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On numerical invariants of Noetherian local rings
of characteristic p

By

Yukio NAKAMURA (*)

1. Introduction

Throughout this paper, all rings are commutative with identity. Let R
be a Noetherian ring of characteristic p, where p is a prime number. For an
ideal I  of R , we denote by I* the tight closure of / (see Definition 3.1). R  is
called weakly F-regular when every ideal I  of R  is tightly closed, that is I*
= I .  The concept of tight closure and their fundamental properties were
given by M. Hochster and C. Huneke in [4] and [5]. They proved that regular
rings are weakly F-regular and that weakly F-regular rings are normal (cf. [5,
§4, § 5]).

Now, we introduce the following two invariants for a local ring (R, ru) of
characteristic p.

t(R):=sup/R(/*//) , where I  runs all in-primary ideals.

to(R).=sup1R(Q* I Q ) ,  where Q runs all parameter ideals of R .

In this article, we will discuss the following:

Problems. ( 1 )  Estimate the values t(R ) and to(R).

( 2 )  When t(R ) (respectively to(R)) is finite, what can one say about the
ring R ?

Hochster and Huneck proved that t(R )=0  if and only if  R  is weakly
F-regular (cf. [5, (4.16) Proposition]) and that a Gorenstein local ring with
to(R)= 0 is weakly F-regular (cf. [4, Theorem 5.1]). A local ring R  with to(R)
=0 is called F-rational (cf. [2]). They also proved that / c / * c  I  and In c/*
if I  is generated by n-elements (the Briançon-Skoda theorem) in [5], where I
is the integral closure of I. We also introduce the following two invariants,
which will be useful to inverstigate t(R ) and to(R).

i(R):=sup/R( I / / )  , where I  runs all m-primary ideals.

(*) Partially supported by Grant-in-Aid for Co-operative Rsearch.
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io(R):=suplR(QIQ) , where Q runs all parameter ideals of R .

First of all, in section 2 we shall investigate these values i(R ) and io(R),
and we shall give

Theorem 1.1. Let (R, ni) be a d-dimensional Noetherian local ring (which
is not necessarily o f  characteristic p). We set N=,/(0), A=RIN and denote
by A  the integral closure o f  A  in  its total quotient ring. Then we have

{1R(R) - 1 d =0
i(R)— io(R)= lA(AIA)+ lR(N) d = 1

oo d _.._ 2

In section 3, we shall prove that t(R)= to(R)= io(R) when dimR (see
Proposition 3.3). When d im R  2 , however, the behavior of t(R ) and to(R) is
rather complicated. We shall give several examples in these cases. Rings in
these examples are not normal with to(R)< c o . But, if we put a restriction on
the depthR, we get the following theorem, which will be proved in section 4.

Theorem 1.2. L et (R, ni) be a Noetherian local ring of  characteristic p.
I f  depthR >2 and t0(R)<00, then R is normal.

Section 4 is also devoted to the study of the compatibility of taking tight
closure with localization. It is shown in [7 ] that any localization o f F-
rational Cohen-Macaulay local ring is again F -rational. We shall generalize
this result to the case that R has F.L.C. (see Theorem 4.1). Furthermore, we
shall prove the following:

Theorem 1 .3 .  Let (R, ni) be a complete local ring of  characteristic p. If
R is equi-dimnsional and to(R)<oe, then

(1) R  has F.L.C.

(2) t0(R,)=0 f o r any  13 E  SpecR\fml.

Finally in section 5, we shall treat the tight closure in polynomial exten-
sions.

Acknowledgment The author is grateful to Professor S. Goto for his
hearty guidance and encouragement during this research.

2. Results on the integral closure

Throughout this section, (R, r -i)  means a  Noetherian local ring. We
denote by N the nilradical of R and by A  the factor ring R IN . In this section
we have no restriction on the characteristic of R .  The integral closure of an
ideal / and the integral closure of a ring R in its total quotient ring will be
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denoted by I  and R, respectively. Our purpose is to investigate the behavior
of length 1R(T/I), when I  runs all m-primary ideals or all parameter ideals of
R .  From now on we denote by g (R ) the set of all m-pramary ideals and by
go(R ) the set of all parameter ideals.

Definition 2.1. We se t i(R )= sup 1R(I II) and io(R )= sup 112(Q1Q).
I l(R ) Qego(R)

We begin with an easy but useful

Lemma 2 .2 .  ( 1 )  1R( ///)= lA(IAIIA)+ lR(NII nN) f or any  JE  9(R ).

(2) io(A )‹ io(R ) and  i(A )‹i(R ).

P ro o f  ( 1 )  Take / E 9 (R )  and set J = I A .  We have that T D N  and J
= I  IN . Hence we get the following cmmutative diagram with exact rows.

o  - ,  /  n N  -> I  -- J  — >  0
I 1 I

0 —> N —> I  —> J  — >  0 .

By the snake lemma, we get the assertion.
( 2 )  For any JE go(A), there exists / 9 - 0(R) such that J = I A .  By (1),

we have /R ( ///)> /A( J/J)  and io (A )< io (R ) .  Similary we have i(A )< i(R).

When dimR=1, we can calculate i(R ) and io(R) as follows:

Lemma 2 .3 .  I f  dimR =1, then i(R)= io(R)= lA (A IA )+ lR(N).

P ro o f  (Step. 1 )  The case where /A (A /A )+/R (N ) is infinite. First we
assume /R (N )=co . Take aE R  such that (a)E g o ( R ) .  Then (an) n N = anN,
since an is an A-regular element for any n >O. Hence an'N  * anN  for all n
> 0 .  By Lemma 2.2, we get

lR((an)I(an)) lR(NI(an)nN)= lR(NlanN) n .

Therefore we have i(R )> io(R)=00.
Next we assume 1A (A /A )-00 . Then A  is not finitely generated as an

A-algebra. We can choose ai, az, ••., an, --EA such that A n * A n + 1  for all n
0, where A n=A [ai, az, •-•, an].  Then there exists cnE[A :A A n] such that

(cn)E go(A) for each n .  Since (cn)— cnif f lA D c,A nD (cn) and since cn is
An-regular,

1A( ( C 7 2 )  l( C 7 1 ) )  1A(CnAnI(Cn))= 1A(AnIA)>n for a ll n 0  .

Hence we get i(R)> io(R) io(A)=co.
(Step. 2 )  The case where both /R(N) and /A (A /A ) are finite. We can

choose aE R  such that (a) g -  o(R ), aN =(0) and aE[A:RiT".]. Setting b= a
mod N , b  is an A-regular element. Hence we have (b)— bA rlA =bA  and
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/A((b)/(b))= /A(A/A). Since (a) n N = aN  =(0) and by Lemma 2.2, we get

1R((a) I (a))= 1A((b) I (b)) + IAN! (a) n N)= 1A(AIA)+ 1R(N) .

Therefore io(R) /A(A/A)+/R(N).
Next we show the opposite inequality. Set S=R[X]mR[x] and B = SIN' ,

where X  is an indeterminate over R  and N ' is the nilradical of S .  By Lemma
2.4 stated below, it is sufficient to prove that i(S )< / B (B / B )+  / (N '). Hence
we may assum IR/m1=co. Take a minimal reduction (a ) of I  for / E  g(R ).
Then / — (a) and b:= a mod N  is an A-regular element. Hence

1R( III) 1R((a)I (0-- IA ((b) 1(b))+ IR(N I (a) r1 A )< 1A(AIA)+ 1R(N) .

Thus we have i(R)</A(A/A)+/R(N).

Let X  be an indeterminate over a local ring (R , ni). Set S R[X]ms[X]
and A = RIN , where N = ,/ (0 ). Then N S  is the n ilrad ica l of S .  We set B
= S IN S . Then .B - 7.' A[X]ilA[x], where n = m A . Under the situation above we
have the following:

Lemma 2 .4 .  (1) /R(N)=/s(NS).

(2) /A(A/A)=-- /B(B/B).

(3) i(R )<i(S ).

Proo f . B y  [1 , Chapter 5 , §  1 , 3 ° , Proposition 1 3 ], A [X ] - - A [ X ]  as
A [X ] -algebras. S e t  T  = A [X ]\nA [X ]. Because A[X] and  7- 1 A [X ] have
the same total quotient ring, 7- 1 24[X] coincides with 7 - 1 A [X ] in the total
quotient ring. Hence B  A O A  B  and BIB —= (A IA )® A B . The canonical ring
homomorphisms R—> S and A—> B are faithfully flat and their closed fibres are
fields. Then we get (1) and (2). For any / E  g (R ), / S c  g (S ) and / S c/ S
ho ld . Since /R(///)</s(/S//S), we have i (R )< i(S ) .

Now we complete the proof of Theorem 1.1.

Proof of Theorem 1 . 1 .  Assume d im R = 0 . Then / =m for any ideal I
o f  R .  Hence /R(///)</R(m)— /R(R)-1. In particular, ta k e  (0)E go(R).
Then 1R((0)/(0))= /R(111/(0)) -= 1 R (R ) -1 .  Thus we get i(R)= io(R)= 1R(R) — 1.

Next we assumed d im R = d  2 .  T a k e  Q  9 " o (R ) . Set Q = (al, a2, ---,
ad)R  and Q n = (a i n , azn, ---, adn)R  for each n > O. Then we can check Qn D Q n

and we have

1,( Q„ N O  1R(Qn IQn) 1R(Qn I mQn + Qn) .

On the other hand, mQncmQn rl Qn and the following sequence is exact.
Q n 1m Q n _, Qn I n i Qn _, Qn I n i Qn + Q n ,  0  .
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Since ai, az, •••, ad are analytically independent,

/R(Qn /mQ n + Q . ) t i R ( Q n ) — i i R ( Q ,z )

where pR(•) denotes the number of minimal generators of an R-m odule. This
implies io(R)=oe, because d2.

Finally in  this section, we consider whether there exists a local ring R
with i(R ) (= io(R))= n  for any given non-negative integer n when dimR <1.

Now we se t C= k [[t]], which is a formal power series ring over a field k.
As an example of dimension 0 ,  we have

Exam ple 2.5. i(C/tn+ 1 C)=/R(C/t" 1 C )-1 = n .

Furthermore, we set A =C tz ln+1<i<2n+1]]O E C .  Then A  is a local
ring with the m axim al ideal n. Since A= C, we have lA (A IA )= n. On the
other hand, le t m  be any non-negative integer an d  se t R =A x (A ln)m  (the
idealization). Then we have

Exam ple 2.6. R  is a 1-dimensional Noetherian local ring with i(R )=n
+m .

P r o o f  Because the nilradical N  of R  is (Aln)m , RIN and A  are isomor-
phic as A-algebras. It is easy to check that R  is a Noeteran local ring with
the maximal ideal {(a, b)laErt, bE(A/n) m } and that d im R = d im A = 1 . There-
fore we have i(R )= /A (A /A )+ /R(N)= n+ m.

There are two cases where i(R )= 0 0 . One is the case where /A (A /A )= 00
and another is the case where 1R (N )=00. Both cases can occur. For the first
case, there exists a N oetherian local domain with dimR =1 whose integral
closure is not module-finite over R(cf. [8, Appendix, Example 3]). For the
second case, let S be a Noetherian local ring of dimension 1 and set R =S x S
(the idealization). Then R  is  a N oetherian local ring of dim ension 1 and
1R(N)=15(N )= l(S )=°o.

3. Calculations of t (R ) and to(R)

In this section we return to the study of tight closure. From now on we
assume that all rings are of characteristic p. R° denotes the complement of

the union of the minimal primes of  R, i.e., R ° = R \ U  p. For an ideal I  and
pEminR

an integer t >0, we denote by PI the ideal generated by f a i la E I l .  The tight
closure / *  of /  is defined as follows:
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Definition 3.1. Let R  be a commutative ring of characteristic p and let
I  be an ideal of R .  For x R , we say that xE  /*  if there exists cER ° such
that c x 'E PP'l for all sufficiently large integer e.

I*  is an ideal of R  and we always have Ici /*C  f  (cf. [5, (5.2) Theorem]).
In particular, by the Briançon-Skoda theorem, (x)*— (x) holds for x E R ° (cf.
[5, (5.8) Corollary]). It means that * and a r e  t h e  same operator on 90(R )
when R  is a local ring of dimension 1.

In section 1, we defined t(R ) and to (R ). Here we recall their definitions.

Definition 3.2. Let (R, m) be a Noetherian local ring of characteristic p.
We set

t(R )= i supR ) /R (/* //) a n d  to(R)= Q T R ) /R(Q* /Q)

Obviously, to(R)‹ io(R) and t(R )< i(R ), because /*OE T. T h e  following
proposition is a corollary of Theorem 1.1.

Proposition 3 .3 .  L et (R, m) be a Noetherian local ring of  characteristic
p. I f  dimR.<1, then we have t(R)=to(R)----  io(R)=i(R).

Proo f . If dimR =0, then R° consists only of the units of R .  Since /* =  I
=m for any ideal I  of R , we get to(R)=t(R)=1(R)=1R(R)—  I.

If dimR =1, then Q* = Q for any Q T  0 ( R ) .  Thus to(R )=io(R )= i(R ).
Since t o ( R ) t ( R ) <i( R )  in general, we get the conclusion.

By Theorem 1.1, i(R ) is always infinite when d i m R  2 .  But t(R ) and
to(R) are zero for a regular ring R.

R em ark 3.4. Now assume that dimR =1 and IR/mI =00. Then * and
are the same operator on g ( R ) .  Indeed, for given iE  g (R ), we can take a
minimal reduction (a) of I. T h e n  I = (a) and ( a)  g  o ( R ) .  Hence

(a)= I D I*D (a)*=(a) .

Next we shall try to calculate t(R ) and to(R ). The following is useful for
this purpose.

Lemma 3 .5 .  Let (R , ni) b e  a  d-dimensional Noetherian local ring  o f
characteristic p  (d > o ). A ssume that

(1) R  is a weakly F-regular ring, i.e ., J=J* f o r any  ideal J o f  R,

(2) R  is module-finite over R and mc[R:RR].

Then

I* =IR  an d  lR(I* II)= pR(IR)— ,uR(I) f o r an y  id e al I  o f  R , a n d  to(R)
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cl(f iR (R )-1).

P ro o f  Take cEm n R ° .  Then for any xE / , for any y E R  and for any
integer e> 0,

c(x y ) P ' — x P e (CYP ') E P P q
 .

Hence x y E I *  and 'R E P .  Since R  is w eakly F-regular, ,/(0)c(0)*=(0).
Thus R  is reduced and so is R .  Because R ° consists of non zero divisors of
R , we have R ° c ( R ) ° .  Then / * R E ( N ) *  and we get

Pc l* R O E (IR )* =IR Œ P .

By the condition (2), mR=m and m /*=/(m R)=m /. Therefore

/R (/*//)=L iR (/*)— pR (/)=A R (V )— /./R (/).

In particular, for any Q E  o(R), we have

/R(Q*/Q)= /JR( QR)—  fiR(Q)< d • pR(R)—  d

Thus we have to(R)<d • fiR(R)—  d.

In the following examples 3.6, 3.7 and 3.8, we assume that k  is a field of
characteristic p.

Example 3 .6 .  L et S=k[[X i, X 2, •-• , X d]] be a form al power series ring in
d-variables (d  >0) over k. W e denote by n the maximal ideal o f  S . F o r aE

(S ) , we set R = k + a c S  and m = a .  Then

(1) (R, ru) i s  a N oetherian local ring of dimension d.

(2) to(R ) d • lR (S IR ).

( 3 )  If and a * n ,  then t(R )=00 .

Pro o f . (1), (2) Because /R (S /R )< /s(S/a)<co, R  is Noetherian by Eakin-
Nagata's theorem. Since S = re ,R  is a local ring of dimension d .  Hence R
satisfies the conditions of Lemma 3.5, and we have

t0(R) d(m R (S)-1)=. d(lR (SI a)-1)= d • 1R (SIR ) .

( 3 )  We choose 2> 0 such that n' E a  and  set Q=(X 1'1 , X 2 '1 , • • • , X2)R.
Then QE g o (R )  and Q S E 9 - o(S). By Lemma 3.5, we have

1R((Q n )* 1Q 1 =  PR(Q n S ) —  /JR (Q)

( d  + n - 1 )
=,us(QnSlaQnS)—

d - 1
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O n the other hand, s in c e  Q c a , w e  have isomorphisms o f graded
S/a-algebras:

Cpn›oQnSI aQnS -=-"(Sla)OsGrs(QS)

-=- (s/a)Ezi,

where Z1, Z 2 ,  • •  • ,  Zd are indeterminates over S.
Thus we have

1A(Qn)* 1(7)= ls(S I
( d  +  n - 1 )  ( d  +  n - 1

Consequently, we have t(R )=00, because a n and d  >2.

E xam p le  3 .7 . L e t S=k[[X i, X2, •••, X ., Y 2 , •  •  •  , Y d ] ]  b e  a  formal
power series ring in (m+d)-variables over k , where d and m are integers
with 0< m< d .  Set R = X 2 , •  •  • ,  Xm) n ( Y l ,  Y 2 ,  •  • • ,  Y d ) .  Then

(1) t(R )=
I i if m=1

if m. - 2

(2) m <to ( R ) <d . In particular, if m=1, then t0(R)=1.

P r o o f .  Let xi, y, be respectibely the images of X „ I ;  in R  (1 <i<m , 1<
j < d ) .  We set P i (x i , X2, ,  xm)R and P 2  =  (V 1 ,  .V 2 ,  •  •  •  V d )R .  Because Min R
=IA , P2), we have R".=- R IPixR IP2 and the following exact sequence

—> R —» R/Pi x R/P2 —> R/Pi + P2 —> .

Now m=Pi + P2 is the maximal ideal of R  and (R,m) satisfies the conditions
of Lemma 3.5. Hence for any ideal I  of R,

1R(I* 11R(IR)— /JR(I)

= + PilPi)+12R (I + P2IP2)— tiR(I) .

Suppose m = 1 . Then R/P2 is a D .V .R . Hence pR (/+P2/P2)<1. Bcause
PR (i+P1/P1)<pR (/), w e have /R(/*//)<1 and t ( R ) .<1 . But R  i s  normal
whenever t0 (R )= 0  (cf. [5, § 5]). Therefore t(R )=t0(R )=1.

Set Q— (xi+ x2+ y2, • • • , xm+ yrn, y .+1, • , yd)R. Then QE go(R) and Q
+ P,IP,=rnIPE g o(R/R) for i =1, 2, and we have:

1R ((Q n ) *  Q n
)

=  R ( ( 111 P l ) n
)  I IR (( n  P 2 ) n

)  P R (Q n
)

( d + n - 1 H m + n - 1 )  ( d + n - 1 )
d -1 rn -1 d -1

d -1 d -1  )  •
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(m + n -1
m - 1 ) .

Thus t(R)=00, if m >1.
Finally we shall prove m.< to ( R ) <d . Take Q E  0 (R ) .  Then tiR(Q

+ Pz/P2)< pR (Q )= d . On the other hand, pR(Q +/7 2/P2) m , because ht(Q
+ P2 / P2) — di mR/P2 — m . Similarly we get beR(Q+Pi/P1)=d. Hence we see m
< /R (Q*/Q)<d and m< to(R )<d.

Example 3.7 shows that there exists a local ring R  with to(R )=d for any
given integer d .  But we do not know whether there exists a local ring whose
t(R ) is different from 0, 1 or co.

M. Nagata constructed a non-regular local ring (A, m) with e(A )=1 (cf.
[8, Appendix, Example 2]). For this local ring we have

Example 3.8. t(A )= t0(A )= l .

P ro o f  Recall that the local ring A  is constructed a s  follows: The
integral closure B  of A  is regular and module-finite over A .  B  has only two
maximal ideals M  and N  such that dimBm =2, dimBN =1 and that BIM—BIN
= k .  Further A =k +M r1 N .  Hence (A, m), where m=M rIN, is a Noether-
ian local ring and satisfies the conditions of Lemma 3.5. Thus for any ideal
I  of A, we have

1A (/*//)=/.1A (IB )- /JA M  .

N o w  tiA(M )= /A ( /B /m /B )= /B ( /B 0 B (B /m ))  a n d  /B C)B (B /m ).
(/B O B B /M )CD (/B O B B /N ) a s  B -m odu les. H en ce  fiA(/B)=71B,„(IBM)
+ tiBN(IBN). Thus we get /A (/*//)<1, because BN is  a  D.V.R. and because
[LB,(/Bm)‹ /JAM .  Finally we have t (A )= t0(A)=1, because A  is not normal.

4. Finiteness of to(R)

Here we study the case where to(R) is finite. Recall that, if t0(R)=0, then
R  is norm al. However, examples in the previous section are of to (R )< oc, but
not norm al. Now we shall prove Theorem 1.2 which asserts that R  is normal
when depth R 2 and to(R)<oe.

Proof of Theorem 1 .2 .  Take an R-regular element a R .  Moreover,
choose az, a3, •••, a d  R  so that a, a2, - • , ad  form a system of parameters of R,
where d =d im R . Put /—(a) and A= to (R ). Then we have

mq(/+(azn, a3n, •••, adn ))* 11+(a2n,a3n,•••,adn)]=0 .

for a ll n> 0. Therefore
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atl*crrt'(/+  (azn, a3n , •- , adn ))*c/+(azn, a3 n , adn)

and we get maP c  / .  Thus /*//c H,,,° (R//)=(0), where 11,'(•) means the i-th
local cohomology module. Consequently we have (a)=(a)* = (a), b y the
Briançon-Skoda therem . On the other hand, it is well known that R  is
normal if and only if (a )= (a ) holds for every non zero divisor a of R .  Hence
we get the conclusion.

By Theorem 1.2 we can easily see that, if R  is a Cohen-Macaulay local
ring of dimR>_.2 and is not a domain (e.g., R= k [ [ X  , Y , Z ]]I (X Y Z ), where k
is a field), then to(R)=c0.

Now we recall the concept of F.L.C. Let (R , m) be a local ring of dimen-
sion d .  We say that R has F.L.C. when H m (R ) is of finite length for any i
* a '.  It is well known that (R, in) has F.L.C. if and only if there exsts an
integer t >0 such that

mt [(al, az, •••, ad-i):R ad]c(ai,a2,•••,

for any system of parameters al, az, •••, ad of R  (cf. [3, (37.10) Theorem]).

Theorem 4 . 1 .  Let (R , m) be a Noetherian local ring of  characteristic p.
I f  R  has F.L.C. and to(R)<09, then t0(R2)=0 f o r any laESpecR\Iml.

A local ring R is called F-rational when t0(R )= 0 (cf. [2]). Any localiza-
tion of R is known to be F-rational when R is an F-rational Chen-Macaulay
local ring (cf. [7]). Theorem 4.1 is a generalization of this fact. In  order to
prove Theorem 4.1, we need some preparations.

Lemma 4 .2 .  Let R be a Noetherian local ring and pESpecR with ht 0=
r. I f  JEg o(R,), then there exists a subsystem of  parameters ai, a2,---, ar of
R  such that J=(ai, a2,••• , a,-)R,.

P ro o f  We shall prove the assertion by induction on r .  When r=0, we
have nothing to show. Suppose r >O. Choose f i , f2, •- •, f r E R  such that J

f2, fO R ,  and put / •••, f r )R .  Moreover we put g= {PE M in
R113 11} and g ={PEM inRIPD /}. Because g *  0, there exists dE  f l  P \ U

P e g  P e g

P .  Then the image du]. in R, is a nilpotent, so we can assume d/1=0 in R,.
Because ic t  U  P, we can choose ze(fz , A, fr)R  such that f i+  2 4  U  P  (cf.

P e g P e g

[6, Theorem 1 2 4 ]) . Now we put a= d + f i+ z .  Then J=(a, f2, •••, fr)R ,, a q
U  P  and ht 0/(a)=r — 1. By applying the hypothesis of induction to

PeM inR

RI (a), 01(a) and J/ (a), we get the assertion.

Lemma 4.3 ([7, Lemma (2.2)]). Let R  be a Noetherin ring of  characteris-
tic p. Suppose that an  ideal I o f  R  satisfies A ssR IN E M axR . Then I*R ,
= (IR ,)*  for any 0ESpecR.
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We also need the following proposition to prove Theorem 4.1.

Proposition 4 .4 .  Let R  be a  d-dimensional N oetherian  local ring of
characteristic p (d > 0 )  and let I  be an ideal generated by a  subsystem of
parameters fi, f2, •—, f d - 1  of R .  If R  has F.L.C., then /*R ,=(/R ,)*  for any 0
E Spec R.

P ro o f  Choose fdE R  so that •••, f - i , f d  form a system of parameters
of R  and put S =R [l/ f d ].  We first claim that /*S =(/S )*  holds. Indeed, I S
c ( IS )*  holds in  genera l. Suppose x / 1 ( I S ) * ,  w here  x E  R  . Then there
exists c /1 E S 0 such that (c/1)(x/1) / " ' S  for all e > 0 .  We may choose c
ER° (see [5 , (4 .14) P roposition]). Hence

AiCXP ' E P P ' l =  (AP ', f2P ' , • • ff if  1 )

for some j>0 , but j  may be depend on the integer e. Since R  has F.L.C., there
exists a positive integer t ,  which is independent of e  and j ,  such that

trit RA P “, f r i ) : R  f d i ] ile, • f r i )

Thus c ' x i ' E / [1' 1, and x E  /* .  H e n e  /*S =(/S )* .
Now AsssS//SOEMaxS, so by Lemma 4.3 we get (IS)*S n =(/S ,)*, where q

= 0 S .  Therefore we have

I* R,= I* S g = (IS)* S ,)* =(IR * .

Proof  o f  T heorem  4 .1 . We can assume d = d im R  >O. Take 0ESpecR
Mrril and JE 9 0 (R 0). We shall prove J*  =J by induction on dimR/P.

Suppose d im R /0  = 1 . Then h t  0 = d - 1  (c f . [3 , (37 .6) C orollary]). By
Lemma 4.2, we can choose al, -• •, ad-1, adE R , which form a system of parame-
ters of R, such that I =(ai, a2, •• • , ad-1)R. Putting A= to(R) and / = ( a i ,  a2,
ad_i)R , we get TrtÀ/* Œ / by the same argument as in the proof of Theorem 1.2.
Hence I*  R ,=IR ,= J . By Proposition 4.4, I* R,,— (IR)* .  Therefore we
have J=J*•

Suppose d im R /0 _ 2 .  Take P E S p e c R  such that m P D 0  and dim R/P
= 1 .  By applying the hypothesis of induction to R p and 0Rp, we have t0(R )

to((Rp)oRp)=0.

Finally we prove Theorem 1.3. But, for its proof, we need the following:

Theorem 4.5 ([5, (4.8) Theorem]). L e t  R  be an equi-dim ensional Noether-
ian  complete local ring of  characteristic p and let al, a2, ••• ad be a system of
param eters of  R . T h e n

az, •••, ad-0:R ad ]c (ai, az, •••, ad-i)*
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P ro o f  Let A be a regular local subring of R , where R  is module-finite
over A  and ai, az, a d E A .  Then there is an A-free submodule F  of R  such
that R IF is a torsion A-module. Hence there exists a non zero element c  of
A, which satisfies c R Œ F . Since R  is equi-dimensional, P n  A = (0 ) for any P
E M in R = A s s h R . Thus cER° .

Let xE[(ai, a2, • , ad-i):p a d ].  Then by the same argument as in [5, (4.8)
Theorem], we can check that c x ''E (a i Pa n )  for any e O. T here-
fore xE(ai, a2,•••, ad-i) * •

Proof  o f  Theorem 1.3. Let ai, az, ••-, ad be a system of parameters of R
and /1=  to (R ).  Then by Thorem 4.5, we get

az, •••, ad_i):R a d ] C (a i , az, a d - 1 ) *  •

Hence

mq(ai, az, •••, ad_1):p ad]c(ai, a2,•••, ad-i) .

This means that R  has F .L .C . Thus applying Theorem 4.1, we get the desired
conclusion.

5. Polynomial extensions of F-rational rings

Here we shall study polynomial extensions of an F-rational ring.

Theorem 5.1. L et R  be a Cohen-M acaulay  local ring of  characteristic p
and let S  be a Polynomial ring R[Xi, X2, ••• Xd] in d-variables o v e r R . If  R .
is an  F-rational ring f or any  ITIE M a x R  (hence f o r any  0E SpecR), then Sp
is an  F-rational ring f or any  PESpecS.

If R  is a Gorenstein local ring, then weakly F-regularity is equivalent to
F-rationality (cf. [4, Theorem 5.1]). Hence we get

C orollary 5.2. I f  R  is a weakly F-regular Gorenstein ring  o f  character-
stic p, then so is the Polynomal ring R [X l, X 2 ,  • • • ,  Xd].

R. Fedder and K. Watanabe proved the following:

Proposition 5.3 ([2, Proposition (2.2)]). L et R  be a Cohen-Macaulay local
ring of  characteristic p and assum e that Q *= Q  for some Q E  0 (R ) .  Then R
is an  F-rational ring.

Proof  o f  Theorem 5 .1 .  We may assume S = R [X ]  and P E M a x S . Put
m = P n R . By localizing R  at ni we may assume ( R, ni) is a Cohen-Macaulay
local domain such that P r1 R  = m . If dimR = 0, then the assertion is obvious.
Suppose dimR=d >O. By Proposition 5.3 it is sufficient to show that there
exists JE  go(Sp) such that J=I*.
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Let ai, a2, •••, ad be a system of parameters of R and q=(ai, a2, •••, ad)R.
Since S irnS= (R /m )[X ] is  a principal ideal domain, there exists a  monic
polynomial f  S such that ( f  ) =P/mSOE Sim S. We put / =  + ( f ) .  Then I
is a P-prim ary ideal of S, and we have only to prove 1 = 1 *  (see Lemma 4.3).

Suppose / * * / .  We choose çoE/*\/ such that degy, is m in im al. Then
d egço < d egf. Since TE/*, there exists EE SC such that

$g0P '= S + U P ') , for all e>0 .

If (1 ErES/qu'IS, then

deg$+Pedegq)> deg $ COP '  d e g f  = Pe deg f  .

Hence Pe(degf —degço) d e g E . Therefore there exists ei _> 0 such that $TP ' E
q[ P 'IS  for all e>ei. L e t  cXn be the leading term of $ and aXm be the leading
term of ço. Then c a 'E c ii P e l for all e ei an d  c E R ' .  Hence aEci*=ci and
aXm EI. This contradicts to the m inim ality of degq7.
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