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Commutant algebra of Cartan-type Lie
superalgebra W (n)
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Kyo NISHIYAMA and Haiquan WANG

Introduction

Undoubtedly, Weyl's c lassica l rec ip roc ity  law  is very  im portant in Lie
theory ([4]). It tells us that there is a  correspondence between irreducible rep-
resentations of general linear group GL (V ) in m-fold tensor space V 0 •••
V  and those o f  em (symmetric group o f  degree m) . T h e  correspondence is
one-to-one and so  an  irreducible representation o f S m determ ines that of GL
(V ) and vice versa. If we consider various m, then all the  irreducible polyno-
mial representations of GL (V ) appear in the decomposition, so one gets a  clas-
sification of irreducible representations via those of Sm.

In the article  [2], the  first author studied an analogous phenomenon for a
Cartan-type Lie algebra of vector fields. In the present paper, we want to do it
fo r  a  C a r ta n - ty p e  L ie  superalgebra W  (n) . B y  d e f in itio n  W (n ) i s  a  L ie
superalgebra o f  a ll  th e  superderivations o n  a  Grassmann algebra A (n )  of
n-variables (see [1]), so  W(n) acts on A (n) naturally. W e call it the natural
representation o f  W (n ) and  denote  it by  0 . T o study  an analogue of Weyl's
reciprocity, the  f irs t important thing is to calculate the commutant algebra of
the natural representation o f W (n) in m-fold tensor Grassmann algebra 0mA
(n) . Let End [m] be the set of a ll the maps from [m] to  [m], w here [m] = {1,
2, •••, m}, and denote the semigroup ring of End [m] by €m. There is the natu-
ra l represntation of m on mA (n) (see Section 1.3) and  denote the image
algebra of this representation by gm. Also we denote the commutant algebra of
p® m (w ( f l ) )  in End 0mA (n) by Wm (see Section 1.2). One of the main results
is  the identification of the commutant algebra W m  a n d  th e  semigroup ring
(Theorems 2.3 a n d  3.2) . However, in  Theorem 2.3 w e assume m (the
rank n is larger then the power of tensor product m), and  in  Theorm 3.2 we
restrict ourselves to  the case n = 1. In  the  fu ture  studies, we want to clarify
the relationship between W m  and  g m  fo general m and n.

T he another m ain result is Theorem  3.3, w hich  says that th e  bicommu-
tant algebra o f  W (1) coincides w ith the  im age  o f its universal enveloping
algebra U  ( 1 ) )  .  W e consider it an analogy of Weyl's reciprocity fo r W(1)
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E nd[m ] . H ow ever, w e did not get any decom position o f  t h e  (non -

semisimple) representation of W(1) X End [m] on OrnA (1) =A (m), and it is
a future subject of ours.

We divide this article into three sections. In Section 1, we give the basic
definitions. In Section 2, we calculate the commutant algebra W. for the case m
<n. In Section 3, we get the commutant algebra and bicommutant algebra for
the case n=1.

Acknowledgement. The authors express sincere thanks to Professor
T . Hirai for discussions and encouragements. We Would like to dedicate this
paper to him on his 60-th anniversary.

1. Lie superalgebra W (n) and its natural representation

1 . 1 .  Tensor product of a  natural representation o f W (n) . Let
A (n) be a Grassmann algebra over C in n variables Ê.1, .2, • • ' If we set deg

=  1 ,  then A (n) becom es a  Z - graded algebra. L e t A k  b e  th e  space of
k - homogeneous elements of A (n):

A k
=  <ei, A  A  ••• A 1 <i i  < ••• <ik <n>,

w here <B> denotes th e  vector space over C  spanned by B . Then A (n) =
07c=0Ak, a direct sum, where Ao=C. We can naturally condider A (n) as a su-
peralgebra, where even elements are  A— 6= 1EN :evenA lc, and odd elements are Ai
=ek:oddAlc•

Let A be a superalgebra and End, A  the set of linear endomorphisms on
A of degree s, that is A =AbEDAÏ and End, A = {X e  E n d  A IX (A i) g A 1+ ,  (i
E  Z 2 )}  . A superderivation of degree s (s e Z2 )  of a superalgebra A  is  an en-
domorphism D E Ends A  with the property

D (ab) = D (a) b + ( - 1) sd e"aD (b)

for any homogeneous a, b e  A . The space of all the superderivations of degree
s is denoted by Der, A.

Let W (n) be the set of all superderivations over A  (n), then it becomes
naturally a Lie superalgebra. According to results in  [1 ] , every derivation D
E W ( n )  can be written in the form

D =  P a
1=1 ae,

a with Pi E  A (n) (1 <i <n), where is a superderivation of degree 1 definedae,
by

a aieJ=60.
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By definition, the  L ie  superalgebra W (n) acts on  Grassmann superalgebra
A (n) as follows: fo r VD  E  W(n) and V  A ••• A

D ( „/ \• • •  A  t r )  = ( - 1 ) ( s - D d e g p , A ••• AD (e,  ) A ••• A
S= 1

We call it the natural representation of W(n), and denote it by (/).
Let us consider m-fold tensor product OmA (n) . Then we have a natural

isomorphism as W(n) - modules

®mA (n ) 1 m ] =: A (n, m) ,

where AM ill 1 is a Grassmann algebra generated by jj (1
1  j '1,n,). In the following, we identify OrnA (n) with A (n, m ). By means

of a  tensor prodct, W (n) is imbedded into E n d  (O nzA (n)) End A (n, m) .
More precisely, an element

D = "*, E  W (n)

corresponds to an element

n ma  ®m (D) , en«) E  Der A (n, m)
t=la=1

via m-fold tensor product (ern of 0.

1 . 2 .  Definition of commutant algebra Wm . By definition of com-
mutativity in Lie superalgebra, we say that a  and b are commutative if [a, 19]
=0, whence ab = ( - 1) d e g a . d e g b  b a  if a and b are homogeneous. Let Wm denote
the commutant algebra of e'n  (W (n )) in End A (n, m):

= (EE E nd (0mA (n))I[E, D] = 0, y D E (W (n))} .

Then Wm  h a s  a  natural Z2- graded structure, Wm = Wm,f) G Wm,i. However, Wm,i
vanishes as we see in the following lemma.

Lemma 1.1. The odd subspace W .,' of W . vanishes:

C n j= {O}.

Proof. Let A (n, m) k  be a space of homogeneous Grassmannian polynomials
of degree k  and put

D o = n m
a

e ( W ( n ) ) .

Since Do is an Euler operator and its eigenvalues are precisely Z-degrees of
Grassmannian polynomials, E  E  Wm  m ust preserve homogeneous spaces A (n,
in) k .  Therefore deg E  is zero. Q .  E .  D .
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By the above lemma, we have Wm =  W m ,b , hence the commutant algebra
Wm becomes

= {E C  End ( e rA  (n ) ) IE D  = DE, V DE ( W  (n ))).

1 .3 .  Action of the permutation semigroup. Denote by [m ] the set
{1, 2, , m } of integers, and put End [m ] =  {(,o: [m] — • [m ]) the set of a ll the
maps from [m ] to itself. By composition of maps, End Em] becomes a semigroup

w ith  unit, whose group elements form a permutation group em of degree m.
Denote the semigroup ring of End Em] b y  m . An element go E  End[m] acts on
A (n ,  m ) a s  ((pP) P  ( , ; ) )  ( P  E A (n ,  m ) )  and w e  e x te n d  it  to  m  b y
linearity  (s ee [2 ]) , thus, w e have a representation of m  on A (n , m ). Denote
the image algebra of th is representation by gm  c  End A (n , m ) . Using the
above notations, we can state

Lemma 1.2. For arbitrary n and m, we have

g m g C n .

Proof. Let D = P ( 1 ,  • •• , /1)  W (n) , where Pt e A  (n ). Then

0°- (D) ="±E P i ( i a ,  " ,  n a )  a
i a

•
i=la=1

For any yoe  End [m ], we have

goe » n (D){ 11)1A — A ir,r) )

= go(±  P 4 a ,
i=la=1

\  a  
A  • A

n± P i ( l c p (a )
i=la=1

I • • • '1

a  F_
f lo ( cE ))  a i l , ( a ) 1 S ii (p ( j i )  A ••• A

=P i' ( 6.0(h), • • • , A i24(i2) A  irw(J,,)

•( 1) Pi 2 ( 19,(12), • • , fl,p(.72)) ti.1,(.71) A  120(.72) A • • • A  frp(.7r)

where

+ . . .

▪

1 )  r P  ir ( 1 0 ( . .7r), • • • fl<Pci ./içoon A • • • A  tr-10(./r-1) A  it'47()r),

A means an elimination. On the other hand,

(/)® 'n (D)ço (tui A • • • A  frir)
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= 0 ® '" (D) A • • • A  ircp(Jr))

— ri  Pi ( 6 . a • • • n a )  ( 6 i i i 6 a 0 ( i i ) i i 0 ( h )  A  i29(j2) A • • • A  ir(1,(jr)
i =la=1

+  ( - 1 )  ô i i25,yo(j2) 'o(Ji ) A l 2 ( 2  A • • • A  fro(ir)

+ . . .

( 1 )  r - i 5 iird ato (ir)i1p (i1 ) A  i2p(.i2) A . • • A  ir ,pu r)) •

So we obtain

yoo®rn (D) (D) (y9 G  End [M ] )  .

By the definition of g m , we complete the proof of the lemma. Q. E. D.

2. Commutant algebra of Om ( W  (n )) (the case m

2.1. Semigroup ring gm  and commutant algebra Wm . L et (0 , A (n))
be the natural representation o f W  (n) a n d  (O m , A  (n ,  m ))  its m -fo ld  tensor
product. Denote by U (W  (n)) the  universal enveloping algebra o f  W (n) , then
we have

Lemma 2.1. P u t  (a) =  ( 1a, •• t io t ) . T hen the subalgebra (U
(W (n))) in End A (n, m) is generated by

a"
E ( (a 1 )) •  Pk  ( ( a k ) )

16a,,-..ak6n1

w here 1 ••• , b ka r e  i n d i c e s ,  P i  i s  a Grassm annian polynom ial in
n - variables, and ( a ) )  P ( 1a, Iscr) •

Proof. Let PE A  (n ) be homogeneous and fix 1 b1 , b z _ n. Then it holds that

aii=i1)1 ( a 1 ) ) =  P 2  ( a 2 ) )

a = E ( (ai)) a b  P 2  (a2))
a l ,a2 I,a,

1 ) d e g P 2 P1 (a1) ) P 2 (a2)) a b i a "̀l a b , a 2 1.
By definition of e n , w e  k n o w  th a t the left hand side and the first term  in the
right hand side of the above formula is in  0 ® '" ( U ( W ( n ) ) ) ,  whence
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n2
E ( (a1)) P 2  (a2)) u (u ( 47 (n))).

hictiab,a2

We can complete the proof of the lemma by using indinduction on k. Q. E. D.

Lemma 2.2. If  m then the representation of  m  on A (n, m) is faith-
ful, hence we have

dim g m = d i m  f l i =mm.

Proof. Put

N k:= {yokpeEnd[m], #Im((p)= Whih= 1, 2, ••., ,

where nk =  J V, .  Then the sem igroup ring m  is generated by N k's, hence g .

=  0 1 0 .  Suppose
k=1

fr± cçoL l (n,rn) O C, (i0 Î
k=lh=1

W e want to prove c t=  0 . By the assumption and the condition m n, w e have

c li,401/,̀ A  1.2A •-• A A ri =0.
k=lh=1 i =2

Note th a t ço14 (1 — 1 )  kills the vector in the left hand side. So we obtain
= 0 from the formula

Ecicp1.(1) A (2) A • • • A 6 , r (m) A ri =0.
h i=2

W e prove the resu lt by  induction on k. Assume that c =  0  (t .k - F 1) . Let us
consider the case t =k . W e have

E E c i kçoi, A ••• A A ri = 0,
t hi =2

where 1 <i2<i3<••• <ik . So by the induction hypothesis, we get

E c i0 A • • • A 1jk A tn-i
h i =2

= (1) A  ic,o'h (i2) A • • A II =  0.
h i=2

For any two elements ç ,  p  o f  .Ark, obviously,

1,p1, (1) A  1,,0„(i,) A • • • A ) A fi,iv
i= 2

cri,az
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= (1) A  .iço„,(i2) A • • • A  i. p t,((k) A k  0 ,
i=2

if and only if

((P itt, (1) , (lot, (2) , (m ) ) =  (40 1,12 ( 1 ) ,  (012(2) , ***, (Ph2(m) ) , i.e., e t , '  O r

By the linear independence of elements

k ip l(i) A  l ço1 (Jo A • • • A  J.pt (io A 0) 1 çoi E  Nk}
i=2

w e o b ta in  a=  0 . By induction, we complete the proof. Q. E. D.

Now we can prove the following

Theorem 2.3. If then the commutant algebra W m  o f  (P® ni (W  (n))
coincides with the representation image gm  o f  the  semigroup ring of the per-
mutation semigroup End [ml:

=  gm .

Proof. Take an E E C n .  F o r G rassm an n ian  polynomials Pi, ••• , Pm  in  n - vari-
ables, put

am X  (P 1 , P 2 , • • • , Pm ) — P1 ( a i ) )  P m  ( (am)) a F.. ...aF -
u g la i u S tn a , n

which is in  e m ( U ( W ( n ) ) )  by Lemma 2 . 1 .  Then we have

E (13 1 (  ( 1
) ) P2 ( 2 )  )  – *Pm ( (In))) =EX  (Pi, P 2 . ,  •  " ,  Pm ) ( i i A z 2 A — A m m )

=X  (Pi, P 2 ,  " ,  Pm) E A  22A

Since A  ( n ,  m )  is generated by {P i ( 1 ) )  • • • (m )) IP: E A  (n)}  , E  is
completely determined by E (J.1 A  22 A ••• A .  O n the  o ther hand, Euler
operators

m a
E   ( i fl)

a=1 fa

are in  e n  ( W ( n ) ) ,  and

j a E ( i i ,A • - •A m m )= i ./ c r
a

E ( ( 11/.\-•• A  m m ))
ce=1 L 'S la a=1

{

E ( i i A • • •A  f l , m )  if 1 - m,

0 if m < j n . (2 .1 )
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This m eans that if 1 then E A ••• A  m m ) is the e igenvec to r of the
Euler operator with e igen va lu e  1  and if in + 1 then E A ••• A mm) is
in the kernel of the Euler operator. So E A ••• A mm) is degree 1  in •'•,

if 1 and degree 0  in ( j i , in,) if in + 1 j n .  Hence we obtain

E ( i i A • • • A  flim) = E A • -  A m) .

So dim Wm is less than or equal to mm.
On the other hand, by Lemma 1.2, Wm contains the su b a lg e b ra  gm and by

Lemma 2 .2 ,  its  dimension is equal to  mm if m n. Therefore we conclude the
theorem. Q .  E .  D .

3 .  A kind of Weyl reciprocity for w(1) X E nd  [m]

3 . 1 .  Commutant algebra of 0  ®'" (W (1)) . In th is  section, we con-
sider the case n = 1 .  In th is case, we get a stronger result which is independent
of m. For n = 1 ,  it becomes

a aa i d anw (1) , ,

For convenience, we use isomorphism

A (1, in) < frn > (m)

So we have

D  = ( 4 ) =  a , D0:= (c )= a
a

i •

Obviously, D-1 (Ak) Ak-1, Do (A k) g l ik  for any k. Further, w e have

Lemma 3.1. The operator D_ 1 i s  an exact deriva tion , i.e., (D-1) 2 = 0 and
the chain complex

D-, D-, D-, D_, D-,
0—.Ant—i-A._1—• • • •—•A 2 —../11—..A0 -0- 0

is  exact.

P r o o f .  F irs t  of all, note t h a t  (D-1) 2 = 0. So D _1 is  a boundary operator. To
prove the exactness, we define linear operators Pk : Ak

— •
A k i-1  by

Pk  ( 11 A  • • A =  A  A  • • • A

where 0 We put P - 1 = 0  for convenience. Then
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(D - iP k + P k -ID -1 ) A .• • A

= D _ 1  (1/ \  1 A • •• A A »  A  iir)

= i1 / \ • • • A ik - i- i ( - 1) t i A i i A • • • A t A • • • A i k
t=1

t=1
A •• • A

So we obtain
(k=0, 1 , 2 , • • • , m ) .

By general theory of algebraic topology, the lemma follows from the above for-
mula (e.g., see [3, p .1 6 3 ] ) . Q. E. D.

By the above lemmas, we can prove the following

Theorem 3.2. Let n  = 1  and the notations be as above. Then the com-
mutant algebra W m  o f  O m  (147 (1 ))  coincides with the representation image gm  of
sem igroup ring m  of the permutation sem igroup End [m]:

dm = Wm.

Proof. By Lemma 1 . 2 .  w e have 8 m  g  Wm , so it is enough to prove W m  g
gm . For this purpose, we introduce some notations. For any E E  Wm , put

Ek:—E

alt. = {. EEW ntlEt =  0 (V  1>k )} ,

D-1,k:
=

D-11Ak•

Clearly,

= am • ao = (0),

and

(am / am -i)  (am_dam_2)ED•••Epal (as a vector space).

We divide the proof into 5  steps.
STEP 1. Taking a  complementary subspace A '  k o f  51 (D-1,k-F1) (here  9i

(D -1,k+1) is the image space of D -1 , lc-El), we have

Ak = 9i (D-1,k-F1) (BA' ( 3 .1 )

We define a linear operator P k :  It/ k - 1 —*H o m c (A 'k , A k ) by

P k  (E ) : = for any Ecadak_l,

where E E k  is  a representative of E da k_i. This map is well-defined, be-
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cause if two elements E, E  t ' m sa tisfy  E — E' E  ,a k - 1 ,  then by definition, (E —
k=Ek — E' k= O.

STEP 2. W e show tha t Pk  is  an injection. Assume tha t Pk (E )  0  for an
E E adak-i, then there exists a representative E E a k  such that EIA, , = O. On
the other hand, for any x  E  R (D -4,k+i) , there exists y  E  Ak+1 such that x =
D_Iy, so

Ekx=EkD_Iy=D_IEk+iy=0,

whence Ekink.i = O. Then we see E k = 0  in total and E E Thus we obtain E
O.

STEP 3. We show Pk  is  surjective. For any HE Homc (11'k, Ak), we define
E E  Homc (A' (n) , A (n ) ) as follows:

IE IA ,= 0  (1 *k -1 , k ),

El9i(D-1,k+i) - 0, E IA' k- 11,
El9up-i,k)=D-1,kH, Elwk., = 0

By Lemma 3.1 and the definiton of E, we have D cE = E D 0 , D_LE=ED_i and E E

ak. Furthermore, let E  be the image of E  in ak/ ak -i, Then

P k (E ) E  k  —H.

So Pk  is  surjective.
So far, we have the following result.

S m(am/am - i ) e(nz_i/a.„) EB (Dal
=Homc (1rm, Am) ED Homc Am-i) ED •-• ED Homc 111).

STEP 4 .  Let us prove that above A '  k can be replaced by  Ak_1Am, th a t is,

Ak
=

9i -1 ,k + 1 )  e (Ak-i A , (3 .2 )

where k= 1, 2, •••, m and D i,m + i= 0 . If x A  fli=D-1,k-Fly with xEAk-i, yEAk+i,
then

and

So it holds that

This means that

D -L k  (X A =D-1,1,1)-1,k-Fly =0,

D_i,k(xA W  =  (D -Lk  x ) A

x A ( ( -1 )k  - 1 (D-1,k x) A  rn=0.
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(3.3)(D-1,k+i) n (Ak-i A =  (0 ).

On the other hand, we have

m — 1 )
dim A '  k

=

— k

which is proved by induction on k. By a direct calculation, we get

Thus, from  (3 .1 )  and (3 .3 ),  we obtain the direct sum relation (3 .2 ).

STEP 5. A basis of the space A 'k =A k _ iA m  is given by

A • •• A A  rn11 ••• <jk - i  <m ) .

For any basis element A  A••• A of A k , we define
End [m ] as follows:

çO]i1•
 . 1 2  ••• /1 ik -1 m

i l • • •
ik -

itk ik ik  •  •  • i l •• • i k - 1 • •• ik

i.e., (pill .
 - 1 .k- im =  ( 1 —1) ' u401., 1 - . 1„: (i) =tik 0. Er ( 1 1 ,  • • • ,  jk _1)) . Then

i l  ik -1 i i —uk-uk
we have

(10)
i k

k -1 M A ••  A  ./k-1 A =  A ••• A A
i l . . " - l i k

and
. .

q». • . / k - g n A  
• • 

A  ,t
; ;  \ . c.sk-1 A  m ) = 0  fo r  (Si, •••, 5k - 1 ) ••',1k-1).ii•••■4-1,4

Therefore the set

< j2<  •• • < jk - i  -<rn — 1, 1 • • • < ik1 1 - 14-1Lk

is a basis of Homc (Irk, A k ). So we get a surjection

. Homc (A'k, Ak) =Cni
k=1

and dim Wm gm. By Lemma 1.2, we have finally gm=Vm. Q. E. D.

3 .2 .  The bicommutant algebra.
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In the special case w here n =1, w e also get the bicommutant algebra of O® ni
(1/17 ( 1 ) )  .  The next Theorem  3.3  sta tes that it is the image of the enveloping
algebra O ® m (U(W (1))). Therefore, in this case, we have an analogue of Schur
duality for W(1) X End[m].

Theorem 3 .3 . The bicommutant algebra of m- fold tensor product 0® r n  of
the natural representation 0 of W(1) is equal to the image e n i (U (W  (1 ))) of the
enveloping algebra.

Proof. Let U (W (1) ) be the universal enveloping algebra of W (1) . Then
by Poincaré-Birkhoff-W itt theorem, U(W (1)) is spanned over C as

(W  (1) = ((C 4)k

,  ta9jk=0,1,...),C .

Denote the  bicommutant algebra by V 'm . Obviously 0 "  (II (141  ( 1 ) ) )  g  V' m

holds. Put

D o = (/) (  4), D_i= (P ® n i ( 4 ) ,

then, under the representation OM ,
(U(W(1))) = <I, 13, 0 0̀

- i D_ i lk = 1 ,2 , ••• ›/ C .

W e prove that {I, Do, ••• , DT, D-1, D0D-1, ••• , DT - 1  D_1} are linearly indepen-
dent, hence dim ern ( U ( W ( n ) ) )  211/.+1 .

In fact, assume that

kiD6+ i k m + iDV I D -i=  O.
i=o i=1

then

( ik iD t+  k m + M -
1D - 1) A • • • A  = 0 .

i=o i=1

T ake  r= 0 , 1, •-•, ni, then we get k 0 = 0  and

/ 1 1 • • 1  \  / / c i

2 22 • - •  2 " : k2
= 0 .

\m  m 2 . . .  m m \km
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/ 1 0 0 /km +i
1 1 1

1 2 km  +3 =0.

\1 (m -1 ) • (7n- 1) m - I  / k2n2

So we have k1= k2= •••= k2„,=0.
Second, we prove that

dim W '. .2 m + 1 .

For this purpose, let Qk  be the projection from A (m )  onto A k , then

r,n = ET) QiCnQi.
i,5=0

For any EG we have E= Ei, where E ii=Q iE Q .i, and Ei, is essentially a
i,)=1

linear operator from Ai to A. F or any multi - index •••, j k ) ,  take a  yo em
such that

(to (it) = t  (1 t  k)
By D p = goE, we have

E A • • • A = (P- 1 E ( 1 A • • • A

So the value E A • • • A is determ ained  uniquely by E (6. A • • • A  /c).
Let us now consider Ed.
10 . THE CASE E5  < i )  .  Put

Ei; A • • • A = A • • • A

Take a  ÇOE  E n d [m ]su ch  that y o(k ) =k , go (k ) = j(j< k< m ) . Then, be-
cause of E i A o= goEi ,,

A • • • A — E A • • • A  a(t i )—  0,

whence
2°. THE CASE Eii(j i ± 2) . Put

Ei; A  A  = E A • •• A
15 t1 < • ••< t i 6 M

For any 1 __Izi <le 2 <•-• 1 5 k < m , and k {k1, •-, k i ), take ço End[m]
such that yg (k i ) =I?, (1 , (t) = k(t Eff {ki, • -, ki)). Then y o ( i  A • •• A =
0, and it holds that

0 = A •• • A  = (PEii (ei A • • • A V

ct i .••ti oto A • • • A  (p(ti)•
15t1<...<tiSm



142 Kyo Nishiyama and Haiquan Wang

Therefore we obtain ck 1...k1 = 0 , whence
According to the above facts, an operator E E  V ' m  is determined complete-

ly by the values

E 0 ,0 (1) , Ei,i , E m ,m (i A ••• A  rn) ,

and

E1,0 E2,1 A , • ••, Em,m-i (i.A • • • A

Further, if we take

( 1  2  • • •  r  r + 1  • • •

then  yo maps A r (m )  into the  one-dimensional subspace C A ••• A  r. S o  by
Ego= goE, we get

E r , r ( 1 A • • • A r )  E C IA  ••• A

Er,r-i A •• • A A • •• A

Therefore, it holds that

dim W' m  _ 2 m + 1 .

In conclusion, we have dim W'm =  2 m + 1  and C m = 0 0 -(u (w (i)) ) . This
completes the proof of the theorem. Q. E. D.
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