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Nonexistence of twisted Hecke algebras
By

Akihiko Gyoja

0. Introduction.

Let (W, S) be a Coxeter system with finite S # ¢ (cf. [1]). The group
ring C[W] can be deformed in two ways.

(0.1) The twisted group ring. Let C[W]’ be the vector space with
the basis {ew}wew. Assume that C[W]’ has an associative C-algebra structure,
and that

’ ’ 4
exey € Cegy
b
éré1—eé1éxr—¢éx

for all x, y € W. If we express ex ey =czy exy With czy € C*, then ¢! ={czy) zyew
becomes a 2-cocycle in H? (W,C*). We say that the C-algebra C [W] ' is
obtained by twisting the group ving C[W] by the cocycle c.

(0.2) The g-deformation of the group ring. (The Iwahori-Hecke

algebra.) Let ¢= {qu} wew be a family of non-zero complex numbers such
that
(0.2.1) 4z gy =4ay if 1(x) +1(3) = 1 (r9),

where | (w) is the length of w € W. Let H(q,W) be the vector space with the
basis {Tw}wew. Then there is a unique associative C-algebra structure in H (g, W)
such that

— Tsw if sw > w

0.2.2) TsTw = {qusw +gs— 1) Tw if sw<w,
where < is the Bruhat order. This C-algebra H(q,W) is called the
Iwahori-Hecke algebra (cf. [1, Chap.4, §2, Ex. 23]), which we shall regard as
a g-deformation of the group ring C[W].

The purpose of this note is to show that, in a sense, ‘the g-deformation of
the twisted group ring’ does not exist.

Let us explain our result more precisely. Let notation be as above, and H
a vector space over C with the basis {ew}wew.
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Theorem. Assume that H has an associative C-algebra structure such that
esew € Clesy (sw > w),
eseweC™ 65t C™ ew (sw < w) s
18w —€ew €1 Cu,

fors € S and w € W. Then there exists {qu} wew satisfying (0.2.1) and such
that, if we put Tuw: = buew with suitable {by}w € (C*) ¥, then {qu}w and {Tw}w
satisfy (0.2.2).

Let us explain our motivation. In [4, p.109, 1.5], T. A. Springer conjec-
tured that the algebra of self-intertwining operators (= the Hecke algebra) of
a representation of a finite Chevalley group with connected center induced
from a cuspidal representation of a parabolic subgroup is isomorphic to the
twisted group ring of a certain subgroup W (w) of the Weyl group with a
2-cocycle 7 (w) in H2 (W (w), C*). This conjecture was proved affirmatively
by R. Howlett and G. Lehrer [2] (cf. [3]) and 7(w) turns out to be always
the trivial cohomology class. The motivation of the present work is to under-
stand why a twisted version of the Hecke algebra does not appear.

Before concluding the introduction, it would be worth mentioning the re-
cent work of S. Ariki [6], where he considers for an irreducible finite Coxeter
group W, when W—— W/ (center of W) = : W is the representation group of W,
i.e., the universal central extension of W, and he shows that this is the case if
and only if W is of type Es, Hs or I, Then he constructs ‘a g-deformation of
the twisted group ring of W',

1. Let H be a vector space over C with a basis {ey} wew. Define linear endo-
morphisms ps, g: (s, t € S) of H as follows:

_ Csw €sw (Sw > w>
(1.1) ps (ew) _{ Csweswtdsew (sw < w),

_{ Cunt Cut (wt > w)
(1.2) gt (ew) = Cw,t ewt T ds ew (wt < w),

where s, t € S, w € W, csu, cwr € C*, ds € C*. (The same ¢s; (s, t € S)
appear both in (1.1) and (1.2).)

Lemma. The following three conditions are equivalent:
(1.3) Ps @:=qips,
psler) = gsler) = es (s,t €S).
(1.4) Cw € 5,00 = Csw,1C s,
crs=cs1= 1 (s,t €ES,weE W),

ds Cwt=Cs,wd;, if sw=wt.
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(1.5) There is an associative algebra structure in H such that

bs (ew) =ésew, qt (Ew) = éweéey,
€18y —ewC1— ey (S, tre Swe W)
Proof. The proof of (1.3)¢ (1.4) can be easily done by using the follow-
ing fact: If s, t € S, w € W, | (sw) =1 (wt) and | (swt) =1 (w), then sw=wt.

Since (1.5) = (1.3) is trivial, let us prove (1.3) = (1.5). Let w=1s; *** 5351
(si € S) be a reduced decomposition of w (€ W). Let

Pw=Coits1 Csasast *** Csisirms1 Psi *** Psa
and
Quw=Csisi1 Coisimtisioz *** Csimesast G *** G
Then, by (1.3), we have
pzler) = gz (e1) = ez,
pzles) = prgyler) = gpzler) = qulea)  (,y € W).

Since pz (e,) does not depend on the choice of the reduced decomposition of y,
qy is well defined. In the same way, we can show that p; is well-defined. Let us
define a multiplication by e.e,=pz(e,). Then, as we have shown above,

qy (e.z) =pz (ey) = erey.
Hence, noting pr g.=q. pr, we get
ex (eyez) = pxqgz (ey> = 4z (ey) = (e.zey)ez-

Thus we have defined a desired C-algebra structure.

2. Let Hbe as in §1 and {csw} € (C*)%*¥, {dsw} € CV.
Lemma. The following conditions are equivalent:
(2.1) There is an associative C-algebra structure in H such that

Cs,w€sw (sw > w)

¢stw = {Cs,w esw+ds,w€w (Sw < w) ,

elew=ewe1 =ew.

(2.2) (a) dsw=ds,s, which we shall denote by ds.

(b)  {csw} can be extended to a 2-cocycle {czy) zyew of H2 (W, C¥), i.e.,
Cy,z C;yl,zcz,uz C;,}lzl (x: ¥z € W)

(Such an extension is umique. See [5;Chap.2, §87-9] for group
cohomologies.) :

()  dscwr=csuds, if sw=wt.
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(d) c1s=cs1=1.

Heres,t € S, w € W.

Proof. First, let us prove (2.1) = (2.2). If sw > w, then
es (esew) =csuesesw
=csus,swewt Csulls,swesw,
(eses) ew = (cssertds,ses) ew
=cs,sew T ds,sCs,wlsu.

Hence dssw=dss and we get (a). Let w=s;** sas1 (s; € S) be a reduced de-
composition of w(E€ W). Then

(23) ewer = (Cs_z%m Cs_t.lsr—1~~-31) (031.t6'sz.sn Csz.s:-r»su) Cuwt,
if wt > w

(2-4) Cwer = (Cs_z}m cS_l,lSl-l"'Sl Ct,tCs3,52 °"" Csx,sx-1~-~5z) ewtdew,
if t= s1.

Write (2.3) and (2.4) as

_ { Cw,tewt (Wt > w)
Cutt Cw,[ewt_‘_dtew (wt < 'U))

with suitable c,; € C*. Define linear endomorphisms ps and gq: by ps (ew) =
esew and q: (ew) = ewer. Then ps and ¢, are of the forms (1.1) and (1.2), and
satisfy the condition (1.3). Hence {csu}, {cw) and {ds} satisfy the condition
(1.4). In particular, we get (c) and (d). Note that, even if we replace ds by 0,
(1.4) remains valid. Hence, by the implication (1.4) = (1.5) for ds=0, we
get an associative C-algebra structure in H such that

€s *ew:Cs,w Csw, €1 *Eu):ew *el=ew.
Then
exXey=cryey 1,y € W)

with some {cz,} € (C*)"*¥. As is easily seen {cz,) € H2(W, C*). The uniqueness
of czy can be proved by an induction on I (x), using the cocycle condition on
{czy}. Thus we get (b). The implication (2.2) = (2.1) is a direct consequence
of Lemma in §1.

3. Let {czy) be a cocycle in H2 (W, C*) normalizd so that cw,1=c1o=1. (The
cocycle appeared in (2.2) satisfies this condition.)

Lemma. The following conditions ave equivalent:

(3.1) There is {ds} € (C*)° such that ds cwr=cswdy, if sw=uwt.
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(3.2) csw=cuws, if sw=ws.

Heres,t € Sand w € W.

A 2-cocycle which is normalized as above and satisfies these equivalent condi-
tions is said to be admissible, provisionally in this paper. The admissibility de-
pends only on the cohomology classes.

Proof. Since (3.1) = (3.2) is trivial, let us prove (3.2) = (3.1).
First, assume that sz=2zt, sw=ws, s, t € S and w, 2z € W. Then
CuwCowCsum=1,
€52 Cws,Cw,sz Cus = 1,
CoCiotCu,ztCoe = 1.
Multiplying these three equalities, we get
Cs,2/ €t =Cs el Cun.

This implies that, if sw=wt, csw/cw,: does not depend on w, which we shall de-
note by as,. Note that as, (s, t € S) is defined if and only if s and ¢ are conju-
gate in W.

Next, assume that sw=wt, tz=zu, s, t, v € S and w, z € W. Then

Cw.zCs_u}.z Cs,wzcs_,tla: 1,
it CutCltz Cwt =1,
Cz,uC;},u Cw,zuC;,lz =1
Multiplying these three equalities, we get
(Cs,w/cw,t) (Ct.z/Cz,u) = Cs,wz/sz,u.

Hence assarux =asy. Let {Si} be the W-conjugacy classes of S and fix a repre-
sentative u; for each Si. Let ds=asy, if s € Si. Then as,=ds/d;. Hence

comwlcwi=ds/d; if sw=uwt.

4. Now, our task is to prove that an admissible cocycle is a coboundary, i.e.,
there exists {bz}zew € (C*)¥ such that

(4.1) C2y=bybzybz.
In fact, if (4.1) holds, the multiplication law as in (2.1) can be written as
bubswbsesw (sw>w)
€stw = [ bubswbseswtdsew (sw<w).
If we put fu=bu'ew, then
fsw (sw>w)

(4.2) Sfu= {fsw+bs_ldsfw (sw<w),
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and fifu =fuf1 =fu (s € S, w € W). (Note that an admissible cocycle is
assumed to be normalized as in §3, and that by=1.) Let {rs}ses be an element
of (C*)S such that

(4.3) rs=*:, if s and t are conjugate in W,
(4.4) bs_ldsrszrg_ ]..

(Note that from (3.1) follows bi'ds=br'd; if sw=wt.) Let {r,}wew be an ele-
ment of (C*)" which is an extension of {rs}ses and satisfies

(4.5) Yaty="ay, if L(xy) = 1(x) + 1(y).

By (4.3), such an extension (uniquely) exists. Let Tw=7ufw and g»=7*. Then
by (4.2), (4.4) and (4.5), we get

Tsw (sw>w)

TsTw ={
: (IsTsw+ ((Is_l) Tw (SW<w)'

and
G2y =Gy, f (xy) = l(x) + l(y)

The remainder of this paper is devoted to prove that an admissible cocycle
is a coboundary.

5. In this section, we give some preliminaries on group cohomologies. See [5;
Chap. 2, §9].

_ Let W be a group and present it as a quotient F/K of a free group F. Let
K=K/ [K,F] and F=F/ [K, F] , where [K, F] is the group generated by
the commutators [k, f] =k (k € K, f € F). Then

1 — K F > W 1,
K C Z(F),

where Z(F) is the center of F.For each x € W, let us fix an element f ; of
F such that f > x. Then

fefvmkaufa (y€W)
with some I:I,,, € K, and
;,,w otk zgw k3i=1 (x, 9,2 € W).
We have the following exact sequence:
(5.1) 0— Hom (W, C*) — Hom (F, C*) — Hom (K, C*) S (W, C) =0,
where 7 is defined by
(5.2) 7(9) ={g (k).

See [5;Chap. 2, (9.5)] for the proof.
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For a group G, denote Hom (G, C*) by G". Then (5.1) can be written as
follows:

(5.3) 0— (W/[w, W)Y — (F/[F. F]1)¥ = K¥ — H2(W, C*) — 0.
Since . o _ o
0— KN[F,F] = K—F/[F, F]

is exact, _

image p={¢ € KV; ¢ | knir, n=1}.
Hence
(5.4) H(W, C*) =K"/image p= (KN [F, F])".

Here ¢ € (I?_ﬂ [F, F])V is identified with {a(k_.r,y)} € H*2(W, Cv),
where ¢ € KV is any extension of ¢. Since

K/(KN[F,Fl)=KI[F, F1/[F, FICF/[F, F1=F/[F, Fl,
K/(KN [F, F]) is torsion free. Hence
(5.5) torsion (K) € K N [F, F]J.

6. From now on, we assume that W is a Coxeter group, i.e., W is defined by
the following presentation:W is generated by a finite set S which satisfies the
relations

2= (s €5)

(sy™sP=1 (s, t € ),
where m (s, t) (s, t € S) are given integers. We assume that S={s;, ***, s;}. In
our case, we may take the free group generated by the set {5 | s € S} as F.

(See the preceding section.) Then K is the minimal normal subgroup of F con-
taining

{52 (sT)"s? |5t € S}

Let 5 be the image of § by F— F, and take f; so that fs=75 (s € S).
Then K is the subgroup of F generated by

{ E-Z' (? T) m(s,t)}‘

Remember that K is contained in the center of F. Assume s, t € § given.
First, assume that m (s, t) =m =2k and let w=5 T 5 7T 5 (2k-1 factors).
Then

= (wFTwHVi=(wTw T lw??
— ((S_ -t—-)m T‘—l S——Z T—Z S——Z,_, -l,——2 S——Z)Z

2k-1 factors

— ( S_ -t—) 2m -t——Z ( ( S——Z) k ( -t——Z) k—l) 2'
Hence
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(6.1) ()™= ()™ (7)™

Next, assume that m (s, ) =m=2k+1 and let w= Fs-+5 T 5 (2k factors)
and w’'=5 T Ts5 T (2k factors). Then

st=(w'sw™)=w'swt. o 'w")?
=) (s e T (T7h5Y)°
=(s )'"r'l(s—'zr'z---r'z))z

2k factors
— ( S_ T) Zm ( —2) 2k ( —2) Zk'
Hence (6.1) holds also in this case. Since K is a commutative group generated
by
52 (s €5)

and
()™ (s,t €9),
we have
rank K < I
by (6.1). On the other hand,
K/(K N [F, F]) Zimage (K—F/ [F, F])
=image (K—F/ [F, F])

— <§2 z m(s,t) 7 mis,t) >
=<5%57 (m(s, t) odd) >,

where () is the group generated by X, and s denotes the image of §by F —
F/[F,F]. Hence K/ (K N [F, F]) is a free Z-module of rank I. Hence

(6.2) torsion K=K N [F, F]
and
(6.3) rank K =1.

(See (5.5). Although the following fact is not used in the sequel, it would be
worth noting here: Since K is finitely generated, torsion K is a finite group.
Hence, by (5.4) and (6.2), we have

H2(W, C*) = (torsion K)V = torsion K.)
Thus, what we should prove is the following fact:
(6.4) If {p(Fzy)} with ¢ € KV is admissible, then

¢ | torsion K = 1.

(See the end of §4. See also (5.1) and (5.2).)
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7. In this section, we shall write the admissibility condition on {@ (kz4)} in
terms of (€ KV).

Let us apply the argument of §5 to our situation. If s € S, w € W, sw=
ws, then

fofw=ksuf s

fufs=Fkusf s,

(s ful =kl s
Hence {¢( % ,)} is admissible if and only if
(7.1) ¢([f_s. JTw]):l sE€ESwE W sw=ws).
Let

M=<[/Ts, f_w]|[3,w]=1> (C E)

The condition (7.1) is equivalent to

(7.2) ¢l w=1

Let K= K/M and F=‘=F_‘/J\7. It suffices to prove that
(7.3) k=7

In fact, by (6.3), (7.3) is equivalent to say that
(7.4) (torsion K) =M.

Hence (7.2) implies (6.4), which is what we should prove.

8. Denote the image of f_z, k_” in F/M by ij k=“ respectively. Note that
ksw— kws in F, if sw=ws. Hence, by the same argument as in the proof of
Lemma in §3 we can find an element {d s} € K° such that

d kw; kswdt,lfSW wt.

_ Lemma. We have
8.1) (fsfOm™sP=(F3f D",
' if m(s, t) =2n,

(8.2) (fsfomsP=(ds/d) (O™ (FHm™,
if m(s, t) =2n+1.

Proof. For the sake of brevity, we shall prove (8.1) (resp. (8.2))
assuming n=2 (resp. n=1). First, let us prove (8.1). Since

—_— = == - —_— — —

f f f ft st,sksts,tfstst
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S.tka k StSfIStS

we have

(Fsfo*=(Fsfifsf)(fifsfifo=(Fifd2
Next, let us prove (8.2). Since

8.3) difsfifs=diksikssf s
=ksikisidsf s
=dsfifsfu

we have

(,FsJTt)a:(}Tt}Ts}Tt' s/dt)( f)
=(d_s/d-t)fs(f%)2

Lemma. Ifm(s, t) is odd, then
(8.4) dift=dt i

Proof. For the sake of brevity, we shall prove (8.4) assuming thatm (s, t) =3.
By (8.3), we have

i.i-%(}-sf-t,?s) (st_tfs): _ﬁ(th_s_t) (f_t}Ts_t)
dififere=qififife

Hence we get (8.4).

9. Let S={sy,", s}, f, fs,, f, fs,, d i= d s,y mij=m (si, sj) and ny=
[mi;/2]. Define a character ¢; € FY by ¢ (5) =2 and ¢; (5,) =1 (j #4).
Since FY, FY and FV are naturally identified with each other, @' can be re-
garded as a character of F'. Remember that we are assuming that fi=5.

Lemma. The following two conditions for xi, xij € Z are equivalent:
9.1) H(fz)”H((f Fms=1,
i<j
(92) 2x1+2 m;;xi;+2 mjixjizo (1§‘L §l)
i<j i>

(In (9.2), the summations ave taken for j.)

Note that this Lemma implies:
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!
(9.3) H( 72)®=1 if and only if x; ="+ =x,=0,

©9.4) § 7 =T TDHLATLT)™)™ # 1, then

i<f
f_z' }73' 1]

Since (9.3) and (9.4) together with (6.3) implies K = Z', this lemma con

cludes our proof. By applying ¢; to (9.1), we get (9.2). Hence our task is to
prove implication (9.2)=(9.1).

Proof of (9.2) = (9.1). Assume that (9.2) holds. By using (8.1) and
(8.2), the left hand side of (9.1) can be written as follows:

(95) lill(F?)" iI;I (7??%)"41 Zij

X I ((d/ay) (FDm(Fme)™

=1 (@/3)=1 (7D
m’u<4§dd =t

where

(9.6) yi=xi+2 nmgpgt X n
i<i j<i
mij even mij even
+2 gt 2 it

i<f i<i
mij odd mij odd

2 (2x1+ Z mgjx”_'_ Zmﬂxﬂ>

i<j i>j

(E Xii— 2 Xji)
i<j i>j
mij odd mij odd

=_§(Z xf,-—Z xji).
i<j i>f
mij odd mij odd

(Here the summations are taken for j.) Hence (9.5) is equal to
I — —
9.7) MGatri®) ™,
where y; is given by (9.6), and our task is to prove that (9.7) equals 1. For

this purpose, it suffices to prove that

(9.8) I (a2f?)v=1

sieS’



72 Akihiko Gyoja

for each W-conjugacy class S” of S. By (8.4), d 2f % is constant on S'. Hence,
by (9.6), we can prove (9.8). Thus we conclude the implication (9.2) =
(9.1) and the proof of our main theorem is over.
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