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Introduction

Here we continue investigations started in [N 6], [N 7].
Algebraic varieties we consider are defined over field C  of complex num-

bers.
In  th is  paper, w e get a  final result on  estimating the  P icard  number p =

dimN (X ) of a Fano 3-fold X w ith terminal Q-factorial singularities if X does
no t have sm all ex trem al rays a n d  its M ori po lyhedron  does not have faces
with Kodaira dimension 1 o r  2 . O n e  can consider this class a s  a  generaliza-
tion  o f  th e  c la ss  o f  F a n o  3 -fo ld s w ith  P icard  n u m b e r  1 . T h e re  a r e  many
non-singular Fano 3-folds satisfying this condition and w ith Picard number 2
(see [Mo-Mu] and a lso  [M a]). W e a lso  th ink  tha t study ing  the Picard num-
ber of this calss may be important for studying Fano 3-folds w ith Picard num-
ber 1, too (see Corollary 2 below).

Let X be a Fano 3-fold with Q-factorial terminal s in g u la r it ie s . Let R  be

an extremal ray  of the Mori polyhedron NE (X )  of X .  W e say that R  has the
type ( I )  (respectively ( I I ) )  if curves of R  fill an  irreducible divisor D (R ) of X
a n d  th e  c o n tra c tio n  o f  th e  r a y  R  con trac ts t h e  d iv iso r  D ( R )  t o  a  po in t
(respectively to a  c u r v e ) .  An extremal ray  R  is called small if curves of this
ray fill a curve on X.

A  p a ir  IR1, R2 F of extremal rays has the type Q32 if  ex trem al rays R I , R2
a re  different, both h a v e  th e  ty p e  (II) , a n d  h a v e  th e  sam e divisor D (R 1 ) =
D (R2) -

We recall that a  face y  of Mori polyhedron NE (X )  defines a contraction
f t : X— ' X ' (see [K a l]  a n d  [S h ])  such that f (C )  is  a  po in t fo r an  irreducible
curve C if and only if C belongs to r. The dimX' is called the Kodaira dimen-
sion o f  th e  y . A  se t g of extremal rays is called extrem al if it is contained in
a face of Mori polyhedron.

Basic Theorem. Let X be a Fano 3-fold with terminal Q-factorial sing-
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ularities. A ssume that X does not have a small extremal ray , and Mori polyhedron

NE (X) does not have a face of Kodaira dimension 1 or 2.
Then the following statements for the X hold:
(1) T he X  does not hav e a pair of  extremal rays of the type  2  an d  Mori

polyhedron NE (X) is simplicial;
(2) The X does not have more than one extremal ray of the type (I).
(3) If  g is an extremal set of k extremal rays of X , then the g has one of the

types: Wi ll (k — 1) Z2LI (k — 2) 211 (k — 2) OE1, k1 (we use notation of
Theorem 2.3.3).

(4) We have the inequality for the Picard number of the X :
p (X ) =  d im N  (X ) 7 .

Proof. See Theorem 2.5.8.

It follows from (4):

Corollary 1. Let X be a Fano 3-fold with term inal Q-factorial singular-
ities and p (X )> 7 .  Then X has either a small extremal ray or a face of  Kodaira
dimension 1 or 2 for Mon polyhedron.

W e mention that non-singular Fano 3-folds do not have a small extremal
ray  (by  M ori [M ol]), and their maximal Picard num ber is equal to 10 accord-
ing to their classification by Mori and M ukai [M o-M u]. Thus, all these state-
ments already work for non-singular Fano 3-folds.

From the statem ent (2) of the Theorem, we also get the following applica-
tion of Basic Theorem to geometry of Fano 3-folds.

L e t  u s  conside r a  F a n o  3 -fo ld  X  a n d  i ts  b lo w -u p  X p  at d ifferent
non-singular points X p l  of X .  W e say  tha t th is  is  a  Fano blow -up if
X p is  F a n o .  We have the following very simple

Proposition. Let X be a Fano 3-fold with terminal Q-factorial singular-
ities and without small extrema! rays. Let X p be a Fano blow-up of X. Then for
any small extrema! ray S on X ,  th e  S has a non-empty intersection with one of ex-
ceptional divisors E 1 . .... E  o f  this blow up and does not belong to any of  them.
The divisors Eh E p define p extremal rays of the type ( I )  on X .

Proof. See Proposition 2.2.14.

It is  know n  tha t a  contraction of a  face of Kodaira dimension 1 o r  2  of

NE (X) of a  Fano 3-fold X  has a  general fiber w hich is a  rational surface or
curve respectively, because this contraction has relatively negative canonical
c la s s .  See [K al], [S h ] . It is also known that a  small extremal ray is ration-
a l  [Mo2].

Then, using Basic Theorem and Proposition, w e can divide Fano 3-folds
of Basic Theorem on the following 3 classes:

Corollary 2. Let X be a Fano 3-fold with term inal Q-factorial singular-
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ities and without small extremal rays, and without faces of  Kodaira dimension I  or
2 for the Mon polyhedron. L et E be the number of extremal rays of  the type ( I )  on
X  (by B asic Theorem, the E l) .

Then there exists p, 1 p  2 — E, such that X belongs to one of calsses (A ),
(B ) o r  (C ) below:

(A) There exists a Fano blow-up Xp of X with a face of  Kodaira dimension
1 or 2. Thus, biratianally, X is a fibration on rational surfaces over a  curve or
rational curves over a sififace.

(B) There exist Fano blow-ups Xp of X for general p points on X such that
for all these blow-ups the Xp has a small extremal ray S .  Then images of curves
of S on X give a system of rational curves on X which cover a  Zariski open subset
of X.

(C) There do not exist Fano blow-ups Xp of X for general p points.
We remark that f or Fano 3-folds with Picard number 1, the E= O. Thus, 1
2.

U sing statem ents (2 ) , (3 )  a n d  (4) of Basic Theorem, one can formulate
similar results for Fano blow-ups along curves.

To prove Basic Theorem, we classify appropriate so called extremal sets
and E-sets of extremal ra y s  o f  th e  ty p e  ( I )  o r  (II). W e  u se  so called dia-
gram method to deduce from this classification the statem ent (4) of the Basic
Theorem.

A  se t g  of extremal rays is called  extremal if  it is contained in a face of
M ori polyhedron. The g has Kodaira dimension 3 if a contraction of th is face
gives a  morphism o n  a  3 - f o ld .  F o r F an o  3-fo lds w ith  Q-factorial terminal
singularities, we give a description of extremal se ts g of Kodaira dimension 3
which contain extremal rays of the types (I) o r  (II) only.

A  se t Y o f extremal rays is  ca lled  E - set if  Y  is not ex trem a!, bu t any
proper subset of Y is extrema!. T h u s ,  the  .T is  minimal non-extrem al. For
Fano 3-folds w ith Q-factorial terminal singularities, we give a description of
E-set Y such that Y contains extremal rays o f the  types (I)  o r  (II) only, and
any proper subset of Se is extrema! of Kodaira dimension 3.

I am grateful to Profs. Sh. Ishii, M. Reid and J. Wi'Sniewski for useful dis-
c u ss io n s . I  am grateful to referee for useful com m ents. I am grateful to Pro-
fessors Masaki Maruyama a n d  Igor R . Shafarevich fo r th e ir  in te re s t in and
support to these my studies.

T h is  p a p e r  w a s  p re p a re d  i n  Steklov M athematical Institu te , Moscow;
Max-Planck Institut ftir Mathematik, Bonn, 1990; Kyoto University, 1992-1993
by the grant of Japan Society of Promotion of Science; Mathematical Sciences
Research Institute, Berkeley, 1 9 9 3 . I thank these Institutes for their hospital-
ity.

Prelim inary v a r ia n t  o f  th is  p a p e r  w a s  p u b lish e d  a s  a  p re p r in t  [N8].
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CHAPTER I. Diagram Method

Here we give the simplest variant of the diagram method for multi-dimen-
sio n a l a lg eb ra ic  v a rie tie s . W e  sh a ll u s e  th is  m e thod  in  th e  next chapter.
T h is  p a r t  also contains som e corrections and generalizations o f  th e  corres-
ponding parts of our papers [N 6] and [N7].

Let X  be a projective algebraic variety with Q-factorial singularities over
an algebraically closed field. L e t  d im X . 2 .  L e t  NI (X ) be the R -linear space
generated by the  numerical equivalence classes of all a lgebraic curves on  X,
and let N I JX) be the  R -linea r space generated by the  numerical equivalence
c lasses o f a l l  C a r t ie r  ( o r  W e il)  d iv isors o n  X .  L inear spaces N i.(X ) and
N i  (X ) a re  dual to  one another by the intersection p a ir in g . Let NE (X) b e  a

convex cone in NI (X ) generated by all effective curves on X. L e t  NE (X) be
the closure of the cone NE (X ) in N 1 (X) . It is called Mori cone (or polyhedron)

o f  X .  A  non -ze ro  element x  E  N 1 (X ) is  c a lle d  nef i f  x• NE (X) 0. Let
NEF (X )  b e  th e  se t o f  a ll nef elements of X  a n d  th e  z e ro . I t  i s  th e  convex

cone in N i  (X ) dual to M ori cone NE (X) . A  ray  R c NE (X ) w ith origin 0 is

called extremal if from CI E NE (X) , C2 E NE (X )  and CI+ C2 e R  it follows that
CI  E R  and C 2 ER.

We consider a condition (i) for a set 9? of extremal rays on X.

(i) If R E ,   then all curves CER f ill out an irreducible divisor D (R ) on X.

In  th is  case, an oriented graph G (A ) corresponds to in  th e  following
way: Two different rays R I  and  R 2 are joined by an  arrow R i R2 from R I  to  R2
if R i •D (R2 ) > 0 .  H e r e  and  in  what follows, for an extrem al ra y  R  a n d  a  di-
visor D we write R D  > 0  if r•D> 0 for r E R  and r± 0 .  ( T h e  same convention
is applied for the symbols and  < .)

A  se t g  of extremal rays is called  extermal if  it is contained in a face of

NE (X) . Equivalently, there exists a nef element 1-1 EN 1 (X ) such that g• H=0.
Evidently, a  subset of an extremal set is extremal, too.

W e consider the  following condition (ii) for extrem al sets 8 of extremal
rays.

(ii) An extremal set g = Rn1 satisfies the condition (i) , and for any
real numbers 0, ..., mn_.10 which are not all equal to 0, there exists a ray R E

g  such that RJ• (mi.D (R1) mzD(Rz) ••• m nD (R n ) )  < 0. In particular, the
effective divisor miD (R1) ±m2D (R2) ± • • • +InnD (Rn) is not nef.

A set Y of extremal rays is called E -set (extremal in  a  different sense) if
the Y  is not extremal but every proper subset of Y  is  ex trem al. T hus, Y  is  a
minimal non-extremal set of extremal ray s. E v iden tly , an E-set Y  contains at
least two elements.

We consider the following condition (iii) for E-sets
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(iii) Any proper subset of an E-set T  = Qm1 satisf ies the condition
(ii), and there exists a non-zero effective nef divisor D (Y ) =aiD  (Q ) f - a2D (Q2) ±
• • +am p (Qm) -

The following statement is very important.

Lemma 1.1. An E -se t Y  satisfying the condition ( iii)  is connected in
the following sense: For any decomposition = Y illY 2, where .T 2 and  Y 2  are
non-empty, there exists an arrow QQ2 such that Q E Y 1  and Q2E.E2.

If Y  and It are two different E-sets satisfying the condition (iii), then there
exists an arrow LM where L E X  and M E I l .

Proof . Let Y = IQI, Qmi . B y (iii), there  ex ists a  nef divisor D (Y ) =
aiD (Q) - FazD (Qz) ±••• ± a m D (Qm ) . If one of the coefficients ..., am is equal
to zero, we get a contradiction to the conditions (ii) and It follows that
all the coefficients ai, ..., am a re  positive . L e t Y  = Y1IIT2 w here Y i= iQ i,
C2k1 and .T2= iQk+i, Q m l .  The divisors D i=aiD  (Q ) • ± ak D  (Q ) and D2
=ak+iD(Qk+i)±•••amD (Qm) a re  n o n  z e ro . B y (ii), there exists a  ray

such  that Q i•D i <O . On the other hand, Q s•D (Y )=Q c (D 1+D 2) 0. It
follows that there exists j, k -Fl j m , such that Qt•D(Qi) > 0 . I t  m e a n s  th a t
Qi(2; is  an arrow.

L et us prove the second sta tem en t. B y  the condition (iii), for every ray
R E  Y , w e have  the  inequality R • D (A )  0. If  R • D (A )  = 0  fo r  any R  E
then the set Y  is extremal, and we get the  con trad ic tion . It follows that there
exists a  ray R E Y  such that R D ( t1 )  > 0 . I t  fo llo w s o u r  assertion.

Let NEF (X ) = NE (X) * C  N i (X ) be  th e  cone o f  n e f  elements of X  and
41(x ) = NEF (X) /R + its  p ro jec tiv iza tion . W e use  usual relations of orthogo-
nality  betw een subsets o f X (X ) and NE (X) . S o , fo r  U C  t1 (X ) and V  C

NE (X ) w e w rite  U 1 V  if x•y = 0  for any It ± x E U  and any y E  V. T h u s ,  for
UCA (X), V CNE (X ) we denote

Ul  l y  ENE (X )IU 1 , V -L = lx Eli (X) Ix" V }  .
A  subset Tc.41 (X ) is called a face of 11(X ) if there exists a non-zero ele-

ment rE N E (X ) such that r = r 1 .
A  convex se t is called a  closed polyhedron if  i t  is  a  convex hull o f a  finite

se t o f po in ts . A  convex closed polyhedron is called simplicial if all its proper
f a c e s  a r e  s im p le x e s .  A  c o n v e x  c lo s e d  p o ly h e d r o n  is  c a l le d  simple
(equivalently, it has sim plicial ang les) if  i t  is  d u a l  to  a  s im plic ia l one . In
other w ords, any its face of codimension k  is contained exactly in  k  faces of T
of the  highest d im ension . Similar names we use  fo r convex cones and cones
over po lyhed ra . F o r  example, a  convex cone is called simplex, sim plicial and
simple if i t  is  a  cone over a sim plex, sim plicial or sim ple polyhedron respec-
tively.

We need some relative notions of the notions above.
W e  say  th a t 11(X ) i s  a  closed plyhedron in  its face T C  ./t/l(X )  i f  r i s  a
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closed polyhedron and .itt (X ) is  a  closed polyhedron in  a  neighbourhood T of
r. Thus, there should exist a closed polyhedron such that Irf lT =J4(X ) CI T.

W e w ill use the following no ta tion . L e t g?(X) be the  se t o f a ll extremal
rays of X .  For a face Tcl/ (X),

(y )=  IR E 9i (X) I 3 It+HE T: R•H=01
and

(r1) = E  (X ) TIRI .
L et us assum e th a t  X  (X )  i s  a  closed polyhedron in  i t s  face  T. T h e n  sets
9? (n) and Ø'? (Ti`) are finite for any face T i c r . Evidently, the face r is simple
if

(1) (r 11 ) —  g? (r-9 =codimrn
for any face Ti o f  y. Then w e say that the  polyhedron 1/ (X ) is  sim ple in its
face r. Evidently, this condition is equivalent to the condition:

(2) dim [8] —dim [92 (7 -91 = — ( T 1 )

fo r any extremal se t g such that R (r i ) C g. H ere  [• ] denotes a  linear hull.
( In  [N6], w e required a m ore strong condition for a polyhedron (X )  to be
simple in its face y: #R (ril ) = dimX (X) —dimTi for any face n of r.)

Let A, B be two vertices of an oriented graph G .  The distance p(A, B) in
G is  a  length (the number of links) of a  shortest oriented path of the graph G
from A  to B .  The distance is  + 00 if this path does not exist. T h e  diameter
diam G of an oriented graph G is the maximum distance between ordered pairs
of its  ve rtices . B y  the Lemma 1.1, the diameter of an E-set is  a  finite number
if th is set satisfies the condition (iii).

Theorem 1.2 below is an analog for algebraic varieties of arbitrary dimen-
sion of the Lemma 3.4 o f  [N2] and the Lemma 1.4.1 o f  [N5], which were de-
voted to surfaces.

Theorem 1.2. L et X  be a projective algebraic v ariety  w ith Q-factorial
singularities and d im X  2 . Let us suppose that ./I4(X) is closed and sim ple in its
face r. A ssume that the set g? (r) satisf ies the condition ( i ) abov e . A ssum e that
there are some constants d, Ci , C2 such that the conditions (a ) an d  (b) below hold:

(a) For any  E-set c  ( r )  such  that Y  contains at least tw o elem ents
which don't belong to g? (7, 1) and for any proper subset E  c Y  the set R (y 1 )  U
is extremal, the condition (iii) is v alid and

diamG (..r) d .
(h) For any  extremal subset g such that 9? (r1 ) cgc (r ), we have: the g

satisf ies the condition (ii) and for the distance in the oriented graph G (g)

R2) (g — (r 1 )) X (g — R (7-1 ) )11 p(R i, R2) -(11 ^ C1# (8 — (T i)) ;
and

I(Ri, R2) (g—R(7- 1 )) X (g—R (7'1 )) Id +  _p(R i , R2) 2d  + 11
(g — R(7- 1 )) .
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Then dimr< (16/3)C1+4C2+6.
Proof. W e use the following Lemma 1.3 which was proved in  [ N i ] .  T h e

lemma was used in [N i] to  g e t  a  bound (_.9) of the dimension of a hyperbolic
(Lobachevsky) space admitting an action of an arithmetic reflection group with a
field of definition of the degree > N .  Here N  is some absolute constant.

Lemma 1.3. Let I t  be a convex closed simple polyhedron of a dimension
n, and A V  the average number of i-dimensional faces of k-dimensional faces of I t
Then for ri 2k -1

i

n

n —i 
/  

. (( [n/2] \ ± (n — [n/2] \
\ —k / \  A V < .([n/2])

+
C— [n/2])

\ k k I
In particular, if 3

1 4 (n — 1) .
n - 2  if  n

<
4n 

n — 1 if n

is even,

is odd.

Proof. See [ N i ] .  W e  mention that the  right side of the inequality of the

Lemma 1.3 decreases and tends to  the number 2k
(

-' )  of i-dimensional faces
. k

of k-dimensional cube if n increases.

From the estimate of A V  of the Lemma, it follows the following analog of
Vinberg's Lemma from [ V ] .  Vinberg's Lem m a was used by him  to obtain an
estimate (dim <30) for the dim ension of a hyperbolic space admitting a n  ac-
tion of a discrete reflection group with a bounded fundamental polyhedron.

By definition, an angle o f a  polyhedron T  is  an  angle  of a  2-dimensional
face of T .  Thus, the angle is defined by a  vertex  A  of T , a plane containing
A  a n d  a  2-dimensional face T i o f T , and  tw o  ray s  w ith  th e  beginning at A
which contain two corresponding sides of the  T i .  T o  d e f in e  an oriented angle
of T, one should in addition put in order two rays of the angle.

Lemma 1.4. Let It be a convex simple polyhedron of a dimension n .  Let
C and D are some numbers. Suppose that oriented angles (2-dimensional, plane)
of AI are supplied with weights and the following conditions (1) and (2) hold:

(1) The sum of weights of all oriented angles at any vertex of M is not grea-
ter than Cn-I-D.

(2) The sum of weights of all oriented angles of any 2-dimensional face of
It is at least 5 — k where k is the number of vertices of the 2-dimensional face.

Then
11+8D /n if n is even,n<8C+5+

(8C+8D)/ (n-1) if n i,s odd
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In particular, for C O  and D=0, we have
n<8C-1-6 .

Proof . W e correspond to  a  non-oriented plane angle of X  a  weight which
is equal to the sum of weights of two corresponding oriented a n g le s . Evident-
ly , the conditions of the Lemma hold fo r the  w eights o f non-oriented angles
too if  we forget about the w ord "oriented". Then w e obtain Vinberg's lemma
from  [V ] which we formulate a  little bit more precisely  here . S ince the proof
is simple, we give the proof here.

L e t  E  b e  t h e  s u m  o f  w eigh ts o f  all ( n o n - o r ie n te d )  ang les  o f the
polyhedron /1. Let ao be the  number of vertices of .44 and a2 the  number of
2-dimensional faces of A .  Since AI is simple,

ao
n  (n  — 1 ) 

 —a2/1F2
From this equality and conditions of the Lemma, we get inequalities

(Cn-FD)ao » 2 ,k  ( 5 k )  =  5a 2 — a2A' 2 =

=a2 (5 — A F) = ao(n (n — 1) /2) (5/AF - 1) .
Here a2,k is  th e  number o f  2-dimensional faces w ith  k vertices of I L  Thus,
from this inequality and Lemma 1.3, we get

if n is even,
Cn-FD__(n(n - 1)/2) (5/AF >  

n (n
- 6 )/ 8

(n - 1) (n-5) /8 if n is odd.
From this calculations, Lemma 1.4 follows.

The proof of Theorem 1.2. (C om pare w ith [V ] .)  L e t  Z  b e  a n  oriented
angle of T. Let R (Z ) O ER (r) be the set of a ll extremal ray s of 11(X ) which
are orthogonal to the vertex of Z .  S in c e  .44(X) is  sim ple in r, the set A (Z )
is a disjoint union

A (Z)=Y ?(Z 1 ) U iRi(Z)I U iR 2 (L )
where Y?(Z -9  conta ins a ll rays orthogonal to  the  p lane  o f the  ang le  Z , the
rays RI ( Z )  and R2 ( Z .)  are orthogonal to  th e  f ir s t  and  second side  of the
oriented ang le  Z , respectively . E vidently , th e  s e t  Y ? (Z ) a n d  th e  ordered
pair of r a y s  (R i(Z ), R2 (Z ) ) define the oriented angle Z  uniquely. W e de-
fine the weight a (L )  by the formula:

{2/3, if 1 _ p (R i(Z ) , R 2 (Z )) .d ,
a (L )  =  1/2, if d-Fl p(R i ( Z ), R 2 (Z ) )  . 2d-F1,

0, if 2d-F2 p(R i ( L ), R 2 (Z )).

Here we take the distance in the graph G ( A ( L ) ) .  Let us prove conditions of
the Lemma 1.4 with the constants C= (2/3)C1+C2/2 and D=0.

The condition (1) follows from the condition (b) of the theorem . W e re-
mark that rays R i(Z ), R2 (Z ) do not belong to the set R (7 -9 .

Let us prove the condition (2).
Let 7 3 b e  a  2-dimensional triangle face (triangle) of r. The set Y? (T3 )  of
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all extremal ra y s  orthogonal to  points of 12  i s  the  union  of the  se t 91 (71) of
extremal rays, w hich are orthogonal to  the p lane of the triangle  13 , and rays
Ri, R2, R3, which are orthogonal to  the  sides of the triangle  r 3 . Union of the

set (7.1) w ith any tw o rays of Ri, R z , R3 is extremal, since it is orthogonal to
a vertex of T .  O n  t h e  other hand, the set A (7- 3) = A (rd̀ ) u R 1, Rz, R31 is not
extrema!, since  it is  no t orthogonal to  a point of ( X ) .  Indeed, the set of all
points of X (X ), which are orthogonal to  th e  se t A(71- ) u 1R2, R31 , A (rn u
1R1, R3 1 , o r  A (rt) U 1R1, R21 is  the vertex  Ai, A 2 , o r  A 3 respectively of the

triang le  13 , and  the  in te rsec tion  o f th e se  s e ts  o f  ve rtices  is  em p ty . T hus,
there  exists an  E-set c  A (y), w hich contains th e  se t o f  r a y s  1R1, Rz, R31 .
By the  condition  (a), the  graph G (Y ) contains a  shortest oriented path s  of
the  length d  w h ic h  c o n n e c ts  the  rays R i , R 3 .  If  this path does not contain
the ray  Rz , then the  oriented angle of 13 defined by the  se t 9? (nL) u R 1 , R3 1
a n d  th e  p a ir  (R1, R3) has th e  weight 2 / 3 . If  th is pa th  con ta ins the  ra y  Rz,
then the oriented angle of 13 defined by the set 9? (7q-) u 1R1, R21  and the pair
(RI ,  R 2) h a s  th e  w eight 2 / 3 . T h u s , w e  p ro v e d  th a t th e  s id e  A 2 A3  o f  th e
triangle y3 defines a n  oriented angle of the triangle w ith  the  weight 2/3 and
the first side A 2/13 of the oriented ang le . T he  triang le  has three sides. It fo l-
lows the condition (2 ) of the Lemma 1 .4  for the triangle.

L e t Y4 b e  a  2-dimensional quadrangle fa c e  (quadrangle) o f  r. In  this
case,

A (r4) (74. ) U {R1, Rz, R3, R41

where 9? (ri-) is the set of all extremal rays w hich are orthogonal to the plane
of the quadrangle and the rays Ri, R2, R3, R4 are orthogonal to  the consecutive
sides of the q u a d ra n g le . A s above, one can see that the sets (yiL ) U 1R1, R31

A (7' t) U 1R2, R41 are  not extrem a!, but the sets g?(T4'- ) U R 1 , R21 , A (ri - ) U 1R2,

R 3 , A (r ) U 1R3, R41 and 9? U 1R4, R11 are extrema!. It fo llow s tha t the re
are E-sets T ,s u c h  t h a t  1R1, R31 C c  (y )  U  1 R 1 , R A  a n d  1R2 , R 4 1 cd1/ c

A (r t) U 1R2, R 4 .  B y  L e m m a  1.1 , there exist rays R E Y and Q E N  such that
RQ is  a n  a r ro w . By the condition (a) of the theorem, one of the rays R i , R3 is
joined by an  oriented path s i  o f  th e  le n g th  d  w ith  the  ra y  R  and this path
does not contain another ray from  Ri, R3 (here R  is  the term inal of the path
Si). W e  c a n  suppose th a t th is  ra y  is  R i  (o therw ise , one should replace the
ray R i  b y  the ray R3 ). A s above, we can suppose that the  ray  Q  is connected
by the oriented path s z  of the le n g th  d  w ith  the ray R2 and this path does not
contain the ray R 4 . The path si RQ s 2  is  an oriented path of the le n g th  2d+
1  in  th e  oriented graph G (9? (ri) u 1/6, R21). It fo llow s tha t th e  oriented
angle of the quadrangle T4 , such that consecutive sides of th is  angle are ortho-
gonal to  th e  ra y s  R i a n d  R2 respectively, has th e  w e ig h t  1 / 2 . Thus, we
proved that fo r a  pa ir o f opposite  sides o f  T4 th e re  ex is ts  an  oriented angle
w ith  w e ig h t 1/2 such that the first side  of this oriented angle is  one of this
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opposite s ides o f  th e  q u a d ra n g le . A  quadrang le  has tw o  pairs of opposite
s id e s . I t  fo llo w s th a t the  sum  of weights of oriented angles of T 4  is  1 . It
proves the condition (2) of the Lemma 1.4  and the theorem.

In the sequel, we apply Theorem 1.2 to 3-folds.

CHAPTER II. Threefolds

1. Contractible extremal rays

W e consider norm al projective 3-folds X  w ith  Q-factorial singularities.

Let R b e  a n  extremal ra y  o f  Mori polyhedron NE (X ) of X .  A  morphism f:
.X.-17  onto a normal projective varie ty  Y is called the contraction of the ray  R
if for an irreducible curve C of X  the image f (C ) is  a  point if and only if C E

R .  The contraction f  is defined by a  linear system H on X  (H  give  rise  to  a
nef element of Al' (X), w hich w e also denote by H) It fo llow s that a n  irre-
ducible curve C is contracted if and only if C•H =0. W e assume that the con-
traction f  has properties: fO x = e y  and the sequence

(1.1) 0—,RR—>N1(X)—>N1(Y)—>0

is  exact where the  arrow  N1 (X) —  > ( Y )  is f*. A n  extremal ra y  R  is called
contractible if there exists its contraction f  with these properties.

T he number ,c(R) = dim Y is called Kodaira dimension of the  contractible
extremal ray R.

A face r  of NE (X) is called contractible if there exists a  morphism f: X—+Y
onto a normal projective varie ty  Y such that f*r= 0, f*OX-=

 C y  and f  contracts
curves lying in  7- o n ly .  The IC (7') = dim Y is called Kodaira dimension of T.

Let H be a  general nef element orthogonal to  a face r of Mori polyhedron.
Numerical Kodaira dimension of 7- is defined by the formula

3, if H > 0 ;

Knum (7) -= 2, if 1/3 =- 0 and H2 0;

1, if 1-12 - 0 .

It is obvious that fo r  a  contractible face r we h a v e  num (r) (r) . In  par-
ticular, i f— n u m  ( r )  =  (7 ' )  for a  contractible face r of Kodaira d im e n sio n  (r)=3.

2. Paris of extremal rays o f Kodaira dimension three lying in con-
tractible faces of NE (X ) of Kodaira dimension three

W e  assu m e  f u r th e r  th a t  X  i s  a  p ro je c t iv e  n o rm a l threefold w ith
Q-factorial singularities.

Lemma 2.2.1. Let R be a contractible extremal ray of Kodaira dimension
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3 and f: X — >Y its contraction.
Then there are three possibilities:
(I) All curves CER fill an irreducible W eil divisor D (R ), the contraction f

contracts D(R) to a point and RD  (R ) <0.
(II) All curves CER fill an irreducible W eil divisor D (R) , the contraction f

contracts D(R) to an irreducible curve and R•D (R )<0.
(HI) (small extremal ray ) All curves C E R give a finite set of  irreducible

curves and the contraction f  contracts these curves to points.

Proof. Assume that some curves of R fill an irreducible divisor D .  Then
R •D < 0  (this inequality follows from the Proposition 2 .2 .6  b e lo w ) . Suppose
that C E R  and D  does not contain C .  It follows that R D  O. W e  g e t  a  con-
tradiction. It fo llow s the lemma.

According to Lemma 2 .2 .1 , w e say that an extremal ray  R has the type (I),
( I I )  o r (III) (sm a ll) if  it is contractible of Kodaira dimension 3 and the state-
m ent (I), (II) o r  (III) respectively holds.

Lemma 2.2.2. Let R1 and R 2  are two different extremal rays of the type
(I). Then divisors D (R1) and D (R2) do not intersect one another.

Proof. Otherwise, D (R1) and D (R2) have  a  common curve and  the  rays
R1 and R 2 are not different.

For an irreducible W eil divisor D on X let

NE (X, D) =  (imageNE ( D ) )  NE (X) .

Lemma 2.2.3. L et R  be an  extremal ray of  the ty pe (II ), and f  its con-

traction. Then NE (X , D (R)) = R WS, where R +f*S = R +  (f (D) ).

Proof. This follows at once from the exact sequence (1 .1).

Lemma 2.2.4. Let R 1 an d  R 2  are two different extremal rays of the type
(H ) such that the divisors D (R1) , D (R2) coincide. Then for D = D (R1) = D (R2)

we have: NE(X, D) = R1+ R 2 .  In particular, do not exist three different extremal
rays of the type (H ) such that their divisors coincide one another.

Proof. This follows from the Lemma 2.2.3 .

Lemma 2.2.5. Let R be an extremal ray of  the type ( I I )  and f  its cotrac-
tion. Then there does not exist more than one extremal ray Q of  the type (I) such
that D (R) (1D (Q) is not empty. If Q is this ray , then D (R ) (1D (Q ) is a  curve
and any irreducible component of this curve is not contained in fibers off.

Proof. T he la s t  assertion is  o b v io u s . L e t u s  prove the  f ir s t  o n e .  Sup-
pose that Qt and Q2 are  two different extremal ray s o f the  type  (I) such that

D (Q 1) n D (R ) and D (Q2) n D (R) are  no t em pty . T hen  the plane angle NE (X,
D  (R )) (see the  Lemma 2 .2 .3 )  contains three different extremal rays: Qt, Q2
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and R .  It is impossible.

The following key proposition is very important.

Proposition 2.2.6. L et X  be a projective 3-fold w ith Q-factorial sing-
ularities, Di, ..., Dm  irreducible div isors on X  and f: X — >Y a surjective morphism
such  that dimX = dimY an d  dimf (D i )  <dirriDi. L e t y  E f (D i) n  n  f (Dm) •

Then there are ai > 0, ..., am> 0 and an open U, y EU  cf U  Uf  (D .) , such
that

C• <0

if  a curve CŒD 1 U...UD m  belongs to a non-triv ial algebraic family of curves on Di
U ... 0 Dm  and f (C) = point e  U.

Proo f . T he  p roof is  th e  sam e a s  th e  well-known case  o f su rfaces (but,
for surfaces, it is not necessary to suppose that C belong to a  nontrivial algeb-
ra ic  fam ily ). L e t H be an irreducible ample divisor on X  and H '= f * H .  Since
dimf (D i) <dimDi, it follows that  f(D1) U U f (D m ) C H '.  L e t  g5 be a non-zero
rational function on Y which is regular in  a  neighbourhood U of y on Y  and is
equal to zero on the divisor H i  In the open set f-1 the  d iv iso r (f* 0 )  can
be written in a form

(f* 0)=EaiD i -FENZ; .
i=i J=1

where all a i>0  and all b.; > 0 .  Here every divisor Z .; is different from any di-
visor D .  We have

0=C •  E a iD i+ C  •E b ili
J=1

H ere C• (E7-1b1Z i) >  0  since  C  belongs to  a  nontrivial algebraic fam ily of
curves on a surface D I U  U  D . and one of the Z . ; is  the hyperplane section H.

Lemma 2.2.7. Let R i , R2 are two extremal rays of  the type (II), div isors
D (R1), D (R2) are different and D (R1) n D  (R2) *0 . A ssum e that Ri, R2 belong to

a contractible face of NE (X ) of Kodaira dimension 3. L et 0 ±F1 E Ri and 0 ± F2
E R2. Then

(Fi• D (R2)) (F 2* D (Ri)) < (Fi• D (Ri)) (F2* D (R2)) •

Pro o f . Let f  be  the contraction of a  face of Kodaira dimension 3, which
contains both rays /21, Rz. By Proposition 2.2.6, there  are  ai>0, a 2> 0  such
that

ai(Fi•D (R I ) )  ±a2(Fi• D (R2)) < 0  a n d  ai (F2' D (Ri)) -F a2 (F2 • D (R2)) <0
or

—a i (F1D(Ri)) >az (Fi •D (Rz) ) a n d  —az (F2•D (Rz)) >ai (F2'13 (Ri)
where Fi•D  (Ri) < O .  F 2 •D(R 2 )  < 0  and F1•D(R2) > 0, F 2 •D(R 1 ) >  O. Multi-
plying inequalities above, we obtain the lemma.
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3 .  A classification of extremal sets of extremal rays which contain ex-
tremal rays of the type (I) and simple extremal rays of the type (II)

A s  a b o v e , w e  a ssu m e  t h a t  X  i s  a  p ro je c t iv e  n o rm a l 3-fo ld  w ith
Q-factorial singularities.

Definition 2.3.1. A n extremal ray  R of the  type  (II) is called simple
if

R • (D (R) D )
for any irreducible divisor D such that R•D>0.

T he following proposition gives a  sim ple  sufficient condition for an  ex-
tremal ray to be simple.

Proposition 2.3.2. Let R be an extremal ray of the type (II) and f :  X — )
Y  the contraction of R .  Suppose that the curve f (D (R ))  is not contained in the set
of singularities of Y. T h e n

(1) the ray R is simple;
(2) if  X has only isolated singularities, then a general element C of the ray

R  (a general f iber of  the m orphism  f1D (R )) is isomorphic to P 1 and the divisor
D (R) is non-singular along C . I f  additionally R•Kx<0, then C • D (R) =C' Kx=
—1.

(3) In particular, both statements (1) an d  (2 ) are true if  X has terminal
singularities and R•Kx<0.

Proof. Let D  b e  a n  irreducible divisor on  X  such  tha t R•D> 0. Since
R D (R ) <0, th e  divisor D  is different from  D (R ) and the in tersection D n
D (R) is  a  curve which does not belong to R .  Then D '=  f*(D ) is  an  irreduci-
b le  d iv iso r  o n  Y  a n d  F  =  f(D  (R )) i s  a  c u rv e  on L e t  y E  r  b e  a
non-singular point of Y . T h e n  the  divisor D ' is defined by som e local equa-
tion q5 in  a  neighbourhood U of y. Evidently, in the open set f - i  ( u )  we can
write

(f q5) =D±m (D (R))
w here th e  integer In 1. L e t a  curve  C E R  and f (C )  = y E U n  f (D (R )).
Then 0= C• ±m (D (R))) = C • (D + D (R)) C  •  (m  ( D  ( R ) )  .  Since m  1
and C • D (R) <0, it follows that C• (D+D(R))

Let us p rove  (2). Let us consider a  linear system  IHI of hyperplane sec-
tions on Y and the corresponding linear systems on resolutions of singularities
of Y  and X .  L et us apply Bertini's theorem  (see, fo r exam ple, [H a, ch. III,
Corollary 10.9 and the Exercise 11 .3 ] )  to these linear system s. Singularities
of X and Y  are iso la ted . T hen  by  Bertini theorem, for a general element H of

HI w e obtain that (a) H and H'=f - '(H ) are irreducible and non-singular; (b)
H intersects F  transversely in  non-singular points of F .  L et us consider the
corresponding birational morphism . r= f  11-r :  H'—  II o f th e  non-singular irre-
ducible s u r fa c e s . I t  is  a composition of blow ing ups at non-singular points.
Thus, fibers of f '  over H n F  are  trees of non-singu la r ra tiona l cu rves. The
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exceptional curve of the f irs t of these blowing ups is identified with the  fiber
of the projectiv ization of the  norm al bundle P (JV r y) . T hus, w e  ob ta in  a
rational map over the curve F

0: P  r y)—>D (R)
of the  irreducible s u r fa c e s . E vidently , it is an injection at general points of
P (Nr/y) . I t  fo llo w s  th a t  0  i s  a  b ira tio n a l isom orphism  of the  surfaces.
Since 0 is  a birational map over the curve r, it follows that the general fibers
of this m aps are birationally isom orphic . It fo llow s that a  general fiber of f '
is  C = P l . Since C is non-singular and is  an intersection of the non-singular
surface H' with the surface D (R) , and since X  has only isolated singularities,
it follows that D (R ) is non-singular along the general curve C.

T h e  X  a n d  D  (R ) a r e  non-singular a long C  P 1 a n d  t h e  cu rv e  C  is
non -singu la r. T hen  the  canonical class K c= (K x +D (R )) IC where both di-
visors Kx and D (R) are C artier divisors on X  along C. It follow s that — 2=
degKc=Kx•C+D(R) • C, where the both numbers Kx•C and D (R) • C are  nega-
tive  in tegers. T hen  D(R)•C=Kx•C=— 1.

If X  has term inal singularities and R•Kx < 0 ,  th e n  Y  h as  term inal sing-
u la ritie s  to o  (see , f o r  exam ple , [K al]). M oreover, 3 -d im ensional terminal
singularities a re  iso la te d . F ro m  (1 ) , (2 ) , th e  last statem ent o f  th e  Proposi-
tion follows.

In  connection with Proposition 2.3.2, see also [M o2, 1.3 and  2 .3 .2 ] and
[I, Lemma 1].

Let RI, R2 are two extremal rays o f the  type  (I)  o r (II). T h e y  are joined
if D (R1) n D (R2) ± 0. It defines connected components of a set of extremal rays
of the type (I) or (H ).

W e recall (see Chapter I )  tha t a set g of extrem al rays is called extremal
if  it is contained in  a  face  o f N E  (X ). W e say  tha t g  is  extremal of  Kodaira
dimension 3  if  it is contained in  a  face  o f numerical Kodaira dimension 3 of

NE (X) .
W e prove the following classification result.

Theorem 2.3.3. L et g =- 11?1, R 2 . .... R } b e  an  extremal set of  extremal
rays of  the type (I) o r  ( I I ) .  Suppose that every extremal ray of g  of  the type (II)
is  sim ple. A ssum e that g is contained in  a contractible face with Kodaira dimen-

sion 3  of NE (X). (T h u s ,  g  is extremal of  Kodaira dimension 3.) Then every
connected component of g has a type 911 , 932 , or T2 below (see f igure 1).

( W )  One extremal ray of the type (I).
(32) Two different extremal rays Si, S2 of  the ty pe (H ) such that their di-

visors D(S 1 ) =D (SO coincided.
( 7 ,z) In 1 extremal rays Si, S2 . .... S  of  the ty pe (H ) such that their di-

visors D(S2) , D (S3) , D (S m) do not intersect one another, and S i -D(S i ) =0 and
Si • D (Si) >0 for i =2, ..., m.

(Z 2 )  Two extremal rays Si, Sz, where Si is of  the type (II) and S2 of the
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type (/), S ID (S2) > 0  and S 2 •D (Si) > 0. E ith e r  S r  (biD (Si) + b2,D (S2)) <0 or
S2 * (b ID  (S1) ±b2D (S2)) <0 for any bi, b2 such that b2 0 and one of  bi, b2
is not zero.

The following inverse statement is true: If 8 =- 11? 1 , R 2 , ..., R n I  is a connected
set of  ex trem al rays of  the ty pe ( I )  o r ( I I )  an d  g  has a type o r  Z2
above, then 8 generates a simplex f ac e  R 1 + +R n  of  the dimension n and numer-

ical K odaira dimension 3 of NE (X ) .  In particular, ex trem al rays of  the set g are
linearly independent.

Proof. L et us prove the  firs t s ta tem en t. W e can  suppose th a t 8  is con-
nec ted . W e have to prove that 8  has the type o r  Z 2 . If n= 1, this
is obvious.

Let n =  2 .  From Lemma 2 .2 .2 , it follows that one of the rays R1, R2 has
the  type  (II). Let R i have the type (II) and R2 th e  ty p e  (I). S in c e  D (R 1)  CI
D (R 2 ) 0 ,  evidently R 2 ' D (I? > 0. I f  R I  ( R 2 )  = 0, then the curve D  ( R  n
D (R2 )  belongs to th e  ray R I . I t  fo llo w s  th a t  th e  rays R1 a n d  R2 contain the
sam e cu rve . W e ge t a  con trad ic tion . Thus, RI.D (R 2)  > 0 .  T he  rays R i, R2
belong to a  contractible face of Kodaira dimension 3 of M ori po lyhedron . Let
f  be a contraction of th is  f a c e .  By the Lemma 2 .2 .3 , f  contracts the divisors
D (I? , D (R 2 )  to the same p o in t .  By Proposition 2 .2 .6 , there exist positive a l ,
a z  s u c h  th a t  R i. (a iD (R i) +  a 2D(R 2 ) )  < 0  a n d  R2 . (a iD (R i)  + a 2D(R 2 ) )  <0.
Now suppose th a t fo r  some b 1 > 0  a n d  bz >  0 th e  inequalities Ri" (biD (RI) ±
b2D(R 2 )) 0  and Rz. (biD (R1) + b2D (R2)) 0  h o ld .  T h e r e  e x is t s  >  0 such
that .1b2-a2 and one of these inequalities is an  e q u a lity . For exam-
ple, let Àbi = a i . Then

RI. (aiD (R1) ±a2D (Rz)) =R1.2 (biD (R1) ±b2D (R2))+Ri• (a2 — /lb2)D(R2) 0 .

We get a  con trad ic tion . It proves that in th is case 8  has the type Z 2 .

S2
UI
M I

   

S2 S i S3 S i S2

Type Type 592 Type W3 Type

Figure 1.

Now assume that both rays RI, R2 have the  type  (II). S in c e  the  rays Ri,
R 2  are  sim ple , from  Lem m a 2 .2 .7 ,  it  fo llo w s th a t e ith e r  R i.D (R 2) =  0  or
Rz •D(R i )  =  0 .  If  both these equalities hold, the rays R I, R2 have  a  common
curve . W e ge t a  con trad ic tion . Thus, in th is case, 8  has the type

Let n  =  3 . Every proper subset of 6  has connected components of types
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or Z z. U sing  L em m as 2 .2 .2 - 2 .2 .5 , one can see very easily that
either 8 has the type or we have the following case:

The rays RI, Rz, R3 have the type (II), every two elements subset of 8  has
the type 2  and we can find a  numeration such that Ri•D (R2) >0, R2'D (R3) >
0, R3 ../3 (R I ) > 0. L e t  f  b e  a  contrac tion  of the  face  r. By Lemma 2 . 2 . 3 , f
contracts the divisoras D (1? , D (R2) , D (R3) to  a  o n e  p o in t . B y Proposition
2 .2 .6 , there are positive al, az, az such that

R • (a (R -1- a2D (R 2) ± a 3D (R3)) <0
fo r  i= 1 , 2 , 3 . O n  th e  other hand, from simplicity of the rays Ri, R2, R3, it fol-
lows that

R i • (D (R F D  (R  2 ) D  (R  3 ))  0  .
Let ai=  min {al, az, az . F r o m  the last inequality,

R1 • (aiD (R1) +azD (Rz) +azD (R3)) =
=RI •ai (D (RI) F D (R2) - F D (R3)) - F (  ( a 2 — ai)D (R2) ( a 3 — ai)D (R3)) .

We get a contradiction with the inequality above.
L e t  n >  3 . W e have proven that every two o r  three elements subset of 8

has connected components of types WI, o r  Z 2 .  It follows very easily
that 8  has the type (we suppose that 8  is connected).

Let us prove the inverse s ta tem en t. For the type VII  this is obvious.
L et 8  have the type  2 .  S i n c e  th e  ray s  S I, S 2  are extrem al of K odaira

dimension 3, there are nef elements H I , H2 such that H i •S i  = H z •S z = 0, M > 0,
M > 0 .  Let 0± C 1 c S 1 a n d  0 *  C2 E S2. Let D be a  divisor of the rays S i  and
S2. Let us consider a  map

(3.1) H2) — q1= ( — D • C2) (Hz• CO Hi+
( — D • CI) (Hi -  C2) H2 + (H2 C1) (H1 . C2)D .

F o r a  fixed H I , w e get a  linear map 112
— q 1  of the  se t o f nef elements H2

orthogonal to  S 2  into the set of nef elements H orthogonal to S 1 a n d  S2. This
m ap has a  one dim ensional kernel generated by ( —D • C2 ) Hi+ (Hi. C2 ) D .  It

follows that Si+S2 is a 2-dimensional face of NE (X) .
F o r  a  general nef element H = a i H i  ±a21/2 bD orthogonal to  th is  face,

where ai, az, b> 0, we have H3=  (airl1±a21/2±bD) 3- Fa2H2+ bp) 2

±a2H2) = (aiHi +azilz + bD) • (ailii+a2H2±bD) • ( a H i± a z i / 2 )  (a1111±a21/2) 2

(ctilii ± a2 H 2 ± b D )-  (co.Hi - Fa2H2) 3 >  0 , since ±a2112± bD and a1li1±a2H2
are nef. It follows that the face S i+Sz is  of the numerical Kodaira dimension
3.

Let 8  have the type  m .  Let H be a nef element orthogonal to the ray  S i.
L et 0*C 1E S i. L e t u s  consider a  map

(3.2) H-411'=H+ E ( _  ( H • c i ) ,  (ci • D (S t )))D  (S i ) .
i =2

It is  a  linear m ap of the set of nef elements H orthogonal to  S i in to  the set of
nef elements H ' orthogonal to  the  rays Si, S2. .... Sm. T h e  kernel o f the  map
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has the dimension m — 1. It follows that the  rays S i, 5 2, ..., S m  belong to face

of N E (X ) of a dimension O n  the  o ther hand , multiplying th e  divisors
D(5 1 ) , D (S m )  by rays S i, ..., S .,  one can see very easily that the rays S i , ...,
Sm  a r e  linearly  independent. Thus, they generate  an  m-dimensional face of

NE (X) . L et us show  th a t th is  face is  S i  -I- S2 ± • • • + S m .  To prove this, we

show that every m - 1  subset of g  is contained in a face of N E (X ) of a dimen-
sion —1.

If this subset contains the  ray  S i, th is subset has the type cm -1 . B y  in -
duction, we can suppose that this subset belongs to a face of NE (X ) of dimen-
sion m — 1. L et us consider the  su b se t  IS2 , S3, .  Let H  b e  an ample
element of X .  For the element H, the m ap (3 .2 ) gives an  element H' which is
orthogonal to  the  ra y s  S 2 , . . . ,  S m , b u t is  no t orthogonal to  the  ray S i . I t  f o l -
low s that th e  s e t  152 , ..., Sml belongs to a  face of the Mori polyhedron of the
dimension<m. Like the above, one can see that for a  general H orthogonal to
S i , the element H ' h a s  (H') 3 1-P>0.

Let g  have the type Z 2 .  Let H  be a nef  element orthogonal to  the ray  S2.

Let 0 *C i E S i . Let us consider a  map

(H. C i )  (  (  D (S 2) • C2) D (S (D (51 ) • C2) D (S2)) (3 . 3) H—>H'=H+ (D 
(52) • C 2) (D (Si) • — (D (Si) • C 2) (D (52) • C O  •

Evidently, C 2 . ( (  — D (S 2) • C2) D (S (D (S i) • C2) D (S 2 ))  =0 . F rom  th is  equa l-
ity  and  the  inequality o f the  definition o f the  system  Z2, it fo llow s that C r
(( — D (S2) • C2) D (S 1) (D (S 1) • C2) D (S2)) < 0 .  Thus, the  denominator of the
form ula (3 .3 )  is  p o s it iv e . T h e n  (3 .3 )  is  a  linear m ap of the  se t o f nef  ele-
ments H  orthogonal to  the  ray  S2 into the set of nef  elements H' orthogonal to
the rays S i ,  S2. Evidently, the  m ap has a one dim ensional kernel. Thus, the
rays S i  a n d  S2 generate a  two dimensional face Si ± S2 o f Mori polyhedron.
As above, for a general element H orthogonal to S2 we have  (Ir) 3

C orollary 2.3.4. L et g =  1R1, R2, ..., RnI be an  extremal set of  extremal
rays of  the type (I)  o r (II) and every extremal ray  of  g  of  the type (H) is  simple.
A ssume that g  is contained in  a contractible face w ith Kodaira dimension 3 of the
N E (X ). Let 0, ..., ni n 0 and at least one of ml, is Positive.

Then there exists such that
R i•  ( m iD ( R 1 ) ± • - •  -FmnD (Rn ) )  < 0  .

Thus, the condition ( i i )  of Chapter lis v alid .

Proof. It is suffic ient to  prove th is sta tem ent fo r  th e  connected 8. For
every type  WI, m  and Z2 of the  Theorem 2 .3 .3 , one can prove it very
easily.

Unfortunately, in  general, th e  in v e rse  statem ent o f  th e  Theorem  2 .3 .3
holds only for connected extremal sets g. W e will give two cases where it is
true for a non-connected g.
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Definition 2.3.5. A  th re e fo ld  X  is c a l l e d  strongly  projective
(respectively very strongly projective) i f  th e  following statem ent holds: a  se t
1Q1, Q } of extremal rays of the type (II) is  extremal of Kodaira dimension

3  (respectively generates the simplex face Qi+•••±Q,, of N E (X ) of dimension
n  and Kodaira dimension 3 )  if  its d iv isors D . . . . . D (Q n )  do  not intersect
one another.

Theorem 2.3.6. Let 8= 11?1, R2, ..., R n l  be a set of  ex trem al rays of the
type (I) or (H ) such that every connected component of  8 has the type W I, Z 2 , f ly

or Z 2 .  Then:
(1) 8  is extremal of numerical Kodaira dimension 3 if  and only if  the same

is true for any subset of  8 containing only extremal rays of  the ty pe (H) whose di-
visors do not intersect one another. In particular, it holds if  X  is strongly projec-
tive.

(2) 8  generates a simplex face R 1 +  • • •  + R n  with numerical Kodaira dimen-
sion 3 of the Mori polyhedron if  and only if  the same is true for any subset of  8 con-
taining only  extrem al rays o f  the  ty pe  (H ) whose divisors do not intersect one
another. In particular, it is true if  X  is very strongly projective.

Proof . Let us prove (1). Only the inverse statement is n o n - tr iv ia l. We
prove it by induction on n. For n=1, the statement is obviously true.

Assume that some connected component of g  has the  type  WI . Suppose
that this component contains the  ray R I . B y  o u r  induction hypothesis, there
exists a nef element H  such that 1/3 > 0 and H•R i = 0 if i > 1. Then there ex-
ists 0, such that H '=H ± k D (R ].)  is  nef and H '.8 = O. A s above, one can
prove that (H') 3 H3 >0.

Assume that some connected component of g  has the type Suppose
that this component contains the rays R I, R2 and D (R 1 )  =D (R 2 ) D .  Then, by
induction, there are nef elements H1 and H 2 such that 111>0, In >0 and Hi• iRi,
R3, —, = 0, H 2 * iRz, R3, —, = O. A s fo r the  proof of the inverse state-
ment of the Theorem 2 .3 .3  in  the case Z2, there  are  lei 0, 0, 0  such
that the element H=14111±k2H2±k3D is nef , H• 8= 0 and 113 >0.

Assume that some connected component of g  has the type m , m> 1. We
use the notation of Theorem 2 .3 .3  for this connected com ponent. Let this be

S2, . B y induction, the re  ex is ts  a  n e f  element H  such  tha t H  is
orthogonal to  8 —  1S2, S m i and  H3 > O. A s  fo r  th e  proof of the inverse
statement of the Theorem 2 .3 .3  in the case m , th e re  are 0, ..., 0 such
that H '=H ±k 2D (S 2)±•-• -1- kniD(Sm) is nef, H '-8= 0 a n d  (H') 3 H3 >0.

Assume that some connected component o f  8  h as th e  ty p e  Z z . W e use
the notation of Theorem 2 .3 .3  for this connected com ponent. Let this be
S21. B y induction, the re  ex is ts  a  n e f  element H  su ch  th a t H3 > 0 and  H  is
orthogonal to  g — . A s fo r Theorem 2 .3 .3 , there  are 0, 0  such
that H'=H+121D(S1)±k2D(S2) is nef , H'•8= 0 a n d  (H') 3 1-13 >0.

If  every connected component o f g  h a s  the type t i ,  t h e n  th e  statement
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holds by the condition of the theorem.
Let us p rove  ( 2 ) .  Only the inverse statem ent is n o n - tr iv ia l .  We prove

it by induction on n .  For n=  1 the statement is t r u e .  It is sufficient to prove
that g  is contained in a face of a dimension S n  of Mori polyhedron because, by
o u r  induction hypothesis, any its n — 1 elem ents subset generates a  simplex
face of the dimension  n - 1  o f  Mori polyhedron.

Assume that some connected component of g  h as the type i i . Suppose
that the ray R i belongs to this component and 0 * C 1  E R i .  Let us consider the
map

H— >H'= H' - f- ( (H • C 1) ( — D (R1) • CO ) D (R1) •
of the set of nef elements H orthogonal to the set 1R2 . .... Rn} in to  the set of nef
elements H ' orthogonal to  the  g .  I t  i s  th e  linear m ap w ith  one dimensional
kerne l. S ince , by  the induction, the set R 2 . .... RI is  c o n ta in e d  in a face of
Mori polyhedron of the dimension n — 1, it follows that g  is contained in a face
of the dimension n.

If g  has a  connected component of the type Q32, m ,  m >1, o r Z 2 , the proof
is the same if one uses the m aps ( 3 .1 ) ,  ( 3 .2 )  a n d  ( 3 .3 )  above.

If all connected components of g  have the type ai, the  statement holds by
the condition.

Remark 2.3.7. L ike th e  sta tem ent ( 1 )  o f  Theorem  2 .3 .6 ,  one  can
prove that a  se t 8 of extrem al rays with connected components of the type WI,

o r  Z 2 is  extrem al if  and  only if  the  sam e is true  fo r  any subset of g
containing only extrem al rays of the  type  (II) w hose divisors do not intersect
one another.

T he next proposition is  s im ple  bu t im portan t. To sim plify the notation,
we say that for a fixed ai, ..., an, we have a linear dependence condition

a1Rid-•-•+a n Rn - 0
between extrem al rays Ri, Rn  if  there exist non-zero Ci ER, such that

aiC1-1-•••-±anCn-0 .

Proposition 2.3.8. A ssum e that a se t g = 1R1, R2, ..., Rml of extremal
rays has connected components of  the type ?-4, 32, or Z 2  and there exists a
linear dependence condition aiRi±a2R2+ •-• ±a n iR n i = 0 w ith all a±0. Then all
connected components of  g  have the type 3 2 .  L et these components be Z i ,
T h e n  t  2 , and  we can choose a  numeration such that = R121 and the
linear dependence has a form

4 - a21R21 ± • • • ±atiRti —  a i2R12 ±a22R22 • ±  a t2)? t2 •

where all a u >0.

Proof. Let us multiply the  divisors D (R1) , D(Rm) by the equality a i Ri

±a2R2±-•-±aniRm= O. T h e n  w e  g e t th a t ak= 0 if the ray R k  belongs to a  con-
nected component of the type WI, m o r  Z 2 .  Thus, all connected components
of g  have the type 8 2. Let these components be

8 1 = 1R11, R 12 , 3 2
= 1R21, R22} •••• t = t 1, R121 •
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Obviously, and we can rewrite the linear dependence as
anRii 4 - aizRiz - i - a21R21±a22R22+ • • - FatiRti - Fat2Rtz— 0 ,

where all a i i * O .  M ultiplying all divisors D (R d) by this equation and  using
inequalities R i 1•D(R : 1) <0, we get the last statement of the proposition.

4 .  A classification of E-sets of extremal rays of type (I) or (II)

A s in  th e  above, we suppose tha t X  i s  a projective norm al 3-fold with
Q-factorial singularities.

W e recall that a  se t Se of extremal rays is called  an E - set if  it is not ex-
tremal b u t any  proper subset of Y i s  extrem al (it is conta ined  in  a  face of

NE (X)) . Thus, an E-set is  a minimal non-extremal set of extremal rays.

Theorem 2.4.1. L e t  g  be an E-set of  ex trem al rays of  the ty pe ( I )  or
(II). Suppose that every ray of the type (H) of Y is  simple and every proper subset
of Y is contained in  a contractible face of  Kodaira dimension 3 of Mori polyhedron.
Then we have one of the following cases:

(a) Y is connected an d  g = R 1 , R2, R31 , where any R i  has the type (H) and
each of 2-element subsets UZI, R21 , R 2 ,  R31 , R 3 , R11 of Y has the type t 2 . H e re
R i•D(R 2)> 0, R 2•D(R 3)>0, R3 •D (R i)>0  but R 2•D(R 1) =R 3•D(R 2)=R i'D(R 3)
=- 0. The divisor D (Y ) =D (R 1 ) +D (R2) +D  (R3) is nef.

(b) g  is connected and g = 1R 1 , R21, where at least one of  the rays R I, R2
h a s  t h e  t y p e  ( H ) .  T here are positiv e m i ,  m 2 su c h  th at  R • (m iD  (R 1) ±
m 2 D (R 2 )) 0  for any extremal ray R  of the ty pe (I) or simple extremal ray of type
(II) on X .  If  the divisor m i D (R1) +m2D (R 2 )  is not nef , both the extremal rays

RI, R 2 have the type (H).
(c) g ' is connected an d  g  = 1 R 1 , R 2  where both R i, and R 2  have the type

(H ) and there exists a simple extremal ray  S i of  the ty pe (H) such that the rays
R i , S i  define the extremal set of the type Z 2 (it m eans that S i± R i but the divisors
D (S1) = D (R1)) and the rays S i, R 2  define the extremal set of  the  type 2, w here
S i •D (R 2 )  =0  but R 2 -D  (S i)> 0 . Here there do not exist positive mi, m2 such that
the divisor miD (R1) ±m2D (R2) is nef , since evidently Si* (m iD(Ri) ±m 2D(Rz))
< 0 .  See f igure 2 below.

(d) g  = 1R1, R kl where 2, all rays Ri, R k  have the type ( H )  and
the divisors D (R1), D ( R k )  d o  not intersect one another. A ny proper subset of Y
is contained in  a contractible face of Kodaira dimension 3 of Mori polyhedron but Y
is not contained in a face of  Mon polyhedron.

R1 R2

Figure 2.
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Proof. Let Y = IRI, Rni b e  an  E -set o f extremal rays satisfy ing the
conditions of the th e o re m . Let us consider two cases.

T he case  1. Let Y is not connected. Then every connected com ponent
of Y is  extremal and, by Theorem 2 .3 .3 , it has the type WI, or 1)2 . If
some of these com ponents does not h a v e  th e  ty p e  i,  th e n , b y  the  statement
(1 ) of Theorem 2 .3 .6 , Y  is  extremal and w e get a  co n trad ic tio n . Thus, we
get the case (d) of the theorem.

The case 2. Let Y= Rn} is  co n n ec ted . Let )1 4. By Theorem
2 .3 .3 , any proper subset of Y has connected components of the type W I, Z2,

o r  Z 2 . Like fo r  th e  proof o f Theorem 2 .3 .3 , it fo llow s tha t Y  h a s  the
type By Theorem 2 .3 .3 , then Y  is extrema!. W e  g e t  a contradiciton.

Let n = 3 .  Then, like for the  proof of Theorem 2 .3 .3 , w e get that Y has
the type (a).

Let n= 2 and Y = 1R1, R21. If both rays Ri, R2 have the type (I), then, by
Lemma 2.2 .2 , Y  is not connected and we get a contradiction.

Let R1 h a s  th e  type  ( I )  and R 2 has th e  ty p e  (II). S in c e  the  se t Y is not
extremal, by Theorem 2 .3 .3 , there are positive mi, m2 such that Ri• (miD(R1)

m2D (R2)) 0  and R2• (miD (R I) ± m 2 D (R 2 ))  0 . By Lemma 2 .2 .3 , it fol-
lows that C• (miD (R1) m2D  (R2)) 0 if the curve C is contained in the D(R 1 )

U D (R2 ) . If C is not contained in D(1? U D (R2) , then obviously C• (miD(R1)
m 2 D(R2)) 0. I t  fo llo w s , th a t  th e  d iv iso r miD(Ri) mzD (R2) i s  nef.

Thus, we get the case (b).
Let both rays Ri, R2 have the type (II). If D (R1) =D (R2) , then we get an

extremal s e t  IR1, R21 by  T heo rem  2 .3 .3 .  T h u s , th e  d iv iso rs  D (R i) and
D(R2) a re  d iffe ren t. B y  L em m a 2 .2 .1 , th e  curve  D (R i) (- 1 D(R2) does not
have an  irreducible component which belongs to both rays R i and R 2 .  Since
rays Ri, R2 are sim ple, it follows that R I . (D(Ri) + D (R2)) 0  and R2 * (D (R1)
H- D (R2)) 0. Let R  be an extremal ray  of type (I)  or simple extremal ray  of
the type (II). If the divisor D (R) does not coincide with the divisor D (R 1 )  or
D (R2), then obviously R • (D (Ri) +D (R 2 )) 0. T hus, if  there does not exist
an extremal ray  R  w hich has the same divisor as the  ray  Ri or R2, we get the
case (b).

Assume tha t D (R) = D (R 1 ) . Then, by Lemma 2 .2 .5 , th e  ra y  R  has the
type  (II), too. If RD (R2) =0, we get the  case  (c) of the theorem where Si=
R .  If  R•D(R 2 ) > 0 , then  R• (D(R i ) +D (R2)) 0  since th e  ra y  R  i s  simple.
Then we get the  case  (b) of the theorem.

5 .  An application of the diagram method to Fano 3-folds with termin-
al singularities

W e restrict ourselves to  considering Fano 3-fo lds w ith  Q-factorial ter-
minal singularities, but it  is  possible to formulate and prove corresponding re-
s u l t s  f o r  a  nega tive  p a r t  o f  M o r i c o n e  o f  3-dimensional v a r ie ty  with
Q-factorial terminal singularities like in  [N7].
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W e recall that an  algebraic 3-fold X over C with Q-factorial singularities
is called Fano if the  anticanonical c lass — Kx is  a m p le . B y results of Kawa-
m ata [K al] and Shokurov [Sh], any face of NE (X )  is contractible and NE (X)
is generated by a finite set of extremal rays if X is  a Fano 3-fold with termin-
al Q-factorial singularities.

5 .1 .  Preliminary results. We need the following

Lemma 2.5.1 Let X  be a Fano 3-fold with Q-factorial terminal sing-
ularities. Let g =  R 1. .... RF be a set of n extremal rays of the type (H ) and with
disjoint divisors D (R1), ..., D(Rn) on X. (Thus, g has the type n1).

If  we suppose that the set g is not extremal, then there exists a small extremal
ray S and such that S• ( — K x+ D (R i)) <0  and S D (R ) = 0  if j

It follows that any curve of the ray S belongs to the divisor D(R e ).

Proof. By Proposition 2.3.2, the divisor H = —K x+D (R 1) -1- •••-1-D(R n )  is
orthogonal to  8. Besides, H  is  nef  and 113 > 0  if  there  does not exist a  small
extremal r a y  S  w ith  th e  p ro p e r ty  a b o v e . T hen , g  i s  extremal o f  Kodaira
dimension 3.

Definition 2.5.2. A  se t  1R, S i of extremal rays has the type if the
ray R has type  (II), the extremal ray  S is small and S • D (R) < 0 .  (See Figure
3.)

Thus, by Lemma 2 .5 .1 , the  se t R1, S of extremal rays contains a
subset of the type

B y Proposition 2 .3 .2 , any extremal ra y  of X  o f  th e  ty p e  ( II)  is  simple,
and by results of Sections 3 and 4 we get a classification of extremal sets and
E-sets of extremal rays of the type (I) and (II) on X.

We have the following general theorem.

Figure 3.

Theorem 2.5.3. Let X  be a Fano 3-fold with Q-factorial terminal sing-

ularities. Let a be a face of NE (X) . Then we have the following possibilities:
(1) There exists a small extremal ray S such that a + S  is contained in a

face of NE (X ) of Kodaira dimension 3.
(2) There are extremal rays R1, R 2 of the type (H) and small extremal ray S

such that a+R i  and a+R 2 are contained in faces of NE (X ) of Kodaira dimension
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3, the ray R2 does not belong to a, and one of  the sets 1R1, S I o r 1R2, SI has the
type 4

(3) The face a is contained in a face of  NE (X) o f  Kodaira dimension 1 or
2.

(4) There exists an E-set E= 1R1, R21 such that R i 'c a, R2 (t  a, but

an d  a + R 1 a re  contained in f aces of  NE (X ) of  Kodaira dim ension 3. The
satisfies the condition (c) of Theorem 2.4 .1 : Thus, both extrema! rays R1, R2 have
the type (II) R1•D(R2)> 0 and R2 •D (R1)> 0 and there exists an extrema! ray R'1

of the type (H) such that D(Ri)=D(R'i) and R',...13.(R2 ) =0.
(5) There are extrema! rays R 1 , Rn  of  the type (II) such that any of them

does not belong to a, a + R1+ ••• +Rn is contained in face of  N E (X )  of Kodaira
dimension 3 and

dim a+Ri+•••±Rn<dim a-l-n .
(6) dimNI(X)—dima_<12.

Proof. L et us consider the face r= a l  o f  11(X) and  apply Theorem 1.2
to this face T. We have dimT=dimNi (X) —1—dima.

Assume th a t a does not sa tisfy  the conditions (1 ) , (3 )  a n d  (5). Then
(r) contains extremal ray s o f the  type  ( I)  o r  (II) only and X (X ) is closed

and sim ple in the face r. B y Proposition 2 .3 .2  and Theorem 2 .3 .3 , any ex-
tremal subset g  of A (r) has connected components of the types  o r
Z 2 .  By Corollary 2 .3 .4 , the  condition  ( ii)  is  v a lid  fo r  extremal subsets of
R (r). Let Y  cA (T ) be a E - s e t .  Assume that at least two elements RI, R2 E

Y  don't belong to A (T1 )  and for any proper subset ..T 'cY  we have that Y' U
A (T1 )  is extrem al. Let us apply Theorem 2 .4 .1  to E.

Assume that Y  has the  type  ( d ) .  By Lemma 2 .5 .1 , one of extrema! rays
R1 o f  Y together with some small  extrema! r a y  S define a set of the type
Since R 1 t  c E  is  a  proper subset of Y, the A (r 1 ) u IR1 i s  e x tre m a !. O r a+
R 1 is contained in a face of NE (X) . Since Y has at least 2 elements which do
not belong to A (ri), there exists another extrema! ra y  R2 of Y  which does not

belong to A (T1 ). Like the  above, a + R 2  is contained in  a  face of N E (X ) of
Kodaira dimension 3. By definition of the case (d), both extremal rays R1, R2
have the type (II). T h u s , w e  g e t  the case (2) of the theorem.

A ssum e th a t  Y  h a s  th e  ty p e  (c). T h e n  w e  g e t  th e  c a s e  (4 )  of the
theorem.

Assume th a t  E = 1R1, R2[ h a s  th e  ty p e  (b). Suppose th a t  th e  divisor
miD(R1) ±m2D (R2) is  n o t n e f  (see th e  c a se  (b )  o f Theorem  2 .4 .1 ) .  Then
there exists a  small extremal ray  S such that S (m  (R1 ) m  2D  (R2 )) < 0 .  It
follows that one  o f the  se ts 1R1, S I  o r  1R2, SI has the type 2 . T h u s , w e  g e t
the case (2).

Assume that E= 1R1, R2, R 3 i has the  type  (a). T h e n  the divisor D (R1) ±
D (R2 ) ±D (R3) is nef.

Thus, if we additionally exclude the cases (2) a n d  (4), then all conditions
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of Theorem 1 .2  are  satisfied . B y Theorem s 2 .4 . 1  and 2 .3 .3 , we can take d
= 2, C 1 = 1 and C 2  =  O. ( S e e  Figure 4  for graphs G ( g )  corresponding to ex-
trem al se ts g  of the types t i ,  m  and  Z 2 . )  Thus, by Theorem  1.2 , d im r
< 3 4 / 3 . It follows that dimN I (X) — dim a 12.

• • •
Type sidi Type

•

• I I
•

Type Wn

Figure 4.

• H  •
Type

5.2. General properties of configurations of extremal rays of the
type 02. L e t  1R11, R121 b e  a  s e t  o f  extrem al r a y s  o f  th e  ty p e  0 2 .  By

Theorem 2 .3 .3 , they  define  a  2-dimensional face R11 +R12 o f N E (X ) . Let
1R2 1 , R 2 2  be another set of extremal rays of the type 0 2 . S in s e  two different

2-dimensional faces of NE (X ) may have only a  common extrem al ray , the  di-
v iso rs  D (R11) = D (R12) a n d  D (R 21) = D (R22) d o n 't  h a v e  a  common point.
There exists the m axim al set 1R11, R121 , IR21, R221 , 1 R n i ,  Rn21 of pairs of ex-
tremal rays of the type 0 2.

Lemma 2.5.4. Any t pairs 1R11, R121 , 1R21, R221 , 1Rti, Rt21 of extrem-
al rays of the type 32 generate a face

t 2

EER u cN E (X )cN i(X )

of the K odaira dimension 3 of NE (X) .

Proof . This face is orthogonal to the nef divisor H = —K x +D (R 11 ) ± ••• -1-
D (R1) with 113 . ( — K ) 3 >O.

Lemma 2.5.5. Under the above notation, there exists a changing of order
of pairs of ex trem al rays R i b  R i2  such that R11 ••• R t 1  i s  a simplex face of

NE (X) .

Proof. For t = 1 , i t  is  o b v io u s .  Let us suppose th a t  O=R i l - F•-• +R(t - Di
is  a simplex face of the face

t-1  2

a t - i =  EERi; •

The face
t 2

a t= ERi.;
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has a t _ i a s  its  face and does not coincide with the face a t - i .  It follows that
there exists a face p of at of the dimension t  such that scrat_i bu t ecp is  a
face of P. I t  fo llo w s  th a t  a ll extremal rays of p are  the  extrem al rays Rn,
Rct-in and some o f  extrem al rays R11, R12. Assume tha t bo th  extrem al rays
R11, R12 belong to 13. Then the extremal rays Rn, R(t- i)i, R11, R12 are linearly
dependent, since d im /3= t. By Proposition 2 .3 .8 , it is  im possib le . Thus, only
one of extremal rays R11, R12 belongs to the face P. Suppose th a t th is  is  R 11.
Then P= R ii+ •••± R (t-n i+ R ti will be the face we were looking for.

W e divide the m axim al set IR11, R121 , 1R21, R221 , iRni, Rn21 of pairs of
extremal rays of the type Z 2  into two parts:

1R11, R121 , 1R21, R221 •••, 1Rml, Rm21

and
1R (m+1) 1, R(m+1)21 1R(m+2)1, R(m+2)21 1R(m+k)1, R (m+k)21

where n =m A- k. By definition, here the  extrem al rays R11, Ri2 belong to the
firs t pa rt if  and  only if  they a re  linearly independent o f o ther extremal rays
from th e  s e t  IR11, R121 , IR21, R221 .....  Rn21 . Thus, extrem al rays R 1, Rj2

belong to the second part if they are  linearly dependent of other extremal rays
from th e  se t IR11, R121 , R 21 , R221 •••, Rn2} •

Lemma 2.5.6. Let S  be an extremal ray of the type (II) such that 11?11,
SI define a  conf igulation (c) of the  Theorem 2 . 4 . 1 .  Thus: R n .D (S )> 0,
S •D (R n)> 0 and R12 -D (S) = 0. Then the extremal ray Ril, R12 are linearly inde-
pendent from all other ex trem al rays i n  1R11, R121 , 1R21, R221 ..... 1R1, Rn21
Thus, 1 There does not exist a configulatian of this type with the ray R 2.
Thus, there does not exist an  ex trem al ray S ' of the type (II) such that
R i 2 . D (S') >0, S' • D (Ri2) >0 and R : 1- D (S') =0.

Proof. T h e ± R iz and R 1 2 +  S  a re  2-dimensional faces of NE (X ) with
intersection b y  th e  extrem al ray  R a . It fo llow s that any  curve  of D  (S ) be-
longs to the face R i 2 + S  (by Lemma 2 . 2 . 3 ) .  It follow s that the divisor D (S)
has no common point with the divisor D (R,1) f o r  any other pair R.n , R j2  for j *
i. Multiplying D  (S ) by  a  linear relation of extrem al ray s R 12, R 1 2  with other
extremal r a y s  1R11, R121 , 1R21, R221 , R n 2 1  and using Proposition 2 .3 .8 ,
we get that this linear relation does not exist.

L et us suppose tha t the re  ex ists  an  extrem al ra y  S ' (see formulation of

the lem m a). T hen  Rii±S ' is another 2-dimensional face of NE (X) . Evident-
ly, divisors D  (S ) and D  (S ') have a  non-empty in te rsec tio n . Thus, faces R 12

+S  and -FS ' have a common r a y .  B u t  it  is  possible only if S = 5 1  Thus,
we get a contradiction, because RirD(S) > 0 but Rii•D (S') =0.

Using this Lemma 2 .5 .6 , we can subdivide the first set
1R11 , R121 1R21, R221 , •••, 1Rml, Rm21 •

into sets
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1R11, R121 , 1R21, R221 , Rmi21
and

1R(mi-F1)1, R(Ini-1-1)21 , 1Roni-Fmoi, R(ni-Fm2)21

where m i ± m 2 = m .  Here R 11, Ra belong to the  f irs t pa rt if  and  only if there
exists an e x tre m a l ray  S  such that R11, S  satisfy the condition of Lemma 2 .5 .6 .

By Lemma 2 . 5 . 6 ,  the  order between e x tr e m a l rays /211, and R12 is then cano-
nical.

Let us consider the second set
1R(m+m, R (m +1)2}  , IR (m +2)1 , R (m +2)2  , •••, 1R (m +k )1 , R (m +k )21

We introduce an invariant
m + k  2

5=di. E ER„
i=m+11=1

of X .  Evidently,
e i t h e r  k = 5= 0  o r  k 2  a n d  1 5<k

Thus,
m + k  2

dim  E E R i i =k +5
i=m-Fu=i

Let
n =m +k  2

PO (X) =  dirn/Vi  (X) — d im  E ER ii •
1 =1  j=1

Then
p(X ) = dimN (X) -= Po (X) ± 2 m  k  5

The invariants: po (X ), n, m , k , 5 , m l, nt2 are im portant invariants of a  Fano
3-fold X.

The following lemma will be very useful:

Lemma 2.5.7. Let X  be a Fano  3-fold with Q-factorial term inal sing-

ularities. L et g  be the set of  all extremal rays o f  a proper f ac e  [8 ] of NE (X ).
Let

tR i i , R121 U U  1 R 1 1 ,
be a set of  different pairs of  extremal rays of the type 0 2 .  A ssum e that R•D(R11)
= 0 for any R E  g  and any i, 1 i  t . T h e n  th e re  are extremal rays Qi, Q r
such that the following statements hold:

(a) ;
(b) For any i, there exists j, such that Qi •D(R 1 1 ) > 0  (in

particular, Qi is different from extremal rays of pairs of  extremal rays lRu i, R i a l  of
the ty pe 32) ;

(C) For any j, there exists an extremal ray Q , 1 i r, such that
Qi •D(R 11 ) >0

(d) The set g U 1Q1, Q r1 is extremal, and extremal rays Q1 . .... Q,-  are
linearly independent.
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Proof. If t=-. 0, we can take r = 0 .  Thus, we assume that 1.
Since Ru•D(R u ) <0, 1 1 j 2,  the set g does not contain the  rays

R u .  Let H  be a  general nef  element orthogonal t o  [ g ] .  S in c e  t  1, there ex-
ists a >0 such that H '=H ± aD (R ii)  is nef  and H ' is  orthogonal to  g  and one of
the rays RH, R12. Let this ray be R n .  Then the set g U 1R111 is  extremal and

is contained in a (proper) face of NE (X) . It follows, dim [g] <dim  [gcIR11 ]
<dimNE (X ), and dim [g] <dimNE (X) —1. L e t  u s  consider a  linear subspace
V(g) cNi (X )  generated by all extremal rays g. B y our condition, V(g) is  a

linear envelope of the face [g] of NE (X) .
Let us consider the factorization map Jr: NI (X) ' N I  (X) / V (g) . Since the

cone NE (X) is polyhedral, the  cone it (N E  (X )) is generated by images of ex-
tremal ra y s  T  such  tha t the  se t g U 171 is contained in  a  fa c e  [g c  1 T ]  o f

NE (X ) of the dimension dim [8] + 1 .   In  p a r t ic u la r ,  since dim [g] <dimN i  (X)
—1, the  face  [g U 171 ] is proper, and the set g U 1T1 is  extremal.

There exists a  curve C on X  such  that C D  (R11) > 0. T his curve C (as

any elem ent x E N E  (X )) i s  a  linear com bination o f  extremal ra y s  T  with
non-negative coefficients and extremal rays from g w ith real coeffic ients. We
have R • D (R i i ) =0 for any extremal ray R E g. Thus, there exists an extremal
ra y  T  above such that T • D (R11) > 0. It fo llow s that T  is different from ex-
tremal rays of pairs of the type  2 .  W e  t a k e  Q = T .  B y our construction,
th e  se t g U 1Q1 1 i s  extremal. If  Qi •D (R11 ) > 0  f o r  any j  such  tha t 1 .<j
then r = 1, a n d  th e  s e t  4 1 1 gives th e  se t w e w ere looking for. Otherwise,
there  exists a minimal j  such  tha t 2 j  t  and Q .] )  (R11) = 0. Then we re-
place g by the set g1 of all extremal rays in  the  face  [g U 1Q ]  of the dimen-
sion dim [g1 ] -=dim [g] +1, and the set

1R11, R121 U ...0 IR 1 , R121
by

1R11, Rizil j t, Q i•D (R ii)=
and repeat this procedure.

5 .3 . Basic Theorems W e  w a n t  t o  p r o v e  t h e  fo llow ing  basic
theorem.

Basic Theorem 2.5.8. Let X  be a Fano 3-fold with terminal Q-factorial
singularities. A ssum e that X  does not h av e  a small ex trem al ray , and Mon

polyhedron NE (X) does not have a face of Kodaira dimension 1 or 2.
Then we have the following for the X :
(1) T he X  does not hav e a pair of extremal rays of  the ty pe 0 2  (thus, in

notation above, the invariant n=- 0) and Mori polyhedron NE (X ) is  simplicial.
(2) The X  does not have more than one extremal ray of the type (I).
(3) If  g  is an extremal set of k extremal rays of X , then the g has one of the

types: Will (k — 1) i,1)211 (k  —  2) (k 2) (we use notation of



522 Viacheslav V. Nikulin

Theorem 2 . 3 . 3) .
(4) We have the inequality for the Picard number of X:

p (X) = dimN (X) .

Proof. W e use notations introduced in  the Section 5 . 2 .  W e divide the
proof into several steps.

Let us consider extremal rays
go=  1Rii, R121 U 1R21, R221 U U 1Rn 1, R,21 .

Let
grd= 1R 11 , R 121  U  I R 2 1 , R 2 2  U  U  IRmi , Rnt2

and

ege15 =  IR(m+1)1, R(m+1)21 U 1R(m+2)1, R(m+2)2 U U R n 2 1  •

By Lemma 2 .5 .4 , the set g o i s  extrem al. Let g  be  a maximal extremal set of
extremal rays w hich contains go. Let g i= g — g o . By Proposition 2 .3 .8 , # g i
= P (X) — 1 —  dim [go]. B y  T h e o re m  2.3 .3 , for Sc gi, the  divisor D (S) has no
a common point with divisors D(Rii) , 1 I.

Lemma 2.5.9. A ssum e that X satisfies the conditions of Theorem 2.5.8.
Let Q be an extremal ray such that Q is different from extrema! rays R11, L<n,

and the set  t i  U  10  is extrema!. T h e n  the Q has the ty pe (H ) and
there exists exactly one i such that 1 and Q•D(R 11 ) >0 and D (Q) fID(R 1 1 )
=  0  if j * i .

Proof. Assume tha t Q has th e  ty p e  (I) . Then the  divisor D (Q) h a s  no
common point w ith the  divisors D (R i j ), 1 By Theorems 2 .3 .3 , 2 .3 .6
and Lemma 2.5 .1 , th e  se t  1Q1 U gi U go is ex trem al. W e then get a  contradic-
tion w ith the condition th a t gi U go is  a  m axim al extrem a! set. Thus, the ex-
trema! ra y  Q has the  type  (II).

If D (Q) has no common point w ith the divisors D (R11) , 1 we get a
contradiction by  the  sam e w a y .  Thus, there  exists i  su ch  th a t 1 i  n  and

D (Q) n D (R11) * 0. L e t  u s  consider a  projectivization P NE (X) . By Lemma

2.2.2, PNE (X, D (Q )) is  an interval with two e n d s .  Its  first end is the vertex
PQ a n d  i t s  second end  i s  a  p o in t  o f  th e  edge P (161 ± R12) o f  th e  convex

polyhedron PNE (X) . Thus, the i  is defined by the extrema! r a y  Q .  Evident-
ly, Q • D (R11 ) >0.

L em m a 2.5.10. With the conditions of Lemma 2 .5 .9  above, assum e that
m + 1 1,t. Then there exists exactly one extrema! ray Q =Q i with the condi-
tions of  Lemma 2 .5 .9 : thus, th e  se t gi U 1Qir is ex trem a! and  Qi•D(R11)> 0,
and D (Q i ) n D (RA ) =  0  if j * i.

Proof. The

R= ES+ ER
SEC R EC
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is a face of NE (X ) of highest dimension p (X) —1, and

13,= E s +  E R
sEg, REg0-IR„.R.1

is  a face A c S c N E  (X ) of dimension p (X) —2 and of the codimension one in
is. (Here we use that m + 1i, .11/ -H k). It follows that there exists exactly one

face IT, of NE (X ) such that Y , contains S„ dim/3'= p(X) —1, and S ' i * S .  By
Theorems 2 .3 .3  and 2 .3 .6 , and Lemma 2 .5 .9 , s',=,3,-FQ, where Q, is  an ex-
tremal ray  such  tha t the  se t g i U 1Q,1 U (go —  1R,1, R121) is extrema!, and the
ray  Qi h a s  th e  properties of Lemma 2 .5 .1 0 .  It follow s that the  Q, is  unique
and does exist.

Lemma 2.5.11. Under the above notation, the set g11..1 glin d  U iQm+1,
Qn} is extremal.

Proof . By Theorems 2 .3 .3 , 2 .3 .6 , Proposition 2 .3 .8  and Lemma 2.5 .1 ,

th e  se t g = g1 U gr d i s  extremal and  generates a  face  o f NE (X) . W e apply
Lemma 2 .5 .7  to  th is  g  and ggeP. By Lemma 2 .5 .7 , th e re  a re  extremal rays
qm+i, qm-i-r such that the  se t g1 U gtInd  U qm + /-1  is  extremal and
for any i, m+1.<i m+r, there exists j, such that Q',..D(R11) >0.
Moreover, for any j ,  m + 1 j n ,  there exists an extremal ray  Qi, m +1
+r, such that

Q',• D (R1 1 ) > 0 .

By Lemmas 2 .5 .9  and 2.5 .10 , r= k  and g i U gr d U IQ'  m+1, m +ri =g 1 U

a n d  U 1Qm+1, Qn1.

Lemma 2.5.12. The set ggeP is empty.

Proof. By Lemmas 2 .5 .9 ,2 .5 .1 0  and 2 .5 .11 , the set of extrema!  r a y s  U
=  u

 g  H •••, Q n[ is  a maximal extremal se t which contains g l Ugwid

and  does not contain extremal rays from  8geP. A ssum e th a t k = n — m  * 0.
Then 2  and  dimU = Po (X) — 1 ± 2m + k. But the dim ension of a face of

NE (X ) o f highest dimension is  eq u a l to  p (X ) —  1 = p (X ) — 1 ± 2m + k 5
where 5  1. T h u s , th e  extremal s e t  U  i s  n o t  m axim al, and there exists
another extrema! ra y  S such that U u 1S1 is  ex trem al. By definition of U, the
S e  g g " •  Let S =  Ra  w h e re  m +1 i  n .  S i n c e  Qi •D(R i 1 ) >  0, by Theorem
2 .3 .3 , the  ex trem a! se t 1Qi, R111 has the type Thus, RirD(Qi) = 0 .  B y
definition of the set ggeP, there exists a  linear dependence EI:+iaiiR/I - Fat2R/2
=0 where a t i* 0  and a.,2* 0 .  Multiplying D(Q t )  by the equality above, we get
a i2 = 0 .  Thus, we get a contradiction. (C o m p a re  with Lemma 2.5.6 .)

Lemma 2.5.13 The set a i d  is empty.
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Proof . Since 8g" = 0, th e  se t  U U 8pdU  1R11, R121 U U 1RM1,
Rm21 is  a m axim al extrem a! set. It follows that U generates a  simplex face of

NE (X ) of codimension 1. T hus, U1= 81 U erd —  1Rm21 = 81 U 1R11, R121 U U

1R(m_1)1, R(m--1)21 U iRmil generates a  simplex face of NE (X ) of codimension 2.
It follow s that there exists an extrema! r a y  Qm2 such that W I=  81U 1R11, R12[
U U 1R(m-ni, R(m-l)21 U iRmi[ U 1Qm21 generates a  simplex face of NE (X ) of
cod im ension  1 , a n d  Qm2 is d i f f e r e n t  f r o m  Rm2. B y  L e m m a  2 .5 .9 ,
Qm2•D(Rmi)> 0. Thus, by Theorem  2 .3 .3 ,  iQm2, R m il i s  an  extremal set of
the type 2  w h e re  Rmi•D (Qm2) =0.

Similarly, we can find an extrema! ra y  Qmi such that the set Qmi, R m 21 is
extremal of the type 2  w h e r e  R,,,2* D (Qmi) = 0. Then w e get a contradiction
to Lemma 2 .5 .6 .  Thus, m=0, and the set a i d = 0 .

Thus, we proved that X  does not have a pair of extremal rays of the type

By Theorem 2 .3 .3  and Proposition 2 .3 .8 , the Mori polyhedron NE (X ) is
then s im p lic ia l. Thus, we have proven the statem ent (1).

Now let us p rove  (2): X  does not have more than one extremal ray  of the
type  (I).

By Lemma 2 .2 .2 , divisors o f different extremal ra y s  o f  th e  ty p e  ( I )  do
not have a common p o in t .  By Theorem 2 .3 .6 , any set of extremal rays of the

ty p e  (I) generates a  simplex face of NE (X ) of Kodaira dimension 3. I t  follo-
was that the set of extremal rays of the type (I) is finite. Let

I/21 , Rs1
be the whole set of extremal rays of the type (I) on X .  W e should prove that
s<1.

Let 8  be a maximal extremal set of extremal ray s on X  containing the set
R5  a n d  such that each connected component of 8  contains one of ex-

trem al rays RI, R s  ( s e e  th e  definition o f  connected components before
Theorem 2 .3 .3 ) .  By Theorem 2 .3 .3 , then 8 has exactly s  connected compo-
nents T1, ..., T s  su ch  th a t T , contains the  extremal ray  R . T h e  T i has either
the type W I (thus, T i= iR il)  o r Z 2 (thus, T i contains tw o extremal rays: the
R i and another extremal ray which has the  type  (II)). E v id e n t ly , the maxim-
al 8 does exist.

B y  [K a i] a n d  [Sh], any face of NE (X ) is contractible, and by our condi-
tio n s , it  h a s  Kodaira dimension 3. B y Proposition 2 .2 .6 , fo r  a n y  1 s,
the re  ex ists  an effective divisor D (T 1) w h ic h  is  a  linear com bination o f  di-
visors of rays from  T i w ith  positive coefficients and R •D (T i) < 0 for any R E
T . S in c e  T  has the type 911 o r  Z 2 , one can see easily by Lemma 2 .2 .3 , that
the same it true for each curve of divisors of rays of T i because this curve be-
longs to the sum of extremal rays of T i w ith  positive coefficients.

Using the divisors D (T,) , sim ilarly to Lem m a 2 .5 .7 , we can find  extrema!
rays
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1Q1, Qr1
with properties:

(a) ;
(b) F o r  any i, 1 there exists j ,  1 j  t, such  tha t Qi•D (Ti) > 0

(in particular, Q , is different from  extremal ray s  of 8  and does not have the
type  (I));

(c) F o r  any j ,  1 j  s ,  there  ex ists an extrema! r a y  Qi, 1 i  r ,  such
that

Qi•D (Ti) >0
(d) T h e  se t 1Qi, Q ,4 of extremal rays is extrema!.
B y our conditions, a ll extremal ray s on X  a re  divisorial. T h u s , b y  (b),

the extremal rays Qr have the type (II).
Let us take the ray  Q ,, and let Q D  (T i)  > 0. B y  T h e o re m  2.3.3, the set

Ti generates a  simplex face n of NE (X ) .  W e have mentioned above that each

curve of divisors of rays from  T i belongs to this f a c e .  It follows that NE (X,
D(Q i ) )  is  a  2-dimensional angle bounded by th e  ra y  Q , a n d  a  ray  from  the
face T i s ince  the divisor D (Q i )  evidently has a  common curve with one of di-
visors D (R ), R  E  Ti. Since any two se ts  o f T1, ..., T s  d o  not have a  common
extremal ray, the faces Ts d o  not have  a  common ray (not necessarily

extremal). It follow s that the angle NE (X , D (Q ,) )  does not have a  common
ray w ith  the face rk for k * j. Thus, the  divisor D  (Q i) does not have a com-
mon point w ith divisors of rays T k .  It follows that r= s  and we can choose an
order ..., Qs such that Q t•D (T i) >0 but D (Qs) do not have a common point
with divisors of extrema! ra y s  T i if j± i .

Let us fix i, 1 By our construction, the set 8 U 162,1 has connected
components

Ti U 1Q,1 , T,-1-1, T s .
By definition o f  g ,  then  th e  8  U 162,1 is  n o t  extremal. T hus, it con ta ins an
E-set (minimal non -extrema!) 4  which contains Q. B y  T h e o re m  2.4.1 and
Lemma 1.1, the Y, is  co n n ec ted . T h u s, 1QI I U 1Q,1 . Let us consid-
er the sets Y s .  By Lemma 1.1, the 4, Y.; are joint by  a rrow s. B y  our
construction, it follows that Q,, Q i  a re  jo in t by arrow s Qi(); and Q 6 2 ,  fo r  any 1

< j By Theorem 2.3.3, fo r the  extremal s e t  iQi, Q s1 of extremal
rays of the type (II), th is is possible only if s . 1 .  T his proves the statement
(2)

To prove (3) we use the following.

Statement. The contraction of a ray R of the type (II) on X gives a Fano
3-fold X' w ith terminal Q-factorial singularities and w ithout sm all extremal rays
and without faces of Kodaira dimension 1 or 2 for NE (X'). Extremal sets g' on X'
are in one to one correspodence with extremal sets g on X which contain the ray R.

Pro o f . L e t  a: X ' b e  a  c o n tra c t io n  o f  R .  T h e  X '  h a s  terminal
Q-factorial s in g u la r it ie s  b y  [K a l] a n d  [S h ]. W e  have , K x = (K r)



526 Viacheslav V. Nikulin

dD (R ) . M ultiplying this equality by R  and  using Proposition 2 .3 .2 , we get
that d = 1 .  By the statem ent (1), it follow s that a * ( — K r)  = — Kx+ D (R) is
nef and only contracts the extremal ray R .  T hen— K r is  ample on X ' and X '

is  a Fano 3-fold with terminal Q-factorial s in g u la r it ie s . Faces of NE (X ') are

in one to one correspondence with faces of NE (X ) which contain the R .  Con-

tractions of faces of NE (X ') are dominated by these of the corresponding faces
of NE (X) . This proves the last statement.

Let g = R k }  b e  an extremal set on  X .  By Theorem 2 .3 .3 , it has
connected components of the type 2 i 1, 3 2, m  o r  1)2. M oreover, by (1 ) and
(2), it does not have a connected component of the type 2  and does not have
more than one connected component of the type WI . B y  S ta tem ent above , the
sam e should be true for the extremal set 8' which one gets by the contraction
of any extremal ray R i of the  type (II) of 8 . This shows the statem ent (3).

Now we prove (4): p ( X )  7.
First, w e show how to prove p ( X )  8 applying Theorem 1.2 to the face 7-

=X  (X ) of dim.14 (X) =m= p (X) — 1. By the statem ent (1) of Theorem 2.5.8
a n d  Theorem s 2 .3 .3  a n d  2 .4 .1 , th e  11(X ) i s  s im p le  and  a l l  conditions of
Theorem 1 .2  are  valid  fo r some constants d, C I, C2. By Theorem 2 .4 .1 , we
can take d= 2. By the proof of Theorem 1.2, we should find the constants Ci,
a n d  C2 for m axim al extremal s e ts  8  o n ly  (o n ly  th is  s e ts  w e  re a lly  use).
T hus, # g = m . By the statem ent (3), then the constants Ci 2/m and C2 =0.
Thus, we get m< (16/3)2/m+6. Then, m = p (X) —1 7, and  p (X )  8.

To prove th e  better inequality p (X ) _< 7, w e should analyze the  proof of
Theorem 1.2 for o u r case more ca re fu lly . W e  w ill show th a t the conditions
of Lemma 1 .4  hold for the  1/(X ) w ith the constants C= 0 and D = 2 /3 . B y
Lemma 1.4, we then get the inequality p ( X )  7 we want to prove.

Like for the  proof of Theorem 1.2, we introduce a  weight of an  oriented
angle, but using a  new  formula: cr(L) = 2/3 if  p (Ri(L) , R 2 ( L )) = 1 , and
a(L ) = 0 otherwise.

B y  (3 ) o f Theorem 2 .5 .8 , the  condition  (1 ) o f  Lemma 1 .4  holds with
constants C=0 and D 2 / 3.

L et us prove the condition (2) of Lemma 1 .4 .  F or k = 3  (triangle) it is
true since an E-set which has at least 3 elements has the  type  (a) of Theorem
2 .4 .1  (see the  proof of Theorem 1 .2 ) .  Thus, the triangle  has at least three
oriented angles w ith  the weight 2 / 3 . For k  = 4  (quadrangle), w e proved
(when we were proving Theorem 1 .2 ) tha t one can find at least two oriented
angles of the quadrangle such that any of them  has finite p (I? Z ) R 2  (Z )).
B y  (3) of Theorem 2.5 .8 , then p (Ri(Z) , R2 (  = 1. T h u s ,  the quadrangle
has at least two oriented angles of the weight 2 / 3 . T his finishes the proof of
Theorem 2.5.8.

Now, we give an application of (2) of Theorem 2 .5 .8  to  the geometry of
Fano 3-folds.
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L e t  u s  c o n s id e r  a  F a n o  3 - fo ld  X  a n d  b lo w -u p s  X p  a t d iffe ren t
non-singular p o in ts  i1 1, x p l  of X .  W e say  tha t th is  is  a  Fano blow -up if
X p is F a n o .  W e have the following very simple

Proposition 2.5.14. L et X  be a Fano  3-fold with terminal Q-factorial
singularities and without small extremal rays. L et Xp be a Fano  blow up of  X.
Then for any small extremal ray S on Xp, the S has a non-empty intersection with
one of exceptional divisors E 1 . .... E  o f  this blow up and does not belong to any of
them. Moreover, the exceptional divisors El, Ep define p  extremal rays Q i , Qp
of the type ( I )  on Xp such that E i=- D(Q,) .

Proof. T he last statem ent is clear. L e t  S be a  sm all extremal ray  on Xp
which does not intersect divisors E1 . .... E .  L e t  H  be  a  general nef  element
orthogonal to  S. Let /1, /n  be lines which generate extremal rays Qi, QP.
Then the  divisor H '= H+ (11H)  ( - 11•Ei) E1+ •• • +  ( i H )  Ip•E p)E p is  a
nef divisor on X p orthogonal to all extremal rays Q1, Qp, S, a n d  (11') 3 >H3 >
O. This proves that the  extremal rays Q1 . .... Q,, S  generate a face of NE (Xp)
of Kodaira dimension 3. Then, by the contraction of the extremal rays Q1, ...,
Qp, the image of S gives a  small extremal ra y  on X .  T his gives a  contradic-
tion.

It is  know n  tha t a  contraction of a  face of Kodaira dimension 1 o r  2 of

NE (Y ) o f a  F an o  3 -fo ld  Y h a s  a  genera l fiber w hich  is ra tional surface or
curve respectively, because this contraction has relatively negative canonical
c la s s .  S ee  [K a l] ,  [S h ] . I t  is  k n o w n  th a t a  sm all extremal ray  is ra tional
[Mo2].

Then, using the statem ent (2) of Theorem 2 .5 .8  and Proposition 2.5.14,
we can divide Fano 3-folds of Theorem 2 .5 .8  into the following 3 classes:

Corollary 2.5.15. L et X  be a Fan o  3-fold with term inal Q-factorial
singularities and without small extremal rays, and without faces of  Kodaira dimen-
sion 1 or 2 for Mon polyhedron. L et E be the number of extremal rays of the type
( I )  on X  (by Theorem 2.5.8 , the E 1) .

Then there exists p ,  1 such that X belongs to one of  classes (A ),
(B ) o r (C ) below:

(A) There exists a Fano blow-up Xp of X with a face of  Kodaira dimension
1 or 2. Thus, birationally, X is a fibration of rational surfaces over a curve or of
rational curves over a surface.

(B) There exist Fano blow-ups Xp of X for general p  points on X such that
for all these blow-ups the X p has a small extremal ray S. Then images of curves
of S on X give a system of rational curves on X which cover a  Zariski open subset
of X.

(C) There do not exist Fano blow-ups Xp of X for general p  points.
We remark that f or Fano 3-folds with Picard number 1 the E = O. Thus, 1
2.
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We mention that that statements (3) and (4) of Theorem 2 .5 .8  give simi-
lar information for blow ups of X along curves. Of course, it is more difficult
to formulate these statements.
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