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§0. Introduction

A penetrable wall interaction (8 sphere interaction) is described by the
Schrodinger operator formally given by

(0.1) H=—4+q(x)6(x|—a) in LAR?),

where ¢(x) is real and smooth on S.={x;|x|=a} (¢>0) and ¢ denotes the
one-dimensional delta function. This has a long history mainly in nuclear
physics (Petzold [8], Nussenzveig [7], Antoine-Gesztesy-Shabani [1] and refer-
ences therein).

The first problem one meets is that of the selfadjoint realization of the
formal expression (0.1). As a rigorous selfadjoint operator H corresponding
to (0.1), we adopt one uniquely determined by the following quadratic form #:

0.2) Wu, v]=Cu, Fv)+<qyu, yv>, Dom|[k]=H'(R?),

where 7 is the trace operator from H'(R®) to L2(S.), Dom[%] denotes the form
domain of %, (, ) means the L,(R®) inner product, < , > the L»(S,) inner
product, and H™(G) the Sobolev space of order m over G. It is seen that
is characterized as follows (Ikebe-Shimada [4, Theorem 1.7]):

(0.3) Dom(H)={uEH2(R3\Sa) NH'(R®); <%>+ - (g—:f)_= qyu} ,

Hu=—4du in R\S. for u#€Dom(H),

where <g—if>+ means the trace of the radial derivative g—:f to La(Se) from {|x|

>a} and {|x|<a}, respectively. Another way of selfadjoint realization of
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(0.1) may be found in Antoine et al. [1] and also in Shimada [10] for the
approximation problem. Another type of penetrable wall interaction (&8’
sphere interaction) has been discussed in Antone et al. [1] and Ikebe [3]. If
we put ¢(x)=0 in (0.2), the resulting operator Ho, is seen to be the free
Hamiltonian:

(0.4) Ho=—4,Dom(Hy)=H*R®).

The scattering matrix S-(» >0) associated with the pair H and H, is
defined by

(0.5) (S)(0) = ulw)—ir f F(r, 0, 0)u(0)de’ for u€LyS)

whre F(7, w, »’) which is called th scattering kernel (amplitude) for the
scattering from the initial direction ’ to the final direction w at energy #? can
be represented as

08 Flr,0,0)=g= T (™), glz)e™

(Shimada [11, Theorem 1.4, Lemma 1.7]). Here T is an integral operator
with a complex parameter x defined by

(0.7) Txu(x)=z—z1 ﬂ a{,:cl_%q(y)u(y)dsy for u&LxSa),

which is seen to be a compact operator on L2(S.) for all k€ C (Ikebe-Shimada
[4, Lemma 2.4]).

In the present paper, we shall study the analytic poperties of the scatter-
ing kernel F(7, w, ") with respect to . Dolph-McLeod-Thoe [2] investigat-
ed this problem for Schriédinger operators with exponentially decaying poten-
tials and further, yet at the formal level, dealt with the case that ¢(x)= const.
Our procedure can be carried out rigorously including non-spherically sym-
metric potentials. In § 1 we obtain the analytic continuation of F(7, w, ®’) to
the whole complex plain as a meromorphic function of ». In § 2 we discuss
the poles of F(7, w, w’) in € »>0 (4 » =imaginary part of »). In Z# >0, the
poles can appear only on the imaginary axis. In < #» >0, they correspond to
the negative eigenvalues of H, and on 4 » =0, they produce zero resonance if
any. In§ 3 we examine the region in which no poles can appear and deal with
the case that g(x)=const. in § 4.

1. Analytic continuation of the scattering kernel

As mentioned in § 0, the scattering kernel F(7, w, «’) has the form:
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1

oy <(1 _ Tr)—l(ez‘rw"x), q(x)ez‘ﬂuox>

(1.1) Flr,w o)=

for (r, 0, ®)E(0,0)X S XS;.

We shall show that it can be continued analytically to the whole complex
plain C.

Theorem 1.1. The scattering kernel F(r, w, w’) can be continued to the
whole complex plain C as a C(S1XS))-valued meromorphic function in 7,
where C(G) denotes the Banach space of continuous functions on G with
maximum norm.

Proof. We have only to show that
P <(1 _ Tx)—l(ei/cw’-x)’ q(x)eifw-.t>

is a C(S:X S))-valued meromorophic function on C. First we note that for
each wE S, k— ™% is an Ls(S.)-valued entire function and « +— ¢(x)e*'*
an L(S.)-valued anti-analytic entire function:

(1 2) ez‘/cw’oa::ez‘lcow’-xei(/c—xo)w"x

o Kow'=X

= 71 o x)(k—r) in LS.,

(=0

(13) q(x)eifw-x:q(x)eix_ow-zeimw-x
ZEO%Z'“((U%)”’M—KJ’” in LaSa),

for (&, ko, w, )ECXCXS;XS:.

Since it is seen that « — T is a B(L2(S.))-valued entire function such that T
is compact for each x€C, x— (1— Tx)™" turn out to be a B(L2(S,))-valued
meromorophic in C by the analytic Fredholm theorem (e.g. Reed-Simon [9,
Theorem VI. 14]). Here B(X, Y) denotes the Banach space of linear bound-
ed operators from X to Y (B(X, X)=B(X)). Thus for each < C, there
exists po>0 such that for 0<|x— x| < 0o

149 (=T)'= 3 Alc—w) in B(LS.),
where A;€ B(Lx(S.)) an # is a nonnegative integer. From (1.2), (1.3) and

(1.4) it follows that for each (w, ®)E S X S; <(1— Ty) "(e™*"**), q(x)e ™ *> has
the following Laurent expansion on 0<|x— | < oo

18 =T e ), ala)e o
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Ms

CAje™ (o 2), g(x)e™® *(w-x)™>

j=—n,1=0,m=0

l'l—m(/{_ Ko)l+m+j

X Tim!

It is easily seen that each term of (1.5) is continuous in (@, )€ S X S; and
(1.5) converges in the C(S:X Si)-topology, if we note that

le™ (@ x)lasn<a'e ™ /5777

and Cauchy’s inequality:

1Al Basan < max 11— T Maceacsano™ .
lk—Kol=p

Hereafter by F(«, w, ') we denote the continued scattering kernel.
Thus (1.1) holds for (, w, )€ C X S1X S;. We should remark that the poles
of F(k, w, @’) are necessarily those of (1— 7,)~!, while the converse is not true
in general (see Theorem 2.3 and a remark there). Further the analytic
Fredholm theorem asserts that « is a pole of (1— 7)~" if and only if (1— Ty)u
=0 has a nonzero solution.

Lemma 1.2. For each (0, )ES1 X S1 we have
(1.6) Flk, 0w, o) =F(— %, 0w, ») .

In particular, the poles are symmetrically placed with rvespect to the imaginary
axis, if they exist.

Proof. Assume that # is not a pole of (1— T%)™'. Then since it holds
that

(1.7) Tou(z)=T-ru(x),

(11— Tw)u=0 implies (1— Tr)@=01ie. u=0. Thus it follows that — #o is not
a pole of (1— 7T,)™". Again using (1.7) we have

(1.8) A—Te) 'u=1—Tw) 'a,

from which (1.6) holds in this case.

Assume that & is a pole of (1— T%x)™". Then there exists a sequence {#;}5o
which converges to % such that each «; is ot a pole o (1— 7). Since (1.6)
holds for each x=«;, letting 7 tend to o0, (1.6) holds for ¥ =k, where & is a pole
of F(k, w, @) or not.
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2. Poles of the scattering kernel in 4 x>0

We shall discuss the poles of F(«, w, ®’) in the region 4 ¥>0. Firstin I
k>0 we have

Theorem 2.1. In the region I k>0, there arve no poles o F(«k, w, ') except
on the imaginary axis, and on the imaginary axis at most a finite number of
poles can occur. Further if iA(A>0) is a pole of F(k, w, w’), —A% is a negative
eigenvalue of H.

Ilnitating the proof of the theorem, we can show that iA(1>0) is a pole of
(1—T,)"'if and only if —A* is a negative eigenvalue of H. We also remark
that F(k, , @) actually has a pole in 9 x>0 where g(x)= Vio(const.)< —1/a
(see § 4).

Proof of Theorem 2.1. Assume that # is a pole of F(«, w, w’). Then
since & is a pole of (1— Tx)™}, there exists a nonzero vector z in L2(S.) such
that (1— Te,)2e=0 by the analytic Fredholm theorem. Thus from Lemma 2.12
in Ikebe-Shimada [4] it follows that #” is an eigenvalue of H, which implies
#°<0 because H has no positive eigenvalue by Theorem 5,2 in Ikebe-Shimada
[4]. Therefore x must be pure imaginary. Since H is bounded from below
(Ikebe-Shimada [4, Theorem 1.5]), we have T xn<A(—A? (A>0) is a lower
bound of H). Thus it is seen that only a finite number of poles can appear on
the positive imaginary axis.

Theorem 2.2. In the region I k>0, the poles of F(k, w, ') are simple.

Proof. We have only to show that the poles of (1— 7,)~' are simple. Let
us recall the following identity (Ikebe-Shimada [4, (7.2)]): for « such that 9«
>0 and «K*€o(H)

(2.1) (H—=i)"'=(Ho— )"+ T(1— To) 'y (Ho— %),
where o(H) denotes the resolvent set of H, T, the integral operator with a
complex parameter ¢ defined by

iKlx—y
e | |

@) Ta@)=7; [ freu)ds, @ERr)

for ueLx(S.),

which is a bounded operator from L:(S.) to H'(R?) if 4 x>0 (Ikebe-Shimada
[4, Lemma 2.6]). After operating y from left on the both sides of (2.1) and
using T»=yTx (Ikebe-Shimada [4, Lemma 2.7]), we have by operating (Ho— %)
from right

(2.3) A—T) 'y=y(H— )" (Ho—«?) on HAR®.
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Assume that (9 k% >0) is a pole of (1— 7%)™". Then since &’ is an eigenvalue
of H by Theorem 2.1, (H — #*)"" has the following Laurent expansion near #:

o - =E4ED) 4,

where E(+) denotes the spectral measure associated with H and A(k) is an
operator valued analytic funtion near k. Noting that Range(H —«%)!
CH'(R?) and Range(E({r?}))C H'(R®), we have Range(A(x))CH'(R®), so
that

25  AH-e =D .

On the other hand, (1— 7,)™" has the following form near &

(2.6) 1-To'= (KOA_“;’C),, + (Ko‘q_‘;;}z_l te

where A;€EB(LAS.)) (j=—n, —n+1,:). Compared with (2.3), (2.5) and
(2.6), we obtain

2.7) A-.y=0 on H*R® if n>2,

Since yH*(R?®) is dense in Lz(S.) and A-» bouned on L»(S.), (2.7) implies
(2.8) A =0 on LS. if n=2,

from which the assertion follows.

Theorem 2.3. In the vegion k=0 (real axis), F(k, w, w’) may or may
not have a pole, which is necessavily simple, only at the ovigin. Further 0 is
a pole of F(k, w, ") if and only if it is a zero rvesonance of H.

For the zero resonance, see Jensen-Kato [5] and Shimada [11].

Proof. 1If k>01is a pole of F(k, w, ®’), by the analytic Fredholm theorem
there exists a nonzero vector u such that

(2.9) 1—T)u=0.

But (2.9) implies that #=0 by Lemma 7.8 in Ikebe-Shimada [4], which is a
contradiction. Thus noting Lemma 1.2, it turns out that F(«, w, ') has no
pole on the real axis except for the origin. The rest of the statement follows
from Theorems 5.1-5.4 in Shimada [11].

Taking into account Theorems 5.1-5.4 in Shimada [11], we can show that
when H has zero resonance (in fact, it occurs e.g. if g(x)=—1/a), F(k, 0, »’)
has the following Laurent expansion at x=0:
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N i
(2.10) Flk, 0, 0)= o +oee

On the other hand, in general (1— 7,)~! has the following form at x=0:

_ T —1_Q Q
(2.11) 1-T)'= 2 + P +-e-

In this case, it is seen that C_#0 in B(L:(S.)) is if and only if H has a zero
eigenvalue.

3. Poles of the scattering kernel in 9 #<0

In this section we shall examine the region in which no pole exists. If 1
— T has the inverse in some region DC C, F(k, w, »’) has no pole in D by (1.1)
and the analytic Fredholm theorem. Therefore we shall seek the region on
which « satisfy | 7|#.s.<1, where ||||l.s. denotes the Hilbert-Schmidt norm.
It is known that for each x€C, T.? belongs to the Hilbert-Schmidt class
(Ikebe-Shimada [4, Lemma 2.8]). The same idea has been used to prove the
exponential decay of the solution for the wave equation in Mochizuki [6].
We shall prove the next

Lemma 3.1. For («, €)€ Cx(0,1/2), we have
(3.1) I T s.< Ces"'g"'<ezlloge|2+ l(z)g:z ) ,

where C is a constant which is independent of (k, €)
Our main theorem of his section is

Theorem 3.2. Let x=x+1iy and let 0<6<1. Then there exists a con-
stant Cs>0 such that in the region:

1—¢0
2 log|x|+ Cs

y>-
lx|>4, y<O0,
F(k, w, w) has no pole.

Proof of Theorem 3.2. Tf | Ti|n.s.<1, since | T <| T¥ln.s.<1 (| T is the
operator norm of T'), it is seen that (1— 7..?)"! exists and belongs to B(L(Sa))
using the Neumann series. This assures us that (1— 7%)~" also exists by the
relation

(3.2) A—-T)'=Q—-TAH 0+ Ty,

which implies that « is not a pole of F(k, w, ) as mentioned above.



178 S. Shimada

Now let k=x+iy (|| >4, ¥y<0) and let 0<5<1. Since €°|loge| is bound-
ed for e€(0, 1/2), we have taking e=|x|™"? in Lemma 3.1

(33) Il szllﬁ.s'gC¢8a|9x|<62(l-8)+m2€:12(—1+‘”>
=2Ce ™8| g|"?

where C is independent of («, €), however, may depend on 8. Since the R.H.
S. of (3.3)<1 if and only if

_1-q

(3.4) y> =g log|:c|+MC)_i

8a ’

F(k, w, ®’) has no pole in the region on which x=x + 7y stisfies |x| >4, y<0 and
(3.4).

We will devote the rest 9f this section to prove Lemma 3.1. We write the
integral kernel K(x, y) of T.* as

iK|lx—2| iK|z—y|

\ €
—z| Q(Z/ |z—y| CI(J’)

69 Kan=(E) fost

1 \? elalwz—wl+lw-wy)
_<E> /;,d‘” [0s—allo—a,] 4(aw)aawy),
where = aw:, y=awy and =aw(w:, 0y, ES1). Thus we have

(3.6) | TKZH%LS.Za4j;lXSldG)ldCU2|K(aCU1, awa)l?,

4
<(37) maxla(@r [, dondanli(on an)l,

where

iak(lwr1—wl|+|lw-wz2l)

| q(aw) .

_ e
(37) I(a)l, (l)z)-/;ld(u |a)1—a)||a)—a)z

We will show Lemma 3.1 by proving a series of lemmas. First we have

Lemma 3.3. Let 0<e<1. Then we have for k& C

(3.8) dondws|I(wi, w2)?< Ce®' 7" €¥|loge
Dy

2
>

where C is a constant which is independent of («, €)= C %X(0,1) and Di=D(e)
denotes

(3.9) D1=D1(e)={(w1, Cl)2)651><51; le—szSZG}
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U {(a)l, (1)2)6 Si XSy |CU] — Cl)2| 22(1 - 62)} .

Proof. Here and in the sequel, we use the same letter C to denote a
constant, which may be different but independent of («, ) C x(0,1/2).
First we note by (3.7)

4al Tkl 1
(3.10) [[(w1, w2)|< Ce dem

< Ce*T9(1+|loglwr— wl)) .

Let us introduce the polar coordinates (7, 8, ¢) such that le—a)z|=25ing ie.
the z-axis is taken as the wi-direction and € denotes the angle between w; and
w2. Let 6 and @ be such that sin%z € and sin%= 1— €% respectively.

Then we have by (3.10) and Fubini’s theorem

(3.11) lewldwzll(wl, w)|?

<Ceaalgxl’/s‘ldwl</0‘0'_l_./;;)dﬁsinﬁ(l-i-\log(ZSing)

A simple computation shows that

).

(3.12) [;oldﬁsin0<1 + ‘10g<2sing>‘>zs Ce|logel?,

n 2
CRE N d65in0(1 +|1og(zsing)|) <Ce.
The assertion follows from (3.11), (3.12) and (3.13).

We shall proceed to the case 26 <|w1— w2|<2(1—¢€?). Let D:=D:(€) be a
subset of S1X S; defined by

(3.14) Do={(w1, w2)ES1 X S1; 2e<|w1— w2 <2(1—€?)} .

Lemma 3.4. Let (w1, w2)ED: and let €(0,1/2). Then

(3.15) -/IJz]Fla)dewldwzs Cllogel .

Proof. Let 6, and & be such that sin%z € and sin%ZI— €, respective-

ly. Then using the polar coordinates (7, 8, ¢) introduced in the proof of
Lemma 3.3, we have by Fubini’s theorem
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@16) [ 2'|wl—|—da)1da)z— [ dwizz [ absing

4sin® 2'9

ZLd(mZﬁ(log(l—ez)—loge)
< Clloge|
Let 2¢, <0< ¢1<§> be the angle between w: and w: i.e.

(3.17) |Cl)1_a)2|=28in§01 .

We introduce the new coordinate system, under which w: and w. are represent-
ed as wi1=(cosgi, sing:, 0) and w:=(cos¢i, —sing, 0), respectively. Under
this we write wE S;, using the polar coordinates, as

(3.18) w=(sindcos g, sinIsing, cosd), 0<I<mw, —n<ep<rm.
Let 7:(i=1, 2) be the angle between w; and w. Then we have
(3.19) cosy1=w* w1 =sindcos(¢— ¢1)

(3.20) cos 2= w* ws=sindcos(p+ ¢1)

and by the change of variables: w — (3, @)

Zza/c sln—+sln—
(3.21) Hw, w)= / d(o/ dd Z)Dinﬂq(ﬁ, ?)
4sm~s1n g

= Tdo ["a57(5, ).

Let x:(i=1, 2, 3, 4) be smooh functions on R such that

(3.22) suppxl(ﬁ)C[ ,7 ele[%-i—e, ﬂ—e], 0<xm(9)<1,
7n(9)=1 on [Ze, 5 26]U[‘27£+26,7T—26],
, C
|X1(l9)|$? on e 2e]U[r—2€, m—¢€],

(3.23) supDX3(¢)C[—7f+ e, m—€], 0<xm(p)<1,

x(p)=1 on [—7n+2¢ n—2€],
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|X§(¢)|£% on [—7m+e —m+2e]U[r—2¢, m—€],

and

(3.24) 1(9)=1—x0(8), x(p)=1—1x(¢).
Then we have by (3.21) and (3.24)

(3.25) o, @)= f de ﬁ "A9Cn+ x2) st x6)f

Z/:”dq%- dl9X1X3f+/:”d¢£ dI(xexs+ xa)f
=(w, w2)+ L{w, w2) .
Lemma 3.5. Let €€(0,1/2) and k€C. Then

(3.26) /Dzllz(a)l, w2)Pdwidw, < Ce* 7" ?|loge| .

Proof. Let Eo=supp(xzxs+xs) and let E: be subsets defined by
(3.27) EA(E)={(9, p)EEy; 0=0(p<0)}.
By (3.22)-(3.24), we note that
(3.28) m(Eo)< Ce,
where m(+) denotes the Lebesgue measure on R Since 2sin-2& 9 2 —|p— w,

2%Iw1 w2| on E, and 2sin-Z- 5 L=|w—w| >+ 5 le w2| on E_, we have

(329)  |E(ws, w)I< [ dodplf

sCe4“'g”'|w1—wz|'l(/‘; sind —=—ddde +/ sind d(9d¢)

71 E
sin-%- D) sm 2

By the change of variables 2; (9, ) wE S:, we have

smL9
(3.30) f dL9d§0 _/.(;(E )‘|’w—wlrda)

sin-Z-
2

Again, using the polar coordinates introduced in the proof of Lemma 3.3, we
obtain
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B [ e arde= oS gdod

2sin—+- 9

_ 0
—Aocos Z46ap<ce,

where E. denotes tbe region corresponding to £2(E+) by the above transfor-
mation, so that m(E+)<Ce by (3.2). Similarly we have

332 [ qgdp<Ce,
e . 72
sing
By (3.29)-(3.32), we have for (w:, w2)E D:
(333) |12(a)1, wz)|£Cee""'g"'|w1—wz|" .
The assertion follows from Lemma 3.4 and (3.33) immediately.

Let

7 72
2<sm 9 +sin5- 9 )

and

N Y2
v= 2<sm 9 sin-5- 9 )

Consider the map F: (9, ¢)— (u, v). Then we can easily check the next.

Lemma 3.6. The map F: (9, ¢) > (u, v) is injective on (0, n/2) X (—x, )
and (n/2, )X (—r, 7), respectively.

Lemma 3.7. Let | be the Jacobian of F. Then

(3.34) J= sin(2¢)sindcosd

N Y2
23m—2—sm 9

Proof. By (3.19) and (3.20) we have

(3.35) —siny %73 =cosdcos(g—¢1),

(3.36) —sinys %7;92 =cosdcos(p+¢1),

and hence
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ﬁl__ ey a)’l el a’)’z

(3.37) 35 —C0575 59 —L-+cos 5 39
__ —cosd [ 7 _ LN }
= T {sm 5 cos(¢— ¢1)+sin 5 cos(p+¢1)§.

251n751n—2—

Similarly we have

(3.38) —gﬁzﬂ—{sm——smw §01)+sm 1n(¢+§01)}
?  2sinLsinlt
2 2

(3.39) gg A{&nTcos(qo P1)— sm7cos(¢+¢1)}
2sin-Lsin-L=
2 2

(3.40) %ZJ’L{SlnTS1n(¢ @) —sints in(¢+¢1)},
¢ 25m751n%

From (3.37)-(3.40), (3.34) follows immediately.

Lemma 3.8. Let (w1, w2)ED.. Then

(3.41) f M@Ks

sin-Z-
2

(342) / m%ﬂ g

sinZ*
2

Proof. In view of (3.19), we have

(3.43) / Jsm(¢’—¢1Ld¢

Sll’l_

(L e e

82
Jl—l-sm& +y1—sind ~

which implies (3.41). (3.42) is similarly obtained.

Lemma 3.9. Let (0, w2)ED, and let €(0,1/2). Then
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(3.44) (A?Jr/7 €>d,9(|<:05(¢ o)l | Jeos(p+ ¢1)|>< C.

win T2
sin sin 9

where C is a constant which is independent of ¢, ¢1 and e.

Proof. We shall only show that

(3.45) l; (9_|MLS

sin-5- g

The other cases can be dealt with similarly. Since cosd=sine on [0, %— e],
we have by (3.19)

(3.46) A < pleos(e—e)l

in-rL
sing

1 ¢ /2cosd|cos(o— ¢1)|
T sineJo /1 —sindcos(p— ¢1)

_ /2|cos(¢p— @)1=y 1—cosecos(p— 1))
sinecos(¢— ¢1)

C

<—
Sine

<

mlo

which implies (3.45).

Lemma 3.10. Let (w1, w2)ED: and €(0,1/2). Then we have for k€ C

4a|T«|

C
(347) | [(w:, wz)|$m .

Proof. We write (w1, w2) as

(3.48) II(CUI, wz):’/; +LZE[11+112,

where E1={(z9,¢);0<c9<-g, —7r<go<7r} and Ez—{(ﬂ ?); <(9<7l' 7<e

< 71'}. We shall show (3.47) for L. I can be estimated similarly. In view

of Lemmas 3.6, 3.7, integration by parts with respect to « gives

——1_ iaxu_dX1X3
(3.49) 5w, we2)= 2sin(2en) ’/I"_(El) cosd L2 dudoy
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_ -1 ianu_0_ < qxwm)
~ Qiarsin(2e) Jren€  ou\ cosd dudv

— —1 2iak sln—+sln— 0 ( axixs >
= 2iaksin(2ey) Je, € ( Joe g a9\ cosd dode

___]-__ 2iar(sinZ+sinl2 0 axiXs >
+2ia/csin(2q01) 5 (o Z)U"aqp cosd ddde

=/t

where the abbreviation vazﬁ_&v isused. Using (3.22), (3.23), (3.40) and Lemma

3.8, we obtain by Fubini’s theorem

(3.50) 1A et Ll{lsm(qo @) Isin(¢+¢1)l}
s

< |/c|sm(2¢1) m sinl2
2

@), 1O, Lu(®)lsing) .
x{ cosd cos& + cosZd }Sln0d0d¢

Cet*91T¥ { 77¢ sind sin2z9>
= klsin(2¢1) f dg(cos& + cos?9

([ [ Jassing)

CewIET/cl
= €lklsin(2¢) -
Similarly, we have by (3.22), (3.23), (3.39) and Lemma 3.9
(3.51) VAES et {lcos((o 1)l | lcos(e+ ¢1)|}
|K|Sln(2¢l) E sin-Z- ')él sin—zh

X (Lxs(@)l + | xs(@)Dln(9)lddde
< ademtzer ot e [+ [ Jae)
Ce4a|glf|
elklsin(2¢1) -
From (3.49), (3.50) and (3.51) follows (3.47) for In(w:, w2).
Lemma 3.11. Let €€(0,1/2). Then we have for k= C

(52 [ I, w)fdodes Ceror gL
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Proof. By Lemma 3.10 we have only to show that

1
(3.53) /I;ZWd(mdsz C|10ge| .

Since sin2(2¢1)=|a)1—wz|2(1—%lw1—wz|2> by (3.17), we have using the polar
coordinates introduced in the proof of Lemma 3.3 <sin%= €, sin%ZI —¢e? and
| — w2|=23in§>

S S doidws
(3.54) /; Sln2(2g0 )dwldwz /2|w1_w2|2<1_i|w1_a)2|2>
4

02 N 1
~ [ dw [ "do2zsing
S1 61 20 26
4sin 2(1 —sin 2)
—27r/da)1 A 40—
=87r2< gz —‘log tan%)
<Clloge| .

Now we are in a position to prove Lemma 3.1.

Proof of Lemma 3.1. (3.1) follows from Lemmas 3.3, 3.5 and 3.11 imme-
diately.

4. Poles of the scattering kernel with constant density
Throughout this section, we assume that g(x)= V; (const. #0). Then for
(7, w, w)E(0, ©) XS XS, F(r, w, w) has an expansion of the form:

(4.1) F(r, o, w’)zg gl‘, ZH_le(r)Yz (0) Y™,

which converges absolutely and in L.(S: X S:). Here

20+1 Voa®jX(ar)

(4.2) F{r)= 27 1+ iVoad?riar)hV(ar)

and {Y/"} (/=0,1,2,---, m=—[, —[+1, --+, [) denotes the spherical harmonics
which provides an orthonormal basis for L»(S), 7. (=0, 1, 2, --+) the spherical
Bessel functions and %,V (/=0, 1, 2, -*-) the spherical Hankel functions of the
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first kind. F; corresponds to the scattering amplitude of the scattered wave
with the angular momentum / (Shimada [11, Lemma 7.5]).

Since {Y/"} is an orthonormal basis for L2(S)), integrating over S1X S
with respect to (w, ") after multiplying the both sides of (4.1) by Y/"(w)
Y/ () gives

(4.3) (F(7, w, ), Y™(0) Y™(@))Lasixsn=s77F(7) .

21 +1
In view of the unicity theorem and Theorem 1.1, (4.3) holds for # such that
F(k, w, ®’) and Fi(x) are analytic near ». Thus the poles of Fi(x) (/=0,1, 2,

-++) are necessarily those of F(«, w, »’). We shall study the poles of Fi(k).
By (4.2) it is seen that the solutions except 0 of the equation:

2iaK _ZiaK
(4.4) e"'*=1 Voa '

are the poles of Fo(x). (4.4) has been obtained by Petzold [8] and Dolph et al.
[2]. A straightforward computation shows that (4.4) has a solution A(A>0)
if o< —1/a and iA(A<0) if —1/a< V,<0, so that F(«, w, »’) has a pole A.
Further we have

r(n+1)
a

Theorem 4.1. For large n<N, in the region LZ—< Ri< there

exists exactly one pole k. of Fo(k) such that

] 1
(4.5) /cn=%<2n+1+%sgn %)—ilogﬁ(Zn%—l-l-?sgn VB)

) 2
ZaIOgW+O(1) as mn—o o,

where sgn Vo denotes the signature of Vo.

The theorem tells us that the pole /c—x-l-iy of Fy(x) asymptotically
approaches to a curve y= 2 Ioglxl log-l—T as |Rk|-oo. For V<0,

Petzold [8] obtained this result. Here we give an elementary proof.

Proof. Let k=x+1y (x>0, y<0) and let 2iak=p+ig(p=—2ay, g=2ax).
Then (4.4) is written as

(4.6) ePe " =(1+ Ap)+iAp (A— Vi )

For n=1, 2, ---, consider a segment L(p, #) and a circle C(p) in C defined by

L(p, n)={(1+Ap)+iAqg; 2rn<q<2x(n+1)},
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C(p)={e?*% 2mn<qg<27x(n+1)}.

First we seek an interval on which there exists an intersection of L(p, #) and
C(p). Let f(p)=e**—(1+Ap)®.. Then it is seen that f(p) monotonouly
increases to infinity for large p. We can take a strictly increasing sequence
{ca} such that ¢ goes to infinity and f(c.)=(27A#xn)?. For large #, it is seen
that L(p, n) and C(p) can intersect only for pE[cn, cz+1] at a unique intersec-
tion point 1+ Ap+isgnA/f(p). Thus we can take ¢i(p) and g=(p), which are
uniquely determined for pE[ca, cr+1], such that

4.7) ete P =(1+Ap)+iAqg(p),

2mn<aqi(p), ap)<2n(n+1), (qz(p)=ji%) :

We shall show that there exists exactly one solution pE[cx, ca+1] such that
ai(p)=q=(p) ie.

(4.8) arctan(m>+<2n+%—%sgn,4>ﬂ:;/'\%—€l,

1+Ap
where arctanf € <_—”, —27£> Let
9(p)= arctan(§grl"_?_—(2l %;) + <2 n +%_%sgn A> P J;(lp) .

Then it is easily seen that g(c») >0, g(cx+1)<0 and g(p) is monotone for large
», which implis that there exists a unique solution p, of (4.8) for large # by the

intermediate value theorem. If we put g»=qo(pn), %(Qn — ipn) turns out to be

a unique solution of (4.4) for large n. By (4.8) we have as n—>

(4.9) Gn= arctan(%) + <2 n +%——%-sgnA>7r

1 1
=<2n+7—7sgnA>7r+§+ o(1)
_ 1
—(2n+1+7sgn Vo>7r+ o(1) .
Taking the imaginary part of the both sides of (4.6), we have by (4.9)
e(—sgn Vot o)== (2n+ 4+ Jsgn Vi )+ 0(1)
£n Vo Vo 2 T pEn Yo

and hence
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(4.10) pn=log1%|—+log% <2n+1+%sgn Vo>+o(1).

From (4.9) and (4.10), (4.5) follows immediately.

Lemma 4.2. Let Vo<0 and let | be a positive integer. For large n, in
the region 2rn<s<2nx(n+1) (r +is€ C), there exists a unique solution rn+isn
of the equation:

(4.10) et =(=D{1+Ar)+iAs), <A= 17(,}1 ) :

which behaves, when n— 0, as

(4.12) rnzlog{2n+1+—( 1) 1}7rA+o(1)

sn={2n+1+%(—1)“1}ﬂ+o(l) .

Proof. The assertion is obtained in a way similar to the proof of
Theorem 4.1.

We remark that ZL (sn—i7x) asymptotically approaches to the curve y=

2 loglxl log-|—|- (x+iyeC) as n~co. For the pole of Fi(x) (I=1), we

have the next

Theorem 4.3. Let Vo<0 and let € =1 ;n (e>0). Then for large n, in

the regin 7[—:< QK<@ there exists exactly one pole kn=2xn— 1y of Fi(k)
such that
@13) (- e)rm<yns—= (1+e)r

. zd n n n za n n .

Since €nrn= e(1+0(1)) as n—*oo the poles of Fi(k)(I=1) only appear near the
curve y= 2 loglxl 1 logﬁ (x+ive C), if |Rk| is sufficiently large.

Proof. Let us recall (4.2). A straightforward computation shows that

(4.14) {1+ Voa®kj(an) hV(ak)}

l% ( 1)[ 2iar 1+22(ZK+R( )
Voa

where R(k) is analytic on C\{0} such that
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2alTk|

(4.15) |R(k)| < cim—.

Using (4.14), (4.15), Lemma 4.2 and Rouche’s theorem, we have the conclusion.
We omit the details.

(2]

(3]
(4]

Fukui National College of Technology
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