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Regularized determinants of Laplacians
for hermitian line bundles over projective spaces

By

LIN WENG

L e t  P n  ( C )  b e  a n  n -d im e n s io n a l p ro je c tiv e  s p a c e . I f  w e  p u t  th e
Fubini - Study m etric on the tangent bundle, w e know  that the eigenvalues of
the Laplacians for a n y  (0 , q )  C- - form s could be given by using th e  method
from representation theory, a s  we know that there is a  connection between the
Laplacians and the Casimir opera tors [4]. In other words, this means that we
know the eigenvalues of Laplacians for the (0, q )  C- - form s w ith coefficients
being the sections of the structure  sheaf o f Pn. B ut the re  a re  o ther k inds of
line sheaves on P", say, the tautological line sheaf Op" (1) . So we also want to
know what should be the eigenvalues of corresponding Laplacians. In fact, this
is  an open problem, at least, to me. In th is  paper, we will give the  regularized
determinant of the L aplacians for line sheaves, such a s  VW (m) , i.e., we will
give the regularized infinite product of the non-zero eigenvalues of the Lapla-
cians. Put th is  in  a  m ore  fashionable language, we will give th e  analytic tor-
sions associated to hypersurface line sheaves with the induced metric from the
Fubini - Study one.

T he  po in t h e re  is  th a t w e  d o  not know  the eigenvalues. How could we
give the  associated analytic torsions? The idea goes a s  follows: We consider
arithmetic model P'zi over Z  first. Then use  the  arithmetic Riemann - Roch for-
mula of G illet and Soulé to  find  the value of the first arithm etic Chern class
for the associated determinant line sheaf with the Quillen metric. Thus, finally,
after deleting the L 2 - norm contribution, we could get the  analytic torsions in
question.

T his process looks very good. B ut the point is that it contains very deli-
cate calculation for the terms involved. Thus, finally, we could use the Stirling
num bers to  express su c h  a  quantity . H ere w e w ill m ainly follow  th e  work
given by Gillet, Sou lé and Zagier [3].

1. The arithmetic Riemann - Roch formula

Let f  : 11- be a smooth morphism of arithmetic varieties, then we
have the following
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Arithmetic Riemann - Roch formula ( [2] ). For any hermitian vector
sheaf  (g , p ) on X, if w e put a herm itian m etric pf  on the relative tangent sheaf
g f, we have

(det (R'f * 8), hQ (p, o f))  =  (f* (chA r(g , p )Td A r( f, P f ) ) ) ( 1 )

w here hQ(p, p f ) d en o te s  the associated Quillen m etric on the determinant line
sheaf with respect to the metrics p and p f .

For our purpose, let f :  r,! - - - * Spec (Z) be the projective space of dimen-
sion n  over Z. On f l (C ) , w e  sh a ll ta k e  the Fubini - Study metric p F s . Hence,
we a re  given not only a herm itian metric on the tautological line sheaf, but a
hermitian metric on the tangent sheaf, and all of them are invariant under SU
(n+1)

Obviously, we have the following results for (m ) with m

(Pn  V  (M)) , if i = 0,
R'f*Op.(m) =

0, if i >0.

Thus, the  arithmetic Riemann - Roch formula above gives the following re-
lation:

d'r(det H° (
p t ,

 Op (n) ) , hQ (PFS) ) (f* (ChAr (VW (m )  PFs) TdAr ( TF , p )  )) (1),

In the sequel, we will calculate both sides separeterly.

2. The left hand side

By definition, in our case the Quillen metric may be given as

hQ=hoexp( — T (CP"(111) PFS))

w h e re  h o  d e n o te s  t h e  n a tu ra l /2 - m e tr ic  o n  t h e  d e te rm in an t d e tir(P n ,
ep" (m) ) , w hich, in  turn , is defined a s  follow s [5]: First, on A" (Pi, Op- (m)),
we have the L 2 - metric defined by

<77, 17' > L2 =  f <17 (X) , 17' (X)> W
n !nP"

w here co is th e  curvature form  associated to the Fubini - Study metric. Then
the space H° (e n , Op" (m )  )  is canonically isomorphic to the corresponding har-
monic forms, hence it has a  natural induced /2 - metric. Finally, we take the de-
terminant metric; on  the  o ther hand, r  (OP" ( t t ) ,  P F S )  is usually called the  an-
a ly tic  to rs io n  a sso c ia ted  to  t h e  line bundle Vp” ( ;n ) , w ith  re spec t t o  the
Fubini - Study metric, which is what we try to compute, and may be defined as

follows [6]: W ith respect to  the Fubini - Study metric, the operator 55* - k 5 * a

on A "  (P nP "  (m )) has non-negative eigenvalues. In particular, if we only
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consider the non-negative eigenvalues, we could have strictly  positive eigenva-
lues, say,

(4, m, q) •/i(n, m, q)2 (n, m, q) 3 —,

indexed  i n  inc reasing  o rde r, a n d  ta k in g  in to  a c c o u n t multiplicaties. I t  is
well-known that the associated zeta function

(s) : = EA (n„  q )  ï 5

is  intitially defined for Re (s) > n  a n d  could be meromorphically extended to
the  whole complex plane. In  particular, the resulting function is holomorphic
at s=0. Hence, it makes sense for us to talk about C'n ,m ,,(0). W ith this, the an-
alytic torsion is given by

g=0

Therefore, if we choose the coordinates zo , ,  z n , then we have

ci r (detH°
 (P n , Cp" (M)),he (pFs))

1 1loghL2 (a ( p i )  A A a (PN)) ±  —
2  

r (19 (m ) , he(pFs)) ,

where p i  denotes all monic polymonials of degree m of z,,

a :  sme — (m)
is the canonical isomorphism, and N  is the dimension of H° (1)° , Op" ( n i ) ) .  Thus
note that .z; may be chosen as orthonormal basis w ith respect to  L 2 metric, we
see that if x=zg° 4n, then

In particular, we know that

II x 112 = a l- 0 . a n ! 
M!

a (x) (a°1 a n ! )
(n - I-m) !

con
as we choose the density to be  Therefore, we see thatn!

cl""(detH°
 (P n , Op" (M) ) , hQ (PFS) )

1
= H ao! ..• an !

(n-l-m)! ± 1 1_,\1„ (
m

)  h Q  ( p F s )  )log 2 
(ao,..•,an)EZ7j:161,Ejai=m

3 .  The right hand side

We need to compute
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(ChAr (OW' (m ) ,  PFS) TdA r f , pr)))  ( 1 ) .

F o r  doing so, w e divide it into several pieces. First, by definition, w e know
that

TdAr (g, p) tdA r (g , P) (1 + a  (R  (g))),

where R  (g) is  an additive characteristic class in  even cohomology, which, in
turn, has a  harmonic representation, and then a (R ) means (0, R ) in the arith-
metic Chow ring. M ore precisely, R  is  assoc ia ted  w ith  th e  following power
series

R (x) = (2C' (— C(— k)(1-1-
k l)) xle; 

kodd,1

w i t h  (s)  the Riemann zeta function and  C '(s) its derivative.
On the other hand, we have the canonical exact sequence En

E :  0 — * (1) n + 1 Y - 1». O.

W ith the Fubini - Study metrics for the term s in E n , by the property of tdA r , we
see that

td Arf , PFs) —  td A r (Op" (1 )  PFs) n + 1 a  (tdBc (En, PFs) ) •

Therefore, we see that

(f. (ch  A r ( p , )0 ( 0  ))).  FS TdAr f , f (1)

=  V* (Ch A r (V P" (M )  P F S )  td Ar p .  (1 )  PFS) n + 1) ) ( 1 )

- *(Ch Ar ( p  (m )  PFs) a (tdBc (En, PFs) ) ) ) ( 1 )

+ (t . *(chAr (Ow (m ) ,  PFS) tdA r (fJ , pf)a (R j ))))(1)

= (ChAr (VW (m) , PFs) (dAr (Op" (1) , PFS) (n + 1 ) ) ) ")

— Çf (ChAr (Or (m) , PFs) a (tdBc (En , PFs) ) ) ) (1 )

(f. *(chAr ( p t d  (g- !) R (, f )) .

H ere, in the last equation, we also use the  property of arithmetic intersection
theory [7].

Lemma. We have the following relations:
1. Let t n ,m : =  — 2 V* (chAr (Ve. (m) PFs) tdAr (Ow (1) , PFS) n + 1 ) ) (1 ) .  Then tn ,,n is

1the product of  — E 7,-IZ 'î=i and  the  coefficient of x ' i n  e m '
(  x   )n + 1

;

1— e '

2. Let s n ,m : = — 2 (f* (ch Ar (m) , PFs) a (tdBc (En, PFs) ) ) ) ( 1 ) . Then sn ,m  is  the

coefficient of xn in em x  1'
0

1 1 5 ( 6  7 15
(0

) d t ,  where

o  ( i ) (1e - t . x . )n+1
IX 1—  e

1
 1 — e
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3. Let No n : = — 2 V* (chAr (op" (m )) td (g f)R  (g  f)) . Then rn "  is the coefficient
of xn  in

(n+ l)em x(
1 —

x
e - x )

n+1R (x).

Rroof. Let x -= c1 ('d e  H2 (P n ) ,  and xAr=cAr (Cp^(1), PFs) be the
firs t Chern class and  the  first arithm etic Chern class o f the  tautological line
bundle with the Fubini-Study metric. Then the  re su lt 1  and 3  come from the
facts that

a
x

k 
{ 1, if I n,

(C) 0, otherwise;

_ E n  V I ?  I
2 p=iz-.1=1. • ,

f *(x ir) (1) =11
0,

if k= n+ 1,

otherwise;

F o r  2 , w e need  to  app ly  th e  method o f Bott and  Chern to calculate the
classical Bott - Chern secondary characteristic form associated with E n  with re-
spect to the Fubini - Study m etric  [1 ] , w hich w as first carried o u t in  [3] with
the following form: If we have a short exact sequence

g. g1 — > g 2 - )  g, — > 0

w ith hermitian metric pi on gi, W e may write g2  as the orthogonal direct sum

of g i and which is C "  isomorphic to g3. The curvature of g 2 (multiplied by

i  
decomposes a s  a  2  b y  2  matrix K =  (K Let Kg, be the  curvature of g,27r

multiplied by 
2

i

n . Let Td (A) = d e t  
A

for any square matrix A . For every

t E  [0 , 1], let 0 (t) be the coefficient of A in

T d

(tK i i  ( 1  — t) Kg , - I- t K 1 2

K21 tK22+ (1 — t) K8 ,) .

and

1= f ol  ( t )  —  (0) 
d t .

Then w e know  that / gives the  classical Bott-Chern secondary characteristic
from associated with (e., p .). In particular, in our case, K  is equal to the  pro-
duct o f  w an d  th e  identity m atrix. Furtherm ore, g i  h a s  ra n k  1  and Kg, =  O.
Therefore, we see tha t 0 ( t )  is the coefficient of A in
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( 0 ) + 2 0
Td

0 tco+  (1  t) Kg,

Thus, by the fact that Td is multiplicative, we have

=  d   (  tw -  .1  
c 12 1—  e-R0-2)12=0' d (tW ± (1 —  K

From here, note that

cok —_  I
if k=n,

0, otherwise,f p"(c)

we easily have 2.

4 .  The expression for analytic torsions

In th is section, we will use the results in the previous two sections to give
the final expression of analytic torsions in  question by some technical com-
binatorial equalities.

For later use, we introduce the following notation.
Let

R1 (X )  = 2Cf ( M )  X m

M!mood,m1

R2 (x) =  E C(—M) ±tni- ) m
e

t
mood,m1

1 e
- t X

01 (t, x) = tx e- tx

An,m the coefficients of x ' in

n p
—  E  E  e nix x   ).+1

p=1.7-li (1— e- x

B n ,m  the coefficients of x n in

x )n± 1 1. 1 01 (t) — 1 751(0) d t ,

\ 1— e- x

C,,,m  the coefficient of x n in

n+1
±  1 )  e ' x  )  R2 (X ) ,

1— e '

and Dn,n, the coefficient of x n in

(n+l)emx( x
n+1

1 — e

R  )

- x •

e
mx
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W ith this, the results in the previous section may be stated as a

Lemma. The right hand side of the arithm etic Riemann - Roch formula

f o r  p" (m ) w ith respect to the Fubini  - Study metric is given by (.11n,m —  B n,m +

C n"±  D n,m ) •

Next we study the properties of An,m, B n,m , C n ,m , D n ,m  respectively.
First, we consider Dn,m . Let Pn,m,1 (k ) be the coefficient of xn  in

n+1‘__, , X ; n  

2(n+l)enix 
1—e-x

)

m.

If for any power series

we define

we easily have the following

Lemma. D n ,m =

Therefore, we need to discuss the property of Pn,m,l.

By definition, for any power series f (x) , we define r d d (x) =f (x) — f (— x)
then Pn ,m ,l( z )  is the coefficient of xn in

2 ( n +1 ) e " ( x )
n + 1  

( e z . r )  o d d ( z )

1 — e- x

which is the odd function of the coefficient of xn in

2 (n +1) e`m -' )-r( x
n+1

1—  e'

)

with respect to z . Thus w e have P„,,1 (k ) is the odd part of the residue of

,(m+ux
2(n+1) 

x ) n + l
dx ,

(1 — e-

which, in turn, is the odd part of the residue of

1 2(n+1) +idYYn ( 1 — .0 " k

with y=1 — e ' .  Therefore, we see that

ylii(k)
Pn,.,1 (0 = 2  (n +1 ) ( n !(m +k )!

P (x ) = Ec n xn ,
n O

CP= Z enC'( — n) ,

n O
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Hence, we have

( 
(n ± m ±k)  )0da(k)

Theorem. n  = -)9 4 - 1  r, •

Next, let us study the term An,m.
First, note that

n P  1 1 1E =  ( n + 1 )  ( 1 + -
2

+ ••• +—
n

) —n= (n+1) (an-F1 - 1)
p=1/-1/

with

1 1a = 1 + +  + 1 7 i .

So An,m is the coefficient of xn + 1  in

(n + 1 ) (1 — an-Fi) x " 1

which is the residue of

(n +1 ) ( i —  a+1)
e n '  
x (1 —  e' ) n + 1 d x .

Thus by taking the transform y = 1  — e ' ,  we see that An,m is the residue of

(n+1) (1— an+1)
x (

1

1 — y ) m
+idY,

which, in turn, is the coefficient of y n in

(n + 1 ) (1—an+1)
1 

x(1 — y) m ± 1 .

Thus if we define an ,,, by the generating function

n — Yan,mY 
x  ( 1

—
 y ) m

±
';2 0

with y = 1 — e ' ,  we have the following

Theorem. A n ,m  (n  + 1 )  (1 —  an+i) an,m.

Now we study the terms Bn,m and C m . W e start w ith the following

Lemma. Let an,m(f) b e  the coefficient of xn  inx )n+1
f (x) ,

and y=1 — e-  x . T hen
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W Y n =  
f (x) 

n 1 (1 — y) m + 1 .

Proof. T h is  i s  a  d ire c t  consequence o f  a  s tan d a rd  tech n iq u e  from
generating functions.

From this, we easily see that the following theorem holds.

Theorem. W ith the notation as above,

a.
En,iBn,myn= 1 f  01 (t) - ( 0 )  d t ,

(1—y) m+1 -1 o t

b. n 1
. ) , )  m + i  R2 (X ) •n+1 Y

In particular, we have

E n B n "   n+1— r  1   f  1  01(0 — 01(0) 
d t  d z .1 n+1 Y o  ( 1 - 4 m  o

Thus, if we define the coefficients SI, al and an b y  the generating functions

>/3,x1 =x '
Y  ,

c r o n _=  X  
1—y'

1  y  c r ,n =
7/ 13

Then we first have

E  B n m  n + i,  1   f Y
y ) m  0

n , i n +1Y
(z) dz,

where

1
ço (x) =

O ,,z

In particular, w e m ay  restate the theorem above as the following

Theorem'. W ith the notation as above, we have

a. Bn,m n + 1 —  1    
Sk xk ,

n , , n + 1 ( 1 — y ) M  „de (k — 1)

b. Cnm 1E — y . _ ak-u3kx';
n in + 1( 1 — y )m + 1 k 2

c. A n,n, =a n+,m (a +1 - 1 ), wheren + ]n
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E an m y n =

(1 — y) m n
1
X .

Next, we need to get rid of the factor
1 . F o r this, we introduce the

(1 —y) m
following

Theorem". With the notation as above, we have

B n,m  n+m+1 E
(n+1) (n+2) — (n+m +1)Y (k — 1) k (k+1 ) (k - Fm)

x k + m ;
,  

n+m+1=
Cik-113k 

tz i  0 1 +1 )  (n+ 1 )...(n± m ± 1)Y  E
k „k (k+m) x k ± m ;

n ± m = k

an,m  

)1 0 (n+ 1 ) — (n+m) Y E
0 ( k

X±
M )

The proof can be given by taking the integration.
Now we introduce the Stirling number by the following process: Let

y 1 X1, x =  log (1 —y) = E l y n•
n,in

Define coefficients si (n, 1), s 2 (1, n), n, by generating functions

/ ) y ,  y n = is2 (/ , n )x l .
1=0

Therefore {Si (n, 1)} {s2 (1, n)} 1,n 0 are  mutually inverse infinite triangular

metrices, and usually we call 
n !

si  (n, 1) and —

n !  
52 (1, n) the S tirling  numbers of

the  f irs t  and the second k in d  (u p  to  sign), w hich is th e  number o f permuta-
tions o f  {1, 2, ...,n} having exactly 1 cycles and the number of partition of 11,
2, ...,n) into exactly n non-empty subsets, respectively. Then we have

(n+ 1) (n+ 2) — (n+m-1- 1)Yn + m + 1

1 2 (k ( k + 1 ) .Y. -  (k +M ) n k + m )n

= — si(n, k+m)Y n

n=ik2 (? - 1 )k  (k+1 ) (k+m )

Therefore,

Bn , .=  — (4 + 1 ) (n + 2 )...(n + m + 1 )

 (n-l-m -f-1 , k+m ).
k -2  (1 ?-1 »  (k +1 ) . -  (k +M )

a.

b.

C. k+m

Similarly,
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Cn ,,n =  (n+1) (n+1)—(n-Fm-F1) lSk (n-Fm+1, k+m).
k = 2

“k+1)...(k+m)

And

a n ,,n =  (n+1) - • (n+ m )  1
k ( 1? ± M + 1 ) ! S i  ( n ± m  k + m ) •

Thus, put all terms together, we have the following

Main Theorem. Put the Fubini  - Study metric on the tangent bundle of
P n (C ) and the associated metric on the tautological line bundle. Then for the in-
duced metric on the supersurface line bundle Cp. (c )(m) , nt__(), the associated an-
alytic torsion is given as follows:

T(OP"(C) ( n ), P F S )

=  ( a + 1 - 1) (14+ 1) (14+ 1) -  (n + M )  1
k , 1 (I? +111+1) ! S i  ( n + n i '

—(n+1) (n+2).-(n+m+l)ni1 13k 
1) k(k+1)•••(k+m)k =2

—(n+1) (n+1)—(n-Fm-F1) Crk-113k 
k = 2 k (k+1) — (k +In)

(14 ± M - 1- k )!)o d d (k )
—2 (n+ 1) C( n ! !

(ao ! an!) l o g  (n , + n
)
,

(a0 ........... an ) e.........,Ei aj= m

where

k +m)

crn = 1 -F-1 +  -F-1
2 n'

and s il )  is  the twisted Stirling number given by the generating function

CO

x1 =  Esi (n, 1).Yn

n=0

with y 1—e - x.

W e end this general discussion by  the following remarks: From the  com-
putation above, we actually could make a guess about the eigenvalues and mul-
tiplicities for the associated representations of SU (n+1) on C°'" 

( p a ,
 p "  (m) ) ,

by  fu rther s tudy ing  th e  meanning o f  th e  quan tities from  bo th  sides of the
arithmetic Riemann - Roch formula stated above. B ut such  a  guess should de-
pend on a certain highly non-trivial combinatorial calculation. We will discuss
this matter elsewhere.
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5. Some examples

In this part, we give some down - to - earth examples.

5 .1 .  The situation for projective line. W e will use two methods to
give the associated analytic torsion.

5 .1 .1 . A  classical method. O n  13 ', w e  h a v e  th e  tautological line
b u n d le  (1 ). W e put the Fubini - Study metric on it. Then it naturally induces
metrics on  0 (m ) for all integer m . 13 1  m ay be realized as the quotient space
SU (2)/S (II (1) x I! (1 )). Let A  be the fundamental weight of the Lie group of
SU (2 ). Let I k  be the irreducible representation of SU (2) with highest weight
kA for k  b y  the Peter - Weyl theorem, we know that r ( T * ( " P 10 0
(m)) contains the L ' - dense subspace

010koilm+21+2k•

Furthermore, the eigenvalues of the complex Laplacian for 0  (m ) are given by
k (k±m± 1 ) on /. + 2k for —1 and k (k — m —  1) on I - m - 2 + 2 k  for k>0, k
< - 1.

Note tha t by  the Serre  duality , it is suffcient to give the  analytic torsion
for m positive. So in the sequel, we always assume that m is  positive.

Note tha t the dimension of im+2k is nothing but m+ 2k - I-  1, we know that
the associated zeta function is given by

2k - Fm + 1 

Therefore, by a standard technique, w e see that the  analytic torsion is given
by the following

Theorem. Let Ù  (m) , 0  be a  line bundle over the projective line 13 '.
Put the Fubini - Study metric on them. Then the analytic torsion for the complex La-
placian is given by

— 2 (m —  k) log (k+ 1) + 1) log (m  1 ) ! ( — 1) — +  1 ) 2/2.
k=0

The proof may be given as follows: W e first separate 2k - Fm + 1 as 2k and
m  1 .  Then we calculate the  corresponding contributions to  the  analytic tor-
sion. Thus by using the Riemann zeta function and  its generalized version —
the Hurwitz zeta function, we may easily have the result.

5 .1 .2 . The arithmetic geometry method.
tic method to calculate the above analytic torsion.

By the result in Chapter 4, we see that

)1+1
A i ,,,, = the coefficient of x2 in  — e" (

1— e '

Now we use the arithme-
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the coefficient of x2 in

m
2

5
— (1+mx+ -

2
x2 +higher degree term s)(1+x+ -

1 2
x2 +higher degree terms)

= — (m2/2 +m +5/12) .

Bi on =the coefficient of x  in

—e
n i x (  x   ) , , ,  r t at 2.;[3i t x 1311— e' J  0  r i t

= th e  coefficient of x in
—(1+ (m+1)x+higher degree terms) (S2x+higher degree terms)
=- — 1/12,

where if T = 1 — e - v , we define S i be  the generating function

1— T 
Y T  = Z 1 3 1 3 1 1 .

Ci ,.= th e  coefficient of x in ems
(  

 x  ) 1 + 1

R2 ( X )
1- e- x

= th e  coefficient of x in
(1+ (m+1)x+higher degree terms) (C( - 1)x+higher degree terms)

=2C( - 1) = — 1/6.

)1+1
Di ,m =the coefficient of x in 2 e '   R1 (x)

e -x

= th e  coefficient of x in
2(1+ (m+1)x+higher degree terms) (2C'( - 1)x+higher degree terms)

=4C'( - 1).

Therefore, the analytic torsion is given by
fran_oa! (m — a) ! 1log ( m + 1 ) ! 2 (m + 1) 2 +4C' ( - 1)

which is the same as  what we obtained from the classical method. In fact, it is
sufficient to show that

— 2 ( m  — k) log (k +1) + (m + 1) log (m +1) ! lo  r i r2=° a !  (m — a) ! 
g (m+1)! •

So we need to prove that 2E7,1=0(m — k)log(k+ 1) = loglra l=oa! (m a)!. Now the
right hand  side  is just 2E 'an=o loga!, so w e m ay use the induction on m to give
the result.

5 .2 . The situation for P2 . From  now  on , w e  assum e th a t n i  i s  a
positive integer. W e want to give the analytic torsion for all line bundles over
P 2 w ith  the  metrics induced from the Fubini-Study metric. F o r this, a s  above,
by using the result in Chapter 4, we have the following

k=0
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Proposition. W ith the same notation as above, we have

5(3 1
A 2 'm 2 \ 8 ± m ± 4

- 2 _ 4 _  -

61/1"

3

 );

1 (3
B'm

j_
12 \ 2 m i ;

1 (3  ,
C 2 'M  — 7 1A " ) ;

3D2 ,m = 6 (+ m )C '( - 1).

Thus, w e get the  following

Theorem. The analy tic torsion for (0 (m), p m ) , 0, over P 2 w ith re-
spect to the Fubini - Study metric is given by

a ! b ! c !  1 9 8 15,n 25
log 3+  (9 + 6 M ) C '  ( - 1) .( 2 + m ) !  1 6  T n  8 12

(a,b,c)eno,a+b+c=m

5.3 . The situation for P 3 . Sim ilarly , by using th e  re su lt  in  Chapter
4 w ith  a  d irec t calculation, we get the  following

Proposition. W ith the same notation as above, we have

A 3,m = 111 3  ( 2 5 1  

+m+ — m2 1— 7/13

3
1 

In4) •243 720 12
329 1 1

B3,m 
= — m2160 6 24

649 2 1+ — M 2 ) ;C3,m = 1080 3 6

4 44
D3

'

m = C' (-3) + (4m 2 +16m+ -

3
)C 1 ( -1) .

Hence, we have the following

Theorem. The analy tic torsion for (0 (m), p m )  w i t h  m  0 over P 3 is
given by

a!b !c!d ! 
log ( 3 + m )  !

(a,b,c,d)eZto,a-l-b+c+d=m

13  4  1 3  3 2 9 5  2 29 2116 
72 m  T n 7 1 1 '  1080

+ -
4

C' (-3) + (4m 2 + 1 6 m + -
4 4

)C '( -1 ) .3 3
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