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Stationary measures for automaton rules 90 and 150
By
Munemi M1YAMOTO

This is a continuation of [3]. Let 2= {0,+1}%. A transformation A: £2—

£2 is defined as follows;
Ax )=z G—1)4+x G+1) mod 2 ,

where x € 2 and i € Z. In [3] A was called one-dimensional life game.
According to the classification of one-dimensional automata by Wolfram [5],
this is rule 90. We are interested in the A-invariant measures on £. For 0
<p =1, let B, be the distribution of the Bernoulli trials with density p. It is
shown in [2,3,4] that B/, the distribution of coin tossing, is A-invariant.

Furthermore, let M be the set of translation-invariant mixing measures on
2 and let Conv (M) be the convex hull of M, i.e., the set of convex combina-
tions of measures in M. If we replace the adjective “mixing” with “ergodic”, we
have the set Conv (E) of all translation-invariant measures (the ergodic de-
composition theorem). The behaviour of A* P as n— o for P € Conv (M) is
quite different from that for P € Conv (E) \\Conv (M). First we see the be-
haviour for P € Conv (M). The following theorem is an improvement of
Theorem 3 in [3].

Theorem 1. Assume P € Conv (M). Then, A" P converges as n— o if
and only if P is a convex combination of Bo, Bi/2 and B

Collorary (Theorem 1 in [3]). Assume P € Conv (M). P is A-in-
variant if and only if P is a convex combination of Bo and Bise.

Remark that A” B, does not converge as n— o unless p = 0,1/2,1. But
Theorem 4 in [3] says that if 0<p<1
N-1
lim 1/N ZA".Bp:sz-
n=0
It is natural to ask if there are any other A-invariant measures outside
Conv (M) [1]. The answer is “Yes, there are infinitely many” [4]. Let us
show this in more general setting.
Let n= 3 be an odd integer. A configuration x, in £ is defined as fol-

lows;
0 if t=0 mod #n,

1 otherwise.
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This x, is periodic in space. Furthermore, x, is periodic in time, ie., we have
the following lemma (see the proof of Theorem 1 in [4]).

Lemma 2. For each odd n=3, there exists m =1 such that A™x,=xp.

n—1
Set v, = Z 6’0z./n, where 0 is the translation operator, and set g, =

j=0

m—1

ZA’un/m. It is clear that g, is A- and translation-invariant. We see that

j=0

Axs=uxs, ie., x3 is a fixed point of A. The measure p3= (0z;+ Opzs+ Op2z5) /3

is, therefore, ergodic. But, if n =5,

E= lxy, Oxn, 0%y, , 60" ')
is a translation-invariant set with 0 <y, (E) <1. The inequality g, (E) <1
follows from Ax, ¢ E and g» (1Ax,s)>0. Thus we have

Theorem 2. For each odd n=3, yt, is A- and translation-invariant. The
measure (3 is ergodic, but pt, (n=5) are not ergodic.

If n=5, 4, is a convex combination of the ergodic measures Ay, (0<j<m
— 1). Thus, the A-invariance of g, € Conv (E) does not imply the
A-invariance of its ergodic components. On the contrary, Collorary to
Theorem 1 says that the A-invariance of a convex combination of mixing mea-
sures implies the A-invariance of its components. In fact, its components must
be Bo and Bi/2.

We have A-invariant ergodic measures By, Bi2 and g3 It is natural to
ask if there are any other A-invariant ergodic measures. The answer is again
“Yes, there are infinitely many”. Let p= 2 be an integer. For 1 <i <2?, set
y, (@) =1. For i=2°+1, define y, (i) successively as follows:

yp (1) =Ay, G—2°+1) .

Lemma 2. 1) yp can be extended to i <0} so that y, is periodic in
space, i.e., Yp=0% y, for some u=1.
2) Ay,=06?y,, where v=2°—1.

u—1

Set &= Z()’ﬁ,,/u . Since y, is periodic in space, it is clear that
j=0
08; =&y,
u—1
Aey= ), 6", /u
i=0
=& .

If E C Q is translation-invariant and &, (E) >0, then €, (E) =1. Thus we have

Theorem 3. For each p=2, €, is A-invariant and ergodic.
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Let us prove Theorem 1 and Lemmata 1, 2. The following lemma plays
the key role in the computation of A™
Lemma 3. For any k it holds that
A% 2 () =2 (i—2%) +x (i+2%) mod 2.

Proof is easy.

To prove Theorem 1 let us introduce the Fourier transform of a probabil-
ity measure ¢ on 8. Let £= (£(i); —o0<i<+00) be a sequence of 0 and 1
with only finitely many 1's. For o= (w (i); —0<i<+400) € Q, set (§, w) =

+o0
Z E(i)w (). Denote the Fourier transform of ¢ by F (1) or 1, i.e.,

F () (©=2@=[ (-1 ne) .
We have, by Lemma 3,

F (A7) &) = [ (=1 "™ p(dw)

— -1 (€ 07" w) + (£ 67w} w) .
[ p(dw)
If £ is in M, i.e., if ¢ is mixing and translation-invariant, then,

lim F (A%y) (6) =4 ()" .

By the same argument we have
lim F (A" ?w) (&) = (§)* .

Proof of Theorem 1. Take a probability measure 7w on M. Set
P (- )=fMﬂ( * )dm (g) € Conv (M) .
By the above argument we see

lim F(47P) () = [ lim B (47) (©)an () = [ 7(©)%ar (),
lim B (4=+P) (&)= [ lim B (477) (€ ar () =

= [ p@%n) .
Assume AP converges as n—°, Since
lim F (A%P) (&) =lim F (AZ"+?"P) (§) ,

we have

[ 1a@2—a@4an (=0 ,
which implies f(§) =0, +1 for a. a. (7).

Since lim A*Bo=1im A*B,=,, we can assume 7 ({Bo, Bl ) =0 .We have
(&) =0 for any £+ ++--000--+and for a. a. () ¢, which means p=B,,, for aa.

(m) y, i.e., P=PB1s2. The “only if” part of Theorem 1 is thus proved. The “if”
part is clear, because B2 is A-invariant.
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Proof of Lemma 1. Let us prove Lemma 1 for odd n=3. We can write

Ax (i) = Z x(j) mod 2 ,

je{xll+i

Ax (i) = E x(j) mod 2 .
jel£2b+i
Therefore,

A% x (i) =A%Ax (4)
= Z Ax () mod 2

je{x2}+i

= Z {lxG—1)+x G+1)| mod 2

je{x2t+i

= Z x () mod 2 .

je{£2x1}+i

Let m=2%—1=2%"142%"2... 4241, where k will be specified later. Let
S= |42 14262 £ 241
= [—2k41, — 26430 — 1,410, 26—3, 26—1} .
We can easily see by Lemma 3

A" () = E x () mod 2 .
JES+i
Since S and x, are symmetric with respect to 0, it holds that

A"z, (0) :Z Zn (j) mod 2
jES
=0 .
Next we must show that
A2, () =1mod 2 (1Lisn—1) .
We consider the pairs {—j+2i, jl. Remark that if j is in S+i then —j+2i is
in S+i and vice versa. We say that a pair {—j+2i, jl in S+i is positive if
xn(—j+2i) +x, () =1 mod 2 .
If neither —j+2i nor j is divisible by #, then the pair {—j+2i, j| is not posi-
tive. It is impossible that both —j + 27 and j are divisible by #. So that it is
sufficient to consider only pairs {—tn=+2i, tn} and {—tn, tn +2i} with t=0.
Let #4 (#_) be the number of pairs {—m+2i, tn} ({—tn, tn+2i}) in S+i
with >0, i.e., the number of ¢t such that 0<tn=m—+i 0<tn+2i=<m+i). We
separate the case =0,
In case that i is odd, S+i € 2Z. Therefore, {—O0n+2i, Onl = {—0n, On+
2i} is in S+i. Since the pair {2i, O} is positive,
A", (i) =1+ #,+#_mod 2 .
We see that
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#.—H_
=the number of even t which satisfies m —i<tm=<m-+1 .
On the other hand we have

Lemma 4. We can choose k so that m=2¥—1 is divisible by n.

Set g=m/n, i.e., m=ng. Remark that q is odd. The inequality m —i<tn <m
+1 is equivalent to —i<n (t—gq) <i. Since q is odd but { must be even, it
holds |t —g|=1, which implies |n (t—¢)|=n>i. Thus the inequality m —i<tn
<m i has no solution, i.e., #+—#_=0. We have
A2, (1) =1+, + % _ mod 2
:1+#+_#— mod 2
=1.
In case that i is even, S+1i € 2Z+1. The pair {—0n+2i, On} = {—0n, On
+2i} is not in S+i. Therefore,
A, ) =%+ % _mod 2 .
We have
# + # -
=the number of odd ¢ which satisfies m —i<tm<m-+1i .
The inequality m —i <tn <m +1i, which is equivalent to —i <n (t —gq) <1, has
the unique odd solution t=q. Thus #,—#_=1. Therefore,

A"z, ()
=#,+H#_mod2
=#+_#_ mod 2
=1.

Lemma 1 is thus proved.

Proof of Lemma 4. Let p be a prime and let ¢ be a natural number. Let
us regard Z/p® Z as a group with multiplication. The multiples of p should be

taken away, because they are nilpotent. The number of them is p*". There-
fore, the order of this group is equal to p*—p*'=(p—1) p¢~1. 2 is an element
of this group. Therefore, 227" =1 in Z/p® Z, hence 25*~V**" =1 in Z/p°Z
for any s20. Thus

os(p-Dpet ]
is divisible by p® for any s=0.

Let n=p,*" p,°2-+-p,°" be the factorization of # into prime factors. Set k= (p,
—1Dp2t (py—1)p27 - (p,—1)p,*~'. By the above argument 2¢F—1 is divisi-
ble by p;¥ for 1 <j <7, hence it is divisible by n.

Poof of Lemma 2. First remark that by definition of y,

yp 0)=1 (1=i=2?),
yp () =0 (2?+1=i520%1—2),
yp (2PH1—1) =y, (2?*) =1 .

It is easy to see that for k=1 and i >k 2?
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ys (i) =Aty, (i—k (22-1)) .
For k=21 and i >2%"! we have by Lemma 3
yp (0) =A""y, (—2°71(2"—1))
=y, (=271 (22 —1) —2*"V) 4y, ((—2°71(2°—1) +2271) mod 2
=yp (=27 +yp, (—2%7'+2%) mod 2 .
Using this, we have
yp ((+2%7") =y, (i) +y, ((+2?) mod 2
=1+0mod 2 (1=5i£22—-2)

=1 .
yp (22 —142%71) =y, (22—1) +y, (22*'—1) mod 2
=1+1 mod 2
:0'
yp (2242271) =y, (2°) +y, (2°*!) mod 2
=141 mod 2
=0 .

Therefore, we can see that for 1<i<2?
yp (+2%7Y) =y, (+2) ,
which implies that ly, (i):i=1] has the period u=2%"1—2. It is easy to ex-
tend y, to [i=0}.
The second assertion in Lemma 2 is obvious by definition of y,.
Analogous arguments are possible also for rule 150:
Ax (i) =x (i—1) +x2 () +x (+1) mod 2 .
As to A we have

Lemma 3’. For any kit holds that
A*r )=z (—2%4+x (G)+x (+2*) mod 2 .
Theorem 1°. Assume P € Conv(M). The following three conditions are
equivalent to each other.
1)  A"P converges as n— 0.
2) Pis A-invariant.
3) P s a convex combination of Bo, Bi/z and Bi.

Outline of Proof. Take a probability measure 7 on M. Set
P(-)=[ u(+)dn() €Conv (M) .

Assume A"P converges as n— 00, By the same argument as in the proof of
Theorem 1, we see

[1a©—a®* anw=0 .

Let & be a finite sequence of 0 and 1 and let
§="---000&,0" £,000--- .



Stationary measures 537

The above equality holds for this §& Since g is mixing, letting n—00,
we have

[ 18— anw=0.

This implies that P is a convex combination of Bo, Bi/2 and Bi.

The convergence of the Cesaro means for AP can be proved by the
Fourier transformation method [2].

We have infinitely many A -invariant measures outside Conv (M). Let
n=5 be an odd integer. A configuration Z, in £ is defined as follows;
0 if i=0,£1 mod =,
In (1) =
1 otherwise.
Lemma 1°. For each odd n=5, there exists m=1 such that A"T,=Z,.

Proof. By Lemma 4 we can choose k so that m =22 —1 is divisible by #.
By Lemma 3’ we see
e =50+ ) 1FGri—1+) +FGh+)]

0<3hs22k—1

+ Z {& (=3h+i) +7(—3h+1+1i)! mod 2.

0<3hs22k—1

Setting Z (j) =%, () +X» (+1) mod 2, we have

g, ()= O+ ), 1ZGhi—1+) +2(—3h+i)| mod 2 .
0<3hs22k—1

Remark that Z(3h —141i) =1 if and only if 31 —14i=—2,+1 mod » and that
3h—1+i=—2 mod » means 3 (h+1) —14+i=+1 mod #n. Let

ho=min {h; 3h—1+i=—2 mod n, h20} ,

hi=max {h; 3h—1+i=—2 mod n, 3n<2%7Y |
We have

Z ZBh—1+4) = Z Z(3h—141)

0<3hs22k-1 0<3hs22k—1, 3h—1+i=—2,+1 mod n

=7(3ho—1414) +z2(3 (ho+1) —1+1i)

+ Z {£(8h—141i) +2(3 (h+1) —1+i)!
ho<h<hi, 3h—1+i=—2 mod n
+z(Bh;—14+1) +2(3(hy+1) —1+1) mod 2 .
Note that m =2 —1= (143)*—1 is a multiple of 3 and that three equalities

ho=0, h;=2%*—1 and i=—1 mod n are mutually equivalent. In case hy=0, the
first and the last terms must be omitted. In any case
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Z 2(3h—1414) =0 mod 2 .
0<3hs22k—1
In the same way we can see

Z z2(—3h+i) =0 mod 2 .
0<3h=22k—1
Thus we have
D1vISION OF MATHEMATICS,
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