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On equivalence of product measures
by random translation
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Masanori HINO

1. Introduction

Let X -={Xk} be an i.i.d. real random sequence and Y={ Yk} an indepen-
dent random sequence also independent of X .  Throughout this paper, the
notations X and Y are used to denote these notions. X and X +Y ={Xk + Yk}
induce probability measures Px and px+y on RN, respectively. For each k,
denote the distributions of Xk, Yk and X h + Yk by pxk, pyk and pxk+y„, respec-
tively. If pxk+yk—Px for every k, then the Kakutani dichotomy [1] implies
that we have either P X + Y ^ Vix or PX-I-Y px. Our main problem is to describe
the conditions on Y  so that PX -FY —  Px holds.

We say that X  satisfies the condition (A) if px, is equivalent to the
Lebesgue measure and the density function f  satisfies

f ' ( x ) 2  
 dx<00.f (x )

Similarly, the condition (C) for X is defined by replacing the condition of the
density by

f : f f ((x12  d x < o e

It is known that (C) implies (A) (Sato-Watari [8]).
When Y  is a  deterministic sequence or a symmetric random sequence,

there are systematic studies which may be summarized as follows :

Theorem 1.1 (Shepp [9]). Suppose yE  R N
.  T h e n

PX+ 3 , -  P X  i mpliesYe £2.
(ii) I f  X satisfies the condition (A ), then yE-6  implies px+y—px.
(iii) I f  px+ y —,ux f o r all y E i z ,  then X satisfies (A).

Theorem 1 .2  (Okazaki-Sato [4], Sato-W atari [8], O k az ak i [3]).
(i) Assume that Y =ae={akek}, where a={ak} is a real sequence and e={ek}
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is  a Rademacher sequence, that is, an independent random sequence with
1distributions P[ek=1]=P[ek= — 1] = -  fo r each k . Then fix + Y  Px implies a

i t ,  in other words, YE4 a.s.
(ii) I f  X satisfies (C ) and Y is symmetric, then Y E.& a.s. implies P X + Y .  l i X .
(iii) If px+y—px for all Y = aee i4  a.s., then X satisfies (C ).

In this paper, we treat the general case and generalize the theorems
above. The following conditions for a random sequence Y and e >0 play
important roles and are often referred to :

(a)e Ek E[ e }<0 0 , (b)e Ek E[ : I Yk1S e] 2 < 00,
(c ), Ek E[ Y k  1 1 7  k l  er<  00,
(d)6 Ek >d< co, (e), Ek 13 [1 1 7121 >  e]2 < co.

We give some remarks. It is easy to see that (a), implies (b)e and (d ), implies
(e ) , .  And by Kolmogorov's three series theorem, the following three state-
ments are equivalent to each other :

• YEÉ4 a.s.;
• (a ), and (d ), hold for some e> 0;
• (a ), and (d ), hold for every e >O.

In particular, when Y =ae, Y 4 a.s. if and only if (b)€(e)6 hold for some (or
every) e >O. Note also that when Y  is deterministic, YEA if and only if
(c ),(e ), hold for some (or every) e >O.

Particularly when X is a standard Gaussian sequence, i.e. px, is Gaussian
with mean zero and variance 1, X satisfies (C) and we have detailed results
such as

Theorem 1.3 (Kitada-Sato [2, Theorems 7 and 9]).
(i) I f  Y is symmetric and px+y— fix, then (b)6(e)6 hold fo r  every e>0.
(ii) If  (a ),(c ),(d ), hold fo r some e>0, then px+y— px.
(iii) I f  Y is symmetric and (b)6(d)6 hold fo r some e>0, then px+y—Px.

How can the assumptions of X be weaken in Theorem 1.3? Concerning
this, there are some related results as follows :

Theorem 1.4 ([2, Theorem 5]). Suppose px, is equivalent to the Lebesgue
measure and the density function f  is in C 2 , Y is symmetric, and limk— Yk=
0 a.s. Then IIX+Y' V-13C i mp lies (b), fo r some e>0.

Theorem 1.5 (Sato-Tamashiro [6, Theorem 2 .1 (A ) ] ) .  Suppose X  and Y
take values in Z 11 and P[X1=0]>0. Then px+y- --Px implies (e), for every e>
O.

Theorem 1.6 (Sato-Tamashiro [7, Theorem 1]). Suppose X  is  standard
Gaussian and Y takes values in R .  T h e n
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(i) Px+y—px implies (c ),(e ), f o r every e>0.
(ii) (c)€(d)6 f o r some e >0 imply ,(1X-EY' - '- ' )U X .

Theorem 1.7 ([2, Theorem 4]). Suppose X  satisfies ( C ), Y  is symmetric
and moreover

f " (x  +  4 2

f  . rzu p  f ( x )  d x < o e

f or some e> 0 . ( When X  is standard Gaussian, it holds f o r any  E > 0 .) Then
(b),(d ), f o r this e imply px+y—Px.

We shall show in fact the statement of Theorem 1.3(i) is true under no
extra assumptions of X and Y, and moreover an additional conclusion holds.
We shall also show (ii) and (iii) (with slight modification) under weaker
conditions than ever proved. Our main theorem is the following

Theorem 1.8. (i) px+y—tix implies (1 ), (OE (e), f o r every E>0.
(ii) I f  X  satisfies (C ), then (a)e (c)e (d), fo r  s om e  e>0 imply PX-FY' - '"V-IX.

(iii) Suppose X satisfies (C ) and moreover

sup (e — 1 z 1 ) 2 .1 .+ -  f
 " (x  +  

 dx <a)f (x)izi<e
f o r some E > 0 . Then (b). (c).. (d)6 for th is e imply px+y—px.

The condition (C) is necessary in (ii) (iii) because of Theorem 1.2 (iii).
Theorem 1.8 involves Theorem 1.1 (i) (ii) (under the condition (C )) and
Theorem 1.2 (i)(ii), as well as all results from Theorem 1.3 to Theorem 1.7.

This paper is organized as follows. In section 2 we prove Thorem 1.8. In
section 3 we discuss the possibility of improvement of the theorem and give
some negative examples.

Acknowledgement. I would like to thank Professors S . Watanabe,
I. Shigekawa and N. Yoshida for their useful advice. Also I would like to
express my gratitude to Professor H. Sato for his encouragement. Indeed, this
work was inspired by his lecture given at Kyoto University.

2. Proof of Theorem 1.8

First we state a theorem which will be needed in the proof.

Theorem 2.1 ([2, Theorem 2]). Suppose px.+y.—px„ f o r every k . Define
p k ( x ) _  dpx.+Yk  (x ) ,

dpx. A k=-{ X ER ; Pk(x)-1<1 } and A= px,. Then the following
three statements are equivalent.

• Px+y-----px.
• Ek(Pk(Xk) - 1) converges a.s.
• the following two series are convergent :
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(2.1) fAkc(Pk(x)-1)&1(x)< 00,

(2.2) (Pk(x)-1)2c/2(x)< co.

P ro o f o f  T heorem  1 .8 . We use the notation of Theorem 2.1.
( 0  Since px+y 'x, we have PXk+Y - ',UXA, for every k. Clearly it is enough

to show (b)R (c)R (e)R for some R >O. Define g (x )= 4 x - 1 ,  x + 1 ] ) .  We see
0<g(x)_<1 and limx-±. g (x )= 0 .  Put a=supx.R g (x ) .  Then 0<a1 and we
can take a real sequence {Wm} and w E R  such that lw — w,k1 1 for every m and
g (w .)T  a as m goes to infinity. We can also take R >0 such that

/law —R+2, w +R —219 <1.

We prove the claim for this R. First we shall show (e )R . Put /k =P[117 k1>R]
for each k . Without loss of generality, we may assume /k >0 for every k.

There is a subsequence {w,k(k)} such that

(2.3) g (w .(k ))> 4 1 + 4 )1 .

For convenience we replace the notation Wm(k) by w k . Then for each k,

fwk —1, zyk + 11 
PR( x ) c l i i ( x ) = f i Rk+yk([ wk — 1, w k +1])

= f px.(twk - l - y , Wk + 1 — 3, 1)dpyk(Y )

= ( f  R  ,R 1 +  f  R  , R i c )/1([ 1,w k + 1 — y ] ) d i l y k ( y ) .

If yE [— R , Ri c then [wk-1— y, wk+1— y]c[w— R+2, w + R -2 r ,  so the
integrals are not greater than

X
a 2aclkey„+ f clpy —=a(1— lk)+

a
1k= a(1 - -

3
4).—R R1 [—R,R]c 3 h3

By (2.3), this is dominated by

g (
wk

)(1-4-4 ) (1 - 4 1
h
) g(

wk
)(1-1

39.

Now we define CO =(1 —  t) 2 .1(,,I). Since qf is convex and monotone decreas-
ing, we get

f , k (pk(x)-i)2 o x )  fR V(P k(X))(12(X) (P k(X))C1/1(X)f t  A-1,W h+1]
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g ( tv v (  g(w1 f a,„_ ,,.„,,,iPk ( x ) dA ( x ) )

g( wh) w
1 • g( wh )(1 —4 ) )

3 1 2

Hence we have Eh l <00 from (2.2).
Next, we shall show (b)R and (c)R. Fix 3 E(0, R - ') such that E [e 'l*O .

From (2.1) and (2.2), we have

{ ( fAkc (Pk(x) - 1)&1(x)) 2 + L k (Ph(x) - 1)2 c//1(x)}

(Ph(x)-1)(. -//1(x))2 + ( fA k  lPh(x)-11c/A(x)) 2 }

1 f
k(X) — 110 4 ) 2

Lei8x ( 1— M x ))& 1(x )

dA(x)— L 2e y „ ( x )f R 

=_ 1 EIE [e iRxii( i _ E [e iRyh])12
2 k

1= -
2

lE[e 18x]12E(E[1 —cos 8Yd 2 +E[sin 817
h]2 ).

Since E[e."`]*0, we have

(2.4) E E[1 —cos 817hr<00

and

(2.5) E[sin 817h]2 < 00.

By using the inequality 1 —cos0 1;1 02 on {101 1}, (2.4) implies that

00>E E[(81 70 2 : laYkl< 1]2

E[18 2 31: I 17h1 /?]2.

> T

1
2 t je

2
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So we conclude that (b)R holds. From the inequality I 0 —sin01 -< 0 2 (0 E R ) and
(b)R, we have

E[8Yk —sin (SYk : I Yid <R] 2 E[I8Yk —sin SYkl: I Yki<R] 2

E [8 2 1 1 : Ykl<R] 2

<co.

From (2.5) and (e)R, we also have

E[sin 8Y-k : I Yki<1212 <2 E E[sin aYk]2 +2 , E[sin 817k : Yid >Rj 2

< 2 E [sin  8Y kr+ 2 P [I Y k l >R ]2

<co.

Combining these results, we obtain that

E[8Y-k : I Ykl<R] 2

E[817 k —sin 817k : Y k l< R ] 2 + 2  E [s in  81 7 k : I Ykl<R] 2

<co.

This implies (c)R and completes the proof of (i).
(ii) The proof is almost the same as that of Theorem 1.2 (ii), which is
Theorem 3  of Sato-W atari [8], but we would give it to make necessary
modifications clear.

We may assume that e =1 . Let f  be the density function of Px ,. Then we

have 
C I P

d m
Y kX k

  ( x ) =E [f  ( x  Y k ) ] ,  where m  is the Lebesgue measure. From

Kakutani's theorem [1] we see px+y—px if and only if
2

f  (al_f(X Y k)] —  f (x ) )  dx <0 0.

By considering — Y  instead of Y, it suffices to prove Px-y-/1x, so we shall
show

E f  + 1 ,1E [f (x +Y k ).1 -11(x )) 2 dx <cok

as in [8, Theorem 3].
Using the inequality

(sla+b — 1c+d) 2 (1a - 1 ) 2 +(,1b - 1d) 2

for every a , b, c, d we have
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(VEif (x + Yk)] — if (x)) 2 ( ELf(x+ Yk) : IYk1 1 .1 — A/f (x)PLIY kl<11) 2

±(i/Elf (X  ± Y k) : IY kl> 1 ] — 1 f (X)PLIY kl>1 1)2 •

Since (d)1 implies E k f  Elf (X ± Y k) : lY kl> I I  — I f  (X)PHY kl>1.1)2 dX < Œ

(see the proof of [8, Theorem 31), it is enough to show

f .  Ok(x) 2 dx <00,

where Ok (x )=V Ell(x + Yk) : I Ykl 1.] — if (x)PLI Ykl <1] •

Define O k ,s(t)=A [f (x +tY k ): I Yk1 1.1, OS t< 1. Then

E[f (X)Yk : IYkl<li  =  f (X)E[Yk : IY kl < 1 ] 
ç b r k 'X ( ° )=  211EU (X ) : I Ykl < li 2 f(x)PI Y<1] •

Since

Ok (x )= k,x(1)— çbk,x ( 0 ) -= gYk ,x(0)+ . 1.: 0';0 (1— t) ,x(t)dt,

we have
+.0 +.. 2

f .  Ok(X) 2 dX <2 E f ,x(0)2 dx + 2  f  on f o
 1 (1— t)07,,x(t)dt}  dx.k  -cc

The first term of the right-hand side is equal to

i 1--- f (x) 2  d , E[17  k : I Ykl<112  

2J-  f ( x )  — t PH Ykl <1]

This is finite as we see from the facts that PH Y kl<1] -12-  for sufficiently large
k, and that (A) and (c)1 hold. The second term is also finite by the proof of
[8, Theorem 31.
(iii) Define for each k,

V k(x)=E[f(x—  Y k):1Y kl> e]/ f(x) — P[IY kl> 6],

Wh(x)=E[f(x— Y k) — f (x) : 1Y ki -‹  El/ f (x).

Then Pk(x)-1= Vk(x)-F Wk(x) and by Theorem 2.1 it is enough to prove that
Ek 17k(Xk) and Ek Wk(Xk) converge a.s. By Lemma 1 of Kitada-Sato [2], Ek
V k(X k ) converges absolutely a.s. Since E[ W k(X k)]=0 for every k  and
Wk(Xk)'s are independent, it is enough to show Eh E[ Wh(Xh) 2 ] < 00 in order to
prove the a.s. convergence of Eh Wk(Xh). We have

E[ Wh(Xh)2 ]
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=,, f . E[f(x— Yk) —  f(x):117 ki erl f (x)dx

-= f  E [ —  f(x ) Yk + f o ( 1 —  t ) f . " (X — tYk)Ildt : iYkl e]2/ f(X)dr

s 2  f 0. E [f(x) Yk : I Yid Er/ f(x)dx

+2 Ef
+ .

E[

 r l

(i- tv " (x -tY k )1 7 1 d t:IY k l e]
2 
1  f ( X ) d X .

k  - . 0  JO

The first term is equal to

2 f+-
 fi(

x
x

)
)

2 dx , E[Yk : I Yk 1 e]2
,

which is finite. The second term is not greater than

2
i

(1—t• I 17k1  )1  f l x —

 t Y
k
) Ildt : I Yki el,DE[fa 6  il 11(x)

where 11'112 means the norm of L2 (R, dx). By using Minkowski's inequality for
integrals, this is further dominated by

2 E [ fo 1 (1 — t • I Y
e
k I ) r (

.77( x
t
)
Y 4 ) 11 dt : lYkl E

T
2

2 sup(1 izi )2 f  l x
( x
+

)
z )  02

2 E [ fo ' ndt : 1 Yki el1z1<e E

=2e-2 s u p (e — iz i )2
/+- f"(x+z)2 •  —ax .L E[ 11 : I Ykl e ' ] 2

1z1<€ --... f ( X ) k

<00,
which completes the proof of (iii).

3. Concluding remarks

1. The three indices in the exponents of the conclusion (b),(c)e(e), of
Theorem 1.8 (i) are best possible. To be more precise, for any rE(l, 2), there
exist X and Y such that

Px+Y - ' - '11x, E[ Y :: I Yk 1 &.=°°,
, IE[ Yk : I Ykl €]14 = œ , PH Ykl > €14-00 for every e> O.

In particular, we can take X as a standard Gaussian sequence. For the proof,
we need the following lemma for a standard Gaussian sequence X.

Lemma 3.1 ([2, Lemma 2]). Let Y=1170 have the distributions

2
29

2
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P[Y k =  a d - P [Y k - P[Y k ph

f or each k, where {ak} and {ph} are sequences of positive numbers such that limk

ak=œ  , E h  Pk = C ° ,  and E h  p<00. S et 7k= a
l

k log {2 (1+ 1 ) } -Fl a k  Then
Pk 2

1.1X+Y—  [ix if  and only  if  the following two series are convergent ;

7k 1  2e x p (-T u  )du  <0 ,7k-a.

Yk-2ak
E 2 1  2

)du  < co.e x p (a k - -
2

uk f 2 a k

Let
 y ( i ) = {

j = 1 ,  2, 3 be independent random sequences with distribu-
tions

P[ 17 /Z1 ) = k  2 4 r  ]=P[ 11 1 ) = - k  24r 1= + k 1- r, P[ Y, ) =0 ]=1

P[1 1 2) = k - i1 =  1,

P[ YIP) = ak1=P[Y ,P ) = - ak l= ph, P[Y , 3 )=o]=-1- ph,

where ak= illog log k , Pk = ( - - 1ef — 1) 1 for 16.

Then, Theorem 1.8(iii) implies ,ux+yo,—fix and ,ux+y--px. We shall check
that Lemma 3.1 is applicable to I'm• It is easy to see that Efre Pk = oe and E h

p i<  co . Set rk =  
1

lo g {2 (1 + i-- ) } + l a k = -
1

•—
r  

log k + 
—2 a k '  

There existsahp h 2 a k  2
1 1  rN E N  such that 

l o g k  32 for all k.l■ T . Then, rk —  a k > y —

a k  
.T  log klog log k

for k N  and

E  Pk r k e x p ( - T u 2)u u  ,e 1,1 / / l e a k  exp{ -
( 
r k  a k )2 }k>1■I ne-ak

E Pk ak  e X P{  2
1 ( 1 • 1 •  r  lo - k ) 2}2  a k  2

k N Pkak exp(- log k)

k N( 2 i) ' /log log k k-1

<00,

and
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7k-2ak 2 1  24,2
L  P k exp ) d u  E pW rex p (a 2k)fr AT f 2 a k

E  k i - 1 )  2  +/Y r  log k
le Ar

<00 .

Therefore we deduce from Lemma 3.1 that PX +I(. -  p x .  Now we define an
1independent random sequence Y=( Yk) by Since PX)t+

1
Ej=1 PXk+Y k ( J) , we have

CIPX10-1-Yk1 —  1  i (   CIPX ), - F  k ( i ) 1 ) .
CIPX k 3 J=1\ dpxk

By Theorem 2.1, we conclude that 11 X+Y -  V.1X •  Moreover we have

E[ Y : lY k l € .]3 =c)°, , 1E[ Yk :117k1 d13 =c)°,

P[117k1>ei=cx) for every e>0.

We also see (a ), does not hold for any e >O.

2 .  We might replace the condition (a ), with (b ), in Theorem 1.8 ( i i ) ,
which is yet to be investigated. So far, we need an additional assumption of
X such as (iii). However we cannot replace (d), with Ek P[117  kl >  < 00 for
any r >1 even if X  is  standard Gaussian. For l<  s< 2, we shall give an
example that X is standard Gaussian and for every e>0, E[ Y: 117k1 e i -

E[ Yk : 1Ykl el = 0  a l l  but fo r finitely many k , EkP[i >c1 8 2 < co, and
Px+y J- Px.

Take any sE(1, 2). Define Y by

P[ Yk= =P[ Yk = —  ak ]=i3k , P[ Yk=0]=1 — Pk,

2where a k= i7 log  k, pk= (-1-k -1- - 1 )  1 for k>16.2

Then Ek Pk =  E k 00 and Y satisfies the conditions mentioned above.
1 1 Set 7k= 

a k  
log{2(1+ ) } + -

1

ak. Then rk =ak , sopk 2

r
Ph je xp( -1 742 )du>E  pk f exp (- 1- 142)du=00.2 k 2

Therefore we conclude ,ax+yi ttx by Lemma 3.1.
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