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Equivariant Hopf structures on a sphere
By

Kouyemon IRIYE

1. Introduction

Let G be a compact Lie group. For a G-space X with a base point a
pointed G-map

wXXX—X

is said to be an equivariant Hopf structure of X if the restriction of ¢ to XV X
is equivariantly homotopic to id Vid. A G-space with an equivariant Hopf
structure is called a Hopf G-space. If G= lid!, the trivial group, then a Hopf
G-space is a usual Hopf space (H-sapce). According to a theorem of Adams
the sphere S” admits a Hopf structure precisely when n =20, 1, 3, or 7.
Equivariant Hopf structures on a sphere were considered in [Br], [Ir], [Is],
[cC] and [H].

The multiplication in C, the complex numbers, H, the quaternions, and O,
the Cayley numbers define the Hopf structures on S*, S* and S7, respectively.
These Hopf structures are equivariant with respect to the action of the auto-
morphism groups O (1) of C, SO(3) of H and G; of O.

Let H and G be compact Lie groups and V a real representation space of
H. We say that the representation V factors through G if there is a homo-
morphism f: H— G and a G-module W such that V is isomorphic to f*W. In
this paper we assume that every representation has an invariant metric. We
denote by S(V) the unit sphere of V. Then by [CC, Theorem 1.3(ii)] or by
using the result about the Z/2-equivariant Hopf structure on the spheres,
[Br], [Ir], we have

Proposition 1.1. Let G be a compact Lie group and V a real G-module of
dimension 1 or 3. Then S(RDV) has a G-equivariant Hopf structure if and only
if 'V factors through O(1) or SO(3), respectively.

On the otherhand as for equivariant Hopf structures on S’ Cook and
Crabb [CC] showed

Theorem 1.2. We take G =Z/p", where p>1 is prime. Write E for the
standard one-dimensional complex representation of G and E* for its k-th tensor
power. Let V be a non-trivial 7-dimensional veal representation of G.
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Then S(RDV) admits a G-equivariant Hopf structure if and only if V is iso-
morphic to REDE*DE DE®, for some non-zero integers a, b, ¢ with v, (@) = v, (b)
<wa(e) <rif p=2, vp(a) = v, (b) <v, (c) <rif pis odd (and vy (a) <r since V
is non-trivial) .

This theorem implies that Proposition 1.1 does not hold when V is a
7-dimensional real representation. In contrast to this fact we prove that
Proposition 1.1 holds when V is a 7-dimensional real representation of S’.

Theoren 1.3. Write E for the standard one-dimensional complex representa-
tion of S and E* for its k-th tensor power. Let V be a nontrivial 7-dimensional
real representation of S'. Then S(RDV) admits an S*-equivariant Hopf structure
if and only if V is isomorphic to RAOE*DEDES, for some integers a, b, ¢ with ¢=
+atb.

To prove this theorem we make use of the same method as in [Is] and
this shall be done in the next section. In Section 3 we consider G-equivariant
Hopf structures on a sphere where G is an elementary abelian p-group.

The author wishes to express his hearty thanks to Professor A. Kono
for his advice and encouragement.

2. S'-Equivariant Hope structure

First we recall the Ishikawa’s work [Is]. Throughout this section G de-
notes S*.

Let V be a complex G-module with a trivial G-module C" (n>0) as the
direct summand. If S(V) is equipped with an equivariant Hopf structure, the
equivariant projective plane XP; for X=S (V) is constructed by the ordinary
way. The equivariant complex K-group K¢ (X) is an R (G)-module and the

complex representation ring R (G) of G is isomorphic to Z [t, t7!], where ¢ is
the standard one-dimensional complex representation of G. Then

Theorem 2.1. K¢ (XP2), for X=S (V), is isomorphic to a free R (G) -module
with a basis {u, v} and the elements u and v satisfy

u*=v , uww=0 and °=
Let V=E*@®---DE*DC", where each a; is non zero integer. We put
r=r() = (*=1)---(*—1) € R(SH
and

n=r(t) =t —1) - (t**—1)/r € R(S") .

Let @: X°P,— XP, be the natural inclusion map. K¢ (X°P2) =R (G) ®K
(X6P,) is also a free R (G)-module with a basis {i; 1 and the elements # and
v satisfy
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7=y, wv=0 and v%=0.
Then we have
¢* ) =ri+Bi . BER(S" .
Now as for the Adams operation we obtain

Theorem 2.2. In K¢ (XP,), X=S (E*@®---DE*BC"), for each k EZ we
have

Qbk () =F'riutaxw |
where o= k" P* (B) —k'riB+owmid /7% and @* (it) =k + 04w

With these preparation we prove Theorem 1.3.

If the representation V is isomorphic to REDE*DE*DE® with c=tatb,
the multiplication of the Cayley numbers define the equivariant Hopf structure
on S(RDV) (see [CC], [Is]).

Conversely we assume that X=S (RO V), V=RDPE*PE DE*, has an
equivariant Hopf structure. If one of a, b and c is 0, then considering the
subspaces of fixed points of some subgroups of G on X, which must be S! or
S3, we easily obtain the desired result. Since there is an equivariant dif-

feomorphism between S (CBE*DE*PE®) and S (CHEHPEHPE*), we can
assume that 0<a<bp<c.
We recall some notation:

r=r(t)=(—1) t*—1) ¢*'—1) € Z[t, +7Y] ,
ne=nr(t) = ({t*—1) (t*—=1) (t*—1)/r € Z[t, t7"] .

Then by Theorem 2.2 there are elements B (t) and ay (t), kEZ, in Z [¢t, t7Y]
which satisfy the relation

(23) rzak=k2¢»" (,B) —krkB-l-(; )Tfk

for each k€ Z. Here we use the following fact. Since X¢=3S!, under a suit-

k
able choice of the genenators {7, 9 we have g,= <2 )

A generator u of K¢ (XP,) can be changed to u+yv (yEZ[t, t7']), then B
changes to 8++%7. Since the leading coefficient of ¥* and its constant term are

1, it is possible to choose the generators of K¢ (XP;) so that B(t) is a polyno-
mial of degree at most 2(a+b+c¢) —1. Then we consider the case when k=
—1in (2.3).

() a_ () =BE™) +r_ () B(E) +roi ()7 ()
:B(t-—l) _ {B (t) +T(l)} t—(a+b+c)
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Thus we have
(2.4) Bl et e—B(t) =r ()@ (&) +r() ,

where @_; (t) =a_, (t) t****¢. If in this formula we substitute ¢~ for ¢, then we
obtain

B)erert =B t) = ()72 0q, (171) —r (1) g=@rore
that is,
(2.5) Bttt e—B(t) == (t) @, (") 7@+ 4y (1) .
(2.4) and (2.5) imply
A, () =—a_, (t)terb+e |
which means that @, (t) =0. Thus we have
(2.6) B erte=p(t) +r (1) .

Especially by this formula we know that degree of 8(t) is at most a+b+c. If
we put

BW)=dr()+B (1) , dEZ , degBi(t) <a+b+c
by (2.3) we have

o=k (drrg+B, (%)) —kr (v (t) +B8, (1)) + <Z )rrk ,

— (24+1) <’; >rrk+k2,31 ) —krBr (1) .
that is,
kzﬁl (tk) _k7k,81 (t) =7 lrak— (2d+1) <I; >7k} .

Especially in the case k=2 we have
451 (tz) _272‘81 <t) =7 {7a2_ (2d+1)72} .

Comparing the degree of the both-hand sides in this formula, we see that a,=
2d+1, and it follows that

4B, (t2) =218, (t) = (2d +1)r (r—r) = —2(2d +1) (t**+ 2%+ +1)r (2)
that is,
2.7) r2(t) Br(t) — 2B (t%) = (2d +1) (L2+0+2+e 24+ 1) 7 (1) .
Similarly by the formula (2.6) we have
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(2.8) Bt eertre= 24+ 1)r () +B:(t) .

By (2.7) we know that the degree of B;(t) is b+c¢ and its coefficient is 2d +1.
Then we let

Bi(t) = (2d+1) (2o + 10+ +1+9+1) B, (t)

with deg B, (t) <b +¢. Substituting this formula for (2.7) and (2.8) we
obtain

72 (t) ‘32 (t) _ 2/32 (tz) =—4 (Zd + 1) (ta+b+tb+c+tc+a +t2a+b+c + ta+2b+c+ta+b+2¢:> ,
B (™) er** e =Py (1)

It is easy to see that each coefficient of B, (t) is divisible by 4 (2d +1). We
let

Bs() =—P:(t) /4 (24 +1) ,
then
72 (t) ‘83 (t) _2‘33 (tZ) e (ta+b+tb+c+tc+a+t2a+b+c+ta+2b+c+ta+b+2£) ,
BB (t_l) jathte =.83 (t) )

Now Theorem 1.3 follows from the following proposition.

Proposition 2.9. Let a, b and ¢ be integers such that 0<a<b<c. f(t) is
a polynomial of t which salisfies

(2.10) (+1) +1) G+1)r0) —2(#?)
— (ta+b+tb+c+tc+a+tZa+b+c+ta+2b+c+ta+b+2c) ,
(2.11) FUDerre=£(t) |

Then we have c=a+tb.

To prove this proposition we use the following lemma. Since its proof is
easy, we omit the proof.

Lemma 2.12.

1, if va(n) #Fvy(m),
ged (144", 144" =
1+64, if vo(n) =v,(m),

where d=gcd (m, n).

Proof of Proposition 2.9. First we remark that degf=c=a+b. This fol-
lows easily from (2.10) and (2.11).

By (2.10) we have f(1) =1. Differentiate the both sides of (2.10) at t=
1 and we get 4/' (1) =2(a+b-+c). Therefore a+b-+c must be even. If we
let d =ged (a, b, ¢), it is easy to see that f(t) is a polynomial of . Thus we
can assume ged (a, b, ¢) =1. Since a+b+c is even, one of a, b and ¢ is even
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and the others are odd. Here we prove the proposition only when a is even
and b and ¢ are odd. In the other two cases it is proved similarly or easierly.
Now we let a be even and b and ¢ odd. Write

) =g @) +th ()

where g (t) and h (1) are polynomials of t2. Comparing odd powers part of the
polynomials in (2.10) we have

(2.13) (142) A+ th () + (1+12) (L +19) g (1)
=ta+b+ta+c+ta+b+c (tb+tc) :ta+b (1+tc—b) (1 +tb+c) )

Since the left-hand side of this equation is divisible by 1+¢% 1+¢%or 1+
t**¢ must be divisible by 142

Case 1. 1+4t°%is divisible by 1+¢%

In this case by (2.13) (#+1t°) g (t) must be divisible by 1+#*¢.

ged (46, 14424¢) =ged (14178, 140+¢) =1

by Lemma 2.12. Thus 1+¢**¢ divides g (t). But because of the deree of the
polynomials we have that g(t) =0. Then by (2.13)

_ ool +et

th
© 1+

Take the even powers part of the polynomials in (2.10) we get
(1419) (t2+16) th (1) =to+e+2erbre 262 (12)

which implies that

Ll S o o i

14¢%) (1410
(At iy 1+

=gebma(1+44%) |

If we compare the constant term, then we have c=a+b.

Case 2. 14t°* is divisible by 1+¢%.
By (2.13) we have

1440+
A+ th (t) H2 (14170 g (1) =t*** (1 +70) 3r
Thus 1+ must divide (14+¢*¢)th (t). Since by Lemma 2.12 1+ is
prime to 14+°*¢ 1 +¢°7% must divide th (t). But this is impossible. For the
deree of th(t) is ¢ and it is divisible by t**°,
Corollary 2.14. Let V be a 7-dimensional real T*-module. Then S (RD
V) has a T*-equivariant Hopf structure if and only if V factors through G,.

Proof. By E°F® we denote the one dimensional complex T?-module with
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the T%-action:
zv=z2%, w- v=wh,

for (z, w) ET2 v€C. Then the representation V is isomorphic to REOE“F*
DEMF2PETF for some integers ay, az, b1, ba, 1, ¢2. For various homomor-
phims f: S*— T2 f*V must satisfy the condition of Theorem 1.3. Making use
of this fact it is easy to prove Corollay 2.14.

3. Elementary Abelian Groups Acting on Sphers

In this section we always assume that a G-space has the equivariant
homotopy type of a G-CW complex with finite skeletons. A G-space X is fi-
nite if X has the equivariant homotopy type of a finite G-CW complex.

Now we consider the maximum elementary abelian p-group which acts on
a finite mod p homology sphere preserving its Hopf structure. First we con-
sider an example. Let D be the unit disk of C with the standard Z/p-action.
Then

S”X Dk,

is a (Z/p)*-Hopf space while (Z/p)*-action is effective. This example shows
that the following definition is reasonable when we consider the above prob-
lem.

Definition. Let G be a p-group where p is prime. X is a mod p homol-
ogy n-shpere on which G acts. The action is said to be strongly effective if
for every element g of G which is not the identity the fixed point set X? is a
mod p homology r-sphere with »<nu.

We note that it is well known that X® is a mod p homology r-sphere with
r<n (see [Br]). Moreover if p is odd, then n—7 is even.

Theorem 3.1. The group Z/2 is the only non-trivial 2-group which acts
strongly effectively on a finite mod 2 homology 1-sphere preserving its Hopf struc-
ture. The group Z/p, p odd, cannot act strongly effectively on a finite mod p
homology 1-sphere preserving its Hopf structure.

Theorem 3.2. The group (Z/2)° cannot act strongly effectively on a finite
mod 2 homology 3-sphere. The group (Z/p)?, p odd, cannot act strongly effectively
on a finite mod p homology 3-sphere.

Theorem 3.3. The group (Z/2)* cannot act strongly effectively on a finite
mod 2 homology 7-sphere. The group (Z/p)°, p odd, cannot act strongly effectively
on a finite mod p homology 7-sphere.

To prove these theorems we use

Theorem 3.4. [Bol. Let p be a prime, G an elementary abelian p-group
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and X be a finite mod p homology n-sheve. Let n(H) be the integer such that X"
is a mod p homolrgy n (H) -sphere, wheve H is a subgroup of G, and let r=n (G).
Then

n—r=2pw(H) —7)
where H runs thvough the subgroups of index p.

Proof of Theorem 3.1. Let G= (Z/2)* and X be a Hopf G-space which is a
mod 2 homology 1-sphere. Then X® must be a mod 2 homology O-sphere.
Moreover by the strong effectivity of the action for a subgroup H of G of in-
dex 2 X# is also a mod 2 homology O-sphere. These facts contradict Theorem
3.4.

Let G =Z/4 and X be a Hopf G-space which is a mod 2 homology
1-sphere. Let 7 be a generator of G, then X7 is a mod 2 homology 0-sphere
and X/X" is mod 2 homology equivalent to S'V S'. Since X/X" —pt has two
components and 7% induces the identity map on H* (X/X"; Z/2), there is a 72
invariant closed subspace Y in X/X” which is mod 2 homology 1-sphere. But
Y"* is mod 2 isomorphic to point, which is impossible.

The last statement is proved by using the strong effectivity and the fact
stated just after the definition of the strong effectivity.

Proof of Theorem 3.2. Let H= (Z/2)? and X be a Hopf H-space which is a
mod 2 homology 3-sphere. For every element 4 of order 2 in H X* is mod 2
homology 1-sphere by the strong effectivity of the action and a result of
Hamanaka [H]. Then X# must be a mod 2 homology O-sphere or 1-sphere
since X# is a Hopf space. If it were a mod 2 homology 1-sphere, we would
have the following equation by Theorem 3.4

3—1=3(1-1)=0.

Therefore X# is a mod 2 homology O-sphere.

Now let G=(Z/2)3 and X be a Hopf G-space which is a mod 2 homology
3-sphere. By the above result for every subgroup H in G of index 2 X¥ is a
mod 2 homology O-sphere. Then by Theorem 3.4 we have

3—0=23(0—0)=0,
which is clearly impossible.
For the case of odd prime we can prove the theorem similarly.

To prove Theorem 3.3 we need the following Theorem 3.6, which we owe
to A. Kono. Since we can prove Theorem 3.3 similarly as above by using
Theorem 3.6, we omit the proof of Theorem 3.3.

Let p be a prime. For a space X we define

p-dimX =max li; H (X; Z/p) #0}

and
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Q-dimX=max i; H' (X; Q) #0} .
Then

Lemma 3.5. If X is a finite, simply connected Hopf space, then Q-dimX =
p-dimX for any prime p.

Proof. Since X is a Hopf space, H* (X; Z/p) is a commutative associative
Hopf algebra. It follows that H*(X; Z/p) has an algebra decomposition
H*(X; Z/p) =Q*F_\A; where each A,~=Z/ [a,] )

ri+1
a,-’

Since X is simply connected, each a; has degree greater than or equal to 2.

Then in the Bockstein spectral sequence the element ai'---a}* survives to
E.-term by the reason of degree. Thus we have p-dimX=Q-dimX.

Theorem 3.6. Let X be a finite Hopf space. If X is a mod p n-spheve, n>
0, then n=1, 3 or 7.

Proof. First we assume that X is simply connected. By the loop space
theorem [L], [K], H*(£2X: Z) has no torsion. Since X is a rational n-sphere,
we have

0, for 0<j<m—1,

H(X;, Z)=
( ) [Z, j=n—1.

Thus there is a map S” — X, which induces isomorphisms on the integral
homology groups since by Lemma 3.5 H/ (X; Z) =0 for j>u. This implies
that S” is homotopy equivalent to a Hopf space X. Therefore we have n=3 or
7.

Now we assume that X is not necessarily simply connected and that n>1.
Then 71 (X) is a finite group and its order is prime to p. Let X be the univer-

sal covering sapce of X, then X is a compact Hopf space and a mod p
n-sphere. By the above result we have that =3 or 7.
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