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On numerical invariants of Noetherian local rings
of characteristic p

By

Yukio NAKAMURA™

1. Introduction

Throughout this paper, all rings are commutative with identity. Let R
be a Noetherian ring of characteristic p, where p is a prime number. For an
ideal I of R, we denote by I* the tight closure of 7 (see Definition 3.1). R is
called weakly F-regular when every ideal I of R is tightly closed, that is I*
=J. The concept of tight closure and their fundamental properties were
given by M. Hochster and C. Huneke in [4] and [5]. They proved that regular
rings are weakly F-regular and that weakly F-regular rings are normal (cf. [5,
§4, §5]).

Now, we introduce the following two invariants for a local ring (R, m) of
characteristic p.

t(R):=suple(I*/I),  where I runs all m-primary ideals.
t(R):=suple(Q*/Q), where @ runs all parameter ideals of R .
In this article, we will discuss the following:
Problems. (1) Estimate the values #(R) and #(R).

(2) When ¢(R) (respectively f(R)) is finite, what can one say about the
ring R?

Hochster and Huneck proved that {(R)=0 if and only if R is weakly
F-regular (cf. [5, (4.16) Proposition]) and that a Gorenstein local ring with
to(R)=0 is weakly F-regular (cf. [4, Theorem 5.1]). A local ring R with t(R)
=0 is called F-rational (cf. [2]). They also proved that /CI/*C I and I* CI*
if I is generated by #-elements (the Briancon-Skoda theorem) in [5], where I
is the integral closure of /. We also introduce the following two invariants,
which will be useful to inverstigate ¢#(R) and #(R).

i(R):=suplk(I/I),  where I runs all m-primary ideals.
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i(R):=suplr(Q/Q), where @ runs all parameter ideals of R .

First of all, in section 2 we shall investigate these values i(R) and #(R),
and we shall give

Theorem 1.1. Let (R, m) be a d-dimensional Noethevian local ring (which
is not necessarily of characteristic p). We set N =/(0), A=R/N and denote
by A the integral closuve of A in its total quotient ving. Then we have

L(R)—1 d=0
i(R)=1(R)=1 l.(AJA)+k(N) d=1
oo d=2

In section 3, we shall prove that ¢(R)=t(R)=1i(R) when dimR <1 (see
Proposition 3.3). When dimR >2, however, the behavior of #(R) and #(R) is
rather complicated. We shall give several examples in these cases. Ringsin
these examples are not normal with #(R)<oc. But, if we put a restriction on
the depthR, we get the following theorem, which will be proved in section 4.

Theorem 1.2. Let (R, m) be a Noetherian local ring of characteristic p.
If depthR>2 and t(R)< o, then R is normal.

Section 4 is also devoted to the study of the compatibility of taking tight
closure with localization. It is shown in [7] that any localization of F-
rational Cohen-Macaulay local ring is again F-rational. We shall generalize
this result to the case that R has F.L.C. (see Theorem 4.1). Furthermore, we
shall prove the following:

Theorem 1.3. Let (R, m) be a complete local ring of characteristic p. If
R is equi-dimnsional and to(R)< o, then

(1) R has F.L.C.
(2) t(R.,)=0 for any pESpecR\{m}.

Finally in section 5, we shall treat the tight closure in polynomial exten-
sions.

Acknowledgment The author is grateful to Professor S. Goto for his
hearty guidance and encouragement during this research.

2. Results on the integral closure

Throughout this section, (R, m) means a Noetherian local ring. We
denote by N the nilradical of R and by A the factor ring R/N. In this section
we have no restriction on the characteristic of K. The integral closure of an
ideal I and the integral closure of a ring R in its total quotient ring will be



On numerical invariants of Noetherian local rings 3

denoted by I and R, respectively. Our purpose is to investigate the behavior
of length /x(I/I), when I runs all m-primary ideals or all parameter ideals of
R. From now on we denote by Z(R) the set of all m-pramary ideals and by
Fo(R) the set of all parameter ideals.

Definition 2.1. We set i(R)= sup l(I/I) and io(R)= sup (Q/Q).
I1€%(R) QeZo(R)

We begin with an easy but useful

Lemma 2.2. (1) L(I/I)=I1.(IA/IA)+ x(N/INN) for any 1€ F(R).

(2) Ww(A)<i(R) and i(A)<i(R).

Proof. (1) Take IEZ(R) and set J=IA. We have that 7 DN and J
= J/N. Hence we get the following cmmutative diagram with exact rows.

0 - INN - 1 - ] - 0
) !

{
0o - N -~ T - J - 0.

By the snake lemma, we get the assertion.
(2) For any J€ o(A), there exists 1€ F¢(R) such that /=IA. By (1),
we have l(I/I)=1.(J/]) and i(A)<i(R). Similary we have i(A)<i(R).

When dimR =1, we can calculate (R) and 7(R) as follows:
Lemma 2.3. If dimR=1, then i(R)=i(R)=1[.(A/A)+ [x(N).

Proof. (Step. 1) The case where /4(A/A)+ lx(N) is infinite. First we
assume /z(N)=c0, Take a< R such that (a)€Fo(R). Then (a®)NN=a"N,
since a” is an A-regular element for any #>0. Hence a"*'N+a"N for all »
>0. By Lemma 2.2, we get

I((a™) /(@)= lx(N/(@®) N N)=lx(NJa"N)=>n .

Therefore we have i(R)=i(R)=co.

Next we assume /4(A/A)=o0. Then A is not finitely generated as an
A-algebra. We can choose ai, az, ***, an, €A such that A,+ A for all n
>0, where A,=Ala, az, -+, ax]. Then there exists ¢.E[A:1Ax] such that
(cn)EZo(A) for each n. Since (cn) =criANADcArD(cn) and since c¢n is
Ap-regular,

1a((cn) /(cn)) = la(cnAn/ (cn)) = l4(AnJA) = n for all #=0.

Hence we get (R)=i(R)=io(A)=o0.

(Step. 2) The case where both /&(N) and /.(A/A) are finite. We can
choose aER such that (a)€ Fo(R), aN=(0) and a€[A:rA]. Setting b=a
mod N, b is an A-regular element. Hence we have (b)=bANA=bA and
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1.((8)/(8))=1:(A/A). Since (a)NN=aN=(0) and by Lemma 2.2, we get
1:((2)/(@))=1.((8) /(b)) + Ie(N/(a) N N)=I.(A/A) + Ix(N) .

Therefore io(R)=I.(A/A)+ Ix(N).

Next we show the opposite inequality. Set S=R[X]urix; and B=S/N’,
where X is an indeterminate over R and N’ is the nilradical of S. By Lemma
2.4 stated below, it is sufficient to prove that (S)</s(B/B)+ I/s(N’). Hence
we may assum |R/m|=oc0. Take a minimal reduction (a) of I for /€ F(R).
Then I =(a) and b>=amod N is an A-regular element. Hence

(I < (@) /(a) = 1.((8) /(b)) + [x(N/ () N N) < Ia(AJA) + Iz(N) .
Thus we have {(R)<.(A/A)+ Ix(N).

Let X be an indeterminate over a local ring (R, m). Set S=R[X]nrix
and A=R/N, where N=,/(0). Then NS is the nilradical of S. We set B
=S/NS. Then B=A[Xl.awx), where n=mA. Under the situation above we
have the following:

Lemma 2.4. (1) [(N)=I[s(NS).
(2) 1.(AJA)=1s(B/B).
(3) i(R)<i(S).

Proof. By [1, Chapter 5, §1, 3°, Proposition 13], A[X]=A[X] as
A[X]-algebras. Set T=A[X\nA[X]. Because A[X] and T 'A[X] have
the same total quotient ring, 77 'A[X] coincides with 7 'A[X] in the total
quotient ring. Hence B=A®. B and B/B=(A/A)®4B. The canonical ring
homomorphisms R— S and A— B are faithfully flat and their closed fibres are
fields. Then we get (1) and (2). For any IEZ(R), ISEF(S) and ISCIS
hold. Since l(I/I)<Is(IS/IS), we have i(R)<i(S).

Now we complete the proof of Theorem 1.1.

Proof of Theorem 1.1. Assume dimR=0. Then I =m for any ideal /
of R. Hence l(I/[)<Ix(m)=I(R)—1. In particular, take (0)€ Zo(R).
Then &((0)/(0))=le(m/(0))=Ix(R)—1. Thus we get {(R)=1i(R)=1[(R)—1.

Next we assumed dimR=d >2. Take QEZ(R). Set Q=(ai, az, -,
as)R and @.=(a\", a.”, -**, ad")R for each #>0. Then we can check .2 Q"
and we have

Ie( Qr /Qn) 2 ZR(Q"/Qn) > (Q"/mQ"+ Q) .

On the other hand, m@.Cm@Q"N @. and the following sequence is exact.

Qn/mQn— Q"/MmQ" > Q"/mQ" + Qn—0.
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Since ai, az, ***, aq are analytically independent,

Q" mQ"+ Qn) = r( Q") — 1tr(Qr)
n+d—1
:< d—1 )_d’

where uz(+) denotes the number of minimal generators of an R-module. This
implies Zo(R)=0c0, because d =2.

Finally in this section, we consider whether there exists a local ring K
with /(R) (=i(R))=mn for any given non-negative integer » when dimR <1.

Now we set C=Fk[[¢]], which is a formal power series ring over a field k.
As an example of dimension 0, we have

Example 2.5. (C/t""'C)=[L(C/t"'C)—1=mn.

Furthermore, we set A=Fk[[t{|n+1<i<2n+1]]CC. Then A is a local
ring with the maximal ideal n. Since A=C, we have l.{(A/A)=n. On the
other hand, let m be any non-negative integer and set R=AX(A/n)™ (the
idealization). Then we have

Example 2.6. R is a 1-dimensional Noetherian local ring with {(R)=n
+m.

Proof. Because the nilradical N of R is (A/n)", R/N and A are isomor-
phic as A-algebras. It is easy to check that R is a Noeteran local ring with
the maximal ideal {(a, b)|aEn, b&(A/n)™} and that dimR=dimA=1. There-
fore we have i(R)=[4(A/A)+ lx(N)=n+m.

There are two cases where i(R)=c. One is the case where /4(A/A)=co
and another is the case where /x(N)=co. Both cases can occur. For the first
case, there exists a Noetherian local domain with dimR=1 whose integral
closure is not module-finite over R(cf. [8, Appendix, Example 3]). For the
second case, let S be a Noetherian local ring of dimension 1 and set R=SXS

(the idealization). Then R is a Noetherian local ring of dimension 1 and
ZR(N)zls(N>:[s(S):OO

3. Calculations of #(R) and #(R)

In this section we return to the study of tight closure. From now on we
assume that all rings are of characteristic p. R° denotes the complement of

the union of the minimal primes of R, i.e., R°=R\ H Rp. For an ideal 7 and
peEMIn

an integer ¢ >0, we denote by /' the ideal generated by {a’|la=I}. The tight
closure I* of I is defined as follows:
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Definition 3.1. Let R be a commutative ring of characteristic p and let
I be an ideal of R. For xER, we say that x&I* if there exists cE R*° such
that cx?* €1 for all sufficiently large integer e.

I* is an ideal of R and we always have ICI*C I (cf. [5, (5.2) Theorem]).
In particular, by the Briangon-Skoda theorem, (x)*=(x) holds for x& R (cf.
[5, (5.8) Corollary]). It meansthat * and are the same operator on Fo(R)
when R is a local ring of dimension 1.

In section 1, we defined #(R) and #%(R). Here we recall their definitions.

Definition 3.2. Let (R, m) be a Noetherian local ring of characteristic .
We set

t(R)= sup lg(I*/I) and t(R)= sup L(Q*/Q)
1€F(R) QeFo(R)

Obviously, t(R)<i(R) and t(R)<i(R), because I*C I. The following
proposition is a corollary of Theorem 1.1.

Proposition 3.3. Let (R, m) be a Noetherian local ring of characteristic
p. If AimR<1, then we have t(R)=t(R)=1i(R)=i(R).

Proof. If dimR =0, then R° consists only of the units of R. Since [*=1
=m for any ideal I of R, we get to(R)=t(R)=i(R)=/x(R)—1.

If dimR=1, then Q*=Q for any QEF«(R). Thus t(R)=i(R)=i(R).
Since t(R)<t(R)<i(R) in general, we get the conclusion.

By Theorem 1.1, i{(R) is always infinite when dimR=2. But #(R) and
to(R) are zero for a regular ring R.

Remark 3.4. Now assume that dimR=1 and |R/m|=c0. Then * and
are the same operator on Z(R). Indeed, for given /& % (R), we can take a
minimal reduction (@) of I. Then I =(a) and ()€ Fo(R). Hence

(a)=T>I*>(a)*=(a).

Next we shall try to calculate #(R) and #(R). The following is useful for
this purpose.

Lemma 3.5. Let (R, m) be a d-dimensional Noetherian local ring of
characteristic p (d >0). Assume that

(1) R is a weakly F-regular ring, i.e., J=]* for any ideal ] of R,
(2) R is module-finite over R and mC[R:xR].
Then
I*=1IR and x(I*]/I)=pur(IR)— ux(I) for any ideal I of R, and to(R)
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Sd(ﬂR(E)_l).

Proof. Take cEmNR°. Then for any x<1, for any y€R and for any
integer e >0,

clxy)” =z (cy*)e1™.

Hence xyel* and IRCI*. Since R is weakly F-regular, ,/(0)C(0)*=(0).
Thus R is reduced and so is R. _Beca_use R’ consists of non zero divisors of
R, we have R°C(R)°. Then I*RC(IR)* and we get

I*CI*RC(IR)*=IRCI*.
By the condition (2), mR=m and m/*=I(mR)=ml. Therefore
Le(I* 1) = pe(I*) = pe(1) = pe(IR) — pe(1) .
In particular, for any Q&€ ¥ «(R), we have
R(Q*/Q)= 1 (QR)— ux(Q) < d - ux(R)—d .
Thus we have H(R)<d-ux(R)—d.

In the following examples 3.6, 3.7 and 3.8, we assume that £ is a field of
characteristic p.

Example 3.6. Let S=E[[Xi, Xz, -+, X4]] be a formal power series ring in
d-variables (d >0) over k. We denote by n the maximal ideal of S. For aE
F(S), we set R=k+aCS and m=a. Then

(1) (R, m) is a Noethevian local ring of dimension d.
(2) t(R)<d-Ix(S/R).
(3) If d=2 and a+n, then t(R)=o0.

Proof. (1), (2) Because /x(S/R)<Is(S/a)<oo, R is Noetherian by Eakin-
Nagata’s theorem. Since S=PFR, R is a local ring of dimension d. Hence R
satisfies the conditions of Lemma 3.5, and we have

to(R)Sd(ﬂR(S)—1)=d(lR(S/a)—1):d' ZR(S/R) .

(3) We choose A>0 such that n*Ca and set Q=(X*, Xo!, -+, XR.
Then QE Jo(R) and QSE F(S). By Lemma 3.5, we have

1((Q")* Q™) = 1x(Q"S) — 1x(Q")

Zﬂs(Q"S/aQ"S)—<d+ ”_1) .

d—1
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On the other hand, since @Ca, we have isomorphisms of graded
S/a-algebras:

@non"S/aQnS = (S/Cl)@sGrs(QS)
=(S/a)lZ,, Z», -+, Za)

where 7, Z,, -**, Z4 are indeterminates over S.
Thus we have

d+n—1 d+n—1
n\% [)n) — _
((QV*/Q") zs<s/a>( o ) ( " )
Consequently, we have ¢(R)=o0, because a#n and d >2.

Example 3.7. Let S=k[[Xi, Xz, -, Xn, Y1, Y2, -+, Y4]] be a formal
power series ring in (m+d)-variables over k, where d and m are integers
with 0<m<d. Set R=S/(X1, Xz,"',Xm)n(Yl, Y, -, Yd). Then

1 if m=1
o if m=2

(1) t(R)={

(2) m<t(R)<d. In particular, if m=1, then #(R)=1.

Proof. Let x:, y; be respectibely the images of X;, YV;in R (1<i<m, 1<
j<d). Weset P1=(_x1, X2, **+, Tm)R and Pa=(y1, 2, ***, ya)R. Because Min R
={P, P»}, we have R=R/P: X R/P, and the following exact sequence

0- R— R/PiX R/P,~ R/Pi+ P,~0 .

Now m=P,+ P is the maximal ideal of R and (R, m) satisfies the conditions
of Lemma 3.5. Hence for any ideal I of R,

lR(I*/I)zﬂR([I_?)_,UR(I)
=ur(I+ P[P+ pe(I + P/ Py) — 1e(I) .

Suppose m=1. Then R/P:is a D.V.R. Hence uz(I+ P:/P;)<1. Bcause
we(I+ P /P) < ux(I), we have [p(/*/[)<1 and #(R)<1. But R is normal
whenever t(R)=0 (cf. [5,§5]). Therefore t(R)=1t(R)=1.

Set Q=(x1+y1, X2+ 2, ***, Tm+ Ym, Ym+1, -, ya)R. Then Q€ Fo(R) and Q
+ P:/P;=m/[P:€ F(R/P;) for i=1, 2, and we have:

Q™) Q™) = 1e((m/P)") + pa((m/P2)") — 12 (Q")

. d+n—1 n m+n—1 B d+n—1
T\ d-1 m—1 d—1
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_(mF+n—1
m—1 |’
Thus ¢t(R)=co, if m>1.
Finally we shall prove m<t(R)<d. Take Q&% (R). Then u(Q
+P/P)<ur(Q)=d. On the other hand, wr(Q+ P:/P:)=m, because ht(Q

+ P,/P;)=dimR/P:=m. Similarly we get zx(Q+ P./P.))=d. Hence we see m
<(Q*/Q)<d and m<t(R)<d.

Example 3.7 shows that there exists a local ring R with &x(R)=d for any
given integer d. But we do not know whether there exists a local ring whose
t(R) is different from 0, 1 or co.

M. Nagata constructed a non-regular local ring (A, m) with e(A)=1 (cf.
[8, Appendix, Example 2]). For this local ring we have

Example 3.8. t(A)=#t(A)=1.

Proof. Recall that the local ring A is constructed as follows: The
integral closure B of A is regular and module-finite over A. B has only two
maximal ideals M and N such that dimBx =2, dimB~=1 and that B/M = B/N
=k. Further A=k+MNN. Hence (A, m), where m=M NN, is a Noether-
ian local ring and satisfies the conditions of Lemma 3.5. Thus for any ideal
I of A, we have

ZA(I*/])Z /JA(]B) - ﬂA([) .

Now wa(IB)=14(IB/mIB)=[5(IBQs(B/m)) and I[BXs(B/m)=
(IBR®sB/M)®(IBQsB/N) as B-modules. Hence ua(IB)=pus,(IBn)
+ us(IBy). Thus we get [(I*/I)<1, because By is a D.V.R. and because
tey(IBu) < pa(I). Finally we have t(A)=1t(A)=1, because A is not normal.

4. Finiteness of t(R)

Here we study the case where f(R) is finite. Recall that, if %(R)=0, then
R isnormal. However, examples in the previous section are of f(R)<oo, but
not normal. Now we shall prove Theorem 1.2 which asserts that R is normal
when depth R >2 and #(R)< co.

Proof of Theorvem 1.2. Take an R-regular element a=R. Moreover,
choose az, as, ***, asE R so that a, a», -*-, aq form a system of parameters of R,
where d=dimR. Put /=(a) and A=#(R). Then we have

m'[(I+(a2", as”, -, ad)* /[ +(az", as”, -+, ad")]=0.

for all #>0. Therefore
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mI*Cm* (I +(ar”, as”, -+, ad")*TI+(as", as”, -+, ad")

and we get m*/*C 1. Thus I*/IC H."(R/I)=(0), where Hn'(+) means the /-th
local cohomology module. Consequently we have (a)=(a)*=(a), by the
Briancon-Skoda therem. On the other hand, it is well known that R is
normal if and only if (a)=(a) holds for every non zero divisor ¢ of R. Hence
we get the conclusion.

By Theorem 1.2 we can easily see that, if R is a Cohen-Macaulay local
ring of dimR =2 and is not a domain (e.g., R=k[[X, Y, Z]]/(XYZ), where £
is a field), then t(R)=co.

Now we recall the concept of F.L.C. Let (R, m) be a local ring of dimen-
sion d. We say that R has F.L.C. when H.'(R) is of finite length for any i
#+d. It is well known that (R, m) has F.L.C. if and only if there exsts an
integer ¢ >0 such that

m*[(a1, as, =+, aa-1)ix @aal(ay, @z, -+, aa-1),
for any system of parameters ai, as, **-, aq of R (cf. [3, (37.10) Theorem]).

Theorem 4.1. Let (R, m) be a Noetherian local ring of characteristic .
If R has F.L.C. and t(R)<o, then t(R,)=0 for any p&SpecR\{m}.

A local ring R is called F-rational when #(R)=0 (cf. [2]). Any localiza-
tion of R is known to be F-rational when R is an F-rational Chen-Macaulay
local ring (cf. [7]). Theorem 4.1 is a generalization of this fact. In order to
prove Theorem 4.1, we need some preparations.

Lemma 4.2. Let R be a Noetherian local ring and p<=SpecR with ht p=
v. If JEFo(R.), then there exists a subsystem of parameters a1, az, -, ar of
R such that J=(a\, a2, -+, ar)R,.

Proof. We shall prove the assertion by induction on ». When »=0, we
have nothing to show. Suppose »>0. Choose fi, fo, ***, /R such that J
=(f1, fo, >+, fr)Ry and put I=(f, fo, **, fr)R. Moreover we put ¥ ={P&Min
R|PPI}and ¢ ={PEMinR|PDI}. Because F + ¢, there exists dEPQgP\ng

P. Then the image d/1 in R, is a nilpotent, so we can assume d/1=0 in R,.
Because I¢PU§P, we can choose zE(f2, fs, -+, f+) R such that ﬁ-i-zGEPLE)gP (cf.

[6, Theorem 124]). Now we put a=d+fi+z. Then J=(a, f3, -, fr)Rs, at
. EWJIRP and htp/(a)=»—1. By applying the hypothesis of induction to
€Min

R/(a), v/(a) and J/(a), we get the assertion.
Lemma 4.3 ([7, Lemma (2.2)]). Let R be a Noetherin ving of characteris-

tic p. Suppose that an ideal I of R satisfies AsspR/ICMaxR. Then I*R,
=(IR,)* for any pESpecR.
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We also need the following proposition to prove Theorem 4.1.

Proposition 4.4. Let R be a d-dimensional Noetherian local ring of
characteristic p (d>0) and let I be an ideal generated by a subsystem of
parameters fi, f2, ***, fa-1 of R. If R has F.L.C., then I*R,=(IR,)* for any »
&SpecR.

Proof. Choose fo€R so that fi, -+, fa—1, fa form a system of parameters
of R and put S=R[1/fs). We first claim that 7*S=(IS)* holds. Indeed, I*S
C(IS)* holds in general. Suppose x/1=(IS)*, where x&R. Then there
exists ¢/1E€S° such that (c/1)(x/1)*° €IS for all e>0. We may choose ¢
ER° (see [5, (4.14) Proposition]). Hence

fiex? eI =, £, -, f&5),

for some j >0, but ; may be depend on the integer e. Since R has F.L.C,, there
exists a positive integer ¢, which is independent of e and j, such that

mi (AP, £22°, -, FE2)m fE1C(APS, 2P°, -, FE) .

Thus ctM'x”e1% and xI1*. Hene [*S=(IS)*.
Now AsssS/ISCMaxS, so by Lemma 4.3 we get (IS)*S,=(IS.)*, where q
=pS. Therefore we have

I*Ry=1*S,=(IS)*S,=(1S.)* =(IR\)* .

Proof of Theorem 4.1. We can assume d=dimR >0. Take pESpecR
\{m} and J€ Fo(R,). We shall prove J*=] by induction on dimR/p.

Suppose dimR/p=1. Then hty=d—1 (cf. [3,(37.6) Corollary]). By
Lemma 4.2, we can choose ai, ***, @da-1, @« R, which form a system of parame-
ters of R, such that J=(a, az, ***, aa-1)R,. Putting A="4(R) and I=(a1, az, -,
aq-1)R, we get m*I*C I by the same argument as in the proof of Theorem 1.2.
Hence [*R,=IR,=]. By Proposition 4.4, I*R,=(IR,)*=J*. Therefore we
have J=J*

Suppose dimR/p>2. Take P&SpecR such that m#*PDp and dimR/P
=1. By applying the hypothesis of induction to Rr and pRr, we have #(R,)
= to((Rp)or») =0.

Finally we prove Theorem 1.3. But, for its proof, we need the following:
Theorem 4.5 ([5, (4.8) Theorem]). Let R be an equi-dimensional Noether-
tan complete local ving of characteristic p and let ai, az, -+ aq be a system of

parameters of R. Then

[((ll, as, >, Aa—1)r aal (a1, as, LN aa1)*



12 Y. Nakamura

Proof. Let A be a regular local subring of R, where R is module-finite
over A and ay, az, -+, aa€A. Then there is an A-free submodule F of R such
that R/F is a torsion A-module. Hence there exists a non zero element ¢ of
A, which satisfies cRCF. Since R is equi-dimensional, PN A=(0) for any P
EMinR=AsshR. Thus cER"°.

Let x<[(ai, @z, ***, @a-1):r @a]. Then by the same argument as in [5, (4.8)
Theorem], we can check that cx”’€(a.*, a.*, -+, a’1) for any e=>0. There-
fore xE(a, az, -+, aa-1)*.

Proof of Theorem 1.3. Let a\, as, -, aq be a system of parameters of R
and A=#(R). Then by Thorem 4.5, we get

[(ay, az, -+, @aa-1):r aalT(ai, az, -+, aa-1)* .
Hence
m*[(a1, az, -+, @aa-1):x ad)(a, az, **+, aa-1) .

This means that R has F.L.C. Thus applying Theorem 4.1, we get the desired
conclusion.

5. Polynomial extensions of F-rational rings

Here we shall study polynomial extensions of an F-rational ring.

Theorem 5.1. Let R be a Cohen-Macaulay local ving of characteristic p
and let S be a polynomial ving R[ X\, Xz, ---Xa] in d-variables over R. If Rn
is an F-rational ving for any mEMaxR (hence for any pESpecR), then Sp
is an F-rational ring for any PESpecS.

If R is a Gorenstein local ring, then weakly F-regularity is equivalent to
F-rationality (cf. [4, Theorem 5.1]). Hence we get

Corollary 5.2. If R is a weakly F-regular Govenstein ring of character-
stic p, then so is the polynomal ring R[ X, X, -, Xu).

R. Fedder and K. Watanabe proved the following:

Proposition 5.3 ([2, Proposition (2.2)]). Let R be a Cohen-Macaulay local
ving of characteristic p and assume that Q* = Q for some QE Fo(R). Then R
is an F-rational ving.

Proof of Theorem 5.1. We may assume S=R[X] and PEMaxS. Put
m=P(\R. By localizing R at m we may assume (R, m) is a Cohen-Macaulay
local domain such that PN R=m. If dimR=0, then the assertion is obvious.
Suppose dimR=d >0. By Proposition 5.3 it is sufficient to show that there
exists J€ Fo(Sp) such that J=]*.
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Let ai, a», -+, aq be a system of parameters of R and q=(a1, az, ***, aa)R.
Since S/mS=(R/m)[X] is a principal ideal domain, there exists a monic
polynomial fE S such that ( /)=P/mSCS/mS. Weput /=qS+(f). Then/
is a P-primary ideal of S, and we have only to prove I=1I* (see Lemma 4.3).

Suppose I*#+1. We choose & I*\I such that dege is minimal. Then
degp<degf. Since ¢&I*, there exists EES° such that

EpP e JPI=qP IS+ (f*°) , for all e>0.
If 0= £ S/g!P1S, then
degé+ pdegp>deg £ ¥ > degf* = p°degf .

Hence p°(degf —dege)<degé. Therefore there exists e; >0 such that &p?‘E
a'*“1S for all e=e1. Let cX” be the leading term of £ and a X" be the leading
term of ¢. Then ca”’€q'* for all e=>e; and cER°. Hence a=qg*=qg and
aX™e1. This contradicts to the minimality of dege.

Department of Mathematics
TOKYO METROPOLITAN UNIVERSITY

References

[1] N. Bourbaki, Commutative Algebra, Addison-Wesly Publishing Company, 1972.

[2] R. Fedder and K.-i. Watanabe, A characterization of F-regularity in terms of F-puriry.
Commutative Algebra, Math. Sci. Res. Inst. Publ., 15 (1989), 227-245, Springer-Verlag.

[3] M. Herrmann, S. Ikeda and U. Orbanz, Equimultiplicity and Blowing up. Springer-Verlag,
1988.

[4] M. Hochster and C. Huneke, Tight closure. Commutative algebra, Math. Sci. Res. Inst. Publ.,
15 (1989), 305-324, Springer-Verlag.

[5] M. Hochster and C. Huneke, Tight closure, Invariant theory, and the Briancon-Skoda
theorem. J. Amer. Math. Soc., 3 (1990), 31-116.

[6] I Kaplansky, Commutative rings. Allyn and Bacon, 1970.

[7] Y. Nakamura, The local rings of Cohen-Macaulay F-rational rings are F-rational. Tokyo J.
Math., 14 (1991), 41-44.

[8] M. Nagata, Local Rings, Interscience, 1962.

[9] D.G. Northcott and D. Rees, Reductions of ideals in local rings, Proc. Cambridge Philos. Soc,
50 (1954), 145-158.



