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Regularized determinants of Laplacians
for hermitian line bundles over projective spaces

By

LiN WENG

Let P"(C) be an n-dimensional projective space. If we put the
Fubini-Study metric on the tangent bundle, we know that the eigenvalues of
the Laplacians for any (0, g¢) C™-forms could be given by using the method
from representation theory, as we know that there is a connection between the
Laplacians and the Casimir operators [4]. In other words, this means that we
know the eigenvalues of Laplacians for the (0, g) C™-forms with coefficients
being the sections of the structure sheaf of P”. But there are other kinds of
line sheaves on P” say, the tautological line sheaf Op"(1). So we also want to
know what should be the eigenvalues of corresponding Laplacians. In fact, this
is an open problem, at least, to me. In this paper, we will give the regularized
determinant of the Laplacians for line sheaves, such as Op(m), ie., we will
give the regularized infinite product of the non-zero eigenvalues of the Lapla-
cians. Put this in a more fashionable language, we will give the analytic tor-
sions associated to hypersurface line sheaves with the induced metric from the
Fubini-Study one.

The point here is that we do not know the eigenvalues. How could we
give the associated analytic torsions? The idea goes as follows: We consider
arithmetic model P% over Z first. Then use the arithmetic Riemann-Roch for-
mula of Gillet and Soulé to find the value of the first arithmetic Chern class
for the associated determinant line sheaf with the Quillen metric. Thus, finally,
after deleting the L?-norm contribution, we could get the analytic torsions in
question.

This process looks very good. But the point is that it contains very deli-
cate calculation for the terms involved. Thus, finally, we could use the Stirling
numbers to express such a quantity. Here we will mainly follow the work
given by Gillet, Soulé and Zagier [3].

1. The arithmetic Riemann-Roch formula

Let f : X—— Y be a smooth morphism of arithmetic varieties, then we
have the following
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Arithmetic Riemann-Roch formula ([2]).  For any hermitian vector
sheaf (8, p) on X, if we pul a hermilian metric Oy on the velative tangent sheaf
T s, we have

b (det (R'f+8) , hq (0, 05)) = (fx (cha, (8, 0) Tda, (T s, 09))) P,

where ho (o, p;) denotes the associated Quillen metvic on the determinant line
sheaf with respect to the metvics 0 and 0y.

For our purpose, let f : P —— Spec (Z) be the projective space of dimen-
sion n over Z. On P"(C), we shall take the Fubini-Study metric prs. Hence,
we are given not only a hermitian metric on the tautological line sheaf, but a
hermitian metric on the tangent sheaf, and all of them are invariant under SU
(n+1).

Obviously, we have the following results for Op»(m) with m>0:

H(P", Opr(m)), if i=0,

RfsOp(m) =
if 1>0.
Thus, the arithmetic Riemann-Roch formula above gives the following re-

lation:

Ci\r (det HO(P", @P" (m) ) hq (st)) = (f* (ChAr (@P” (m), pFS) Tdar (gF» Pf) ) ) (l).

In the sequel, we will calculate both sides separeterly.

2. The left hand side
By definition, in our case the Quillen metric may be given as
hq=hyzexp (—7(Op (m), prs) ),

where hiz denotes the natural L?-metric on the determinant detH®(P”
Op(m)), which, in turn, is defined as follows [5]: First, on A% (P”, Op+(m)),
we have the LZ-metric defined by

.= [ ) .

where w is the curvature form associated to the Fubini-Study metric. Then
the space H° (P", Op(m)) is canonically isomorphic to the corresponding har-
monic forms, hence it has a natural induced L*-metric. Finally, we take the de-
terminant metric; on the other hand, 7 (Op-(m), prs) is usually called the an-
alytic torsion associated to the line bundle @p(m), with respect to the
Fubini-Study metric, which is what we try to compute, and may be defined as

follows [6]: With respect to the Fubini-Study metric, the operator 00*+0*0

on A% (P", Op(m)) has non-negative eigenvalues. In particular, if we only
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consider the non-negative eigenvalues, we could have strictly positive eigenva-
lues, say,

A, m, @)1 <A, m, q)2<A(m, m, q)s ...,

indexed in increasing order, and taking into account multiplicaties. It is
well-known that the associated zeta function

Cima(s):=22(m, m, )7

i1

is intitially defined for Re (s) ># and could be meromorphically extended to
the whole complex plane. In particular, the resulting function is holomorphic
at s=0. Hence, it makes sense for us to talk about {jmq(0). With this, the an-
alytic torsion is given by

n
2 (=1)%98mq0).
q=0
Therefore, if we choose the coordinates z, ..., z,, then we have

ct” (detH* (P*, Op (m) ) Jhq (0rs))
=— Dtoghus(a(p) A . Aalpn) + 3 70 (n). halors),

where p; denotes all monic polymonials of degree m of z;j,
a: S"8— fxOp (m)

is the canonical isomorphism, and N is the dimension of H°(P”, Op-(m)). Thus
note that z; may be chosen as orthonormal basis with respect to L? metric, we
see that if x=2§° @ * & 2z%7, then
2 a()! ot an!
[ o= 2ot al
In particular, we know that

2, — (ao! - an!)
”a<x)"L2_ (n_|_m)7 ,

. w”
as we choose the density to be R Therefore, we see that

et (det H*(P”, Op(m) ), hq(0rs))

1 Lean! |1
— 5 log I1 %+§T(ﬁp"(m),hQ(PFs))~

n+1
(g, ap)€L>0 Zaj=m

3. The right hand side

We need to compute
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(f* (cha, (@P" (m), st) Tdar (gf, p;) )@,

For doing so, we divide it into several pieces. First, by definition, we know
that

Tda, (8, p) =tda, (8, 0) 1+a(R(8))),

where R (8) is an additive characteristic class in even cohomology, which, in
turn, has a harmonic representation, and then a (R) means (0, R) in the arith-
metic Chow ring. More precisely, R is associated with the following power
series

R6= = (20(=0+(—0(1+ 5 +..+1)) 5
kodd, 21 2 kI k
with {(s) the Riemann zeta function and {’(s) its derivative.
On the other hand, we have the canonical exact sequence E,

En: 0__)0])”_’0[7'«[)"-{—1—“')9.]’"—)0.

With the Fubini-Study metrics for the terms in E,, by the property of tda,, we
see that

tda, (T ;, ors) =tda, (Op (1), prs) "' —a (tdac (En, ors) ).

Therefore, we see that

(fs (cha, (Op (m), prs) Tdar (T, 05)))
= (fx (chay (@p»(m), ors) tda, (Op (1), pps) "))V
— (f (cha, (Op (m), prs)a (tdsc (En, ors)))) "
+ (fx (chay (Op (m), ors)tda, (T4, 0p)a (R(T)))) P
= (f* (cha, (Opr (m), PFS) tda, (Op 1), prs) 1)) @®

— (f« (cha, (@p»(m), ors)a (tdec (E”, prs)))) Y
+ (fx (chay (@Op ) ) td (T )R (T ).

Here, in the last equation, we also use the property of arithmetic intersection
theory [7].

Lemma. We have the following relations:
].. Let tn,m.' = — 2 (f* (ChAr (@P" (Wl) N pFS) tdAr (@p" (].) N .OFS) ”+1) ) (l). Th«en tn,m is

n+1
the product of — ZL]Z}LI% and the coefficient of X" in e'”’(l A _x> ;
—e

2. Let sum: = —2(fx (chay (Op(m), prs)a (tdec (En, 0rs)))) V. Then sym is the
coefficient of x" in e™* j; o) _t ©

dt, where

o0 = (5 ()™
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3. Let tam: = —2 (fx (chay (Op»(m)) td (T;) R (T ;). Then tnm is the coefficient
of £ in

(n+Dem ()" 'R x).

1—e7*

Rroof. Let x=c, (Op+(1)) € H?(P"), and xa,=ca, (Op-(1), 0rs) be the
first Chern class and the first arithmetic Chern class of the tautological line
bundle with the Fubini-Study metric. Then the result 1 and 3 come from the
facts that

a 1, if k=mn,
Jor=|
P 0, otherwise;
b 1y sp 1 o
22,,:12,:1., if k=n+1,
f*(x,.f&r)(l)z !
0, otherwise;

For 2, we need to apply the method of Bott and Chern to calculate the
classical Bott-Chern secondary characteristic form associated with E, with re-
spect to the Fubini-Study metric [1], which was first carried out in [3] with
the following form: If we have a short exact sequence

g. -0 gl gz 83 0

with hermitian metric o; on &;, We may write &, as the orthogonal direct sum

of 8, and &, which is C* isomorphic to §3. The curvature of &, (multiplied by

21_71) decomposes as a 2 by 2 matrix K= (K;;). Let Kg, be the curvature of &;

multiplied by 5. Let Td (A) = det

for any square matrix A. For every

2m 1—e™4
t€ [0, 1], let ¢(t) be the coefficient of A in
Td tKu““(l_t)Kgl‘}_/{ tK12
Ka tKot (1—1t) Kg, .

and

1=f1Q(t)_Q(O)dt
0 t ’

Then we know that I gives the classical Bott-Chern secondary characteristic
from associated with (., p.). In particular, in our case, K is equal to the pro-
duct of w and the identity matrix. Furthermore, §; has rank 1 and Kg = 0.
Therefore, we see that ¢ (t) is the coefficient of A in
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tw+A 0
Td .
0 tw+(1—t)Kg_,

Thus, by the fact that Td is multiplicative, we have
w24

S hema bt 1-0ks).

30y =dd—2(

From here, note that
1, if k=mn,

fo
P"(C)

0, otherwise,

we easily have 2.

4. The expression for analytic torsions

In this section, we will use the results in the previous two sections to give
the final expression of analytic torsions in question by some technical com-
binatorial equalities.

For later use, we introduce the following notation.

Let

Ri)= T 20 (-miy

mood,m21
RE= T (-m (1+5+ . )2,
é1(t, x) =%— le__::z,
Anm the coefficients of #”*! in

. i ﬁlemx( x >n+1
p=1j=1] '

1—¢7*

Bu.m the coefficients of " in
em< x )”“flﬁbl (t) — ¢, (0) it
1—e¢™* 0 t o

Cn.m the coefficient of x” in

(n+1)e'“<l F )n“Rz(x),

_el‘

and Dy the coefficient of x” in

(n+1)e'”< ! __xe_1>n+1R1 (x).
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With this, the results in the previous section may be stated as a

Lemma. The vight hand side of the arithmetic Riemann-Roch formula
for Op(m) with respect to the Fubini-Study metric is given by —%(An,m—Bn,m'i-
CrmtDum).

Next we study the properties of Anm, Bnm, Cum, Dnm respectively.
First, we consider Dym. Let Pumi1(k) be the coefficient of x* in

n+1 m
2(""*'1)6"”(1_2_1) Zmodd,mzlkm{ﬁ'

If for any power series

P(x) = 2cnx”,
n20
we define
P=2cal’ (—n),
n20

we easily have the following
Lemma. Dn,m = CPn,m.l-

Therefore, we need to discuss the property of Py m,1.

By definition, for any power series f(x), we define 2/°%(x) =f(x) —f(—x),
then Pumi(2) is the coefficient of " in

2(n+1)emz( X )n+1 (ezr) 0dd(z)

1—e¢"

which is the odd function of the coefficient of x” in

2(n+1)e(m+z)r< X >n+1

1—¢7*
with respect to z. Thus we have Py, (k) is the odd part of the residue of
e(m+k).r
2(n+ 1)(T_—e_l)—n+ldx,

which, in turn, is the odd part of the residue of

1

2("+1)hyn 1—y) —ady

with y=1—e¢™%. Therefore, we see that

m+m+kr)! >0dd(k>

Prona () =2 (n+1) (P TR
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Hence, we have

(ot ) 1)

Theorem. Dn,m=2(n+1)c< Wl m+k)!

Next, let us study the term Ay m.
First, note that

s 8l (+1)(1+ . +) = (n+1) (G0 —1)
& n 2 —n=(n Out1

with

=145+ =+
n

S0 Anm is the coefficient of #™** in

(n+1) (1= o)em (2 )™,

1—e7*

which is the residue of

em.r

(n+1) (1—0us1) mdx.

% we see that Anm is the residue of

1
___d ,
x(l—y) m+1 Y

Thus by taking the transform y=1—e¢

(n+1) (1= 0n41)

which, in turn, is the coefficient of »" in

N S
x(l_y) m+1"

Thus if we define ay,, by the generating function

n+1) 1 =044

Za nz_L
720 o x(1—y)m+!

~% we have the following

with y=1—¢
Theorem. Apm= +1) (1= 0441) Qnm.
Now we study the terms By, and Cyp,n. We start with the following

Lemma.  Let ann(f) be the coefficient of " in

emz<1+ﬁ)n+lj‘(x)

and y=1—e™*. Then
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Z An,m (f)y" = (x)

nzl )m+1

349

Proof. This is a direct consequence of a standard technique from

generating functions.

From this, we easily see that the following theorem holds.

Theorem. With the notation as above,
a. ¢l (t ¢1 (0) q
22 1Bamy" = (1—y) m+lf at;
' S P = R ()

In particular, we have

Bam g1 [ 1 ¢ (t)_¢l(0) g
Dner +1y j; 1— )mj; ! ; dt dz.

Thus, if we define the coefficients 8, 0, and @, by the generating functions

Zﬁ:xl=xl__l,
120 y
o=
n20 W 1=y
1 y
2oy == .
20 A 1—y

Then we first have

B”,m n+l—— 1 fy
Znt1 Q=y)" , Pl
where

j;ZCt"zx"ldt.

122

In particular, we may restate the theorem above as the following

Theorem’. With the notation as above, we have
a. Bn m n+1— _ 1 Bk k
En-i—l (1_y)m,§2k(k—1)" ’
b. Cn m n__ 1.
nzz:ln+1 Q y) m+1 ! Zok 1Bix* Y
C. An m

n+1 = An+1.m (Un+1_1), where
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Sa -y 01
n>0 o (1—y)'”+1 X
Next, we need to get rid of the factor ﬁ For this, we introduce the
-y
following
Theorem”. With the notation as above, we have
a. Z .Bk xk+m.
et (n+l) (n+2) (n+m+1)y o k=D k(+1) (k+m) '
b. Com mtl= 3 Ok-1Bs k.
o (n+1) (n+1)- (n+m+1) ok (k1) (k+m) ’
C. k+m

x—
o (n+l) (n+m)y o0 (k+m)!'

The proof can be given by taking the integration.
Now we introduce the Stirling number by the following process: Let

e (ZDT
y=l—et =3, 1=log(l—y) = Sy

121 nz1"

Define coefficients s; (i, 1), s (I, n), n, [=0 by generating functions

x'=2m0s1(n, 1)y, ¥ =2s2(l, n)x!
=0

Therefore {s; (n, 1)} 150, {s2(I, %)}Inzo are mutually inverse infinite triangular
metrices, and usually we call l' —sy(n, 1) and ,sZ(l n) the Stirling numbers of

the first and the second kind (up to sign), which is the number of permuta-
tions of {1, 2,..,n} having exactly ! cycles and the number of partition of {1,
2,..,m} into exactly » non-empty subsets, respectively. Then we have

n+m+1

Z Bn,m
S tl) mt2)- m+m+1)?

= B
B Z:(k DEe(E+1)(+m )ZSI(" k+m)y"

n22

_ ‘Bk n
- EUEZ G—1DkGE+1D~(k+m) s1(n, ktm)y
Therefore,

By
2 DGt ek

_—— m+m+1, k+m).

Similarly,
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— "R Ok-1P8k
Com= m+1) (n+1) (n+m+1)kz=:zk(k+1)...(k+m) siin+m+1, k+m).

And

Opm= n+1) (n+m) i

N S
et (k+m+1)!31 (n+m, k+m).

Thus, put all terms together, we have the following

Main Theorem. Put the Fubini-Study metric on the tangent bundle of
P”(C) and the associated metric on the tautological line bundle. Then for the in-
duced metric on the supersurface line bundle Op» ¢y (m), m =0, the associated an-
alytic torsion is given as follows:

T(@P"(C) (m) .Ops)
=(0ps1—1) W+1) m+1) (n+m) émsl(rﬁ-m, k+m)

k21
n+l

Bi
i (k=1 k(k+1) (k+m)

—m+1) W+2) mw+m+1)

— i) ) ) S B

~26et ) (P EmERE)

(ao! " am!)
+ 2 log=—7 T,
(@g,....ay) €238 T a;=m (n+m)'
wheve
gnzl_}_%_i_ +l'
n

and s; (n, 1) is the twisted Stirling number given by the generating function

x'=2s1(n, 1)y
n=0

with y=1—e™".

We end this general discussion by the following remarks: From the com-
putation above, we actually could make a guess about the eigenvalues and mul-
tiplicities for the associated representations of SU (n+1) on C*(P”, Op+ (m)),
by further studying the meanning of the quantities from both sides of the
arithmetic Riemann-Roch formula stated above. But such a guess should de-
pend on a certain highly non-trivial combinatorial calculation. We will discuss
this matter elsewhere.
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5. Some examples
In this part, we give some down-to-earth examples.

5.1. The situation for projective line. We will use two methods to
give the associated analytic torsion.

5.1.1. A classical method. On P!, we have the tautological line
bundle 0 (1). We put the Fubini-Study metric on it. Then it naturally induces
metrics on @ (m) for all integer m. P' may be realized as the quotient space
SU(2)/S(U() xU(1)). Let A be the fundamental weight of the Lie group of
SU (2). Let I be the irreducible representation of SU (2) with highest weight
kA for kEZzo. Then by the Peter-Weyl theorem, we know that I'(T**"P'Q0
(m)) contains the L?-dense subspace

®k20[|m+2|+2k'

Furthermore, the eigenvalues of the complex Laplacian for € (m) are given by
k(k+m—+1) on Lpsz for k=1, m=>—1 and k(k—m—1) on I_pm_z4ak for k>0, k
<-—1

Note that by the Serre duality, it is suffcient to give the analytic torsion
for m positive. So in the sequel, we always assume that m is positive.

Note that the dimension of I,,+2¢ is nothing but m +2k+1, we know that
the associated zeta function is given by

2k+m+1
ik (ktm+1)s

Therefore, by a standard technique, we see that the analytic torsion is given
by the following

Theorem. Let O (m), m=>0 be a line bundle over the projective line P,
Put the Fubini-Study metric on them. Then the analytic torsion for the complex La-
placian is given by

—zi (m—k)log (k+1) -+ (m+1) log (m+1) 1 +48 (—1) — (m+1)2/2.

The proof may be given as follows: We first separate 2k+m+1 as 2k and
m+ 1. Then we calculate the corresponding contributions to the analytic tor-
sion. Thus by using the Riemann zeta function and its generalized version —
the Hurwitz zeta function, we may easily have the result.

5.1.2. The arithmetic geometry method. Now we use the arithme-
tic method to calculate the above analytic torsion.
By the result in Chapter 4, we see that

1+1
Arm=the coefficient of x% in —em1<1 * _I)
—e
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=the coefficient of % in

2
—<1+mx+1n2—x2+higher degree terms>(1+x+%x2+higher degree terms)
=— m¥2+m+5/12).

By »=the coefficient of x in

_ mz X )Hlfl( 1-1,0-1__ )ﬂ
‘ (l—e" NGB

=the coefficient of x in
— (14 (m+1)x+higher degree terms) (B +higher degree terms)
=—-1/12,

where if T=1—¢7?, we define 8, be the generating function

1-7
yp =By

120

C1,m=the coefficient of x in e""(l ad _x)Hle (x)
—e
=the coefficient of x in
(14 (m+1)x+higher degree terms) ({(—1)x+higher degree terms)
=2((—1)=—1/6.

1+1
D1,m=the coefficient of x in Ze'"’(l d ) v Ri(x)

_e—.l'
=the coefficient of x in

2(14+ (m+1)x+higher degree terms) (2{’(—1)x+higher degree terms)
=4{'(—1).
Therefore, the analytic torsion is given by
Miea!(m—a)! 1

which is the same as what we obtained from the classical method. In fact, it is
sufficient to show that

(m—k)log (k+1) + (m+1)log (m+1) 1= —1og~———n"'"=gfn!iml;“) L

Mz

—2

k

So we need to prove that 222720 (m —k)log (k+1) =loglli ea! (m —a)!. Now the

right hand side is just 22" ologa!, so we may use the induction on m to give
the result.

5.2. The situation for P2 From now on, we assume that m is a
positive integer. We want to give the analytic torsion for all line bundles over
P? with the metrics induced from the Fubini-Study metric. For this, as above,
by using the result in Chapter 4, we have the following
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Proposition. With the same notation as above, we have
5(3 3 1
Agm= —§<§+m +Zm2+€m3);
1/(3
Bun="15(5+)

Thus, we get the following

Theorem. The analytic torsion for (O (m), om), m =0, over P? with re-
spect to the Fubini-Study metric is given by

. alble! 19 8 15 , 5 rr_
> log—-——(z_'_m)! 16 3™ Wz Em+(9+6m)§( 1).

(a,b,c)elioa+b+c=m
5.3. The situation for P3. Similarly, by using the result in Chapter

4 with a direct calculation, we get the following

Proposition. With the same notation as above, we have

_ 251 2 3 )
Aom= 15 (T 1+ gm

720
329 1 Z>.
(2160 Toqm):

1
6"

649 2 1,
(1080+§""+€"”>'

B3,m: - +

Cam=—
Daw=40 (=3 + (4m*+16m+ %) (—1).

Hence, we have the following

Theorem. The analytic torsion for (O (m), om) with m=0 over P? is
given by
5 alblcld!
log 5 m) 1

(a,b,c,d)€ZSo,at+b+c+d=m

13, 13 , 295 , 29 2116
72 m 9 m 72 m 6 m 1080

+40 (=9 +(am2+ 16m+4) ¢ (— 1),
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