sin(ç9— dço
fx+ 9 , f ° 1

 ) 11 —sinc9cos(ço— çoi)

<8
11 +sinc9 +11

which implies (3.41). (3.42) is similarly obtained.

Lemma 3 .9 .  Let (wi, w2)ED2 and let eE(0, 1/2). Then

(3.39) Dv 

8.12
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(3.44)
( ( r,

(1.
0
 2 - 6 4 fr p o (  1COS \ 99 —  Soi)i ICOS■SO <

—
2
+e sin 2 2

w h ere  C  is  a constant w h ich  is  in d ep en d en t o f  ça, çoi and  E.

P r o o f  W e  shall only show that

2 €d 8   cos( — çoi)I C
Î i E
2

The other cases can be dealt with similarly. Since cos t9 sine on [ z
7r

we have by (3.19)

(3.46)
, ,/- c

d t9
lcoslço— goi)1

sin 2

1   r i - E  , 12cost9lcos(ço —  Soi)I 
— sine Jo ,11—sint9cos(ço-401)

,%/21cos(ço — çoi)1(1 — — cos ecos( ço — ) 
sinecos(ço— çoi)

< C <  C
s in e  

which implies (3.45).

Lemma 3 .1 0 . L et (ah, co2)ED2 and e ( 0 ,  1/2). T hen  w e have for K C

c e 4a19-K,
(3.47) (02)1<- €,Kisin(2ç71) •

P r o o f .  We write L(coi, co2) as

(3.48) W 2 ) f  f  = L 1 + 1 .12 ,
Et E2

where E id(c9, ço); 0<  < -7
2-r-', —7r<T<R-}  and E2={09, ço); t9<7,--7r<q)

We shall show (3.47) for L i .  112 can be estimated similarly. In view

of Lemmas 3.6, 3.7, integration by parts with respect to u  gives

(3.45)

2sin1( 2 -  f ja" q X 1 X 3  dudv
v-q) F(Eoec o s  t 9(3.49) I n.(W i ,  W22 ) —
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- 1 e uuu a (  qxix3)dudv2icasin(2 au\ cost991, fF(Eo

2ictic(sin +sin11) (qxix3 )dt9d2iaicsin(2ço Ei 
e 2 2  V

9  a o  cosy g'

e2 ic t ic (s in -721+ s in -722) v   a (gx1x3)dod ço+
2 iwcsin(2 çoi) aço cos c9

Yv where the abbreviation v id= s used. Using (3.22), (3.23), (3.40) and Lemmac9
3.8, we obtain by Fubini's theorem

c e4alffKi Isin(so— soi)i  + Isin(9+ }(3.50) l ic Is in (2 9 ,)J E
1 2 2

x  lx '() 1  +  I;c(9)1 lxi(o)Isino 
o fsint9dOdçocost9 cost9 cos2

ce4aigio f f sim9 s i n 2 a <1 . dc9 cos c9 
+  

co s 2

t9IKIsm(291)

+1 -E (f 2 6 ± 4 f--
266 ) "  csoins',9 }

i , e 4algtcl

El KIsin2q01)

Similarly, we have by (3.22), (3.23), (3.39) and Lemma 3.9
ce4aIgK I

 f  f  Icos(so— 91)1 
 + 

Icos(s0+ soi)I  I(3.51) IJ21 licisin(2çoi)JE
2 2sinA

(1x3(9)1+126(01)1x1(0)Idadso
Ce 4C/IgKI f r -E -72+26 r \1

( f
. ciço+—

e ,c+e + e ) d g qElKisir(29, 1) —n-Fe 7r-26

"
ElKisin(291)

From (3.49), (3.50) and (3.51) follows (3.47) for Li(wi, co2).

Lemma 3.11. Let EE(0, 1/2). T hen  w e have for KEC

(3.52) LIL(0)1, w2)12dwida2 Ce
8a' I l l ° g e le i x.12 •



186 S. Shimada

P r o o f  By Lemma 3.10 we have only to show that

( 3 . 5 3 )

f.o2 sin21(2 do.hdco2_Cllogel .

Since sin2(2çoi)=Icoi— co212(1 — co2r) by (3.17), we have using the polar

coordinates introduced in the proof of Lemma 3.3 (sin 0
2

1 = e, sin 0
2

2 =  1  e 2 and

— w2i =2sin4)

1 dwidw2 (3.54)
5 in 2 (2  ç o i)  

dco dco
2 =  

nf 2 1  I
1(0 1 (0212(-1- I CO1 CO212)4

' 0z1  = r dw if d 827rsin0, . 0 . 04sin2-
2

(1 —sin )2-
2

02=27r.f dO 
. 1  

S I  e l  sin 0

=87r 2 ( 02log t a n -
2

 

log tan---

   

.

Now we are in a position to prove Lemma 3.1.

Proof of  Lemma 3 . 1 .  (3.1) follows from Lemmas 3.3, 3.5 and 3.11 imme-
diately.

4. Poles of the scattering kernel with constant density

Throughout this section, we assume that q(x) Vo (const. *0). Then for
(r, w , colE(0, 00)x S1 xS 1, F(r, , w, co') has an expansion of the form:

0 0 1

47r(4.1) F(r , co, col=  
m = - 1 2 1 + 1

 F (r)Y m(w)Y ini(al) ,

which converges absolutely and in LAS' x S1). Here

27+1V o a V  1 2 (a r )  (4.2) Fi(r)= 27r 1 + iV o a 2 rjz (ar)hi" ) (ar)

an d  1711  (1=0, 1, 2, • • •, m= —1, — 1+1, • • • , 1) denotes the spherical harmonics
which provides an orthonormal basis for L2(51), Ii (1=0, 1, 2, ---) the spherical
Bessel functions and him  (1=0, 1, 2, • -•) the spherical Hankel functions of the
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first kind. Fi corresponds to the scattering amplitude of the scattered wave
with the angular momentum l  (Shimada [11, Lemma 7.5]).

Since { Km} is an orthonormal basis for L2(S1), integrating over SIX S1
with respect to (co, co') after multiplying the both sides of (4.1) b y  Yin(co)
Yinz(co') gives

(4.3) (F ( r, , co, col, K m (w )Y in (co))Lz(sixso= 21
4
 +
71.

 1 Fi(r) .

In view of the unicity theorem and Theorem 1.1, (4.3) holds for r  such that
F(K, co, co') and Ft(K) are analytic near r. Thus the poles of Fi(K) (1=0, 1, 2,
•••) are necessarily those of F(K, co, co'). We shall study the poles of FL(K).
By (4.2) it is seen that the solutions except 0 of the equation:

(4.4) e 2 i c t i c  _ 1  2iaK 
Voa

are the poles of Fo(K ). (4.4) has been obtained by Petzold [8] and Dolph et al.
[2]. A straightforward computation shows that (4.4) has a solution i2(/1>0)
i f  Vo< —1/a and i/I(/1< 0) if  —1/a< Vo<0, so that F(K, co, co') has a pole
Further we have

7rn Theorem 4.1. For large nE/V, in the region <.42.K< 
7 r (n + 1 )

 therea a
exists exactly one pole K n  of  Fo(K) such that

(4.5) 7r1 i 7C 
ICn =  

2 a  
(2n +1 +—sgn Vo) 

2 a  

l o g

 2 a  
(2n + 1 +-

2
sgn Vo)2 

i2
2a 1°gM r+  o ( 1 )  a s

n —>co

where sgn Vo denotes the signature of  Vo.

The theorem te lls  u s  th a t the po le K =x +iy  o f  Fo(K) asymptotically
—12approaches to a  curve y =  2 a  1 ° g 1 x 1  2 1a log-j- -1- a s  IRKI—>00. F or V0<0,

Petzold [8] obtained this result. Here we give an elementary proof.

P ro o f  Let tc=x + iy  (x  > 0, y < 0) and let 2iaK =P+ ig(p= — 2ay , q=2ax).
Then (4.4) is written as

(4.6) e '=( 1 + A p )+  iA p  (A = Voa ) .

For n=1, 2, •••, consider a segment L (p, n) and a circle C (p ) in C  defined by

L (p, n)={ (1+ A P)+iA q;27rnS q<27r(n+1)}  ,
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C(p)={e ; 27i-n<q <27 -r(n+1)}  .

First we seek an interval on which there exists an intersection of L(p, n) and
c (p ).  Let f (P) -= e 2 P -(1+ .  T h e n  i t  i s  s e e n  t h a t  (p ) monotonouly
increases to infinity for large p .  W e can take a strictly increasing sequence
tcnI such that cn goes to infinity and f (c)=(27rA n) 2 . For large n, it is seen
that L(p, n) and c(p) can intersect only for pE[cn, cn+i] at a unique intersec-
tion point 1 + Ap+ is g n it  f ( p ) .  Thus we can take qi(P) and q2(P), which are
uniquely determined for pEkn, cn+1], such that

(4.7) ePe 'q l(P )= (1+A P )+  zA q2 (P ),

27rn<qi(P), q2(P).<271-(n +1) , (q2(P)=

W e shall show that there exists exactly one solution PE[cn, cn+i] such that
qi(p)=q2(p) i.e.

iA+iip(P)(4.8) arctan( sgn )+ (2n+  2
1 + sgn A )7 r=  l ifY ) 

- 2r 7 Iwhere arctan 2  ' 2  )*  Let

g(P) +  2 n +  -  —  g  A ) fIAH
 (P )= arctan( sgnAMP)1  1

1 + Ap 2 2  s
-

n  Z

Then it is easily seen that g(cn)>O, g(cn+1)< 0 and g (p ) is monotone for large
p, which implis that there exists a unique solution pn of (4.8) for large n by the

intermediate value th e o re m . If we put qn = qo(Pn), 2Ia (q n  iP n ) turns out to be

a unique solution of (4.4) for large n .  By (4.8) we have as n-> co

(4.9) qn= arctan( sgni A+ //p(p)  )+ ( 2n 4_ _ s21 l
2 gnA)7c

1 1 7r-(2 n + ---sgn A )7 r+ — + o (1 )2 2 2

1= (2n +1 +—sgn Vo)7r + o(1) .2

Taking the imaginary part of the both sides of (4.6), we have by (4.9)

e ( -sgn Vo+ o(1))= vo
l
a (2n+ 2

1 +4sgn Vo)n-+ o(1)

and hence
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2 7E1(4.10) Pn =log r+ log
2 a

 (2n + 1 +-
2

sgn Vo) + o(1) .'Vol 

From (4.9) and (4.10), (4.5) follows immediately.

Lemma 4 .2 .  L e t Vo<0 and let I be a positive in teger. For large n , in
the region 27rn s- 2;r(n+ 1)(r +is E C ) , there exists a unique solution rn+isn
of  the equation:

(4.11) er's=(-1)1{ (1+ A r)+ iA s}  , vol-a)  ,

which behaves, when n—>œ, as

(4.12) rn= log{2n+ 1+ (-1)11}2rA + o(1),

sn= f2n+ 1+ + (-1) 1 - 1 17+o(1).

P ro o f  T he  asse rtion  is obtained i n  a  w ay sim ilar to  th e  proof of
Theorem 4.1.

1 We remark that 
a
 (Sn i r n )  asymptotically approaches to the curve y=2

—1 1 2  loglxi log i  .r-Fiy E C ) as n—>co. For the pole of Ft(K) (I >1), we2a 2a 1Voi 
,

have the next

Theorem 4 .3 .  L et Vo < 0 and let en= ( e > 0 ) .  Then for large n, inlogn
7rn 7r(the regin < n + 1 )

there exists exactly one Pole K n = X  n  iyn of F1(K)a a
such that

(4.13) 1 
a  

/ 1 
E n ) r n Y n ( E n ) r n  •2 2a

Since enrn= e(1+ o(1)) as n—>œ, the poles of  F1(K )(l>1) only appear near the
—11 2curve y = loglx1

a
 log-1- - 1- (x  + iyE C), i f  IgZ Ki is sufficiently large.2a 2 Vo

P ro o f  Let us recall (4.2). A straightforward computation shows that

(4.14) Kt1+ i Voa2 Kji(aK)hi" ) (aK)}

— 2i Vo  f( e 2,aK 1 + 2ialc R oo } ,
Voa

where R(K) is analytic on  CMOI such that
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2aigKI
(4.15) 1_1?(K)I C e

IKI •

Using (4.14), (4.15), Lemma 4.2 and Rouche's theorem, we have the conclusion.
We omit the details.

Fukui National College of Technology
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