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Introduction

Here we continue investigations started in [N6], [N7].

Algebraic varieties we consider are defined over field C of complex num-
bers.

In this paper, we get a final result on estimating the Picard number p=
dimN, (X) of a Fano 3-fold X with terminal Q-factorial singularities if X does
not have small extremal rays and its Mori polyhedron does not have faces
with Kodaira dimension 1 or 2. One can consider this class as a generaliza-
tion of the class of Fano 3-folds with Picard number 1. There are many
non-singular Fano 3-folds satisfying this condition and with Picard number 2
(see [Mo-Mu] and also [Ma]). We also think that studying the Picard num-
ber of this calss may be important for studying Fano 3-folds with Picard num-
ber 1, too (see Corollary 2 below).

Let X be a Fano 3-fold with Q-factorial terminal singularities. Let R be

an extremal ray of the Mori polyhedron NE(X) of X. We say that R has the
type (I) (respectively (II)) if curves of R fill an irreducible divisor D(R) of X
and the contraction of the ray R contracts the divisor D(R) to a point
(respectively to a curve). An extremal ray R is called small if curves of this
ray fill a curve on X.

A pair [Ry, Rs of extremal rays has the type B, if extremal rays Ry, R

are different, both have the type (II), and have the same divisor D(R,) =
D(R,).

We recall that a face 7 of Mori polyhedron NE (X) defines a contraction
frr X=X’ (see [Kal] and [Sh]) such that f(C) is a point for an irreducible
curve C if and only if C belongs to . The dimX" is called the Kodaira dimen-

sion of the 7. A set & of extremal rays is called extremal if it is contained in
a face of Mori polyhedron.

Basic Theorem. Let X be a Fano 3-fold with terminal Q-factorial sing-
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ularities. Assume that X does not have a small extremal vay, and Movi polyhedron

NE (X) does wot have a face of Kodaira dimension 1 or 2.

Then the following statements for the X hold:

(I) The X does not have a pair of extremal vays of the type B, and Mori
polyhedron NE (X) is simplicial;

(2) The X does not have more than one extremal ray of the type (I).

(3) If & is an extremal set of k extremal rays of X, then the & has one of the
types: W (e —1) €y, DI (k—2) €y, CU (k—2) €y, k€, (we use notation of
Theorem 2.3.3).

(4)  We have the inequality for the Picard number of the X:

o (X) =dimN,; (X) <7 .

Proof. See Theorem 2.5.8.

It follows from (4):

Corollary 1. Let X be a Fano 3-fold with terminal Q-factorial singular-
ities and p (X) >7. Then X has either a small extremal vay or a face of Kodaira
dimension 1 or 2 for Movi polyhedron.

We mention that non-singular Fano 3-folds do not have a small extremal
ray (by Mori [Mol]), and their maximal Picard number is equal to 10 accord-
ing to their classification by Mori and Mukai [Mo-Mu]. Thus, all these state-
ments already work for non-singular Fano 3-folds.

From the statement (2) of the Theorem, we also get the following applica-
tion of Basic Theorem to geometry of Fano 3-folds.

Let us consider a Fano 3-fold X and its blow-up X, at different
non-singular points lrj, .., xpl of X. We say that this is a Fano blow-up if
X, is Fano. We have the following very simple

Proposition. Let X be a Fano 3-fold with terminal Q-factorial singular-
ities and without small extremal rays. Let Xp be a Fano blow-up of X. Then for
any small extremal rvay S on Xp, the S has a non-empty intersection with one of ex-
ceptional divisors Ei, ..., Ep of this blow up and does not belong to any of them.
The divisors Ey, ..., E, define p extremal rays of the type (I) on X,.

Proof. See Proposition 2.2.14.

It is known that a contraction of a face of Kodaira dimension 1 or 2 of

NE (X) of a Fano 3-fold X has a general fiber which is a rational surface or
curve respectively, because this contraction has relatively negative canonical
class. See [Kall, [Sh]. It is also known that a small extremal ray is ration-
al [Mo2].

Then, using Basic Theorem and Proposition, we can divide Fano 3-folds
of Basic Theorem on the following 3 classes:

Corollary 2. Let X be a Fano 3-fold with terminal Q-factorial singular-
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ities and without small extremal vays, and without faces of Kodaira dimension 1 or
2 for the Mori polyhedvon. Let € be the number of extremal rays of the type (I on
X (by Basic Theovem, the e<1).

Then theve exists p, 1 <p <2—¢, such that X belongs to one of calsses (A),
(B) or (C) below:

(A) There exists a Fano blow-up Xp of X with a face of Kodaira dimension
1 or 2. Thus, birationally, X is a fibration on rational surfaces over a curve or
rational curves over a surface.

(B) There exist Fano blow-ups X, of X for general p points on X such that
for all these blow-ups the Xp has a small extremal ray S. Then images of curves
of S on X give a system of rational curves on X which cover a Zariski open subset
of X.

(C) There do not exist Fano blow-ups X, of X for general p points.

We remark that for Fano 3-folds with Picard number 1, the e=0. Thus, 1
<p<L2.

Using statements (2), (3) and (4) of Basic Theorem, one can formulate
similar results for Fano blow-ups along curves.

To prove Basic Theorem, we classify appropriate so called extremal sets
and E-sets of extremal rays of the type (I) or (II). We use so called dia-
gram method to deduce from this classification the statement (4) of the Basic
Theorem.

A set § of extremal rays is called extremal if it is contained in a face of
Mori polyhedron. The & has Kodaira dimension 3 if a contraction of this face
gives a morphism on a 3-fold. For Fano 3-folds with Q-factorial terminal
singularities, we give a description of extremal sets & of Kodaira dimension 3
which contain extremal rays of the types (I) or (II) only.

A set € of extremal rays is called E-set if € is not extremal, but any
proper subset of € is extremal. Thus, the £ is minimal non-extremal. For
Fano 3-folds with Q-factorial terminal singularities, we give a description of
E-set € such that £ contains extremal rays of the types (I) or (II) only, and
any proper subset of £ is extremal of Kodaira dimension 3.

I am grateful to Profs. Sh. Ishii, M. Reid and J. Wisniewski for useful dis-
cussions. I am grateful to referee for useful comments. [ am grateful to Pro-
fessors Masaki Maruyama and Igor R. Shafarevich for their interest in and
support to these my studies.

This paper was prepared in Steklov Mathematical Institute, Moscow;
Max-Planck Institut fir Mathematik, Bonn, 1990; Kyoto University, 1992-1993
by the grant of Japan Society of Promotion of Science; Mathematical Sciences
Research Institute, Berkeley, 1993. I thank these Institutes for their hospital-
ity.

Preliminary variant of this paper was published as a preprint [N8].
Generalizations of results here one can find in a preprint [N9].
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CHAPTER 1. Diagram Method

Here we give the simplest variant of the diagram method for multi-dimen-
sional algebraic varieties. We shall use this method in the next chapter.
This part also contains some corrections and generalizations of the corres-
ponding parts of our papers [N6] and [N7].

Let X be a projective algebraic variety with Q-factorial singularities over
an algebraically closed field. Let dimX=>2. Let N;(X) be the R-linear space
generated by the numerical equivalence classes of all algebraic curves on X,
and let N*(X) be the R-linear space generated by the numerical equivalence
classes of all Cartier (or Weil) divisors on X. Linear spaces N;(X) and
N'(X) are dual to one another by the intersection pairing. Let NE (X) be a

convex cone in Ny (X) generated by all effective curves on X. Let N_E(X) be
the closure of the cone NE (X) in N;(X). It is called Mori cone (or polyhedron)

of X. A non-zero element z € N*(X) is called nef if x+ NE(X)>0. Let
NEF (X) be the set of all nef elements of X and the zero. It is the convex

cone in N*(X) dual to Mori cone NEX). A ray RCNE(X) with origin 0 is

called extremal if from CIEN—E(X), CZEI\E(X) and C;+C;E€R it follows that
C1€R and C,ER. ’
We consider a condition (i) for a set R of extremal rays on X.

(i) If RER, then all curves CER fill out an irreducible divisor D (R) on X.

In this case, an oriented graph G (®) corresponds to ® in the following
way: Two different rays R; and R, are joined by an arrow RiR; from R; to R,
if Ri*D(R;) >0. Here and in what follows, for an extremal ray R and a di-
visor D we write R*D>0 if r*D>0 for y€R and »#0. (The same convention
is applied for the symbols <, = and <.)

A set & of extremal rays is called extermal if it is contained in a face of

NE (X). Equivalently, there exists a nef element HEN'(X) such that §-H=0.
Evidently, a subset of an extremal set is extremal, too.

We consider the following condition (ii) for extremal sets & of extremal
rays.

(ii) An extremal set E= {Ry, .., Ral satisfies the condition (i), and for any
real numbers m1 =0, ..., mn=0 which are not all equal to 0, there exists a ray R; €
& such that R;* (miD(R1) +m2D (R2) + +++ +maD (Ry)) <O0. In particular, the
effective divisor miD (Ry) +maD (R2) 4+ +maD (R,) is not nef.

A set @ of extremal rays is called E-set (extremal in a different sense) if
the & is not extremal but every proper subset of & is extremal. Thus, £ is a
minimal non-extremal set of extremal rays. Evidently, an E-set € contains at
least two elements.

We consider the following condition (iii) for E-sets £.
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(iii) Any proper subset of an E-set = 1Qu, ..., Qml satisfies the condition
(ii), and there exists a non-zero effective nef divisor D (£) =a.D (Q1) +a2D (Q2) +
“FamD (Qm) .

The following statement is very important.

Lemma 1.1.  An E-set € satisfying the condition (iii) is connected in
the following sense: For any decomposition £ = L1 L,, where €1 and €o are
non-empty, there exists an arrow Q1Qz such that QL E ¥, and Q€Y.

If € and M are two different E-sets satisfying the condition (iii), then there
exists an arrow LM where LEY and ME M.

Proof. Let £=1{Q, ... Qml. By (iii), there exists a nef divisor D(¥) =
a1D (Q1) +a2D (Q2) +++*+amD (Qm). If one of the coefficients ay, ..., am is equal
to zero, we get a contradiction to the conditions (ii) and (iii). It follows that
all the coefficients ai, ..., am are positive. Let €= %,11¥, where £,= {Q,, ...,
Qd and %2= {Qi+1, ..., Qml. The divisors Dy=a1D (Q1) +-+*+axD (Qr) and D
=ak+1D (Qik+1) +++:amD (Qm) are non zero. By (ii), there exists a ray Q;, 1<¢
<k, such that Q;°D,<0. On the other hand, Qi*D (¥) =Q,* (D;+D,) =0. It
follows that there exists j, k4+1<j <m, such that Q;*D (Q;) >0. It means that
QiQ; is an arrow.

Let us prove the second statement. By the condition (iii), for every ray
RE ¥, we have the inequality R*D (M) =>0. If R*D(M) =0 for any R E ¥,
then the set £ is extremal, and we get the contradiction. It follows that there
exists a ray REY such that R-D (M) >0. It follows our assertion.

Let NEF (X) = NE (X) * C N*(X) be the cone of nef elements of X and
M(X) =NEF (X) /R* its projectivization. We use usual relations of orthogo-

nality between subsets of (X) and NE(X). So, for UC M(X) and V C
NE (X) we write ULV if x+y=0 for any R*x €U and any y €V. Thus, for
UCUM(X), VENE (X) we denote

Ut={yeNEX)|ULyl , Vi=kedX)|xLV} .

A subset 7C M (X) is called a face of M (X) if there exists a non-zero ele-
ment r ENE (X) such that y=7*.

A convex set is called a closed polyhedron if it is a convex hull of a finite
set of points. A convex closed polyhedron is called simplicial if all its proper
faces are simplexes. A convex closed polyhedron is called simple
(equivalently, it has simplicial angles) if it is dual to a simplicial one. In
other words, any its face of codimension k is contained exactly in # faces of 7
of the highest dimension. Similar names we use for convex cones and cones
over polyhedra. For example, a convex cone is called simplex, simplicial and
simple if it is a cone over a simplex, simplicial or simple polyhedron respec-
tively.

We need some relative notions of the notions above.

We say that M(X) is a closed plyhedron in its face v C M(X) if 7 is a
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closed polyhedron and J(X) is a closed polyhedron in a neighbourhood T of
7. Thus, there should exist a closed polyhedron . such that #/NT=4(X) N T.
We will use the following notation. Let ®(X) be the set of all extremal

rays of X. For a face yC Ml (X),

R(y)=IRERX)|IR'HE: R-H=0}
and

R(r*)=IRERX) Iy LRI .
Let us assume that 4 (X) is a closed polyhedron in its face 7. Then sets
R(r1) and R (yi) are finite for any face 7, C7y. Evidently, the face 7 is simple
if

(1) #R (i) —#R(r) =codim, 1y

for any face 7, of 7. Then we say that the polyhedron J (X) is simple in its
face v. Evidently, this condition is equivalent to the condition:

2) dim[8] —dim[R(y1) ] =#E—#R (")

for any extremal set & such that R(y*) € 8. Here [:] denotes a linear hull.
(In [N6], we required a more strong condition for a polyhedron 4 (X) to be
simple in its face 71 # R (i) =dimA (X) —dim7, for any face 71 of 7.)

Let A, B be two vertices of an oriented graph G. The distance o (A, B) in
G is a length (the number of links) of a shortest oriented path of the graph G
from A to B. The distance is + oo if this path does not exist. The diameter
diam G of an oriented graph G is the maximum distance between ordered pairs
of its vertices. By the Lemma 1.1, the diameter of an E-set is a finite number
if this set satisfies the condition (iii).

Theorem 1.2 below is an analog for algebraic varieties of arbitrary dimen-
sion of the Lemma 3.4 of [N2] and the Lemma 1.4.1 of [N5], which were de-
voted to surfaces.

Theorem 1.2. Let X be a projective algebraic variety with Q-factorial
singularities and dimX>2. Let us suppose that M (X) is closed and simple in its
face 7. Assume that the set R (7) satisfies the condition (i) above. Assume that
there are some constants d, Cy, Cz such that the conditions (a) and (b) below hold:

(a) For any E-set £ CR(y) such that £ contains at least two elements
which dow't belong to R(r*) and for any proper subset £ C ¥ the set R (y*) U¥’
is extremal, the condition (iii) is valid and

diamG (¥) <d .

(b) For any extremal subset & such that R(y*) CECR(y), we have: the &

satisfies the condition (ii) and for the distance in the orviented graph G (8)

F IR, R)EB—R(GY)) X E—R(G)<pRy, R) <dl <CiH# E—R(1Y));
and
# (R, R) E(E—R (7)) X (B—R(r*))d+1=<p(R), Ry <24 +1}
<CHE-R(GY)) .
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Then dimy< (16/3) C1+4Cz+6.

Proof. We use the following Lemma 1.3 which was proved in [N1]. The
lemma was used in [N1] to get a bound (<£9) of the dimension of a hyperbolic
(Lobachevsky) space admitting an action of an arithmetic reflection group with a
field of definition of the degree>N. Here N is some absolute constant.

Lemma 1.3. Let M be a convex closed simple polyhedron of a dimension

n, and A* the average number of i-dimensional faces of k-dimensional faces of M.
Then for n=2k—1

(” > (([n/Z]) (n—[in/Z]))'

Axt< ([n/2]> (n—in/ﬁ)

In particular, if n=>3
4n—1) .. .
Th—2 if n is even,

AP
4n

n—1

if n is odd.

Proof. See [N1]. We mention that the right side of the inequality of the
(k
Lemma 1.3 decreases and tends to the number 2""(.> of i-dimensional faces
1
of k-dimensional cube if n increases.

From the estimate of Ay? of the Lemma, it follows the following analog of
Vinberg's Lemma from [V]. Vinberg’s Lemma was used by him to obtain an
estimate (dim <30) for the dimension of a hyperbolic space admitting an ac-
tion of a discrete reflection group with a bounded fundamental polyhedron.

By definition, an angle of a polyhedron T is an angle of a 2-dimensional
face of T. Thus, the angle is defined by a vertex A of T, a plane containing
A and a 2-dimensional face 7; of T, and two rays with the beginning at A
which contain two corresponding sides of the 7.. To define an oriented angle
of T, one should in addition put in order two rays of the angle.

Lemma 1.4. Let M be a convex simple polyhedron of a dimension n. Let
C and D are some numbers. Suppose that orviented angles (2-dimensional, plane)
of M are supplied with weights and the following conditions (1) and (2) hold:

(1)  The sum of weights of all oriented angles at any vertex of M is not grea-
ter than Cn+D.

(2)  The sum of weights of all oviented angles of any 2-dimensional face of
M is at least 5—Fk where k is the number of vertices of the 2-dimensional face.

Then

1+8D/n if n is even,
n<8C+5+[

(8C+8D)/ n—1) ifn is odd
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In particular, for C=0 and D=0, we have
n<8C+6 .

Proof. We correspond to a non-oriented plane angle of # a weight which
is equal to the sum of weights of two corresponding oriented angles. Evident-
ly, the conditions of the Lemma hold for the weights of non-oriented angles
too if we forget about the word “oriented”. Then we obtain Vinberg's lemma
from [V] which we formulate a little bit more precisely here. Since the proof
is simple, we give the proof here.

Let 2 be the sum of weights of all (non-oriented) angles of the
polyhedron . Let ao be the number of vertices of #f and a. the number of
2-dimensional faces of /. Since 4 is simple,

aowz_l)_:azAg,z )
From this equality and conditions of the Lemma, we get inequalities
(Cn+D)ag=22> Zaz,,, (5—k) =5a:— @AY=

=a,(5—AY") =ao(n (n—1)/2) (5/A%*—1) .
Here a5y is the number of 2-dimensional faces with k vertices of . Thus,
from this inequality and Lemma 1.3, we get

On D> (nln=1)/2) (5/agr—1) > [* "~ O/8 - ifwiseven

m—1) ®—5)/8 ifn is odd.
From this calculations, Lemma 1.4 follows.

The proof of Theorem 1.2. (Compare with [V].) Let Z be an oriented
angle of 7. Let R(ZL) CR(y) be the set of all extremal rays of 4 (X) which
are orthogonal to the vertex of Z. Since J(X) is simple in 7, the set R(£)
is a disjoint union

R(L)=R(LH) U R (L)} U (R (L)}
where R(Z*) contains all rays orthogonal to the plane of the angle Z, the
rays R;(£) and R,(Z4) are orthogonal to the first and second side of the
oriented angle £, respectively. Evidently, the set #(Z£) and the ordered
pair of rays (R1(£), R:(Z£)) define the oriented angle Z uniquely. We de-
fine the weight 6(Z£) by the formula:

2/3, if 1<p(R1 (L), R:(£)) <d,
o(£)=11/2, ifd+1<p (R (L), R, (L)) <2d+1,
0, if2d+2<p(R, (L), R:(L)).

Here we take the distance in the graph G(R(Z£)). Let us prove conditions of
the Lemma 1.4 with the constants C= (2/3) C;+C»/2 and D=0.

The condition (1) follows from the condition (b) of the theorem. We re-
mark that rays R,(Z£), R;(£) do not belong to the set R (7).

Let us prove the condition (2).

Let 73 be a 2-dimensional triangle face (triangle) of 7. The set ®(7s) of
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all extremal rays orthogonal to points of 73 is the union of the set R(rs) of
extremal rays, which are orthogonal to the plane of the triangle 73, and rays
R1, Rz, Rs, which are orthogonal to the sides of the triangle 75. Union of the
set R (r#) with any two rays of Ry, R,, Rs is extremal, since it is orthogonal to

a vertex of 7s. On the other hand, the set ®(73) =R (r3) U {R1, R, R3l is not
extremal, since it is not orthogonal to a point of /£ (X). Indeed, the set of all
points of J(X), which are orthogonal to the set R(r3) U Rz, Raf, R(yrs) U
{R1, R3}, or R(7#) U {Ry, Ryl is the vertex A;, A or As respectively of the
triangle 7s;, and the intersection of these sets of vertices is empty. Thus,
there exists an E-set £ C R(7s), which contains the set of rays {R;, R Ril.
By the condition (a), the graph G (¥) contains a shortest oriented path s of
the length <d which connects the rays R;, R;. If this path does not contain
the ray R,, then the oriented angle of 7; defined by the set & (rs) U {R,, Rl
and the pair (R;, R3) has the weight 2/3. If this path contains the ray R,
then the oriented angle of 73 defined by the set R(7#) U {R,, Ry} and the pair
(Ry, R;) has the weight 2/3. Thus, we proved that the side AA; of the
triangle 73 defines an oriented angle of the triangle with the weight 2/3 and
the first side A,A3 of the oriented angle. The triangle has three sides. It fol-
lows the condition (2) of the Lemma 1.4 for the triangle.

Let 74 be a 2-dimensional quadrangle face (quadrangle) of 7. In this
case,

%(74) =912(T4l) U *Rl. R, Rs, R4}

where R (7#) is the set of all extremal rays which are orthogonal to the plane
of the quadrangle and the rays Ri, Rz, Rs, R4 are orthogonal to the consecutive
sides of the quadrangle. As above, one can see that the sets R(7#) U {Ry, Ry},
R (i) U R, Ry are not extremal, but the sets R(7i) U {Ry, Ry}, R (74) U (R,
R3l, R(14) U {Rs, Ry and R(74) U {Rs, Ryl are extremal. It follows that there
are E-sets &, N such that [R), R CLCR(7i) U {Ry, Rsl and [Ry, R TN C
R(ri) U {R,, Ry . By Lemma 1.1, there exist rays REY and QE N such that
RQ is an arrow. By the condition (a) of the theorem, one of the rays Ry, Rs is
joined by an oriented path s; of the length <d with the ray R and this path
does not contain another ray from R;, R; (here R is the terminal of the path
s1). We can suppose that this ray is R, (otherwise, one should replace the
ray R, by the ray Rs). As above, we can suppose that the ray @ is connected
by the oriented path s; of the length <d with the ray R, and this path does not
contain the ray R, The path s, RQ s; is an oriented path of the length<2d +
1 in the oriented graph G (® (7&) U [R1, R4 ). It follows that the oriented
angle of the quadrangle 74, such that consecutive sides of this angle are ortho-
gonal to the rays R, and R; respectively, has the weight=>1/2. Thus, we
proved that for a pair of opposite sides of 74 there exists an oriented angle
with weight=>1/2 such that the first side of this oriented angle is one of this
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opposite sides of the quadrangle. A quadrangle has two pairs of opposite
sides. It follows that the sum of weights of oriented angles of 74 is=1. It
proves the condition (2) of the Lemma 1.4 and the theorem.

In the sequel, we apply Theorem 1.2 to 3-folds.

CHAPTER II. Threefolds

1. Contractible extremal rays

We consider normal projective 3-folds X with Q-factorial singularities.

Let R be an extremal ray of Mori polyhedron NE(X) of X. A morphism f:
X—Y onto a normal projective variety Y is called the contraction of the ray R
if for an irreducible curve C of X the image f(C) is a point if and only if CE
R. The contraction f is defined by a linear system H on X (H give rise to a
nef element of N'(X), which we also denote by H). It follows that an irre-
ducible curve C is contracted if and only if C*-H=0. We assume that the con-
traction f has properties: f0x=0y and the sequence

(1.1) 0—RR—N, (X)—N,(Y)—0

is exact where the arrow N;(X)—N;(Y) is fx. An extremal ray R is called
contractible if there exists its contraction f with these properties.

The number £ (R) =dimY is called Kodaira dimension of the contractible
extremal ray R.

A face 7 of NE (X) is called contractible if there exists a morphism f: X—Y
onto a normal projective variety Y such that f«7=0, f«0x=0y and f contracts
curves lying in 7 only. The k(y) =dimY is called Kodaira dimension of 7.

Let H be a general nef element orthogonal to a face 7 of Mori polyhedron.
Numerical Kodaira dimension of 7 is defined by the formula

3, if H*>0;
Knum (1) =12, if H3=0 and H*Z0:
1, if H*=0 .

It is obvious that for a contractible face 7 we have Kpum (7) 2 k(7). In par-
ticular, Kmm (7) =k (7) for a contractible face 7 of Kodaira dimension x(y) =3.

2. Paris of extremal rays of Kodaira dimension three lying in con-
tractible faces of NE (X) of Kodaira dimension three

We assume further that X is a projective normal threefold with
Q-factorial singularities.

Lemma 2.2.1. Let R be a contractible extremal ray of Kodaira dimension
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3 and f. X—Y its contraction.

Then there are three possibilities:

(I) Al curves CER fill an irreducible Weil divisor D (R), the contraction f
contracts D (R) to a point and R+-D (R) <O.

(II) Al curves CER fill an irreducible Weil divisor D (R), the contraction f
contracts D (R) to an irreducible curve and R+D (R) <O.

(I11)  (small extremal ray) All curves C ER give a finite set of irreducible
curves and the contraction f contracts these curves to points.

Proof. Assume that some curves of R fill an irreducible divisor D. Then
R-D<0 (this inequality follows from the Proposition 2.2.6 below). Suppose
that CER and D does not contain C. It follows that R*D=>0. We get a con-
tradiction. It follows the lemma.

According to Lemma 2.2.1, we say that an extremal ray R has the type (I),
(D or (II1) (small) if it is contractible of Kodaira dimension 3 and the state-
ment (I), (II) or (III) respectively holds.

Lemma 2.2.2. Let Ry and R; are two different extremal vays of the type
(I). Then divisors D(R1) and D (R,) do not intersect one another.

Proof. Otherwise, D(R:) and D(R;) have a common curve and the rays
R, and R, are not different.

For an irreducible Weil divisor D on X let
NE (X, D) = (imageNE (D)) ©NE (X) .

Lemma 2.2.3. Let R be an extremal vay of the type (II), and f its con-
traction. Then NE (X, D(R)) =R+R*S, where R*fx.S=R* (f(D)).

Proof. This follows at once from the exact sequence (1.1).

Lemma 2.2.4. Let Ry and R, are two diffevent extremal vays of the lype
(I1) such that the divisors D (Ry), D (R3) coincide. Then for D=D (R) =D (R,)

we have: N_E(X, D) =Ri+R.. In particular, do not exist three different extremal
vays of the type (II) such that their divisors coincide one another.

Proof. This follows from the Lemma 2.2.3.

Lemma 2.2.5. Let R be an extremal ray of the type (II) and f its cotrac-
tion. Then there does not exist more than one extremal ray Q of the type (I) such
that D(R) ND(Q) is not empty. If Q is this ray, then D(R) ND(Q) is a curve
and any irreducible component of this curve is not contained in fibers of f.

Proof. The last assertion is obvious. Let us prove the first one. Sup-
pose that Q; and Q; are two different extremal rays of the type (I) such that

D(Q,) ND(R) and D(Q;) ND(R) are not empty. Then the plane angle NE (X,
D(R)) (see the Lemma 2.2.3) contains three different extremal rays: @i, @
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and R. It is impossible.
The following key proposition is very important.

Proposition 2.2.6. Let X be a projective 3-fold with Q-factorial sing-
ularities, D1, ..., Dm irreducible divisors on X and f. X—Y a surjective morphism
such that dimX = dimY and dimf(D;) <dimD;. Let y € f(D;) N ... N f(Dm).
Then there are a1>0, ..., am>0 and an open U, y EUCF(D1) U..Uf(Dm), such
that

C' (a1D1+...+amDm) <0

if a curve CC DU ..U D, belongs to a non-trivial algebraic family of curves on D,
U...UDy and f(C) =point EU.

Proof. The proof is the same as the well-known case of surfaces (but,
for surfaces, it is not necessary to suppose that C belong to a nontrivial algeb-
raic family). Let H be an irreducible ample divisor on X and H'=f«H. Since
dimf (D;) <dimD;, it follows that f(D1) U..Uf(D») CH’. Let ¢ be a non-zero
rational function on Y which is regular in a neighbourhood U of y on Y and is
equal to zero on the divisor H. In the open set f~'(U) the divisor (f*@) can
be written in a form

m n
(f*(b) =ZaiDi+ZbJ'Zi .
i=1 j=1
where all ;>0 and all b;>0. Here every divisor Z; is different from any di-
visor D;.  We have

m n
0=cC- ZaiD,--i-C ° ijZj .
i=1 Jj=1

Here C+ (X7.1b,Z;) > 0 since C belongs to a nontrivial algebraic family of
curves on a surface D;U...UD,, and one of the Z; is the hyperplane section H.

Lemma 2.2.7. Let Ry, Ry are two extremal vays of the type (II), divisors
D(Ry), D(R,) are different and D(R;) ND(R;) #0. Assume that Ry, Ry belong to

a contractible face of E(X) of Kodaira dimension 3. Let 0FF1 € R, and 0FF,
€R;. Then

(F1*D(R2)) (F2*D(R1)) < (F1*D(R1)) (F2*D (R2)) .

Proof. Let f be the contraction of a face of Kodaira dimension 3, which
contains both rays Ri, R.. By Proposition 2.2.6, there are a1>0, a2>0 such
that

a1 (Fi*D(R1)) +as(F1*D(R2)) <O and a1 (F2*D(R1)) +az (F2*D(R5)) <0
or

—a,(F1*D(R1)) >az(F1*D(R2)) and —az(F2*D(R2)) >a1(F2D (Ry))

where Fi*D(R;) <0. F2*D(R;) <0 and Fi*D(Rz) >0, F2*D(Ry) > 0. Multi-
plying inequalities above, we obtain the lemma.
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3. A classification of extremal sets of extremal rays which contain ex-
tremal rays of the type (I) and simple extremal rays of the type (II)

As above, we assume that X is a projective normal 3-fold with
Q-factorial singularities.

Definition 2.3.1. An extremal ray R of the type (II) is called simple
if
R (D(R)+D) 20
for any irreducible divisor D such that R+D>0.

The following proposition gives a simple sufficient condition for an ex-
tremal ray to be simple.

Proposition 2.3.2. Let R be an extremal ray of the type (II) and f: X—
Y the contraction of R. Suppose that the curve f(D (R)) is not contained in the set
of singularities of Y. Then

(1) the ray R is simple;

(2) if X has only isolated singularities, then a geneval element C of the ray
R (a general fiber of the morphism f|D (R)) is isomorphic to P' and the divisor
D (R) is non-singular along C. If additionally R*Kx<O0, then C*D(R) =C+*Kx=
—1.

(3) In particular, both statements (1) and (2) arve true if X has terminal
singularities and R-Kx<O.

Proof. Let D be an irreducible divisor on X such that R*D>0. Since
R-D(R) <0, the divisor D is different from D(R) and the intersection D N
D(R) is a curve which does not belong to R. Then D'=f«(D) is an irreduci-
ble divisor on Y and I'=f(D(R)) is a curve on D". Let y €I be a
non-singular point of Y. Then the divisor D’ is defined by some local equa-
tion ¢ in a neighbourhood U of y. Evidently, in the open set f~!(U) we can
write

(F*¢) =D+m (D(R))
where the integer m=>1. Let a curve CER and f(C) =y €UNfF(DR)).
Then 0=C+* (D+m (D(R)))=C* (D+D(R)) +C* (m—1) (D(R)). Since m=1
and C*D(R) <0, it follows that C+ (D+D(R)) 20.

Let us prove (2). Let us consider a linear system |H| of hyperplane sec-
tions on Y and the corresponding linear systems on resolutions of singularities
of Y and X. Let us apply Bertini's theorem (see, for example, [Ha, ch. III,
Corollary 10.9 and the Exercise 11.3]) to these linear systems. Singularities
of X and Y are isolated. Then by Bertini theorem, for a general element H of

|H| we obtain that (a) H and H’=f""(H) are irreducible and non-singular; (b)
H intersects I transversely in non-singular points of I Let us consider the
corresponding birational morphism f'=f|H': H— H of the non-singular irre-
ducible surfaces. It is a composition of blowing ups at non-singular points.
Thus, fibers of f* over HN I are trees of non-singular rational curves. The



508 Viacheslav V. Nikulin

exceptional curve of the first of these blowing ups is identified with the fiber
of the projectivization of the normal bundle P (Nr/y). Thus, we obtain a
rational map over the curve I
o P (Nr/v)—D(R)

of the irreducible surfaces. Evidently, it is an injection at general points of
P(Nr/y). It follows that ¢ is a birational isomorphism of the surfaces.
Since ¢ is a birational map over the curve I, it follows that the general fibers
of this maps are birationally isomorphic. It follows that a general fiber of f
is C=P". Since C is non-singular and is an intersection of the non-singular
surface H” with the surface D(R), and since X has only isolated singularities,
it follows that D (R) is non-singular along the general curve C.

The X and D(R) are non-singular along C = P! and the curve C is
non-singular. Then the canonical class K¢ = (Kx +D (R)) |C where both di-
visors Kx and D (R) are Cartier divisors on X along C. It follows that —2=
degKc=Kx*C+D(R) +C, where the both numbers Kx*C and D (R) *C are nega-
tive integers. Then D(R) *C=Kx*C=—1.

If X has terminal singularities and R*Kx <0, then Y has terminal sing-
ularities too (see, for example, [Kal]). Moreover, 3-dimensional terminal
singularities are isolated. From (1), (2), the last statement of the Proposi-
tion follows.

In connection with Proposition 2.3.2, see also [Mo2, 1.3 and 2.3.2] and
(I, Lemma 1].

Let Ri, Rz are two extremal rays of the type (I) or (II). They are joined
if D(R) ND(R,) #0. It defines connected components of a set of extremal rays
of the type (I) or (II).

We recall (see Chapter I) that a set & of extremal rays is called extremal

if it is contained in a face of N_E(X). We say that & is extremal of Kodaira
dimension 3 if it is contained in a face of numerical Kodaira dimension 3 of

NE (X).
We prove the following classification result.

Theorem 2.3.3. Let 8= {Ry, Ry, ..., R, be an extremal set of extremal
rays of the type (I) or (II). Suppose that every extremal ray of & of the type (II)
is simple. Assume that § is contained i a contractible face with Kodaiva dimen-

sion 3 of NE(X). (Thus, 8 is extremal of Kodaira dimension 3) Then every
conmected component of & has a type Wy, Bz, €, or D below (see figure 1).

(A1)  One extremal ray of the type (I).

(Bz) Two different extremal rays Si, Sz of the type (II) such that their di-
visors D (S1) =D (S,) coincided.

(€n) m=1 extremal rays Si, Sz, .... Sm of the type (II) such that their di-
visors D(Sz), D(Ss3), ..., D(Swm) do not intersect one another, and S1-D(S;) =0 and
Si‘D (Sl) >Of07’ 1:=2, ey M.

(Dy) Tuwo extremal rays S, S2, where Sy is of the type (II) and Sy of the



Picard number of Fano 3-folds 509

type (I), S1*D(S3) >0 and Sz*D(S)) >0. Either Si* (b1iD (S1) +b2D(S2)) <0 or
Sz2+ (b1D (S1) +b2D (S2)) <O for any by, bz such that b1 =0, b2=>0 and one of by, bz
s not zero.

The following inverse statement is true: If § = |R1, Rz, ..., Ral is a connected
set of extremal vays of the type (I) or (I) and & has a type Wy, Bz, €y or D,
above, then 8 generates a simplex face Ri+ -+ Ry of the dimension n and numer-

ical Kodaira dimension 3 of E(X ). In particular, extremal rays of the set & are
linearly independent.

Proof. Let us prove the first statement. We can suppose that & is con-
nected. We have to prove that § has the type U;, B,, €,, or D,. If n=1, this
is obvious.

Let n=2. From Lemma 2.2.2, it follows that one of the rays R;, R; has
the type (II). Let R, have the type (II) and R, the type (I). Since D(R;) N
D(R;) # @, evidently Ry*D(R;) >0. If R,*D(R;) =0, then the curve D(R,) N
D(R,) belongs to the ray R;. It follows that the rays R; and R, contain the
same curve. We get a contradiction. Thus, R;*D(Rz) > 0. The rays Ry, R;
belong to a contractible face of Kodaira dimension 3 of Mori polyhedron. Let
f be a contraction of this face. By the Lemma 2.2.3, f contracts the divisors
D(R,), D(R;) to the same point. By Proposition 2.2.6, there exist positive aj,
a; such that R;* (a.D(R)) + a:D(R;)) <0 and R+ (aiD(Ry) + asD(R;)) <O.
Now suppose that for some b;>0 and b,> 0 the inequalities R;* (b.D (R;) +
b:D(R,)) 20 and Ry (0,D(Ry) +b.D(R,)) 20 hold. There exists A>0 such
that Ab; <a;, Abs<a;, and one of these inequalities is an equality. For exam-
ple, let Aby=a,. Then

Ry (aiD (R)) +asD (Ry) ) =Ry A (61D (Ry) +b2D (R2) ) +Ry* (az—Ab2) D (R2) 20 .
We get a contradiction. It proves that in this case § has the type D,.

m - =

S S1 Sz Si S3 S1 Sz
Type &, Type B, Type €3 Type D

Figure 1.

Now assume that both rays R;, R; have the type (II). Since the rays Rj,
R; are simple, from Lemma 2.2.7, it follows that either R,*D(R,) = 0 or
R;*D(R,) =0. If both these equalities hold, the rays R;, R, have a common
curve. We get a contradiction. Thus, in this case, § has the type €,.

Let n=3. Every proper subset of § has connected components of types
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Ay, Bs, €y or Do, Using Lemmas 2.2.2—2.2.5, one can see very easily that
either § has the type €3 or we have the following case:

The rays Ri, Ra, R3 have the type (II), every two elements subset of § has
the type €, and we can find a numeration such that R,*D (Rz) >0, Ry*D (Rs) >
0, R3*D(Ry) > 0. Let f be a contraction of the face 7. By Lemma 2.2.3, f
contracts the divisoras D(R1), D(Rz), D(Rs) to a one point. By Proposition
2.2.6, there are positive ai, az, as such that

Ri* (a1D (Ry) +a2D (R2) +asD (R3)) <0
for i=1, 2, 3. On the other hand, from simplicity of the rays R, Rz, R3, it fol-
lows that

Ri* (D(R) +D (R;) +D(R3)) 20 .
Let a1=min lay, az, as}. From the last inequality,

R1* (a1D (R1) +az2D (R2) +asD (R3)) =
=Ri*a1(D(R) +D (R2) +D (Rs)) +R1((az—a1) D (Ry) + (az—a1) D (R3)) 20 .

We get a contradiction with the inequality above.

Let n>3. We have proven that every two or three elements subset of §
has connected components of types i, Bz, €, or Dy, It follows very easily
that & has the type €, (we suppose that & is connected).

Let us prove the inverse statement. For the type U, this is obvious.

Let § have the type B, Since the rays Si, S: are extremal of Kodaira

dimension 3, there are nef elements H,, H, such that H,*S;=H,*S,=0, H}>0,

H3>0. Let 0#C,ES; and 0#C,E€S,. Let D be a divisor of the rays S; and
S».  Let us consider a map

(3.1) (Hy, Hy) —H= (—D+C;) (Hy*Cy) Hi+
+ (_D'Cl) (Hl'Cz)Hz“" (Hz'cl) (HI'CZ)D .
For a fixed H,, we get a linear map H;—H of the set of nef elements H,
orthogonal to S; into the set of nef elements H orthogonal to S; and S;. This
map has a one dimensional kernel generated by (—D+Cy) H;+ (H,*C2) D. It

follows that S;+S; is a 2-dimensional face of NE (X).

For a general nef element H = a1H; + a2H> + bD orthogonal to this face,
where ai, az, b>0, we have H3: (a1H1+asz+bD) 32 (a1H1+a?,Hz+bD)2° (a1H1
+asH,) = (a1 H1+azHo+bD) * (a1Hy+azH. +bD) * (a1Hy +azHz) 2 (a1Hy+azHs) -
(a1H1 +asz+bD) = (a1H1 +azH2) 3> 0, since alHl +asz+bD and a1H1+asz
are nef. It follows that the face S;+ S is of the numerical Kodaira dimension
3.

Let & have the type €,. Let H be a nef element orthogonal to the ray S;.
Let 0#C;ES;. Let us consider a map

m
(3.2) H—>H’=H+Z (—=(H-C)/(Ci*D(S)))D(Sy) .

i=2
It is a linear map of the set of nef elements H orthogonal to S; into the set of
nef elements H orthogonal to the rays Si, Sz, ..., Sm. The kernel of the map
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has the dimension m — 1. It follows that the rays Si, Sa, ..., Sm belong to face

of }\’—E(X) of a dimension <m. On the other hand, multiplying the divisors
D(Sy), .., D(Sm) by rays Sy, ..., Sy, one can see very easily that the rays Sy, ...,
Sm are linearly independent. Thus, they generate an m-dimensional face of

N—E(X). Let us show that this face is S;+ S+ -+ S, To prove this, we

show that every m —1 subset of § is contained in a face of K/E(X) of a dimen-
sion<m—1.
If this subset contains the ray S, this subset has the type €,-1. By in-

duction, we can suppose that this subset belongs to a face of NE (X) of dimen-
sion m — 1. Let us consider the subset {Sz Ss, .., Sml. Let H be an ample
element of X. For the element H, the map (3.2) gives an element H’ which is
orthogonal to the rays S, ..., Sm, but is not orthogonal to the ray S;. It fol-
lows that the set {S,, .., S, belongs to a face of the Mori polyhedron of the
dimension<m. Like the above, one can see that for a general H orthogonal to
Sy, the element H  has (H")3=>H?>0.

Let & have the type ©,. Let H be a nef element orthogonal to the ray S..
Let 0#C;ES;. Let us consider a map

(H+Cy) ((=D(S3) *C2) D (Sy) + (D (S)) *Co) D(S,))
(D (Sz) 'Cz) (D (Sl) 'Cl) - (D (Sl) 'Cz) (D (Sz) ’Cl)

Evidently, Cz* ((—D(S3) *C2) D (Sy) + (D(Sy) *C2)D(S2)) =0. From this equal-
ity and the inequality of the definition of the system 9, it follows that C;*
((—=D(S,) *C2) D(Sy) + (D(Sy) *C2) D(S,)) <0. Thus, the denominator of the
formula (3.3) is positive. Then (3.3) is a linear map of the set of nef ele-
ments H orthogonal to the ray S; into the set of nef elements H’ orthogonal to
the rays S), S2.  Evidently, the map has a one dimensional kernel. Thus, the
rays S; and S, generate a two dimensional face S; + S, of Mori polyhedron.
As above, for a general element H orthogonal to S, we have (H")*=>H*>0.

(3.3) H—H'=H+

Corollary 2.3.4. Let 8= Ry, Ry, ..., Ryl be an extremal set of extremal
rays of the type (I) or (II) and every extremal vay of & of the type (II) is simple.
Assume that & is contained i a contractible face with Kodaira dimension 3 of the
N_E(X) Let m1=0, mz=0, ..., my =0 and at least one of m, ..., my is positive.

Then there exists 1, 1 <i<n, such that

Ri' (‘WL]D (Rl) +"'+mnD (Rn) ) <0 .
Thus, the condition (ii) of Chapter I is valid.

Proof. 1t is sufficient to prove this statement for the connected §. For
every type Ui, B, €, and D; of the Theorem 2.3.3, one can prove it very
easily.

Unfortunately, in general, the inverse statement of the Theorem 2.3.3
holds only for connected extremal sets §. We will give two cases where it is
true for a non-connected §&.
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Definition 2.3.5. A threefold X is called strongly projective
(respectively very strongly projective) if the following statement holds: a set
{Q1, ..., Qul of extremal rays of the type (II) is extremal of Kodaira dimension

3 (respectively generates the simplex face Q,+ - +@Q, of E(X) of dimension
n and Kodaira dimension 3) if its divisors D(Q.), .., D(Q,) do not intersect
one another.

Theorem 2.3.6. Let 8= {Ry, Ry, ..., R4 be a set of extremal rays of the
type (I) or (II) such that every connected component of & has the type Uy, By, €,
or Dy Then:

(1) 8 is extremal of numerical Kodaira dimension 3 if and only if the same
is true for any subset of & containing only extremal rays of the type (II) whose di-
visors do not intersect one another. In particular, it holds if X is strongly projec-
tive.

(2) & generates a simplex face Ry+ -+ + R, with numerical Kodaira dimen-
sion 3 of the Mori polyhedron if and only if the same is true for any subset of & con-
taining only extremal rays of the type (II) whose divisors do not intersect one
another. In particular, it is true if X is very strongly projective.

Proof. Let us prove (1). Only the inverse statement is non-trivial. We
prove it by induction on n. For n=1, the statement is obviously true.

Assume that some connected component of & has the type ;. Suppose
that this component contains the ray R;. By our induction hypothesis, there
exists a nef element H such that #*>0 and H*R;=0 if i>1. Then there ex-
ists =0, such that H'=H+kD(R;) is nef and H*8=0. As above, one can
prove that (H")3=>H?>0. '

Assume that some connected component of & has the type B, Suppose
that this component contains the rays Ry, R; and D (R;) =D (Rz) =D. Then, by

induction, there are nef elements H, and H; such that H3>0, H3>0 and H,* {R1,
R, .., Ral =0, Hy* {Rs, Rs, .., R =0. As for the proof of the inverse state-
ment of the Theorem 2.3.3 in the case LB, there are k=0, k2=>0, k320 such
that the element H="FkH,+ksH,+ksD is nef, H-8=0 and H*>0.

Assume that some connected component of & has the type €,,, m>1. We
use the notation of Theorem 2.3.3 for this connected component. Let this be
{S1, Sz, ..., Sml. By induction, there exists a nef element H such that H is
orthogonal to & — {Ss, .., Swml and H3>0. As for the proof of the inverse
statement of the Theorem 2.3.3 in the case €,, there are k2=0, ..., k=0 such
that H'=H~+kzD (Sz) +++*+kmD (Sm) is nef, H*=0 and (H")3>H>>0.

Assume that some connected component of § has the type ®,. We use
the notation of Theorem 2.3.3 for this connected component. Let this be 1S,
Sol. By induction, there exists a nef element H such that H*> 0 and H is
orthogonal to § — ISif. As for Theorem 2.3.3, there are k=0, k2= 0 such
that H'=H~+kD (S1) +k2D (S2) is nef, H*8=0 and (H)*=H*>0.

If every connected component of & has the type €;, then the statement
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holds by the condition of the theorem.

Let us prove (2). Only the inverse statement is non-trivial. We prove
it by induction on n. For n=1 the statement is true. It is sufficient to prove
that & is contained in a face of a dimension<# of Mori polyhedron because, by
our induction hypothesis, any its # — 1 elements subset generates a simplex
face of the dimension n—1 of Mori polyhedron.

Assume that some connected component of § has the type ;. Suppose
that the ray R: belongs to this component and 0#C;E€R,. Let us consider the
map

H—H'=H'+ ((H-C1)/(—D(Ry) *C1) )D(Ry) .
of the set of nef elements H orthogonal to the set {Rs, ..., Rn] into the set of nef
elements H' orthogonal to the §. It is the linear map with one dimensional
kernel. Since, by the induction, the set |Ra, .., R} is contained in a face of
Mori polyhedron of the dimension » —1, it follows that & is contained in a face
of the dimension #.

If § has a connected component of the type &8s, €, m>1, or Dy, the proof
is the same if one uses the maps (3.1), (3.2) and (3.3) above.

If all connected components of & have the type €,, the statement holds by
the condition.

Remark 2.3.7. Like the statement (1) of Theorem 2.3.6, one can
prove that a set & of extremal rays with connected components of the type U,
B, € or D, is extremal if and only if the same is true for any subset of &§
containing only extremal rays of the type (II) whose divisors do not intersect
one another.

The next proposition is simple but important. To simplify the notation,
we say that for a fixed ay, ..., an, we have a linear dependence condition
a1R1+'°°+aan:0
between extremal rays R\, ..., Ry if there exist non-zero Ci €R; such that
a1C1+°"+anCn=0 .

Proposition 2.3.8. Assume that a set § = |R\, Rz, ..., Rml of extremal
rays has connected components of the type Ui, Ba, € or Dy and there exists a
linear dependence condition a1R1+asRa+ "+ amRm=0 with all a;#0. Then all
connected components of & have the type Ba. Let these components be B, ..., B'.
Then t=2, and we can choose a numeration such that B' = {Ri, Riol and the
linear dependence has a form

anRu+taaRa+ - +anRn=a12R12tanRzn+ " +ank: .
where all ai;>0.

Proof. Let us multiply the divisors D(R;), ..., D(Rm) by the equality a\R;
+asR2++*+amRm=0. Then we get that a,=0 if the ray Ry belongs to a con-
nected component of the type Ui, €, or D, Thus, all connected components
of & have the type B;. Let these components be

B'= R, Rio , B2= [Ra, Real . ..., B'= [Re1, Real .
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Obviously, t=2, and we can rewrite the linear dependence as
anRutaipRiztaaRa tanRe+ +anRn+anR,=0 ,

where all ai;;#0. Multiplying all divisors D (R;) by this equation and using

inequalities Rij*D (R;;) <0, we get the last statement of the proposition.

4. A classification of E-sets of extremal rays of type (I) or (II)

As in the above, we suppose that X is a projective normal 3-fold with
Q-factorial singularities.

We recall that a set £ of extremal rays is called an E-set if it is not ex-
tremal but any proper subset of £ is extremal (it is contained in a face of

I\E(X)) Thus, an E-set is a minimal non-extremal set of extremal rays.

Theorem 2.4.1. Let € be an E-set of extremal rays of the type (I) or
(I).  Suppose that every vay of the type (II) of & is simple and every proper subset
of ¥ is contained in a contractible face of Kodaira dimension 3 of Movi polyhedron.
Then we have one of the following cases:

(a) & is conmected and €= Ry, Ry, R4l , where any R; has the type (II) and
each of 2-element subsets Ry, Ral, |Rz Ril, |Rs, Ril of € has the type €5 Here
Ri*D(R;) >0, R2*D (R3) >0, R3*D (Ry) >0 but Ro*D(Ry) =R3*D(R;) =Ry*D(R3)
=0. The divisor D(¥) =D (R;) +D (R;) +D (R3) is nef.

(b) & is connected and € = {R\, Ry}, wheve at least one of the rays Ry, R»
has the type (I). There are positive my, mz such that R- (m.D(R,) +
maD (Rz)) 20 for any extremal ray R of the type (I) or simple extremal ray of type
(II) on X. If the divisor miD (Ry) +maD (Ry) is not nef, both the extremal vays
Ry, R have the type (II).

(¢) & is connected and € = {R1, Rl where both R,, and R; have the type
(II) and there exists a simple extremal ray Sy of the type (II) such that the rays
R1, S1 define the extremal set of the type Bz (it means that S1# R, but the divisors
D(S1) =D(Ry)) and the rays Si, Ry define the extremal set of the type §,, where
S1°D (Ry) =0 but Ry*D(Sy) >0. Here theve do not exist positive my, my such that
the divisor miD (Ry) +m3D (Ry) is nef, since evidently S1* (mD(Ry) +m2D (R,))
<0. See figure 2 below.

(d) 2= IRy, ... Ry} where k=2, all rays Ry, ..., Ry have the type (II) and
the divisors D (Ry), ..., D(Ry) do not intersect one another. Any proper subset of £
is contained in a contractible face of Kodaira dimension 3 of Movi polyhedvon but €
is not contained in a face of Mori polyhedron.

S1

R: R,

Figure 2.
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Proof. Let £ = |Ry, .., R4 be an E-set of extremal rays satisfying the
conditions of the theorem. Let us consider two cases.

The case 1. Let £ is not connected. Then every connected component
of & is extremal and, by Theorem 2.3.3, it has the type U;, B, € or Do, If
some of these components does not have the type €,, then, by the statement
(1) of Theorem 2.3.6, £ is extremal and we get a contradiction. Thus, we
get the case (d) of the theorem.

The case 2. Let £= |Ry, .., R4 is connected. Let n=4. By Theorem
2.3.3, any proper subset of £ has connected components of the type Ui, Bs,
€ or D, Like for the proof of Theorem 2.3.3, it follows that £ has the
type €,. By Theorem 2.3.3, then € is extremal. We get a contradiciton.

Let n=3. Then, like for the proof of Theorem 2.3.3, we get that £ has
the type (a).

Let n=2 and €= {Ry, Rs}. If both rays Ry, R, have the type (I), then, by
Lemma 2.2.2, € is not connected and we get a contradiction.

Let R, has the type (I) and R; has the type (II). Since the set £ is not
extremal, by Theorem 2.3.3, there are positive mi, mz such that Ry* (miD (Ry)
+m3D(Rz)) =0 and Rz* (miD(R)) +mzD(Rz))>0. By Lemma 2.2.3, it fol-
lows that C+ (m.D (Ry) +m2D (R;)) 20 if the curve C is contained in the D(R);)
UD(R;). If Cis not contained in D (R1) UD (R;), then obviously C* (miD (Ry)
+ mD(R,)) = 0. It follows, that the divisor miD(Ry) + msD(R,) is nef.
Thus, we get the case (b).

Let both rays Ry, R, have the type (II). If D(R;) =D (R:), then we get an
extremal set {Ri, Rs by Theorem 2.3.3. Thus, the divisors D(R;) and
D(R;) are different. By Lemma 2.2.1, the curve D(R;) N D(R2) does not
have an irreducible component which belongs to both rays R; and R, Since
rays Ry, R, are simple, it follows that R;* (D(R)) +D(Rz)) =0 and R,* (D(R))
+D(R3)) 20. Let R be an extremal ray of type (I) or simple extremal ray of
the type (II). If the divisor D (R) does not coincide with the divisor D (R1) or
D (R,), then obviously R+ (D (Ry) +D(Rz)) =0. Thus, if there does not exist
an extremal ray R which has the same divisor as the ray R, or R, we get the
case (b).

Assume that D(R) =D(R,). Then, by Lemma 2.2.5, the ray R has the
type (II), too. If R*D(R;) =0, we get the case (c) of the theorem where S;=
R. 1f R*D(Rz) >0, then R (D(R;) +D(R;)) =0 since the ray R is simple.
Then we get the case (b) of the theorem.

5. An application of the diagram method to Fano 3-folds with termin-
al singularities

We restrict ourselves to considering Fano 3-folds with Q-factorial ter-
minal singularities, but it is possible to formulate and prove corresponding re-
sults for a negative part of Mori cone of 3-dimensional variety with
Q-factorial terminal singularities like in [N7].
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We recall that an algebraic 3-fold X over C with Q-factorial singularities
is called Fano if the anticanonical class —Kx is ample. By results of Kawa-

mata [Kal] and Shokurov [Sh], any face of NE (X) is contractible and NE (X)
is generated by a finite set of extremal rays if X is a Fano 3-fold with termin-
al Q-factorial singularities.

5.1. Preliminary results. We need the following

Lemma 2.5.1 Let X be a Fano 3-fold with Q-factorial terminal sing-
ularities. Let 8= Ry, ..., Rl be a set of n extremal vays of the type (II) and with
disjoint divisors D(Ry), .., D(R4) on X. (Thus, & has the type n€,).

If we suppose that the set & is not extremal, then there exists a small extremal
ray S and i, 1<i<n, such that S+ (—Kx+D(R:)) <0 and S-D(R;) =0 if j #i.

It follows that any curve of the ray S belongs to the divisor D (R;).

Proof. By Proposition 2.3.2, the divisor H= —Kx+D(Ry) ++*+D (R,) is
orthogonal to 8. Besides, H is nef and H3>0 if there does not exist a small
extremal ray S with the property above. Then, § is extremal of Kodaira
dimension 3.

Definition 2.5.2. A set |R, S} of extremal rays has the type €, if the
ray R has type (II), the extremal ray S is small and S*D (R) <0. (See Figure
3.)

Thus, by Lemma 2.5.1, the set Ry, ..., Ry, S of extremal rays contains a
subset of the type €,.

By Proposition 2.3.2, any extremal ray of X of the type (II) is simple,
and by results of Sections 3 and 4 we get a classification of extremal sets and
E-sets of extremal rays of the type (I) and (II) on X.

We have the following general theorem.

\S

Figure 3.

Theorem 2.5.3. Let X be a Fano 3-fold with Q-factorial terminal sing-

ularities. Let a be a face of NE (X). Then we have the following possibilities:
(1) There exists a small extremal ray S such that @+ S is contained in a
face of NE (X) of Kodaira dimension 3.
(2) There are extremal vays Ry, Rs of the type (II) and small extremal ray S
such that a+R; and a~+R, ave contained in faces of NE (X) of Kodaira dimension
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3, the ray R» does not belong to a, and one of the sets {R1, S or {Rs, S} has the
type €,

(3) The face a is contained in a face of NE (X) of Kodaira dimension 1 or

(4)  There exists an E-set = |R1, Ry} such that i€ a, R, T a, but a+R,

and a + R, ave contained in faces of NE(X) of Kodaira dimension 3. The ¥
satisfies the condition (c) of Theorem 2.4.1: Thus, both extremal rays Ry, Ry have
the type (II) Ri*D(R;) >0 and Ry*D (R)) >0 and there exists an extremal ray R
of the type (II) such that D(R;) =D (R") and R*D.(R;) =0.

(5) There are extremal rays Ry, ..., Ry of the type (II) such that any of them

does not belong to @, a+ R+ + R, is contained in face of NE (X) of Kodaira
dimension 3 and
dima+Ri+:+R,<dima+n .
(6) dimN;(X) —dima<12.

Proof. Let us consider the face y=a* of #(X) and apply Theorem 1.2
to this face 7. We have dimy=dimN; (X) —1—dima.

Assume that a does not satisfy the conditions (1), (3) and (5). Then
R (y) contains extremal rays of the type (I) or (II) only and J(X) is closed
and simple in the face 7. By Proposition 2.3.2 and Theorem 2.3.3, any ex-
tremal subset 8 of R(y) has connected components of the types U, Bz, €, or
D,. By Corollary 2.3.4, the condition (ii) is valid for extremal subsets of
R(7). Let CR(y) be a E-set. Assume that at least two elements R;, R: €
¥ don't belong to R(7*) and for any proper subset £ € ¥ we have that £’ U
R (r*) is extremal. Let us apply Theorem 2.4.1 to £.

Assume that £ has the type (d). By Lemma 2.5.1, one of extremal rays
Ry of ¥ together with some small extremal ray S define a set of the type €,.
Since {Ri} C¥ is a proper subset of £, the R(y*) U Ry} is extremal. Or a+

Ri is contained in a face of NE (X). Since & has at least 2 elements which do
not belong to R (%), there exists another extremal ray R; of € which does not

belong to R(7*). Like the above, @+ R: is contained in a face of NE(X) of
Kodaira dimension 3. By definition of the case (d), both extremal rays R;, R»
have the type (II). Thus, we get the case (2) of the theorem.

Assume that € has the type (c). Then we get the case (4) of the
theorem.

Assume that £ = {Ri, R.l has the type (b). Suppose that the divisor
miD (R1) +m2D (R;) is not nef (see the case (b) of Theorem 2.4.1). Then
there exists a small extremal ray S such that S+ (m\D(R;) +m2D (Rz)) <0. It
follows that one of the sets {Ri, S| or {Rz S| has the type €,. Thus, we get
the case (2).

Assume that £= {R), R,, R3} has the type (a). Then the divisor D (R)) +
D (R;) +D (R3) is nef.

Thus, if we additionally exclude the cases (2) and (4), then all conditions
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of Theorem 1.2 are satisfied. By Theorems 2.4.1 and 2.3.3, we can take d
=2,C,=1 and C;=0. (See Figure 4 for graphs G (§) corresponding to ex-
tremal sets & of the types Uy, Bs, €, and D) Thus, by Theorem 1.2, dimy
<34/3. 1t follows that dimN; (X) —dima<12.

[ ] [ ] ® @ <«—» 0

Type &1 Type B; Type 6» Type D
Figure 4.

5.2. General properties of configurations of extremal rays of the
type 3. Let {Ru, RiJ be a set of extremal rays of the type B,. By

Theorem 2.3.3, they define a 2-dimensional face Ry + Ry, of NE(X). Let
{R21, R22l be another set of extremal rays of the type 8B,. Sinse two different

2-dimensional faces of N_E(X) may have only a common extremal ray, the di-
visors D(Ry;)) = D(Ry;) and D (Rs) = D(Ry) don’t have a common point.

There exists the maximal set {Ryy, Risl, {Ra1, Raal, ..., {Ru1, Rual of pairs of ex-
tremal rays of the type 8B,.
Lemma 2.5.4. Any tpairs iRu, Rlzt , 1R21, Rzz* ) ey 1R¢1, thl Of extrem-
al rays of the type B, generate a face
t 2
Y Y RyCNE () €N, (1)

i—1j=1
of the Kodaira dimension 3 of NE (X).

Proof. This face is orthogonal to the nef divisor H= —Kx+D (Ry;) + -+
D(Ry;) with H*2> (—Ky)3>0.

Lemma 2.5.5. Under the above notation, there exists a changing of ovder
of pairs of extremal rays Riu, Riz such that Ry + -+ + Rn is a simplex face of

NE(X).

Proof. For t=1, it is obvious. Let us suppose that 6 =R+ -+ +R¢-1
is a simplex face of the face
t—1 2
Ai-1— Rij .
i=1j=1

The face

t 2
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has a;-; as its face and does not coincide with the face a,-;. It follows that
there exists a face B of a; of the dimension ¢ such that 3 a;—1 but C S is a
face of B. It follows that all extremal rays of B are the extremal rays R, ...,
R¢-11 and some of extremal rays Ry, R Assume that both extremal rays
Ru, Ri2 belong to 8. Then the extremal rays Ry, ..., Ri-n1, R, Re2 are linearly
dependent, since dim8=¢. By Proposition 2.3.8, it is impossible. Thus, only
one of extremal rays R, R;2 belongs to the face 8. Suppose that this is Ra.
Then =Ry +-*+R¢-n1+Rn will be the face we were looking for.

We divide the maximal set {Rii, Ri2l, {Ra1, Raal, ..., {Rm, Rual of pairs of
extremal rays of the type 8B, into two parts:
lRll. RIZ} ) {RZI, RZZ} y eany ilev Rm2}
and
Ron+v1, Rmsvzl . IRm+2r, Rmaoal . o ARmtnr1, Romenrzh

where n =m +k. By definition, here the extremal rays Ri, Riz belong to the
first part if and only if they are linearly independent of other extremal rays

from the set {Ru, Rizl, |R21, Raal, ..., |Ru1, Rn2l. Thus, extremal rays Rj, Rj2
belong to the second part if they are linearly dependent of other extremal rays
from the set {Ru, Rz}, |R21, Raal, ... |Ru1, Rual .

Lemma 2.5.6. Let S be an extremal ray of the type (II) such that {Ri,
Sl define a configulation (c) of the Theorem 2.4.1. Thus: Ru-D(S)> 0,
S*D(Ri1) >0 and Riz*D(S) =0. Then the extremal ray Ri1, Riz are linearly inde-
pendent from all other extremal rays in |Ru, Rid, [Rai, Rzl ... 1Rm, Rual.
Thus, 1<i<m. There does not exist a configulation of this type with the ray Ri.
Thus, there does not exist an extremal vay S’ of the type (II) such that
Ri2*D(S") >0, S"*D(Riz) >0 and Riy+D(S") =0.

Proof. The Rji+ Rz and Riz+ S are 2-dimensional faces of NE(X) with
intersection by the extremal ray Ri;. It follows that any curve of D(S) be-
longs to the face Riz+S (by Lemma 2.2.3). It follows that the divisor D(S)
has no common point with the divisor D (Rj,) for any other pair Rj), Rj, for j#
i.  Multiplying D(S) by a linear relation of extremal rays R, Ri» with other
extremal rays [Ryy, Rial, |Ra1, Ral, ..., {Rn, Rzl and using Proposition 2.3.8,
we get that this linear relation does not exist.

Let us suppose that there exists an extremal ray S’ (see formulation of
the lemma). Then R;+S’is another 2-dimensional face of NE(X). Evident-
ly, divisors D(S) and D(S”) have a non-empty intersection. Thus, faces R
+S and R;;+S” have a common ray. But it is possible only if S=S". Thus,
we get a contradiction, because Rj;*D (S) >0 but R;;*D(S") =0.

Using this Lemma 2.5.6, we can subdivide the first set

1Rllv RIZ} ) ’RZL RZZI y eeey {le, RmZ! .
into sets
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{Ri1, Rigl . 1R21, Raoal , ..o 1R, Romiad
and

{Rom+v1, Romval , oo IRmama1, Romysmpat
where m,+ms;=m. Here R;1, Riz belong to the first part if and only if there
exists an extremal ray S such that R;, S satisfy the condition of Lemma 2.5.6.
By Lemma 2.5.6, the order between extremal rays Ri, and Rj is then cano-
nical.

Let us consider the second set

{Rom+n1, Rm+vzl , [Roms21, Roms2al + oo {Remti01, Romanrzl .
We introduce an invariant
m+k 2
0=dim Z ZRU“k
i=m+lj=1
of X. Evidently,
either k=0=0 or k=2 and 1Z0<k .

Thus,
m+k 2
dim Z ZRij:k+5
i=m+1j=1
Let

n=m+k 2
00 (X) =dimN; (X) —dim Z ZR;; .
i=1 j=1
Then
o (X) =dimN; (X) =p0 (X) +2m+k+0d
The invariants: po(X), n, m, k, 8, m,, m, are important invariants of a Fano
3-fold X.
The following lemma will be very useful:

Lemma 2.5.7. Let X be a Fano 3-fold with Q-factorial terminal sing-

ularities. Let & be the set of all extremal rays of a proper face [8] of NE (X).
Let

{Ri1, Rigt U..U Ry, Real
be a set of different pairs of extremal rays of the type Bz Assume that R+D(R1)
=0 for any RE E and any i, 1 <i <t. Then there are extremal rays Q, ..., Q.
such that the following statements hold:

(@ r<t;

(b) For any i, 1 <i<y, there exists j, 1 <j<t, such that Q;*D(R;;) >0 (in
particular, Q; is different from extremal rays of pairs of extremal rays {Ru, Ruzl of
the type Bs);

(c) Foranyj, 1<j<r, there exists an extremal ray Q;, 1<i<r, such that

Qi*D(Rj) >0 ;

(d) The set 8U 1Qy, ..., Q} is extremal, and extremal rays Qi ..., Q/ are

linearly independent.
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Proof. 1f t=0, we can take ¥=0. Thus, we assume that t=1.

Since Rij*D(Ri;) <0, 1<i<t, 1<j<2, the set & does not contain the rays
Ri;. Let H be a general nef element orthogonal to [8]. Since t=>1, there ex-
ists a>0 such that H’=H+aD (Ry1) is nef and H' is orthogonal to & and one of
the rays Ri1, Ri2. Let this ray be Ri..  Then the set §U {Ry)} is extremal and

is contained in a (proper) face of NE (X). It follows, dim [§] <dim [6C {Ru}]

<dimNE (X), and dim[8] <dimNE (X) —1. Let us consider a linear subspace
V(8) ©N;(X) generated by all extremal rays §. By our condition, V(§) is a

linear envelope of the face [&] of NE (X).
Let us consider the factorization map 7: N1 (X)—N,(X)/V(8). Since the

cone NE (X) is polyhedral, the cone  (NE (X)) is generated by images of ex-
tremal rays T such that the set & U {T} is contained in a face [§C {T}] of

I\E(X) of the dimension dim [8] +1. In particular, since dim [§] <dimN; (X)
—1, the face [8U {T}] is proper, and the set §U |T} is extremal.
There exists a curve C on X such that C*D(Ry;) >0. This curve C (as

any element x € NE(X)) is a linear combination of extremal rays T with
non-negative coefficients and extremal rays from & with real coefficients. We
have R*D (Ry;) =0 for any extremal ray REE. Thus, there exists an extremal
ray T above such that T+D(Ry;) >0. It follows that T is different from ex-
tremal rays of pairs of the type B,. We take @, =7T. By our construction,
the set & U {Qi} is extremal. If Q,*D(Rj) >0 for any j such that 1 <j <¢,
then » =1, and the set {Q:} gives the set we were looking for. Otherwise,
there exists a minimal j such that 2<j <t and Q,*D(R;;)) =0. Then we re-
place & by the set &, of all extremal rays in the face [§U {Qi}] of the dimen-
sion dim[8,] =dim[8] +1, and the set

{Rll' RIZ} U U ‘Rtl' RtZI
by

[Rj1, Ri2l1<j<t, Q1D (R;) =0} ,
and repeat this procedure.

5.3. Basic Theorems We want to prove the following basic
theorem.

Basic Theorem 2.5.8. Let X be a Fano 3-fold with terminal Q-factorial
singularities. Assume that X does not have a small extremal ray, and Mori

polyhedron NE (X) does not have a face of Kodaira dimension 1 or 2.
Then we have the following for the X:
(1) The X does not have a pair of extremal vays of the type By (thus, in

notation above, the invariant n=0) and Mori polyhedvon NE (X) is simplicial.

(2) The X does not have more than one extremal ray of the type (I).

(3) If 8 is an extremal set of k extremal rays of X, then the 8 has one of the
types: W (B — 1) €, DI (B —2) €, G, (— 2) €, kS, (we use notation of
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Theorem 2.3.3).
(4) We have the inequality for the Picard number of X:

0 (X) =dimN, (X) <7 .

Proof. We use notations introduced in the Section 5.2. We divide the
proof into several steps.
Let us consider extremal rays
8o={R11, Risl U [Ra1, Razf U ..U [Ruy, Ryl .
Let
= {Rn. R12| u {RZL Rzzl u..u {le. Rmz} ,
and
88 = {Ron+n1, Rm+nzl U {Romsn1, Rumazal U.oU {Rn1, Rual .
By Lemma 2.5.4, the set & is extremal. Let § be a maximal extremal set of
extremal rays which contains ,. Let §;=8—8,. By Proposition 2.3.8, #§,
=p(X) —1—dim[&,]. By Theorem 2.3.3, for SE &), the divisor D(S) has no
a common point with divisors D (R;1), 1<i<n.

Lemma 2.5.9. Assume that X satisfies the conditions of Theorem 2.5.8.
Let Q be an extremal ray such that Q is different from extremal rays Rij, 1 <i<n,
1<5 <2, and the set 8; U Q! is extremal. Then the Q has the type (II) and
there exists exactly one i such that 1<i<n and Q*D (R;;) >0 and D (Q) ND(R;,)
=0 if j#i.

Proof.. Assume that @ has the type (I). Then the divisor D(Q) has no
common point with the divisors D(R;), 1<i<un. By Theorems 2.3.3, 2.3.6
and Lemma 2.5.1, the set |Q} U&, U§, is extremal. We then get a contradic-
tion with the condition that §; U §;, is a maximal extremal set. Thus, the ex-
tremal ray Q has the type (II).

If D(Q) has no common point with the divisors D (R;1), 1<i<n, we get a
contradiction by the same way. Thus, there exists i such that 1 <i<# and

D(@Q) ND(R;1) + @. Let us consider a projectivization PNE(X). By Lemma

2.2.2, PNE (X, D(Q)) is an interval with two ends. Its first end is the vertex
PQ and its second end is a point of the edge P (R; + Riz) of the convex

polyhedron PNE (X). Thus, the i is defined by the extremal ray . Evident-
ly, Q'D(Ril) >0

Lemma 2.5.10. With the conditions of Lemma 2.5.9 above, assume that
m+1<i<u. Then there exists exactly one extremal ray Q = Q; with the condi-
tions of Lemma 2.5.9: thus, the set §, U |Qi is extremal and Q;*D(R;;) >0,
and D(Q;) ND(R;) = @ if j #i.

Proof. The

B=Y s+ )R

NS RE&,
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is a face of NE (X) of highest dimension o (X) —1, and

B=) s+ ) lR

SES RE€&— IRaR:

is a face BiC BCNE (X) of dimension p(X) —2 and of the codimension one in
B (Here we use that m+1<i<m+k). It follows that there exists exactly one
face B’; of NE (X) such that B’; contains 8;, dimB’;=p(X) —1, and B’;#B. By
Theorems 2.3.3 and 2.3.6, and Lemma 2.5.9, 8';=B:;+Q; where Q; is an ex-
tremal ray such that the set §; U {Q4 U (§o— {Ri1, Riz}) is extremal, and the
ray Q; has the properties of Lemma 2.5.10. It follows that the Q; is unique
and does exist.

Lemma 2.5.11. Under the above notation, the set §, U 84U {Qm4, ...,
Q. is extremal.

Proof. By Theorems 2.3.3, 2.3.6, Proposition 2.3.8 and Lemma 2.5.1,
the set § =8, U 8" is extremal and generates a face of NE(X). We apply
Lemma 2.5.7 to this & and 8%*. By Lemma 2.5.7, there are extremal rays

Q i1, o @ mar such that the set & U & U 1Q s, ... Q' msrd is extremal and
for any i, m +1<i<m-7, there exists j, m +1<;j<u, such that Q’;'D(Rn) >0.
Moreover, for any j, m+1=<j<n, there exists an extremal ray Q; m+1<i<m
+7, such that

Q/i’D(le) >O .
By Lemmas 2.5.9 and 2.5.10, »=F and & U8 U Q' ms1, ... @ msrd =861V
85U Qm+1, ..., Qul .

Lemma 2.5.12. The set 88 is empty.

Proof. By Lemmas 2.5.9, 2.5.10 and 2.5.11, the set of extremal rays U
=8, U8 U {Qus1, ..., @y is a maximal extremal set which contains &; U i
and does not contain extremal rays from 83%. Assume that k. =n —m # 0.
Then k=2 and dimU = po(X) — 1+ 2m + k. But the dimension of a face of

NE(X) of highest dimension is equal to p(X) —1=po(X) —1+2m+k+4
where 0= 1. Thus, the extremal set U is not maximal, and there exists
another extremal ray S such that UU [S} is extremal. By definition of U, the
S8 Let S=R; where m+1<i<u. Since Q;*D(R;;) >0, by Theorem
2.3.3, the extremal set {Q;, Ryl has the type €, Thus, R;D(Q;) =0. By
definition of the set 8¢, there exists a linear dependence 2/=% 4 1anRin~+aiR 2
=0 where a;;#0 and a;,#0. Multiplying D (Q;) by the equality above, we get
aiz=0. Thus, we get a contradiction. (Compare with Lemma 2.5.6.)

Lemma 2.5.13 The set 85 is empty.
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P?’OOf Since gdep_ ﬁ the set U= gl ) gmd._gl U 1R11, Rlz} u..u {le,
Rnsl is a maximal extremal set. It follows that U generates a simplex face of

NE (X) of codimension 1. Thus, Ui=8 U & — {Rmsl =& U {Ri1, Rig} U.. U

Rom—v1, Rom—nzl U [Rmil generates a simplex face of NE (X) of codimension 2.
It follows that there exists an extremal ray Qm; such that U;=8,U {Ry;, RyJl

U..U {Rm-11, Ron-12l U [Rml U {Qmsl generates a simplex face of NE (X) of
codimension 1, and Qmz is different from Rmz. By Lemma 2.5.9,
Qmz*D(Rm1) >0. Thus, by Theorem 2.3.3, |Qmz, Rmil is an extremal set of
the type €, where Rmi*D (Qmz2) =0.

Similarly, we can find an extremal ray Qm such that the set {Qm, Rmg is
extremal of the type €, where Rmu2°D(Qm1) =0. Then we get a contradiction
to Lemma 2.5.6. Thus, m =0, and the set "= 0.

Thus, we proved that X does not have a pair of extremal rays of the type

B;. By Theorem 2.3.3 and Proposition 2.3.8, the Mori polyhedron NE (X) is
then simplicial. Thus, we have proven the statement (1).

Now let us prove (2): X does not have more than one extremal ray of the
type (I).

By Lemma 2.2.2, divisors of different extremal rays of the type (I) do
not have a common point. By Theorem 2.3.6, any set of extremal rays of the

type (I) generates a simplex face of E(X) of Kodaira dimension 3. It follo-
was that the set of extremal rays of the type (I) is finite. Let

{Ry, ..., Rl

be the whole set of extremal rays of the type (I) on X. We should prove that
s<1.

Let § be a maximal extremal set of extremal rays on X containing the set
{R1, .., R¢ and such that each connected component of & contains one of ex-
tremal rays Ry, .., Rs (see the definition of connected components before
Theorem 2.3.3). By Theorem 2.3.3, then & has exactly s connected compo-
nents Ty, .., Ts such that T; contains the extremal ray R;. The T; has either
the type 9[1 (thus, Ti= {Ri}) or ®, (thus, T; contains two extremal rays: the
R; and another extremal ray which has the type (II)). Evidently, the maxim-
al & does exist.

By [Kal] and [Sh], any face of NE (X) is contractible, and by our condi-
tions, it has Kodaira dimension 3. By Proposition 2.2.6, for any 1 <i <s,
there exists an effective divisor D (T;) which is a linear combination of di-
visors of rays from T; with positive coefficients and R+D (T;) <O for any RE
T:. Since T; has the type U, or D,, one can see easily by Lemma 2.2.3, that
the same it true for each curve of divisors of rays of T; because this curve be-
longs to the sum of extremal rays of T; with positive coefficients.

Using the divisors D (T;), similarly to Lemma 2.5.7, we can find extremal
rays
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{Ql, veey Qr}
with properties:
(a) 7<s;
(b) For any i, 1<i <y, there exists j, 1 <j <t¢, such that Q;*D(T;) >0
(in particular, Q; is different from extremal rays of § and does not have the
type (I));
(¢) For any j, 1 <j<s, there exists an extremal ray Qi, 1 <i <7, such
that
Qi*D(T;) >0 ;
(d) The set {Qy, ..., @/ of extremal rays is extremal.
By our conditions, all extremal rays on X are divisorial. Thus, by (b),
the extremal rays @i, ..., @, have the type (II).
Let us take the ray Q;, and let Q;D(T;) >0. By Theorem 2.3.3, the set

T, generates a simplex face 7; of NE(X). We have mentioned above that each

curve of divisors of rays from T; belongs to this face. It follows that NE (X,
D(Q;)) is a 2-dimensional angle bounded by the ray Q; and a ray from the
face 7; since the divisor D(Q;) evidently has a common curve with one of di-
visors D(R), RE T,. Since any two sets of Ty, .., Ts do not have a common
extremal ray, the faces 7i, ..., 7s do not have a common ray (not necessarily

extremal). It follows that the angle NE (X, D(Q;)) does not have a common
ray with the face 74 for k#j. Thus, the divisor D(Q;) does not have a com-
mon point with divisors of rays Tk It follows that r=s and we can choose an
order @, ..., Qs such that Q;*D(T;) >0 but D(Q;) do not have a common point
with divisors of extremal rays Tj if j #1.

Let us fix i, 1<i<s. By our construction, the set §U {Q;l has connected
components

Ty, ..., Ticy, TiU Qi , Tisr, Ts .

By definition of &, then the § U |Qil is not extremal. Thus, it contains an
E-set (minimal non-extremal) ¥; which contains Q;. By Theorem 2.4.1 and
Lemma 1.1, the ¥; is connected. Thus, {Q} CL;CT;U {Q}. Let us consid-
er the sets &1, ..., ¥s. By Lemma 1.1, the &;, &, are joint by arrows. By our
construction, it follows that Q;, @; are joint by arrows Q;Q; and Q;Q; for any 1
<i<j<s. By Theorem 2.3.3, for the extremal set {Qi, .., Qs of extremal
rays of the type (II), this is possible only if s<1. This proves the statement
2).

To prove (3) we use the following.

Statement. The contraction of a ray R of the type (II) on X gives a Fano
3-fold X’ with terminal Q-factovial singularities and without small extremal rays
and without faces of Kodaira dimension 1 or 2 for NE(X'). Extremal sets & on X’
are in one to one correspodence with extremal sets § on X which contain the ray R.

Proof. Let 0: X— X' be a contraction of R. The X  has terminal
Q-factorial singularities by [Kal] and [Sh]. We have, Kx = o*(Kyx) +
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dD(R). Multiplying this equality by R and using Proposition 2.3.2, we get
that d =1. By the statement (1), it follows that 0* (—Kx) = —Kx+D(R) is
nef and only contracts the extremal ray R. Then—Kx is ample on X" and X’

is a Fano 3-fold with terminal Q-factorial singularities. Faces of NE (X") are
in one to one correspondence with faces of N_E(X) which contain the R. Con-
tractions of faces of JWE(X’) are dominated by these of the corresponding faces
of NE(X). This proves the last statement.

Let 8= |Ry, ..., Rl be an extremal set on X. By Theorem 2.3.3, it has
connected components of the type U;, B,, €, or D,. Moreover, by (1) and
(2), it does not have a connected component of the type B, and does not have
more than one connected component of the type ;. By Statement above, the
same should be true for the extremal set § which one gets by the contraction
of any extremal ray R; of the type (II) of &. This shows the statement (3).

Now we prove (4): p(X) <7.

First, we show how to prove o (X) <8 applying Theorem 1.2 to the face 7
=M (X) of dimM (X) =m=p(X) —1. By the statement (1) of Theorem 2.5.8
and Theorems 2.3.3 and 2.4.1, the #((X) is simple and all conditions of
Theorem 1.2 are valid for some constants d, C;, C.. By Theorem 2.4.1, we
can take d =2. By the proof of Theorem 1.2, we should find the constants Cj,
and C; for maximal extremal sets & only (only this sets we really use).
Thus, #8=m. By the statement (3), then the constants C;<2/m and C,=0.
Thus, we get m< (16/3)2/m+6. Then, m=p(X) —1<7, and p(X) <8,

To prove the better inequality o(X) <7, we should analyze the proof of
Theorem 1.2 for our case more carefully. We will show that the conditions
of Lemma 1.4 hold for the 4/ (X) with the constants C=0 and D=2/3. By
Lemma 1.4, we then get the inequality o (X) <7 we want to prove.

Like for the proof of Theorem 1.2, we introduce a weight of an oriented
angle, but using a new formula: 0(Z£) =2/3 if p (R,(£), R,(£)) =1, and
0(Z£) =0 otherwise.

By (3) of Theorem 2.5.8, the condition (1) of Lemma 1.4 holds with
constants C=0 and D=2/3.

Let us prove the condition (2) of Lemma 1.4. For k=3 (triangle) it is
true since an E-set which has at least 3 elements has the type (a) of Theorem
2.4.1 (see the proof of Theorem 1.2). Thus, the triangle has at least three
oriented angles with the weight 2/3. For k =4 (quadrangle), we proved
(when we were proving Theorem 1.2) that one can find at least two oriented
angles of the quadrangle such that any of them has finite p (R,(Z£), R;(Z£)).
By (3) of Theorem 2.5.8, then o (R, (£), R,(£)) =1. Thus, the quadrangle
has at least two oriented angles of the weight 2/3. This finishes the proof of
Theorem 2.5.8.

Now, we give an application of (2) of Theorem 2.5.8 to the geometry of
Fano 3-folds.
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Let us consider a Fano 3-fold X and blow-ups X, at different
non-singular points f{ri, .., x5} of X. We say that this is a Fano blow-up if
X, is Fano. We have the following very simple

Proposition 2.5.14. Let X be a Fano 3-fold with terminal Q-factorial
singularities and without small extremal rays. Let X be a Fano blow up of X.
Then for any small extremal ray S on X,, the S has a non-empty intersection with
one of exceptional divisors E., ..., Ep of this blow up and does not belong to any of
them. Moreover, the exceptional divisors E,, ..., Ep define p extremal rays @, ..., @
of the type (I) on Xp such that E;=D(Q;).

Proof. The last statement is clear. Let S be a small extremal ray on X,
which does not intersect divisors Ei, ..., Ep. Let H be a general nef element
orthogonal to S. Let Iy, ..., I» be lines which generate extremal rays @, ..., @».
Then the divisor H'=H+ (li*H) / (—li*E1) Ex 4+ (p*H) / (= 1°Ep) Ep is a
nef divisor on X, orthogonal to all extremal rays Q, .., Qp, S, and (H)3>H*>

0. This proves that the extremal rays @, ..., @, S generate a face of NE (Xp)
of Kodaira dimension 3. Then, by the contraction of the extremal rays @, ...,
@), the image of S gives a small extremal ray on X. This gives a contradic-
tion.

It is known that a contraction of a face of Kodaira dimension 1 or 2 of

NE(Y) of a Fano 3-fold Y has a general fiber which is rational surface or
curve respectively, because this contraction has relatively negative canonical
class. See [Kal], [Sh]. It is known that a small extremal ray is rational
[Mo2].

Then, using the statement (2) of Theorem 2.5.8 and Proposition 2.5.14,
we can divide Fano 3-folds of Theorem 2.5.8 into the following 3 classes:

Corollary 2.5.15. Let X be a Fano 3-fold with terminal Q-factorial
singularities and without small extremal rays, and without faces of Kodaira dimen-
sion 1 or 2 for Mori polyhedron. Let € be the number of extremal vays of the type
(I) on X (by Theorem 2.5.8, the e<1).

Then theve exists p, 1 <p <2—¢, such that X belongs to one of classes (A),
(B) or (C) below:

(A) There exists a Fano blow-up X, of X with a face of Kodaira dimension
1 or 2. Thus, bivationally, X is a fibration of rational surfaces over a curve or of
rational curves over a surface.

(B) There exist Fano blow-ups X, of X for general p points on X such that
for all these blow-ups the X, has a small extremal ray S. Then images of curves
of S on X give a system of rational curves on X which cover a Zariski open subset
of X.

(C) There do not exist Fano blow-ups X, of X for general p points.

We remark that for Fano 3-folds with Picard number 1 the e=0. Thus, 1
<p<2.
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We mention that that statements (3) and (4) of Theorem 2.5.8 give simi-
lar information for blow ups of X along curves. Of course, it is more difficult
to formulate these statements.
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