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Equivariant Hopf structures on a sphere

By

Kouyemon IRIYE

1. Introduction

L et G  b e  a  com pac t L ie  g roup . F o r a  G - space X  w ith  a  base  po in t a
pointed G - map

1u: X xX — *X

is said to be an equivariant Hopf structure of X  if the restriction of g  to X VX
is equivariantly hom otopic to id V id. A  G -space  w ith  an equivariant Hopf
structure is called a  H opf G -space . If G =1 id  , the trivial group, then a Hopf
G-space is  a  usual Hopf space (H - sapce). A ccord ing  to  a  theorem of Adams
th e  sphere  S n a d m its  a  H o p f s tru c tu re  p re c ise ly  w h e n  n  =  0 , 1 , 3 , o r 7 .
Equivariant H opf structures on a sphere were considered in  [B r ] ,  [ I r ] ,  [Is],
[CC] and [H].

The multiplication in C, the complex numbers, H, the quaternions, and 0,
the Cayley numbers define the Hopf structures on S 1 , S 3  and  S 7 , respectively.
These Hopf structures are equivariant w ith  respect to  the action of the auto-
m orphism  groups 0(1) of C, SO (3) o f  H and G 2 of O.

Let H  and G be compact Lie groups and  V  a  real representation space of
H .  W e say  tha t th e  representation V  factors through G  if  th e re  is  a homo-
morphism f : H — > G and a G-module W  such  tha t V  is isomorphic to f * W .  In
this paper w e assume that every representation has an  invariant m etric . W e
denote by s (v) th e  u n it  sphere o f  V .  T hen  by  [CC, Theorem  1.3 (ii)] o r  by
using th e  re su lt  abou t the  Z /2 -equ iva rian t H opf s truc tu re  on  the  spheres,
[B r], [Ir], w e have

Proposition 1.1. L et G be a compact Lie group and  V  a real G - module of
dimension 1 or 3. Then S  (R V)V ) has a G - equivariant Hopf structure if  and only
if  V  factors through 0(1) or SO(3), respectively .

O n the  o the rhand  as  fo r equ iva rian t H opf s truc tu res  on  S ' Cook and
Crabb [CC] showed

Theorem 1.2. W e take G = z/pr, where p> 1 i s  p rim e . W rite E for the
standard one - dimensional complex representation of  G  and E k f o r its k -th tensor
pow er. L et V  be a non - triv ial 7 - dimensional real representation of G.
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Then S (R V )  ad m it s  a G- equivariant Hopf structure if and only if  V is iso-
morphic to REDEa e E k @E c , for some non-zero integers a, b, c w ith 1)2 (a) =1)2 (b)
<1)2 (c) r  if p= 2, 1)p (a) =1 p  (b) ( c )  r  i f p is odd (and  1)p  (a) <r since V
is non - triv ial).

T h is  theorem  im plies that Proposition 1.1 does no t ho ld  w hen  V  i s  a
7- dimensional re a l re p re se n ta tio n . I n  c o n tra s t to  th is  fa c t w e  p ro v e  th a t
Proposition 1.1 holds when V is  a  7- dimensional real representation of S '.

Theoren 1.3. W rite E for the standard one - dimensional complex representa-
tion of S ' and E k  for its  k - th  tensor power. Let V  be a nontriv ial 7 - dimensional
real representation of S'. Then S (R e' V ) adm its an S ' - equivariant Hopf structure
if  and only if  V is isomorphic to REBEa @E k e 'E c , for some integers a, b, c with c=
± a± b .

To prove this theorem  w e m ake use  o f the  same method a s  in  [ Is ]  and
this shall be done in the next section. In Section 3 we consider G- equivariant
Hopf structures on a sphere where G is an elementary abelian p - group.

T he  au thor w ishes to  express h is hearty  thanks to  P rofessor A .  Kono
for his advice and encouragement.

2 . S 1
- Equivariant Hope structure

First w e recall the Ishikawa's w ork  [Is]. T h roughou t th is  section G de-
notes

L et V be a  complex G - module w ith a trivial G - module Cn  (n >  0 ) as the
direct sum m and . If S ( V ) is equipped with an equivariant Hopf structure, the
equivariant projective plane X P, for X =S   (V )  is constructed by the ordinary
w a y . T h e  equivariant complex K - group KG (X ) i s  an R (G) - module and the
complex representation ring R (G) of G is isom orphic to Z [t, t - 1 ,  where t is
the standard one - dimensional complex representation of G .  Then

Theorem 2.1. k- G(xP2), for X = S (V ), is isomorphic to a free R (G) - module
w ith a b asis  u , d  and the elements u and v satisfy

u 2 =v  ,  u v = 0  a n d  v2 =0

Let V =Eaie..,EDEasw n ,  where each ai is non zero in te g e r . W e  put

r= r (t) ( t a ' 1 )  •  •  •  ( t a s  —  1)E  R (S i )

and

rk =rk (t) = (t ic '  — 1) ( t k '  — 1 )/ r  E  R (S i ) .

L et (p: XG P2
— > XP2 b e  the  natural inc lusion  m ap. k- G (xGp2) R (G) OW

(XGP2 )  is also a free R (G) -module with a  b a s is  117, VI and the elements ûT and
/7 satisfy
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17i- 2 =F , 1 7 / 7 = 0  a n d  F 2 = 0  .

Then we have

* (u) =rft- - 1- 13/7 , e  R (S1) .

Now as for the Adams operation we obtain

Theorem 2 .2 .  In Î ( G   (XP2) , X = S (Ea ' el • • • Ea e Cn ) , f or each k E Z we
have

Ok  (u) = k n rk u ak v

w here  a k  _ i k 2n ( s ) _ knr
ki3+ a kr r  /r2 and  k (17) =- kn  +  0 1  •

W ith these preparation we prove Theorem 1.3.
lithe representation  V i s  isomorphic to RIEDEa 'SDEb e E c  w ith  c = ± a ± b,

the multiplication of the Cayley numbers define the equivariant Hopf structure
on S (R V ) (see [C C ], [Is]).

Conversely we assume tha t X  = S (R ED V ), V = REDEa EDEb IEDEc , has an
equivariant Hopf s tru c tu re . I f  o n e  o f  a , b  and  c  i s  0 , then considering the
subspaces of fixed points of some subgroups of G on X , which must be S 1 o r
S3 ,  w e easily  ob ta in  th e  d e s ire d  re su lt . S in c e  th e re  is  a n  equivariant dif-
feomorphism between S (CEDE' EDEk e E c )  and S (CIEBE± ae E ± b ERE± c), can
assume that 0< a

We recall some notation:

r= r (t) =  (ta  — 1) (to — 1) (t c
 — 1) E Z [t, ,

rk =r k (t) = (t k a  — 1) (t k b  — 1) (t k c  — 1) / r  E Z [t, C I ] .

Then by Theorem  2 .2  there  a re  elements IS' ( t)  and a k (t), k E Z , in  Z [t,
which satisfy the relation

(2.3) rz ak , k2o k (s) — krk13+ ( 2k  )rrk

for each k E Z .  Here we use the following fact. Since X G  = S 1 , under a  suit-

able choice of the genenators 1û, '0  we have crk=  
( kJ .

A generator u  of k G ( x P 2 )  can be changed to u +  Tv (TE Z [t, t ' ] ) ,  then
changes to R- Fr2T. Since the leading coefficient of 7,2 and  its  constant term are
1, it  is  possible to choose the generators of kG (XP2) s o  t h a t  (t) is  a  polyno-
mial of degree at most 2 (a +  b±c) — 1. Then we consider the case when k =
— 1 in  (2.3).

r2 (t) a_ i  (t) = (t - ') 4 - r-1 W  (t) +r-1(t)r (t)
= (1 - 1 )  - (t) +r (t) r(a±b+c)
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Thus we have

(2.4) (t - 1 ) ta ± b + c ( t ) = "1 2  (t) CT-1(t) +r (t)

where ei_1(t)=a_l (t) ta±b ± . If in this formula we substitute t - 1  fo r  t, then we
obtain

js (t) t—(a+b+c) _ (t-1) = 1 ,2 (t) t --2(a+b+c) c
-E 1 (t-1 )̀ r ( t )  r ( a + b + c )

that is,

(2.5)p  ( t - 1 )  t a + b + c (t) — _ r2 (t ) a  ( t -1) t— (a+b+c) + r  (t )

(2.4) a n d  (2.5) imply

(L I  (t — ') = —a_I (t)ta±b±c

which means that ei_1(t) = 0 .  Thus we have

(2.6) (t-1) ta+b-Fc — p (t) ± r  (t )

Especially by this formula we know that degree of /3(t) is  a t m ost a+b - F c .  If
we put

(t) =dr (t) F [31 (t) , d  EZ  , deg A. (t) <a+ 6+ c

b y  (2.3) we have

r2ak=k2 (drrk +  ( t k ) )  k rk (d r, (t) +13, (t))( k  )rrk
2

= (2(1+1) )rr k ±k 2 [31 (t k ) — krkA.(t)
2

that is,

k2 [3]. (tk ) — krk Pi(t) =r ira k
—  (2d +1) ( k

2 )r iA  .

Especially in the case k=2 we have

4$1 (t 2 ) (t ) =r Ira2—  (2d + 1)

Comparing the degree of the both - hand sides in th is formula, we see that az =
2d+1, and  it follows that

4[31 (t2 ) —  2r2131 (t) = (2d +1) r (r— r2 ) = —2 (2d + 1) (ta + b  t b ± c  t c + a  ± 1) r (t)

that is,

(2.7)r 2  WI% (t) — 2,31 (t2 ) = (2d +1) (ta ' + t b +c +tc+a +1) r (t) .

Similarly by the formula (2.6) we have
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(2.8)p l  
( t

- 1 )  ta+b+c = (2d +1) r (t) + P l (t ) .

B y (2 .7 ) we know that the degree of $ 1 (t ) is  b +c a n d  its  coefficient is 2d +1.
Then we let

P l  ( t )  =  ( 2 d  + 1 )  ( t o + b  
t b + c  t c + a  1 )  2 ( t )

with deg $ 2 (t ) < b  +  c. Substitu ting  th is fo rm u la  fo r  (2 .7 )  a n d  (2 .8 )  we
obtain

r2(t)$2 (t) — 2$2(t2 ) = — 4 (2d +1) ( t a + b  t b + c  t c+ a  t2 a + b + c  ta + 2 b + c  ta + b + 2 c )

is 2  (t— ta + b + c — p2

It is easy  to  see  that each  coefficient of P2 ( t )  is  divisible by  4  (2d  + 1 ). We
let

P3 (t) = —132W/4 (2d +1)

then

r 2 ( t ) p 3 ( t ) - 2 p 3 ( t2
) _ (ta+b tb + c  t c+ a  t2 a + b + c  t a + 2 b + c  t a + b + 2 c )

p3 (t—l)ta+b+c — p 3

Now Theorem 1.3 follows from the following proposition.

Proposition 2 .9 .  L et a, b and c be integers such that 0 <a b f(t ) is
a polynomial of t which satisfies

(2.10)( t a  +  1 )  ( t '  + l )  ( t c ± 1) f (t) — 2f(t 2 )
—  (ta + b  tb + c t c+ a  t2 a + b + c ta + 2 b + c ta + b + 2 c)

(2.11) f(t1 ) ta+ b+ c —  f (t)

Then we have c=a +  b.

To prove this proposition we use the following lemma. Since its proof is
easy, we omit the proof.

Lemma 2.12.

gcd (1 - Ftn i , 1 +0) =

where d=gcd(m,n).

Proof of Proposition 2.9. First w e rem ark that degf= c a +  b . T his fol-
lows easily from (2 .10 ) a n d  (2.11).

B y (2 .10) we have f  (1 ) = 1 . Differentiate the both sides o f  (2 .10) at t=
1 and we get 4f ' (1) =2 (a +  b + c ) .  Therefore a + b + c  m ust b e  e v e n . If we
let d = gcd (a, b, c), it  is  easy to see that f  ( t )  is  a polynomial of  t d .  T h u s  w e
can assume gcd (a, b ,c )=  1. Since a ± b ± c  is even, one of a , b and c is even

f1, i f  v2 (n) v2 (m) ,
11 + t d ,  i f  v2 (n) = (m )  ,



408 Kouyemon Iriye

and the others a re  odd . H ere  w e  p rove  the proposition only when a  is even
and b and c are o d d .  In the other two cases it is proved similarly or easierly.

Now we let a be even and b and c o d d . W rite

f  (t) = g (t) + th (t)

where g (t) and h (t) are  polynomials of t2 . Comparing odd powers part of the
polynomials in  (2.10) we have

(2.13) (1+ta) (1+ t b + c) th (t) + (1+ t a ) (t b + tc ) g (t)
= ta+b ±ta+c el-6+c (tb tc) — ta+b (1+ tc–b) (1+ tb+c)

Since the  left-hand side of this equation is divisible b y  1 +ta, 1+ t c – b  o r  1+
tb + c  m ust be divisible by  1+ ta

Case 1. 1  + t a – b  is  divisible by 1 + t a

In this case b y  (2 .13 ) (tb + tc)g (t) must be divisible by  l +t b + c.

gcd (tb +tc, 1 + t b +c) =gcd (1 + r - b , 1 + t )  = 1

by Lemma 2 .1 2 . T hus 1+ tb + c  divides g (t) . But because of the deree of the
polynomials we have that g  (t ) = 0 . Then by (2.13)

c—bth (t) = ta+b d—t 

Take the even powers part of the polynomials in  (2.10) we get

(1+ ta ) (t b + t c ) th (t) = 
tb -F c  t 2 a + b + c + 2 t 2 h  ( 1 .2 )

which implies that

ai+t2c-2b
(1+ ta ) (1+ te—b)  _ tc–b–a (1+ t2a)

1+ tat  1 +  t 2a

If we compare the constant term, then we have c=a +6.

Case 2. 1 + t b ± c is divisible by 1+ ta .
B y (2.13) we have

(1+ t b + c ) th + tb (1 + tc — b) g (t) =ta+b (1+ tc—b)
1 +  tb + c  

1 + ta •

T hus 1 + tc – b  m u s t d iv id e  (1 + tb + c) th (t) . Since by Lemma 2.12 1 + tc – b  is
prime to  l+ t b + c, 1+ t c – b  m u st divide th (t) . But th is  is  im possible . For the
deree of th (t) is c and it is  divisible by ta .

C oro lla ry  2 .1 4 . Let V be a 7-dim ensional real T 2 -m odule. T hen S (Ite)
V ) has a T 2 -equivariant Hopf structure if and only if V factors through G2.

1+ ta •

Proof. By EaFb w e  deno te  the one dimensional complex r-m odule with
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t h e  r - action:

z  •  v  = z a v  , w  v  = w bv

fo r  (z, w) E  T2 ,  y  E  C .  Then the  representation V is isomorphic to REDEaTa 2

G E b1E b2 E C1,-.'2 fo r some integers a l ,  az, b1, bz, cl, cz. F o r  various homomor-
phims f: T 2  7 V  must satisfy the condition of T heorem  1 .3 . M aking  use
of this fact it is easy to prove Corollay 2.14.

3. Elementary Abelian Groups Acting on Sphers

In  th is  section w e  a lw ay s assum e th a t  a G - space  h a s  the equivariant
homotopy type of a G - CW  com plex w ith finite skeletons. A G - space X  is fi-
nite if X  has the equivariant homotopy type of a finite G- CW  complex.

Now we consider the maximum elementary abelian p-group which acts on
a  finite mod p homology sphere preserving its Hopf s t r u c tu r e .  First we con-
sider an  e x a m p le . Let D  be the unit disk of C  w ith the standard Z /p - action.
Then

S7X Dk

is a  (Z/p)k - Hopf space w hile (Z/p)k - action is  effective. T h i s  example shows
tha t the  following definition is reasonable when we consider the  above prob-
lem.

Definition. Let G be a p - group where p  is  p r im e . X  is  a  mod p  homol-
ogy n-shpere on which G a c t s .  The action is sa id  to  be  strongly  effective if
for every element g  of G w hich is not the  identity the  fixed point set X g  is  a
mod p homology r-sphere with r<n.

We note that it is w ell know n that X g  is  a  mod p homology r-sphere with
r n  (se e  [B r]) . M o re o v e r  if p is odd, then n — r is even.

Theorem 3.1. The group Z /2  i s  the only non - trivial 2 - group which acts
strongly effectively on a f inite m od 2 homology 1 - sphere preserving its Hopf struc-
ture. The group Z/p, p  odd, cannot act strongly  ef fectively  on a f inite m od p
homology 1 - sphere preserving its Hopf structure.

Theorem 3.2. The group (Z/2) 3 cannot act strongly effectively on a f inite
mod 2 homology 3 - sp h e re . The group (Z/p) 2

,  p odd, cannot act strongly effectively
on a f inite mod p homology 3 - sphere.

Theorem 3.3. The group (Z/2) 4 cannot act strongly effectively on a f inite
mod 2 homology 7 - sp h e re . The group (Z/p) 3

,  p odd, cannot act strongly effectively
on a f inite mod p  homology 7 - sphere.

To prove these theorems we use

Theorem 3.4. [ B o ] .  Let p  be a prime, G an elementary abelian p-group
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and X be a f inite mod p  homology n- shere. Let n (H) be the integer such that XH

is  a  mod p  homolrgy n (H) - sphere, where H is  a  subgroup of  G, and let r=n (G).
Then

n — r = E H  (H) —

where H runs through the subgroups of index p.

Proof of Theorem 3 .1 . Let G = (Z/2) 2 and X be a Hopf G - space which is a
mod 2  hom ology 1-sphere . T hen  XG  m u s t  b e  a  m od 2  homology 0-sphere.
Moreover by the  strong effectivity of the action for a subgroup H  of G of in-
dex 2 X I I  is a lso  a mod 2 homology 0-sphere. These facts contradict Theorem
3 4.

L e t G =  Z /4  a n d  X  b e  a  Hopf G - space w h ic h  is  a  m od 2  homology
1 -s p h e re . Let r be a  generator of G, then Xr is  a  mod 2 homology 0 - sphere
and X/Xr is m od 2 homology equivalent to  S '  V S '.  Since . x / x r - p t  has two
components and  r 2 induces the  identity map on H*  (X/ X'; Z /2 ), there  is a  r 2

invariant closed subspace Y in X/Xr which is mod 2 homology 1 - s p h e r e .  But
Y7 2  is m od 2 isomorphic to point, which is impossible.

T he last statem ent is proved by using the  strong effectivity and the fact
stated just after the definition of the strong effectivity.

Proof of  Theorem 3 .2 . Let H = (Z/2) 2 and X be a  Hopf H-space which is a
mod 2 hom ology 3-sphere . F o r every element h  of order 2 in H  X h is  m od  2
hom ology 1-sphere by th e  strong effectivity o f  th e  a c t io n  a n d  a  re su lt of
Hamanaka [ H ] .  Then m ust b e  a  mod 2  homology 0-sphere o r  1-sphere
since X f f  i s  a  Hopf s p a c e .  I f  it w ere  a  mod 2  homology 1-sphere, we would
have the following equation by Theorem 3.4

3 — 1 = (1 — 1) = 0

Therefore X i /  is  a  mod 2 homology 0 - sphere.
Now let G =  (Z/2) 3 and  X  be a  Hopf G - space w hich is a  mod 2 homology

3 -sp h e re . B y  the  above result for every subgroup H  in  G of index 2 X I I  i s  a
mod 2 hom ology 0-sphere. Then by Theorem  3.4  we have

3 - 0 = ( 0 - 0 ) = 0

which is clearly impossible.
For the case of odd prime we can prove the theorem similarly.

To prove Theorem 3 .3  we need the following Theorem 3.6, which we owe
to  A . K ono . Since w e can prove Theorem  3 .3  sim ilarly  a s  above by using
Theorem 3.6, we omit the proof of Theorem 3.3.

Let p be a  p r im e . F o r  a  space X we define

p-dimX=max 1i; FP (X; Z/p) *01

and
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Q- dimX= max ii; 111 (X; Q) .

Then

L em m a 3 .5 .  If  X is  a finite, simply connected Hopf space, then Q- dimX=
p - dina for any prime p.

Proof. Since X is  a  Hopf space, H*  (X ; Z/p) is  a commutative associative
Hopf algebra . It fo llow s that H* (X ; Z/p) has an algebra decomposition

H* (X; Z ip )  ® 1A,w h e r e  e a c h  A i =  Z/p [a i ] 

Theorem 3.6. Let X be a f inite Hopf sp ac e . If  X is a mod p n - sphere, n>
0, then n=1, 3 or 7.

Proof. F irs t w e  assum e tha t X  is  sim ply  connec ted . B y  th e  loop space
theorem [L ], [K ], H* (QX; Z ) has n o  to rs io n . Since X is  a  rational n - sphere,
we have

{ 0 ,  for 0 Gj <I/ —1,
H' (X ; Z)

Z, j =n - 1.

T h u s  th e re  is  a  m ap Sn — > X , w hich induces isom orphism s o n  th e  integral
homology groups since by Lemma 3 .5  H i (X ; Z ) =  0  for j >  n. T his  implies
that sn is  homotopy equivalent to a  Hopf space X .  Therefore we have n= 3 or
7.

Now we assume that X is not necessarily simply connected and that n >1.
Then ir1 (X )  is  a  finite group and its order is prime to p. L et -i f  be the univer-
sa l covering  sapce o f  X , then i s  a compact H o p i s p a c e  a n d  a  m od  p
n - sp h ere . By the above result we have that n= 3 or 7.
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