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Regular version of holomorphic Wiener function

By

Hiroshi SUGITA*

1. Introduction

In the previous paper [8], we suggested a  definition of the skeletons of
holomorphic Wiener functions as follows :  Let ( B , H , p, J ) be an almost
complex abstract Wiener space. For an LP-holornorphic Wiener function F,
we defined the skeleton of F  by

F(h):-= fi , F(z+ h)p(dz), hE H.

Also we suggested a definition of the contraction operation,

F(/Tz):— T_IogtF(z),0 <  t 1,

Where { Tt}, is the Ornstein-Uhlenbeck semigroup. Then we gave several
reasons why these notions should be defined as above.

However we have to say that our reasoning was somewhat weak, because
we did not describe exactly for what elements of B, holomorphic Wiener
functions are well-defined. For example, in the theory of Dirichlet spaces,
each function of finite energy has a  nice version, so-called the quasi-
continuous version, which is uniquely defined up to the sets of capacity 0 . By
this version, we could establish a  calculus beyond "almost everywhere". In
fact, to study the skeletons and the contraction operation, we need a calculus
beyond almost everywhere.

"Without capacity, can we carry out a calculus beyond almost every-
where?" This is a question that was raised by K. Itô , when he tried to
reconstruct the Malliavin calculus without topology ([5]). Note that without
topology, we cannot define a capacity. Eventually, he could solve the ques-
tion, establishing a new class of exceptional sets( which he called strictly null
sets), and accordingly, nice versions of Malliavin's smooth functions(, which
he called regular versions).

In this paper, we exactly develop K. Itô's idea in our context. Namely, we
define a class of exceptional sets, which we shall call ho/omorphically excep-
tional sets and show that each holomorphic Wiener function has a nice version
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which is unique up to the holomorphically exceptional sets. Holomorphically
exceptional sets will trun  out to be not only of p-measure 0 but also of
pt-measure 0 for 0  t Here pt denotes the induced measure of p by the
mapping z z .  Moreover, we can show that each one point set {h} for h

is not a holomorphically exceptional set. In other words, for the regular
version I" of each holomorphic Wiener function F, we can directly evaluate
the skeleton P(h) as well as the contraction F'(,,rrz ). In addition, it holds that

P(11)= f  F(z + h)p(dz ), hEH,

f -'(, T T_iog ,F (z ), p-a.e.z.

Finally, we show that the B-valued Brownian motion does not hit any
holomorphically exceptional set with probability 1 . As a result, we see that
the stochastic processes obtained by substituting a  B-valued Brownian
motion into the regular versions are always continuous conformal martin-
gales. This fact may be interpreted as the "fine continuity" of the regular
versions with respect to the B-valued Brownian motion.

All these results need essentially no topology of the space B, because we
adopted K. Itô's approach.

The author would like to thank Prof. S. Taniguchi and Prof. S. Kusuoka
for valuable comments to the first manuscript. Remark 1 and Theorem 1 (ii)
below are due to Prof. Taniguchi, and Theorem 2 for general linear contrac-
tions and Remark 2 are suggested by Prof. Kusuoka.

2. Holomorphic polynomial

In this section, we introduce our framework, almost complex abstract
Wiener space, and basic properties of holomorphic polynomials. See [7] [8]
for details.

Let (B , H, p, J) be an almost complex abstract Wiener space, i.e., B  is a
real separable Banach space (whose dimension is infinite), H  is a real sepa-
rable Hilbert space continuously and densely imbedded in B, p is a Gaussian
measure satisfying

fB exp( .<1, z >)p(d4=ex p(
 

l E B * C H * .

and J: B—>E3 is an isometry such that r =  —id and that JIH : H—*11 is also an
isometry (see [7]). Let B* c  be the complexification of the dual space B* .

Then defining

B* (1,0) =  { ÇoE B*9J* so =
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_ { 9 E  B *9 j * _

we see that B*c = B * ( 1 , 0 ) E B B * ( 0 ) .  
The Hilbert spaces H* c  , H* (1•°) and H* ( m )

are similarly defined.
A function G: B— , C is called a holomorp hic polynomial, if it is expressed

in the form

G(z)= g(<çoi, z>, • • • , <çon, z>), zE B , (1)

where nEN  , g: Cn--+C is a polynomial with complex coefficients and çoi, • ••,
çonEB* ( 1 m . The class of all holomorphic polynomials is denoted by P h .  The
requirement iE 

B * ( 0 )  
in (1) is not essential. Indeed, for any çoi GH* ( ' ) , i=

1, n ,  we may regard them as elements of B* ( '') by replacing the Banach
space B.

Since each G E P h  is everywhere defined and is essentially a holomorphic
function on a finite dimensional complex space, the following relations are
easy to check ([8]).

G (2 1= fB G (z + f )p (dz ), V  z 'E  B

G( iT z)= T - logtG( z ) , e zE B

In this paper, we consider more general contraction operations than those
treated in [8 ]. We define a class of linear operators on H by

: ={A : H .- 41111AV 1 and A* A commutes with J.).

It is known that any bounded linear operator on H can be uniquely extended
to a measurable linear operator on B  ([2]). Hence if G E P h has an expression
(1), then the Wiener function G (A z) for AE o t  has the expression

G(A4=g(<A* 91, z>, •-., <A* ç', z>),

which may be no longer a holomorphic polynomial. Note that if A* commutes
with J *  (or equivalently, A commutes with J ) , we have A* ç 0 iE *H _ 1 ,
n . Therefore G (A z) is, in this case, essentially a holomorphic polynomial.

Following [2], we define a linear operator r (A * ) on O p ) for each A E
by'

r (A * )G (z ):=  fi, G(Az + 11H — A* A z ')p(dz ').

Since IIH— A *A  commutes with J, it is easy to see that the integrand of this
expression is holomorphic in z ', if G E P h . Hence we have

'In [2], they define IAA) instead of F (A ).
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G(A 4= r(A.)G (z), p-a.e.z,

for each G E P h .

3. Holomorphically exceptional set and regular version of holomorphic
Wiener function

An L P -holomorphic Wiener function is defined as an L P (B—> C, p)-limit of
a certain sequence o f holomorphic polynomials. The c lass o f a ll L P -
holomorphic Wiener functions is denoted by .MP . Namely, zP is the LP -closure
of P h .  Throughout the paper, we always assume l< p< 00 •

Our purpose is to establish a way to get good versions of L P -holomorphic
Wiener functions so that we may directly evaluate their skeletons and the
contraction. Although being named as holomorphic Wiener functions, they
are, in general, neither continuous nor differentiable even in Malliavin's sense.
And hence it seems impossible to get their good versions by, for example,
Dirichlet space method, that is, capacity.

Now we introduce a class of exceptional sets, which we developed K. Itô's
idea ([5]) in our context. Its outward appearance is very similar to Itô's
definition, but the complex structure inside it will bring us another world.

Definition 1. For a sequence {G ,,}E.Ph such that EnlIGnIlL, (/)<00, we
define a subset N P ({Gn}) of B  by

N P({G }):= Iz EB I I  Gn(z)I =001.

A set A B  is called an L P -holomorphically exceptional sets, if it is a subset of
a set of the type N P ({G n } ). We denote the class of a ll L P -holomorphically
exceptional sets by .N1. If an assertion holds outside of an L P -holomorphically
exceptional set, we say that it holds "a.e.(K 112)".

Remark 1. A ny countable union of L P  --holomorphically exceptional sets is
again an LP-holomorphically exceptional set. Indeed, let Nh— N P ({G,,,h}), kEN,
with En il Gn,kilLP(p)< o e . We may assume EnlIGn.klILP(p)=2'. Let {Gn} be a
renumbered sequence of {Gn,h}. Then we see EnlIGyill,,LP(p)<00 and UhNhc
N P ({Gn}).

Theorem 1. (i) Fo r an y  h E H , the one point set { h}  is  n o t an L l'-
holomorphically exceptional set.
(ii) For any  z E B \H , the one point set { z}  is an V -holomorphically  excep-
tional set.

Proof. ( i )  Take any sequence {G n }c ip h  such that EnlIGnIlL, (fo<oe.
What we should prove is EnIGn(h)l< cc for each h G H . Since G E  P ,h, we can
write
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Gn(h)= fB Gn(z + h)p(d4= LGn(z)M (h, 4p(dz),

where M(h, 4=exp(2<h, z> - 114 )  is the Cameron-Martin density, which has
every moment. Consequently, taking q>1 so that 1/p+1/q=1, we have

El Gn(h)I E f G n (z )M (h , 4 u (d z )  Ell GnIlL, (,)11M(h, • ) L ( p) <n  B

(ii) Since J sa tif ie s  r=  —id and it is isometric, it is easy to see <h, Jh>ii =0
and hence II es hIlll =11hIln, for any hEH, where eh= (co s 0 )h -F (sin  OA. We
therefore have

h>HI ; soEIP °) , holin.c=1), hEH.

Nothing that B* is dense in H*, for any zEB\H,

sup[IB.c c <ço, z>BI ;  T E B *(1m , Ikollipc=1}=co.

Take a sequence {çon}cB* (' ) so that

IB.c<Tn, z>BI->n and II IITnIIH. c =1,

and put

Gn(z1= 12 B.c<çon, zf>B, z 'E B .

Then we have Enll GnIlL, (p)< 00 and {z}cN P({Gn}).

For each AE, we denote by pA the induced measure of p by the
mapping A : B— >B .  In particular, for t E [0 , 1 ], we denote the Gaussian
measure pirTin simply by p t .  Namely, pt is the induced measure of p by the
mapping BDz i— Art- ,zE B . Note that p i  and p are mutually singular, if t<1.

Theorem 2. Let A c  t .  T h en  any LP-holomorphically exceptional set is
of  pA-measure 0 , in particular, it is  of  pt-measure 0 for

Pro o f . Take any sequence {G ,}cPh  such that E nil GnIlL, (,)< co. What
we should prove is pA(NP({Gn}))=0. We estimate the following integration.

f ,  a z (z )Ip A (d 4 =  fa I Gn(Az)Ip(dz)

Since F(A*) is a contraction on .0 ,ci) ([2]), we have

R.H.S.=Ellr(A*)G7,11Li(p) E F(A*)GnIlL,(,) Ell GnIlL, (,) < 00.

Thus we see pA(NP({Gn}))=0.
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Definition 2. FE Z  is called  p-regular, if there exists a sequence {G}
cip h such that

liGn— FILL, (p)— >0 and Ga- — F a.e.(ill), as n-400.

Theorem 3. ( 0  I f  {Gn}CP h satisfies EnlIGn+i— G n11,,LP(P)<c° , we put

m Gn(z), zEEN P ({Gn+i —  G} )
F(z) :=LimnGn(z):= { li n

0, zENP({Gn+i— Gn})

T hen FE X P and it is P-regular.
(ii) I f  F1, F2E.7eP are P-regular and Fi= F2, p-a.e., then F1— F2, a.e.(i11).

Proof. ( i )  S in ce  Gn—*F , a.e.(./1(1), w h at w e sh o u ld  p ro ve is  liGn
—FilLpoo—>0. On the other hand, since {G n} is a Cauchy sequence in L (P ) ,
there exists its limit p E z P .  Now, 11 G. —  PIILP(p)- 0 implies that some subse-
quence {G;z}c{Gn} converges to F', p-a.e. Of course G; r - F, a.e.(A), and
hence, G — >F ,  p-a.e. Then we have F=F%  p-a.e., and consequently, liGn

— FOLP(F)=11Gn —  F'111..P(p) converges to 0.
(ii) We have only to show that if F=0, p-a.e. and it is P-regular, then F=0,
a.e.(Art). Since F  is P-regular, there exists a sequence {Gn}cPh such that
IIGn— FhPoo=11Gniii.P(p)- - *0 and that Gn—>F, a.e.(./V). By taking a subsequence
if necessary, we may assume EnliGnIlLP(p)< co. Then we see Gn—>0 outside of
N P (IGn1). On the other hand, since Ga---)F, a.e.(K1), we have F=0, a.e.(ilrt).

Theorem 4. For any FE .7 0 , there exists a p-regular version P of F, that
is, P = F, p-a.e. an d  P  is p-regular.

P ro o f  Take a sequence {Gn}c.Ph so that E nil Gn — FIILP(P)<oe. Then we
have EnliGn+i— GnIlLP(P)<oe. Define P  b y P  : =LimnGn as in  Theorem 3.
Now it is clear that -1-' satisfies the required conditions.

Theorem 5. L et F E Z P  an d  P be any p-regular v ersion of  F. Then we
have
(i)

r'( h ) = fi , F(z + h)p(dz ), hEH ,

(ii) f or AEot,
P(A 4=.1(A * )F(z), p -a.e.,

in particular,
P(IT z)= T-io g tF(z), p-a.e., 0 <t<1 .

P ro o f  Take a  sequence {Gn}c.Ph such that EnlIGn — FOLP(p)<00, and
define a P-regular version P  as in Theorem 3. We have only to show the
assertions for this version F.
(i) Take any h  H  .  Since {h} is not holomorphically exceptional set, we



Holomorp hic W iener function 855

have G n(h)-4"(h). On the other hand,

Gn(h) -=  fi , Gn(z+ h)p(dz)—  4, F(z + h)p(dz ).

Thus we see P(h )= f  F(z +h)p (dz ).
B

(ii) Since NP(IGn1) is of pA-measure 0, we have Gn(A z )—  (A z ), for p-a.e.z.
On the other hand,

in LP(,u).Gn(A z )=P(A . )Gn(z)— >r(A *)F(z),
Now it is easy to see P(A z )=F(A *)F(z ), p-a.e.z.

4 .  Regular version and B-valued Brownian motion

Let (Zt)o i be a B-valued independent increment process defined on a
probability space (Q , .7 , P) such that Z0= 0  and the distribution of Zt —Zs, t
>s, is li s. Then the process (Z t)o t,i becomes a diffusion process on B and
it is called a B -valued Brownian motion(see for example, [3]).

Theorem 6 .  (i) For any  h E H , the process (Zti- h)o i does not hit any
N EN T, with probability 1 .  Namely,

P(Z t+h E N  f o r V  tE[0, 1])=1.

(ii) L et FE .76 P an d  F' be any  p-regular v e rs io n  o f  F. T hen the process
( -F(Z t))0 t,1  is a continuous L b -conformal martingale.

Fo r any  h E H  and  f o r any  i<p '<p, the process (P(Z t+ h ) )0 t ,i is  a
continuous Lb .-conformal martingale.

P ro o f  (i) Take any sequence IG nIcPh  such that E nlIGnIlLP(,)< 00 . It is
sufficient to show that

E[ sup E IG n(Z t+h)i]<oe,(:K ti n

where E  stands for the expectation with respect to the probability P .  Let 1
<p' <p. Since each Gn(• +h) is essentially defined on a finite dimensional
complex space and it is LP .-holomorphic, the process (G n(Z t+h))0 ,,i is a
continuous LP'-conformal martingale (see for example, [4], Chapter IV-6). It
therefore follows from D oob's inequality that Cp'>0 being some constant,

E[ sup I Gn(Z t+ h)—  G(h)I] E[ sup 1Gn(Zt+ h) —  G n (h e i l ' P '0‹:‹3.

S cp'E[IGn(Zi+ h)— Gn(h)V"i l i P '

= c p'll Gn(• + h)— Gn(h)ii L''(P)

c P'(11Gn(' + h)li L. , (P) + I G n(h)I).
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Note that EniGn(h)l< co and

G.( + h)iLi-(p)<IIGnIlL, (p)11M(h, • )1i1(4'p),

where P'/p+1/q=1 and M (h, z ) is the Cameron-Martin density. Then we
have

E[E S up 1Gn(Zt h) Gn( 011 -< CPEOGnIlLP(P)IM(h, • )11 11,14)+1 G(h)D < 0 3 .n ost

Again by EnIGn(h)l< co, we have E l li nsupo il Gn(Zt+ h)I]< co, which
implies the required inequality.
(ii) Take a sequence IG nIcPh  such that EnliGn — F49(P)< C ° .  On account of
(i), it is sufficient to prove the assertion for a particular P regu lar version of
F .  Hence we may assume F to be the P-regular version defined in Theorem 3
using {G}.

As mentioned above, the process (Gn(Zt) 1  is  a  continuous LP-
conformal martingale. Again by Doob's inequality, we have

E[ E  sup I G n +I(Z )—  G n (Z t) I] eP E II G n + i GnIILP(P)<n=1 t n=1

This implies that the sequence {(Gn(Zt)) converges to a continuous
LP-conformal martingale, say ( Yt)0 1, on some D0ES2 with P(S20)=1. Let a
c S2 be

91:={coeS201Zt(w)EENP ({G.+1 — Gn}) for V tE[O, 1]}-

Then we see P(91)=1 and that Y t(a))= P(Zt(u))) for each t e [0 , 1] and each
wE a, which completes the proof of (ii). The assertion (iii) easily follows from
(ii).

Remark 2 .  In the above therem, the process (Zt)o i  need not be a
Brownian motion, if it satisfies the following condition :  For each GE.73 h,
G ( Z )  is a  conformal martingale and E[IG(Z)1 P ] i P  cPiiGIILF(p) for some
constant cp >0.

GRADUATE SCHOOL OF MATHEMATICS
KYUSHU UNIVERSITY

References

[il S . F an g  an d  J. Ren, Sur le squelette et les dérivées de Malliavin des fonctions holomorphes
sur espace de Wiener complexe, Jour. of Math. Kyoto Univ., 33-3 (1993),749-764.

[ 2 1 D .  Feyel and A. de La Pradelle, Opérateurs linéaires et espace de Sobolev sur l'espace de
Wiener, C. R. Acad. Sci. Paris, 313, Série 1(1991), 727-729.

[ 3 1 L .  Gross, Potential theory on Hilbert space, J. of Func. Anal., 1 (1967), 123-181.
[ 4 1 N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, second

ed., North-Holland / Kodansha, 1989.



Holomorp hic Wiener function 857

[ 5 ] K. Itô, Positive generalized functions on (1r, B ,  1\1- ), in White Noise Analysis, Mathematics
and Applications, eds. T . Hida, H. H. Kuo, J .  Potthoff and L. Streit, World Scientific,
Singapore (1990), 166-179.

[ 6 1 S .  Kusuoka and S. Taniguchi, Pseudoconvex domain in almost complex abstract Wiener
spaces, J. of Func. Anal., 117 (1993), 62-117.

[ 7 ] I. Shigekawa, Itô-Wiener expansions of holomorphic functions on the complex Wiener space,
in Stochastic Analysis, ed. by E. Mayer et al, Academic press, San Diego (1991), 459-473.

[ 8 ] H. Sugita, Properties of holomorphic Wiener functions—skeleton, contraction and local
Taylor expansion, Probab. Theo. and Rel. Fields 100 (1994), 117-130.


