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1. Introduction

F o r  each positive integer d , le t Hol d d e n o te  th e  space o f  all holomorphic
(equivalently, algebraic) maps of degree d  from the Riemann sphere S 2 = C u oo
to itself. This space is of interest both from a  classical and a m odern point of
view  (see [1], [5]). L et H ol: be the subspace of Hol d consisting of maps which
preserve a basepoint of V . It is  w e ll know n  tha t H o ', is  the group of fractional
linear transformations PSL 2  (C ) and that H olt m ay be identified w ith the affine
transformation group o f  C .  I t  i s  a n  elementary fact that Hol d a n d  H o l:  a re
connected spaces. T h e  fundam ental groups o f  th e se  sp a c e s  a r e  Z /2 d ,  Z
respectively ; these com puta tions a re  due  to  E p s h te in  O D  a n d  Jo n e s  (see
[ 8 ] ) .  The following m ore general result was obtained by Segal:

Theorem 0 O D .  L et Map d  b e  the space o f  all continuous m aps o f  degree
d f rom  S 2  to  itse lf  and let M a p ' be the subspace consisting o f  maps f  such that
f ( c o ) = I. T h e n  the natural inclusion maps induce the following isomorphisms of
hom otopy  groups:

(1) I f  k  < d , then n k (H ol:) = n k (M ap )  =  nk+2IS 2 ).
(2) I f  k  < d , then 7r,(Hol d ) = n k (Map d ).

The stable hom otopy type of H ol: w as studied i n  [ 3 ] .  I n  th is  no te  we shall
extend the  above results by determining some further homotopy groups of the
space Hol d . O u r  results a re  as follows :

Theorem 1. (1) For k >  2,

irk (S 3 ) d =  1
nk (Hold ) 1rk(S3 ) irk (S 2 ) d  = 2

Z/2d >  3, k  = 2

(2) I f  k >  3  and d > 3 , then nk (Hol d ) = n k (HolD e n k (S 3 ).
(3) In particular, i f  d >  k >  3, then ir k (Hol d ) = irk+2(52) 0 nk(S3).
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Theorem 2. The space Ho1 2  m ay  be identif ied w ith a  homogeneous space of
the  form  (S L 2 (C) x SL 2 (C))IH , w here H  is isom orphic  to  C *  Z / 4 . In  th is
semi-direct product, the action o f  Z/4 = <a: a 4  = 1> is given by  a • cc = a - 1  f o r
oceC *. In particular, Hol 2  is hom otopy equivalent to (S 3 x S 3 )/(S 1 xi Z/4).

Theorem 3. (1) T he universal cover o f  H o ll is homotopy equivalent to S 2 .
(2) The universal cover of Ho1 2  m ay  be identif ied w ith a  homogeneous space

o f  the form  (S L 2 (C) x SL 2 (C))1D, where D  is isom orphic to C*.
particular, it is hom otopy  equiv alent to S ' x  5 2 .

In Theorem 1, the case d  = 1 follows from the fact that Hol, may be identified
with PSL 2 (C) and hence is homotopy equivalent to RP 3 ; the case d = 2 is direct
consequence of (2) of Theorem 3.

In section 2, we shall consider the homogeneous structure of Ho12 based  on
the action of H ol, x H ol, by  pre- and post-composition, and give the  proof of
Theorem 2  and (2) of Theorem 3. In section 3, we shall investigate the  space
H a l ' ,  a n d  give th e  proof o f  (1) o f Theorem 3. In  section 4 , we shall prove
Theorem  1. In  section 5  w e shall give an application of these results to  the
C2 -operad structure on I I  H o l,t. In particular, we show that the C2 -structure
o n  I I  o Hol: is  no t compatible w ith that on  Q2 S 2 u p  to  homotopy.

After completing this paper, w e found that results sim ilar to Theorem s 2
a n d  3  are  also contained in  a  preprint "Remarks o n  quadratic rational maps"
of J. Milnor.

2. The Homogeneous Structure of Hol 2

From now on, we identify Hol d w ith  the space of functions f  =p i lp 2 , where
Pi' p 2  are  coprime polynomials such that max {deg (p i ), deg (p2 )} = d. The group
H ol, acts o n  Hol d b y  pre- and post-compositions: for (A, B)e Hol, x Hol, and
f  e Hold  w e  have

(A, B) • f  (z) = A (f  (B  1 (z)).

The following proposition is well known, bu t we shall give a  proof for the sake
of completeness.

Proposition 2.1. The group Hol t x  Hol i  acts transitiv ely  on Ho1 2 .

P ro o f .  Let f  = p/q e Hol 2 . It suffices to show that A(f(B(z))) = z 2 for some
A, B e Hol i . Since Hol, acts transitively on S 2 , there is a  function A E Hol, such
th a t  A(f(oo)) = oo. H ence, w ithout loss o f  generality, w e m ay suppose that
f (co) = oo , i.e. that deg (p) = 2 > deg (q).

C laim : If f (co) = oo, then there is some (A, B)e Holf x Holt such that

A(f(B(z))) = z 2 o r  (z + z-1)/2.
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We shall prove this by considering separately the cases deg (q) = 0, deg (q) = 1.

(i) If deg (q) = 0, we may suppose that f  (z) = p(z) = a(z + b) 2 + c for some a 0 0,
b, c E C .  I f  w e  put A(z) = a - 1 (z — c), B(z) = z — b th e n  A(f(B(z))) = z 2 ,  as
required . (ii) I f  deg (q) = 1, w e  m a y  suppose t h a t  q(z) = z + a, and p(z) =
b{(z + a) 2 + c(z + a) + d 2 1 w it h  b  0 ,  d 0  O. P u t t i n g  A(z) = (z — bc)/2bd,
B(z) = dz — a we see that A(f(B(z))) = (z + z - 1 )/2. This completes the proof of
the claim.

Let g(z) = (z + z ')/2. I f  A (z) = (z + 1)/(z — 1), B(z) = (z — 1)/(z + 1) then
A(g(B(z))) = z 2 . This completes the proof of Proposition 2.1.

Remark. It follows from the claim that Holy consists of tw o  Holf x Holt
orbits. I t  is  w e ll k n o w n  th a t the map

( a  b )  a z  +  b
SL 2 (C) Hol i ,

c  d cz  + d'

is a double covering and induces an isomorphism PSL 2 (C) H o l i  of Lie groups.
Thus the group G = SL 2 (C) x SL 2 (C) acts (transitively) on Ho12 .

Lemma 2.2. L e t  H  denote the isotropy  subgroup o f  SL 2 (C) x SL 2 (C ) at
z 2  Ho1 2 . Then

0 2
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01 0 0 ia 2 ) 0c \ \

a
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P ro o f . This follows by direct calculation.

Next we determine the group structure of H.

Lemma 2.3. L e t  K  = C* i  Z/4 b e  the group def ined  by  the action of
Z /4 =  <or: o-4  = 1> on C* by o- • I = cx - i  for a e  C * . Then H and K are isomorphic
Lie groups.

P ro o f .  W e put

(7 1  = az

Define yo: K —> H by

It is  easy  to  check th a t cp is  an isomorphism.

Proof  of  T heorem  2. The first part of Theorem 2 follows from Proposition
2.1, Lemma 2.2 and Lemma 2.3. The inclusion m ap of the maximal compact
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subgroup SU(2) = S 3 o f  SL 2 (C ) induces th e  homotopy equivalence (S3 x  S 3)/
(S ' xi Z/4) Ho12 .

Next we consider the  universal cover o f Ho12 . L et D  be  the  subgroup

{ ( ( œ r  : 2 )  ( c ,  :
, ) ) : EC*}

of SL 2 (C) x SL 2 (C), and  le t D , be its maximal compact subgroup

{ ( ( 20 a O-2 )401 )  •
)• 10(1 — 1, cceC},

Then D  is  a  no rm al subgroup o f  H  C* )4Z /4  isom orphic to C * .  Similarly
D , is is isom orphic to S I- . C le a r ly  the projection E = (5L 2 (C) x SL 2 (C))/D
(SL 2 (C) x SL 2 (C))/H = Ho1 2 i s  a  regular covering. To show  th a t E  is simply
connected, w e shall consider the  f ib re  bundle 5 L 2 (C) E —> SL 2 (C)/D whose
projection m ap is induced by the projection onto  the second factor.

Lem m a 2.4. (1) E  is  f ib re  h o m o to p y  e q u iv ale n t to  th e  f ibre bundle
SU(2)—> Y—> S2 ,  where Y  = (SU(2) x SU(2))/D e .

(2) Y  can be identif ied w ith th e  unit sphere bundle S (n 2  O n - 2 ), w here g
denotes the Hopf  complex line bundle over S 2  = CP'.

P ro o f . (1) The inclusion m a p  SU (2 ) x  SU (2 ) SL 2 (C) x SL 2 (C ) induces
the desired fibre homotopy equivalence Y  E.
(2) The second factor

S = { ( œ
0  a

°_ 1 ) . —.1011— 1, aeC}

of D, is the standard embedding of S 1 in to  SU(2), and S' S U ( 2 )  S U ( 2 ) / S  S 2

is the Hopf bundle. W e m ay use the identifications SU(2) = Sp(1) = 5
3

c  H , and
extend the action of D , naturally  to  SU(2) x H .  By considering the transition
functions o f the  vector bundle (SU(2) x H)/Dc ,  i t  is not difficult to  see that Y
is equivalent to SW

Proof  o f  (2) o f  Theorem 3. It follows from the  homotopy exact sequence
tha t Y  (and hence E) is simply connected. Hence E is the  universal covering of
Ho12 . Since 7E2 (BU(2)) = Z, a  2-dimensional complex vector bundle c over S 2

is determined by its first Chern class c , ( ) .  As c 1 (112  C)17 - 2 ) = 0, it follows that
1/2  g - 2  i s  trivial. Hence E  Y  S3 x  S 2 .

3. The Space Holl

In  th is  section w e sha ll use  the  ac tions o f Hol i  ( a n d  H olf) o n  Hold b y
post-composition: A -f (z) = A( f  (z)) for (A, f  )  Hol i x  Hol d . F ir s t ,  w e  have two
easy lemmas:
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Lem m a 3.1. L e t  d  > 1 . T h e  group H o ! , ac ts  f ree ly  o n  Hol d b y  p o s t-
com position. S im ilarly , H o lt  acts f reely  on H o l:  by  post-composition.

P ro o f . This follows immediately from th e  fac t tha t any  m ap  of non-zero
degree is surjective.

Lemma 3.2. L et d  > I. T h e n  th e  natural inclusion m ap j d : —> Hold

induces a homeomorphism jd : Holt \ Hol: H o l ,  \  Hold .

P ro o f .  Since Ho!, acts transitively on S 2 , the induced map id : Holt \
Hol, \ Hold i s  surjective. Since (Hol, .f)n Hot: = Holt . f  for any f  eH o l:, j, is
injective. I f  we identify these spaces by j d , it is  easy  to  see  tha t the topologies
coincide.

Proposition 3.3 ( [ 4 ] ) .  T here is a .fibration RP2.

Remark. Cohen and Shimamoto ([4]) deduce this from results of Donaldson
([5]) and A tiyah and H itchin ([1]) on m onopoles. W e shall give a direct and
elementary proof.

P ro o f . By Lemma 3.1 we have a principal bundle

Holt —> Holy —> Holt \ HolY.

B y  T heo rem  2  a n d  L em m a 3.2 , H olt \ H oly  H ol, \ H o1 2 ( S 3 /S 1)/{± 1}
5 2/ {±  R p 2 .  S i n c e  H o l t  S 1 , we have the required fibration S 1 H o P 2'
RP2 .

Proof  of  (1) of  Theorem 3. C o n s id e r  the above fibration HolY jj ,  RP 2 .
Let p: S2 —> RP2 a n d  g: X  Holy be the universal coverings. Since X is simply
connected, there is a lift 0: X S2 such that  p o  0 = ir . g. It follows by diagram
chasing that nk(X) n k (52 ) i s  a n  isomorphism f o r  a l l  k. H ence 0  i s  a
homotopy equivalence.

4. The Proof of Theorem 1

L et in E 7/(S") be th e  oriented generator and n 2 e n 3 (S2 )  b e  the  class of the
- 2 1 2  eHopf m a p .  We put )N ) for n  >  2 . T he following three results

are well known and  w e om it the proofs.

Lemma 4.1 ( [9 ]) . (1 )  m (S )  =  Z  li nl.
7r3(S 2 ) = Z 1 1121, 7rn+i(S n ) = Z/2 {17„1 fo r  n > 2.
gn+ 2(S n ) =  Z / 2

 {
td} f o r  n >  1. Here w e pu t re = n.n .n - f -  l•

Lemma 4.2 (P I  [ 9 ] ) .  ( 1 ) [ 12, 12] = 2 1 /2.
(2) If  k  > 2, [1 2 , a] =  0 f o r any oceirk (S 2 ).

H ere [ , ] denotes the  W hitehead product.

(2)
(3)

L et Map (Sn, X) be  the  space of all continuous maps from Sn to X, and let
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M a p* (Sa, X) be the subspace consisting of based  m aps. F o r a  map f  we denote
by Map f  (S", X ) or M ap'f ' (S", X) the path-component containing f

Lemma 4.3  ([10]). Let f n  Map* (S", X ) and let Map, (S", Mapf (S", X )
X  be the evaluation .f ib ratio n . I f  we use the identification 7c, (Map, (S", X )) =

gk+n(X ), then the boundary operator 0: n„n(X ) — ' 74 - 1 ( X ) f  ho,  the w m otopy  exact
sequence associated w ith th e  evaluation .f ibration  is  g iv en  (u p  to  sign) b y  the
W hitehead product: 0(a) = [a, f ] .

Pro o f  o f  T h e o re m  1. ( 1 )  It su ff ice s  to  co n sid e r  th e  c a s e  d  > 3. L e t
/: Ho17, —> M ap ' a n d  J :  Hol d —> Map, be the inclusion m aps. B y Theorem  0, I
and  J  are hom otopy equivalences up to dimension d. Consider th e  following
commutative diagram :

H o l:  — >  Hol dS 2

Map*, — 4 Map, S2

in  which the horizontal sequences a re  evaluation fibre sequences. T h e  result
follows from the induced diagram of homotopy groups, by using Lemmas 4.1, 4.2,
4.3 and  the  F ive  L em m a. This completes the proof of (1).

(2) Suppose tha t d > 3  and  k  > 3  a re  integers. Consider the commutative
diagram of principal bundles

H olt —> Ho17, ±i '-->1 H o lt \ H o l/

idi 7,11

— > Hol dH o l ,  \  H o l ,

where j d i s  a  natural inclusion m ap. In  the  induced homotopy exact sequences,
since Holt S1 , (p ,),: n k (Hol:) —> nk (Holt \ Hol,t) is a n  isomorphism fo r k  > 3.
Hence (j,), 0 4 1 :  n k (Hol, \ Hol d ) n k ( H o l d )  g iv e s  a  splitting of (q„),.
So w e have

nk(Hol,) = n k (HolD 0 n k (Hol ).

Because Hol, RP 3 , n k (Hol,) = n k (S3 )  and  this completes the  proof of (2).

(3) It follows from Theorem 0 that n k (HolD = gki- 2  (S 2 ) for k <d  and  the
assertion easily follows from (2).

Remark. T he above method allows one  to  deduce th e  result of Epshtein
([6]) that n i  (Hold ) is Z/2d from the result of Jones (see [8]) that rt,(H oll) = Z.
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5. The C2 -operad structure on -1 1 Hol:

Consider (>1)H H oly, the d isjo int union of the  based rational functions ofi__0
degree d. It is known that this is a C 2 -operad sp ace  ([2 ]) . Let yd : F(C, d) x (S 1 )d

H o l: be the structure map, where we identify Holt up to homotopy with S 1 .
L e t id : Hol: 522, S 2 a n d  i: H o l*  Q 2 S2 b e  the inclusion m aps. It is  know n
tha t i  is  a  C 2 -m ap  up  to  hom otopy  ([2 ]). It fo llow s from  the May-Milgram
model of Q 2 E 2 X  that we can identify Q 2 S3 w ith  J(S 1), where J(X) denotes the
space

J(X) = u„ (F(C, d) x EaX d )I —

and —  is a  well known equivalence relation.

T h e  follow ing o b se rv a tio n  o f  P rofessor F . R . C ohen sh o w s  t h a t  the
C 2 -structure on g2,S 2 i s  incompatible w ith  t h e  o n e  o n  lld > 0 H o l : .  (This
contradicts th e  statement o f  [3 ]  that diagram (3.4) o f  that paper is hom otopy
commutative.)

Let J,(X ) be  the d-th  term  of the May-Milgram filtration on J(X).

Proposition 5.1. T here is no homotopy equivalence

0 :  m a p l ( s 2  s 2) _  Q i s 2 _o s2 2 s 3

such that the follow ing diagram  is homotopy commutative:

F(C, 2) X 5 2 (S ' )2  - - +

ol
j 2 ( s 1) J ( s t ) 02 s 3

Here 12 denotes the inclusion map.

P ro o f . Suppose th a t the  above diagram is homotopy commutative. Since
F (C , 2 )  S 1 , there is a non-zero element e, C)eTeH,(F(C, 2) X 5 2  (5 1)2 , Z/2) = Z/2
which represents a  genera tor. U sing  th e  above diagram , if w e  put / = (p. 2 ),
(e  0  e ), we have

0 Q 1 (e 1) =  (0  i 2) ,(a) - 1 , ( Q 2  ,  Z / 2 ) .

Since Q i (e i )e H 3 (Q 2 S3 , Z /2 )  is  primitive, and 0  is  a n  equivalence, the  element
(i2) Œ =  0 ,: (Q 1 (e 1 ))e H 3 (H o l! , Z /2 )  =  Z /2  is  a lso  p rim itive  (the  im age  of a
primitive element is prim itive). By [8], (i 2 ) . is  injective, so a  is prim itive. Thus
the  generator of I-1 3 (H o1I, Z /2) =  Z /2 is indecom posable. O n  th e  other hand,
because t h e  universa l cover of H oP2k is h o m o to p y  e q u iv a le n t to  S 2 a n d
n i (HolD = Z, there is a fibration

S2 H o ly  — >  B Z  S '.



638 M . A . Guest, A . Kozlowski, M . M uray am a and K . Y amaguchi

Consider the mod 2  Serre spectral sequence of this f ib ra t io n . This collapses at
the E 2  level, and the generator of 113 (Ho11, Z/2) = Z/2 is decom posable. This
is  a contradiction.

Remark. The above result implies that the C2 -structure of H o l: and  that
of Q2 S 3 a r e  not compatible (up  to  homotopy) at least w hen d = 2. This was
also pointed out in  [4 ].
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