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A remark on the homotopy type of certain gauge groups
By

Akira KONO and Shuichi TSUKUDA

1. Introduction

Let Pi be the principal SU(2) bundle over a closed simply connected
4-manifold X with c; (Py) =k, gk its gauge group and g% its based gauge group
consisting of bundle automorphisms of Py which restrict to the identity on the
fibre over a base point.

In [2], when X =S it is shown that g, =g, if and only if (12, k) = (12,
k) where (12, k) is the GCD of 12 and *.

In this paper we show the similar results for closed simply connected
4-manifolds.

The homotopy type of X is determined by the intersection form Q. Define

1if @ is even

d=y,
2 if @ is odd

The purpose of this paper is to show following results.

Proposition 1. 1 ar =gl for any integer k.

Theorem 1. 2 gk is homotopy equivalent to gi if and only if (12/d (X),
k)= (12/d (X), k') where (12/d (X), k) denotes the GCD of 12/d (X) and k if b+
0 and 12/d (X) if k=0.

Related results have been obtained by several authors, for example in

[4].

2. Proof of Proposition 1. 1
In fact this is included in [4], essentially.
By [1], Bg}=~Mapj (X, BSU (2)). Fix—k € Map*, (S*, BSU (2)), for f €
Map# (X, BSU(2)) consider the map
» FV—k v
fok i X— X V S*——BSU(2) V BSU(2) — BSU (2)

where p is a pinching map and V is a folding map. Then f — f_; gives a
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homotopy equivalence between g} and gg.

3. Proof of Theorem 1. 2
By [1], Bgi=Map, (X, BSU(2)) and therefore there are fiberings;

Mapj (X, BSU(2)) — Mapj (X, BSU(2)) — BSU (2) (3.1)
S$3=~QBSU (2) — Map§ (X, BSU(2)) — Map, (X, BSU(2)) (3.2)
gk = QMapy (X, BSU (2)) — S* — Mapj (X, BSU (2)). (3.3)
Let b=dim H, (X; Q), then there is a cofibering;
3 i P
§3— \/ st x——st—\/ s, (3.4)
b b

where & is an attaching map and ¢ is an inclusion.
Note that the intersection form Q is even if and only if 2E=0€ & ,m, (S®)
=(Z/2)".
Consider the following diagram

I1, Map# (S, BSU(2)) =——  IL2°BSU(2)
ze¥
S* % Map(S4BSU (2)) —— Map(S* BSU(2))
| ; o s

$* ——  Mapf(X,BSU(2)) —— Mapi(X, BSU(2))

l

11,22 BSU (2)

where € is a map which generates m3;(Mapjy (S*, BSU (2))) = m;(BS®) =
76 (S3) =Z/12, and m € Z. Since (m, 12) = (&, 12) by [2], (12/d (X), k) =
(12/d (X), m).

Lemma 3. 1. g% o me] € m(Mapf (X, BSU(2))) is of order
(12/d (X))/(12/d (X), m).

Remark. Since gy is the homotopy fibre of ¢* © me, if gi=gaw, (12/d (X), k)
= (12/d (X), k).

Proof. By the homotopy sequence for (3.5);
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®,m5(S°) == (Z/2)"

/
%

(S8 —  Z/12 — ms(MapF(S*, BSU(2))) — 0

| I+ l

m3(S%) —  m(Bgd) — 73 (Bgx) — 0
|
|
O,y (S?) — (Z/2)°

and
1 if JE*=0
d(X)=I it 2%
2 if JE*+0,

we get the short exact sequence

q*
0—7Z/(12/d (X)) — m3(Bg}) — (Z/2)b~4@+1 —,
Henceforth ¢*([m]) is of order (12/d (X))/(12/d (X), m).
Let F,, denote the homotopy fibre of q# o me.

Lemman 3. 2. Assume Fy, and Fy are H-spaces, then F,, = F, if and
only if (12/d (X),n)=(12/d(X),n’).

Proof. First of all, since S* admits a homotopy equivalence of degree -1, Fy,
~F_, (3.6).
By an easy computation,
Z'+finite j=1
7 (Fn) =1 Z+finite j=3
finite otherwise.
Let {[a:]}%_1 be the generator of free part of H, (F,;Z) and represent [a;] by
ai: S'— Fy. Choose [ui] € [Fa, S'1 = H' (Fs; Z) dual to ai. Let F, be the
homotopy fibre of IT u;: F»— (S*)°. Then we have a homotopy equivalence
Fp= (S)!XF,

and 71 (F,) is finite. Since Fy is an H-space, so is Fn. Let (Fu) @, (Fn) a2 de-

notes the F, localized at 2, 1/2 respectively. Then we have homotopy equiva-
lences

f: (Fn) &= (Fsn) @
g (F) am= (Fan) asa.
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Moreover since 73 (Mapi (S%, BSU (2))) =Z/12, if n=n" (mod 3), (F,) a/s=
(F~nf) asz, and therefore we have a homotopy equivalence
g (Fn) o= Fon) 4= (Fsy) /2.
Let &, ¢ be generators of w5 (F)/Tor, s (Fss) /Tor respectively, then we have
fxe= /)¢ 1,1 odd
gxe=2"¢ rE€7Zx>o
For an H-space Y and | € Z, define a map ¢;: Y — Y by
wl (y) =y LRI y

1 times

then we have homotopy equivalences'
(') (FSn) @ (ﬁSn) @
@2 (Fsn) v — (Fsn) as2
Put
f=@io git of
£=opr'o g
Clearly f and g’ are homotopy equivalences and fxe=¢', gk¢=¢" and so fin =

g where f(o and gl are rationalizations at 0. Hence there exists a homotopy

equivalence
h«: ﬁn—yﬁsn (3.7)

such that hy =1, haa=g".
The lemma follows from (3.6), (3.7) and the following table.

(12, n) n(0<n<12) (6, n) n(0<n<6)
1 1,5,7,11 1 1,5
2 2,10 2 2.4
3 3.9 3 3
4 4.8 6 0
6 6
12 0

If (12/d (X), k)= (12/d (X), k'), since (12, k) =(12, m) and (12, k") = (12,
m’), (12/d (X), m) = (12/d (X), m’), therefore we have gy =Fp =~ Fn =g, and
the theorem is proved.

4. Geometric view point

In this section we give a geometric interpretation of Theorem 1.2,



Certain gauge groups 119

Consider X as D* Uss X where D* is a 4-disk, X=X—D* and S*=0D*=
8X. Choose a degree k map fx: (S% 1) — (5%, 1), then we have
P=D*xs |J Xxs®
e
where
fu OD*X S — $¥X S = X X §°
is defined by fx(x, &) = (x, fr &) * g), x, gES Clearly
AdP=D*xs* |J Xxs®
Adf.
where
Adfy: S3X 83— §3x §3
is defined by Adfi (x, g) = (x, Adfi(x) (g)) and
Adfy: S*— Mapf (S%, $%)
is Adfy (x) (g) =fx(x) - g * fi(x) "% Define
F: 3 (Mapf (S3, $%)) — [Mapo (S, S%), Map, (S, $%) ]

by F(n) (¢p) 1) =71 () (¢ &x)), n € ms(Map(S?, $%)), ¢ € Map,(S?, $%), x €
S3 Note that F is a homomorphism i. e. F (p +& =F (y) - F (§) and
73 (Map§ (S3, S%)) =Z/12 is generated by e= [Adfi].

We can construct gi =1 (AdPy:) as the fibre product of the following dia-
gram;

Map (D*, S®) Gk
(4.1)

F(AdfR) L
Mapo (S3, §%)  «—— Mapo (S, $°) «——— Map(X, S%
where arrows except F (Adfy) are restrictions, and Map (D*, S%) — Map,(S®, S%)
is a fibration. Thus if =k (mod 12), gi =g
Next we see how d (X) enters the story. Recall the cofibering (3.4);

83—5)\/,,52 !

X
X.

~

X —— X

Clearly i: \/b S?— X is a homotopy equivalence, therefore Map ( \/b S2, S%)
~Map (X, S%), and the diagram (4.1) becomes:;
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Map (D*, S®) Bk

l l

F(Adfx) ¥

Mapo ($% §%)  ——— Mapo(s% %) «——— Map(\/; S2 $%).
We have

Lemma 4. 1. If [Adf,] is in the image of £¥: ® ,7, Map} (S8, $%)) —
T3 (Mapik (Ss, Ss) ) y then gk: Go.

Proof. 1f [Adf,] =& ], then for 9 € Map(\/; S% % andx € S°,

{F (4dfi) o €% (@)Y ) =(F(E%) (E* )} (1) =% 0 (x) (E¥ 0 (x))
=nEW) (p(EK)))
={F(n) ()} (E(x))
={&¥ o F(n) (9)} ).

Therefore we have a commutative diagram

Fladf) O&*

Mapo (S°, S°) Map ( \/, S2 S9)

| B

E#
Mapo (8% §%)  «——  Map(\/ % S9).

Since m, (Map§¥ (S% S%)) =Z/2, F () is a homotopy equivalence, henceforth
8k = Go.
As noted before F is a homomorphism, so if #=k (mod12/d (X)), gi=gs.
Finally we show gx=~g-«. Consider the following maps; —1: D*=1{q € H,
lg/ <1} — D* given by —1(q) =7 and degree —1 map —1: S2— SZ It can be
easily shown that the following diagram commutes up to homotopy and vertic-
al arrows are homotopy equivalence,

F(Adfr) #

£
Map (D*, S¥) —— Map, (S?, %) Mapo (S% %) —— Map(\/; S2 $?)

1—1“ 1—1“ l—l“ l(v(—m“

F(Adf-x) I3
Map (D*, S) —— Mapy (S?, S°) Mapo (S%, %) «—— Map( \/; $2 $9)

and we have g, =g_s.

Thus if # = *k (mod12/d (X)), g« =gi. Unfortunatly we cannot get the
homotopy equivalence gi = gs¢ in this way, which is the crucial part of the
proof of theorem 1. 2,
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