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Commutant algebra of Cartan-type Lie
superalgebra W (n)

By

Kyo NisHiyaMA and Haiquan WANG

Introduction

Undoubtedly, Weyl’s classical reciprocity law is very important in Lie
theory ([4]) . It tells us that there is a correspondence between irreducible rep-
resentations of general linear group GL (V) in m-fold tensor space V & -+ &
V and those of &, (symmetric group of degree m). The correspondence is
one-to-one and so an irreducible representation of &, determines that of GL
(V) and vice versa. If we consider various m, then all the irreducible polyno-
mial representations of GL (V) appear in the decomposition, so one gets a clas-
sification of irreducible representations via those of &,,.

In the article [2], the first author studied an analogous phenomenon for a
Cartan-type Lie algebra of vector fields. In the present paper, we want to do it
for a Cartan-type Lie superalgebra W ). By definition W) is a Lie
superalgebra of all the superderivations on a Grassmann algebra A(n) of
n-variables (see [1]), so W(n) acts on A (n) naturally. We call it the natural
representation of W () and denote it by ¢. To study an analogue of Weyl's
reciprocity, the first important thing is to calculate the commutant algebra of
the natural representation of W (n) in m-fold tensor Grassmann algebra @”A
(n). Let End [m] be the set of all the maps from [m] to [m], where [m]=1{1,
2, -+, m}, and denote the semigroup ring of End [m] by €,. There is the natu-
ral represntation of €, on ®™A (n) (see Section 1.3) and denote the image
algebra of this representation by &m. Also we denote the commutant algebra of
@™ (W(n)) in End ™A () by €m (see Section 1.2). One of the main results
is the identification of the commutant algebra %, and the semigroup ring &,
(Theorems 2.3 and 3.2). However, in Theorem 2.3 we assume m <un (the
rank # is larger then the power of tensor product m), and in Theorm 3.2 we
restrict ourselves to the case n =1. In the future studies, we want to clarify
the relationship between €, and &, fo general m and ».

The another main result is Theorem 3.3, which says that the bicommu-
tant algebra of W (1) coincides with the image of its universal enveloping
algebra U (W (1)). We consider it an analogy of Weyl’s reciprocity for W (1)
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X End[m] . However, we did not get any decomposition of the (non-
semisimple) representation of W (1) X End [m] on &”A(1) =A(m), and it is
a future subject of ours.

We divide this article into three sections. In Section 1, we give the basic
definitions. In Section 2, we calculate the commutant algebra €. for the case m
<n. In Section 3, we get the commutant algebra and bicommutant algebra for
the case n=1.

Acknowledgement. The authors express sincere thanks to Professor
T. Hirai for discussions and encouragements. We Would like to dedicate this
paper to him on his 60-th anniversary.

1. Lie superalgebra W (n) and its natural representation

1.1. Tensor product of a natural representation of W (n) . Let
A () be a Grassmann algebra over C in n variables &, &, -+, &. If we set deg
€& = 1, then A(n) becomes a Z-graded algebra. Let Ax be the space of
k-homogeneous elements of A (n):

Ak= <En/\&z/\'“/\E;,‘|1Si1<"'<ikﬁn>,

where {B)> denotes the vector space over C spanned by B. Then A(n) =

Q7_oA, a direct sum, where Ao=C. We can naturally condider A () as a su-
peralgebra, where even elements are As= . cvends, and odd elements are Aj
=®k:oddAk-

Let A be a superalgebra and Ends A the set of linear endomorphisms on
A of degree s, that is A =A3PA1 and Ends A={XE End A|X(A;) C Aiys, G
€7Z,)}. A superderivation of degree s (s €Z,) of a superalgebra A is an en-
domorphism DEEnds A with the property

D(ab) =D (a) b+ (—1)%25D (b)

for any homogeneous a, bE A. The space of all the superderivations of degree
s is denoted by Der; A.

Let W () be the set of all superderivations over A (), then it becomes
naturally a Lie superalgebra. According to results in [1], every derivation D
€W (n) can be written in the form

n
D=2 Pizg-
i=1 'aE;
with P;€ A () (1<i<n), where % is a superderivation of degree 1 defined
by

0
38,5~ 0.
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By definition, the Lie superalgebra W (1) acts on Grassmann superalgebra
A(n) as follows: for YD € W) and V E A A&,

D(ExN--NE,) = Zj: (_lj(s_mewfn/\”'/\[) (i) N+ A&,

We call it the natural representation of W (n), and denote it by ¢.
Let us consider m-fold tensor product @™A (n). Then we have a natural
isomorphism as W (1) -modules

Q"An) =ALEH1<i<n, 1<;<m]=: A(n, m),

where A[€;]1<i<n, 1<j<m] is a Grassmann algebra generated by &; (1<i
<n, 1<j<m). In the following, we identify @”A (n) with A (n, m). By means
of a tensor prodct, W () is imbedded into End (®™A (1)) =End A (n, m) .
More precisely, an element

p=Ep(6. . &) g W)
corresponds to an element
¢®m (D) = Z ZP: (Elay o &na) ag € Der A(n, m)
i=la=1 i
via m-fold tensor product ¢®” of ¢.

1.2. Definition of commutant algebra %,,.. By definition of com-
mutativity in Lie superalgebra, we say that a and b are commutative if [a, b]
=0, whence ab= (—1)9e84:%2t p; if 3 and b are homogeneous. Let €, denote
the commutant algebra of ¢®™ (W ()) in End An, m):

m=1{EE€ End (®"AW®))|[E, D=0, VDE$*" (W n))}.

Then € has a natural Z;-graded structure, €m=Emo D Em,i. However, Em,i
vanishes as we see in the following lemma.

Lemma 1.1. The odd subspace Gm,i of Em vanishes:
Emi=1{0}.

Proof. Let A (n, m) x be a space of homogeneous Grassmannian polynomials
of degree k and put

Zzéua E(I’@m (W("))
i=1j=1 E‘

Since Do is an Euler operator and its eigenvalues are precisely Z-degrees of
Grassmannian polynomials, E € %, must preserve homogeneous spaces A (n,
m) . Therefore deg E is zero. Q. E. D.
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By the above lemma, we have $» = %m,5, hence the commutant algebra
&m becomes

={E€ End (®"A®))|[ED=DE, YDE¢® (W ®))}.

1.3. Action of the permutation semigroup. Denote by [m] the set
{1, 2, -+, m}of integers, and put End[m] = {¢: [m]—[m]}the set of all the
maps from [m] to itself. By composition of maps, End[m] becomes a semigroup
with unit, whose group elements form a permutation group &, of degree m.
Denote the semigroup ring of End[m] by €,. An element ¢ € End[m]acts on
A, m) as (@P) (&) =P (Eiwi)) PEA(m, m)) and we extend it to €, by
linearity (see[2]), thus, we have a representation of &» on A (n, m). Denote
the image algebra of this representation by » < End A (n, m) . Using the
above notations, we can state

Lemma 1.2. For arbitrary n and m, we have
EmEEm.

Proof. LetD = iPi(El, Sn)gag—e W (n), where P;€A(n). Then
i=1

¢®m (D) Z ZP;(‘Ela ot Ena)"é%-

i=la=1

For any ¢ € End[m], we have

¢¢,®m (D) (Siu'l AN Eirir) )

=<o<$ P8 sna)gg’fa(sflflA--°A&i,f,>>

i=la=1

0

M:

(Euwm) VASERVAN &mp(m)

g:P'<El(p(a)y : Snw(a)) a&

i=la=1

—_—
=P, (Erotn, ", Enotin) Eiotin A\ Einptin A\ Eivotin
—_—
+ (= 1) Pi, (Eroi, s Enotin) Einotin A Einotin A+ A &ivotin
e

/\
+ (= 1) "7Pi, (Erotin, *** Enotin) Einoiv AN ANirmiotir-n N Eirptin,
where A means an elimination. On the other hand,

(/)@m (D) ‘P (Silil VARRAN Sirjr)
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¢ (D) (Eirpiin A+ NEigotin)

n m —_—
222 Pi(G1arEua) (8iis0avinEinetin A Eizotin A" AN Eiroiin

i=la=1

—_—
+ (—1) 8i1:0a062 Einotin A Eizotin A+ A Eiroiin
+.

—_—
+ (_ 1) '_léiiraaw(ir)giw(jl) A Eizw(iz) VASERVAN Siﬂp(ir)) .
So we obtain

e¢®" (D) =¢®" (D) ¢ (@€ Endlm]).
By the definition of §,,, we complete the proof of the lemma. Q. E. D.

2. Commutant algebra of ¢®” (W (n)) (the case m <n)

2.1. Semigroup ring §,, and commutant algebra %,,. Let (¢, A(n))
be the natural representation of W (1) and (¢®™, A (n, m)) its m~fold tensor
product. Denote by U (W (n)) the universal enveloping algebra of W (1), then
we have

Lemma 2.1.  Put &(a) = (&, =", &w) . Then the subalgebra ¢®™ (U
(W®))) in End A(n, m) is generated by
__or
1sa,,§ak5m Py (E (al) ) Py (E (ak) ) a&blm"'a&mk ’

where 1 <by, -, by <n are indices, P; is a Grassmannian polynomial in
n-variables, and P; (& (a)) =P; (§1a, ***, o).

Proof. Let P;€A(n) be homogeneous and fix 1<b,, b,<n. Then it holds that

5 PuE () g 3 Pa &) g

a1=1 az=1

=2 Pl(s(al)) a& Pz(&(az)) as

a,az by

+ (_ 1) dengP1 (& (al) )Pz (E (aZ) ) a&b+;€bmz '

By definition of ¢®”, we know that the left hand side and the first term in the
right hand side of the above formula is in ¢®”(U(W (1)) ), whence
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S Py (€ (@) Po (6 (e)) 55—25g— € 4" (U (W),

aLaz

We can complete the proof of the lemma by using indinduction on k. Q. E. D.

Lemma 2.2, If m<n, then the representation of €, on A(n, m) is faith-
ful, hence we have

dim §,=dim €, =m".
Proof. Put
Ne={olpE€End[m], #Im(p) = B} ={pklh=1, 2, -+, ni},
where ny= # N,. Then the semigroup ring €,, is generated by N's, hence &,
=k§:l<./‘/k>. Suppose

b

k

m
> kot amm=0 (k€ C, pkEN,).

k=1h=1

We want to prove ¢cf= 0. By the assumption and the condition m <u, we have

nk

2ckoh (EuNEuA- ANEmA '1’——”128”) =0.

1h=1

Mz

k

Note that ¢} (1 <k<m—1) kills the vector in the left hand side. So we obtain
ci= 0 from the formula

m
2o A A Ao A [l &igre) =0.
h . i=2

We prove the result by induction on k. Assume that ¢s= 0 (t=k+1). Let us
consider the case t=Fk. We have

m
ZZ}P«:W; (EuNEu A AN 'Hz&i) =0,
t i=
where 1<4,<{3<-:-<i, So by the induction hypothesis, we get

%:C';KD';? (511/\ Euz/\ A Em/\ _lrigu)

m
= k&1 A &1k A+++Ergin A Tl Eigi) =0.
" i=2
For any two elements ¢f,, @k, of N4, obviously,

’ m
Ergt, ) A Erghia A+ Argri) A Tl &)
i=2
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m
= &1t A Ergh iy A A Grghio A T it 0,
i=2
if and only if

(05, (1), @k, (2), -, @k (m)) = (¢}, (1), @4, (2), -, @h,(m)), ie., @f= @i,

By the linear independence of elements
m
{51«: s Aot A+ Al A [T &y (F0) |k eJVk]
=2

we obtain ¢f= 0. By induction, we complete the proof. Q. E. D.

Now we can prove the following

Theorem 2.3.  If m <n, then the commutant algebra Gm of ™ (W (n))
coincides with the representation image 8, of the semigroup ring €, of the per-
mutation semigroup End[m]:

Proof. Take an E € 6,,. For Grassmannian polynomials Pi, ***, Py in n-vari-
ables, put

X(PI,PZ, "',Pm)z > ( (al)) Pm(&(am))ag

lsal,m,a,,.Sm asmam

which is in ¢®” (U(W())) by Lemma 2.1. Then we have
E(Pl (&(1))P2 (&(2))Pm (5(7”))) =EX(P1, Py, -, Pm) (Ell/\EZZ/\"'/\Emm)
=X(P1. Py, -, Pm)E(Eu/\szz/\'“Smm).

Since A (n, m) is generated by {P; (E(1)) --P,, (Em))|P;€EA W)}, E is
completely determined by E (&3 A &Ex A+ A &um) . On the other hand, Euler
operators

'z::lg,.a% (1<j<n)
are in ¢®*(W(n)), and

azt:l‘sia'a—g;E (EuNA*NEmum) =E( %S;a 9E.n (EuN-*NEum))

EEuA-Néum) if 1< <m,

0 ifm<j<n. (2.1
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This means that if 1 <j <m, then E (§u A - A&um) is the eigenvector of the
Euler operator with eigenvalue 1 and if m +1<j<u, then E (EnuA***AEmm) is
in the kernel of the Euler operator. So E (§11A*** A&um) is degree 1in (&, -+,
&) if 1<j<m and degree 0 in (&, -+, &,,) if m +1<j<n. Hence we obtain

E(Ell/\"'/\&mm) = 2 Ajyjm (Slju/\"'/\gmim)'

18jy, - imsam

So dim %, is less than or equal to m™.

On the other hand, by Lemma 1.2, €,, contains the subalgebra §,, and by
Lemma 2.2, its dimension is equal to m™ if m <n. Therefore we conclude the
theorem. Q. E. D.

3. A kind of Weyl reciprocity for W(1) X End[m]

3.1. Commutant algebra of ¢®” (W (1)). In this section, we con-
sider the case n=1. In this case, we get a stronger result which is independent
of m. For n=1, it becomes

W= (% &), s &)1 0e(5) o
For convenience, we use isomorphism
A, m):=<E, &, -, E,>=A(m).
So we have
D—li:¢®m<‘a%>=:21%, Do=¢®" <§%>:§EF&%

Obviously, D_; (Ax) S Ak_1, Do(Ay) S Ay for any k. Further, we have

Lemma 3.1. The operator D_y is an exact derivation, i.e., (D_1)2=0 and
the chain complex

D-1 D-1 D-1 D-1 D1
O—’Am_’/lm_l—’ . '—>Az—>/11—>/10—>0

18 exact.

Proof. First of all, note that (D-1)2=0. So D_; is a boundary operator. To
prove the exactness, we define linear operators Py Ax—>Ai41 by

Py (Sn/\‘”/\&k) =€1/\Si1/\'"/\5ik,

where 0<k<m. We put P_;=0 for convenience. Then
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(D-1Py+Pi-1D-1) (Eu A= NEiy)
=D, (fl/\gn/\ ”./\Eik) +Py_1D-y (Eil/\ "'/\fu)
=8 A NG+ E (CD) EAE A ABA AL

+Pk_l(zf:l(— 1) 18, A AB A AL
=$i1/\'"/\&ib

So we obtain
D—1Pk+Pk_1D_1:I (k=0, 1, 2, o, m)

By general theory of algebraic topology, the lemma follows from the above for-

mula (e.g., see [3, p.163]). Q. E.D.

By the above lemmas, we can prove the following

Theorem 3.2. Let n =1 and the notations be as above. Then the com-
mutant algebra €m of Y™ (W (1)) coincides with the representation image Em of
semigroup ring € of the permutation semigroup End[m]:

Em=Cm.

Proof. By Lemma 1.2. we have 8, S €m, so it is enough to prove €, <
8m. For this purpose, we introduce some notations. For any E€ %, put

Ex=E|a,
Se={E€GnE=0(VI>k)},
D_1x:=D-i|a,.
Clearly,
En=[n=2"2J120= (0),
and

En= (In/Im=1) D ([m-1/Jm-2) D+ D1 (as a vector space).

We divide the proof into 5 steps.
STEP 1. Taking a complementary subspace A’y of R (D_y1441) (here R
(D-1,k+1) is the image space of D_j, x+1), we have

N =R (D-1,44+1) PA'x. (3.1)
We define a linear operator Py: Jx/Jk-1—Homc (A'x, Ax) by

Py (E) =Eular,, for any EESk/S(k—l,

where E €y is a representative of EE%k/'%k—l. This map is well-defined, be-
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cause if two elements E, E' €8, satisfy E—E € Jy-,, then by definition, (E—
E)«=Ex—E'=0.
STEP 2. We show that Py is an injection. Assume that P, (E) =0 for an

Ee S4/Jx-1, then there exists a representative E € J, such that E|,1',,=0. On
the other hand, for any x € R (D_y441), there exists y € Ay4; such that x =
D_y, so

Ex=ED_y=D_1E¢4+1y=0,

whence Exla,; =0. Then we see Ex=0 in total and E € J4_1. Thus we obtain E
=0.

STEP 3. We show Py is surjective. For any HE Homc (A'y, Ax), we define
E€ Homc(A (n), An)) as follows:

Els=0 (IFk—1,k),
E |fn(D—1,k+1) =Ov E lA’sz,
E |9i(D—1.k)=D—1,kH. E |A'k-l=0

By Lemma 3.1 and the definiton of E, we have DeE=EDo, D_\E=FED_; and EE€
Q. Furthermore, let E be the image of E in J4/Jx-1, Then

Pk(E) =Elav=H.

So Py is surjective.
So far, we have the following result.

Cn = (I3n/In-1) DB Rm-1/Im-2) B--- BN
=~Homc (A'm, Am) D Homc (A m-1, Am-1) B-+-® Home (A1, Ay).
STEP 4. Let us prove that above A’k can be replaced by Ax-1 /A&, that is,
A =R (D-1441) B (A1 A &), (3.2)

where k= 1, 2, ,m and Dl,m+1=0. If x/\Em=D_1,k+1y with xEAk_l, yGAHl,
then

Dorx (@ AEp) =D_14uD-14+ =0,
and
Doy GAER) =Doypx) NEu— (1) % g,
So it holds that
xNEn= ((—=1)* (D1 x) N&w) NEn=0.

This means that
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R (D-1,k41) N (A1 AEm) = (0). (3.3)

On the other hand, we have
dim A=|"1
A m—k

which is proved by induction on k. By a direct calculation, we get

) _(m—1\_ (m—1
dim (Ak—l/\fm)—<k_1>—<m_k>-

Thus, from (3.1) and (3.3), we obtain the direct sum relation (3.2).
STEP 5. A basis of the space A'x=Ak-1/A&x is given by

{éil/\"'A&ik—l/\gm|lgjl<f2<°"<jk—1<M}.

For any basis element &, A&, A+ A&;, of Ay, we define go“]"‘lme
11°° Tk—1i,
End [m] as follows:

(/)il"’]:k—lm_:(l 2 ... ]'l ]’k_l m)
A . . .

17" T k—Liy Te Lp o0 01 ot dg_y ot Iy

ie., goiljj?lﬁ"-",” () =i A <1<k—1), @' () =i, G € i, -+, ji-1)). Then
we ha\;e k—1iy 17" Tk—1i

(Oz,ijk_lm (sjl/\ ot /\éjk—l/\gm) =€i1/\ oo /\&fk-l/\silu

lg—-1lk
and

(Pg:"'“_lm (831/\"’/\§Sk-1/\5m) =0 for (31. " Sk—l) x (il, ot fk—l) .

“lk—10k

Therefore the set

TR < L & — PN
{%1"’ik—1ik|1sjl<]2< <]k_1.<_m ]., 1S1«1<lz< <1k$m]

is a basis of Homc (A, Ax). So we get a surjection
m
8,,—— @D Homc (A, Ay) =C™
k=1

and dim €, <dim &,. By Lemma 1.2, we have finally §,»=%n. Q. E. D.

3.2. The bicommutant algebra.
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In the special case where n =1, we also get the bicommutant algebra of ¢®”
(W (1)) . The next Theorem 3.3 states that it is the image of the enveloping
algebra ¢®” (U(W(1))). Therefore, in this case, we have an analogue of Schur
duality for W(1) X End [m].

Theorem 3.3. The bicommutant algebra of m~fold tensor product ¢®™ of
the natural representation ¢ of W (1) is equal to the image ¢®™ (U(W (1))) of the
enveloping algebra.

Proof. Let U(W (1)) be the universal enveloping algebra of W (1). Then
by Poincaré-Birkhoff-Witt theorem, U (W (1)) is spanned over C as

Uuw(@)) =<<Eaié> , ({i%) %‘k=0,1, "->/C.

Denote the bicommutant algebra by €’m. Obviously ¢®™” (U (W (1))) € €'n
holds. Put

pe=yon (2. D= gom (2),

then, under the representation ¢®”,
¢ (U(W(1))) =L D§, D§'Dy|k=12, --->/C.

We prove that {I, Do, ***, D¥, Dy, DoD—,, ***, D' D_,} are linearly indepen-
dent, hence dim ¢®"(U(W(n))) =2m+1.
In fact, assume that
m oom .
ZkiD6+ kaHD(’)—qu:O.
i=0 i=1

then

(2ZkiDb+ Zkm+iDi'D-y) (1A - AE,) =0.
i=1

i=0

Take r=0, 1, -+, m, then we get k=0 and
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1 0 0 Kms1
1 1 1 Ko
1 2 om=1 Km+s =0.
1 m—1) - (m—1)"! Kom

So we have ky=ky="+" =k, =0.
Second, we prove that

dim € »<2m+1.
For this purpose, let Q; be the projection from A(m) onto Ay, then

g/m = éOth ,mQj-

L=

J— m
For any EE %' ,, we have E= 2. E;; where E;j=Q;EQj, and E;; is essentially a
ij=1
linear operator from A; to A;. For any multi-index (j1, ***, j&), take a ¢ ES,,
such that

0 G) =t 1<t<p).
By E¢@=¢@E, we have

E(&in/\"'/\Eik) :§0—1E (SlAASk)

So the value E (§;, A+ AE;,) is determained uniquely by E (§, A+ A&).
Let us now consider Ej;.
1°. THE CASE Ej; (j <i). Put

E,',' (&1/\/\5,) = Z Cll---uSll/\"'/\SH-

1St <<t;Sm

Take a ¢ € End[m]such that ¢ (k) =k (1<k<j), ¢ (k) =j j<k<m). Then, be-
cause of E;j¢o=@E;j,
Ei(GiNANE = 2 crrfoup N ANoup=0,

1sH<<t;sm
whence E;=0.
2°. THE CASE E;; (j=i+2). Put
Ei(GiN-NE) = 2 cprfy N NG,

1st<<t;sm
For any 1<k <k, <---<k;<m, 1<k<m, and k € {ky, '*-, k;}, take ¢ € End[m]
such that ¢ (k) =k; (1<1<4), @ (t) =k (t& {ky, **+, k;}). Then @ (E,A---AEj) =
0, and it holds that
0=E;jp (&1 A\ NE) =@E;; (EN---NE))
= Z Czl-u:,é«:(:l) VASSEVAN fcp(:,).

1St <—<t;Sm
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Therefore we obtain c,..x;=0, whence E;;=0.
According to the above facts, an operator EE €', is determined complete-
ly by the values

Eoo(1), Evi(&), =, Emm (EiA - NEn),

and

Eio (81) E3q (51/\52), = Emm-1 (Sl/\'"/\Sm)-

Further, if we take
_ 12 7 rtl - § - m
¢ 1 2 e r r s r eee r ’

then ¢ maps A, (m) into the one-dimensional subspace C & A+ A&,. So by
E@=@F, we get

Er.r(El/\"‘/\Sr) ECEI/\"'/\En

Err1 (8N NE 1) ECENNE,.
Therefore, it holds that
dim €' <2m—+1.

In conclusion, we have dim €'»= 2m~+1 and €' »=¢®"(U(W(1))). This
completes the proof of the theorem. Q. E. D.
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