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Nonexistence of twisted Hecke algebras

By

Akihiko GYOJA

O. Introduction.

Let (147, S )  be  a C oxeter system  w ith finite S 95 (cf. [1] ) . The group
ring C[14 ] can be deform ed in two ways.

(0.1) The twisted group ring. Let C [14 ] b e  the  vector space with
the basis {ew'}wEw. Assume tha t C  [H ]' has an associative C-algebra structure,
and that

ex e; E  Cx ex' y

ex e'i =e'l ex' = ex'

for all x, y E  W . If we express e'x e'y =cx, y ez,y  with cx,,, E Cx , then c :  =  {C. x,y) x,yeW

becomes a  2 -cocycle  in  H 2 (W ,C x). W e  sa y  th a t  th e  C -a lg eb ra  C  [ H ]  i s
obtained by  tw isting th e group r in g  C[14 ] b y  th e cocycle c.

(0.2) The q-deformation of the group ring. (The Iwahori-Hecke
algebra.) Let q= { q w }wE w be a  family of non-zero complex numbers such
that

(0.2.1) qx qy =q x y  if / (x) -I-/ (y) = 1 (xy) ,

where I (w ) is  the length o f  w  E  W . Let H (q,W ) be the vector space with the
basis ITOw.w. Then there is a unique associative C - algebra structure in H (q,W)
such that

(0.2.2) T if sw  > wT T [ T s w

qsTsiv (qs - 1) Tw if sw  < w,

where i s  t h e  B r u h a t  o r d e r .  T h is  C - a lg e b ra  H  (q ,W ) is c a l l e d  the
Iwahori - Hecke algebra (cf. [1, Chap.4, §2, Ex. 23]), which we shall regard as
a q- deformation o f th e group r in g  C [ w ].

The purpose of th is note is to  show that, in a sense, 'the q-deformation of
the twisted group ring' does not exist.

Let us explain our result more precisely. Let notation be  a s  above, and H
a vector space over C with the basis fewlwEw.
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Theorem. A ssume that H has an associative C - algebra structure such that

es  ew C x  e s w  ( S W  > w),

esew e C x  esw + C x  ew (sw < w),

eiew = ew  ei=e w ,

for s  E  S and w C  W. Then there exists {qw} W E  w satisfy ing (0 .2 .1 ) and such
that, if  we put T w : = be  w ith  su itab le  {bw } w  C  (C x ) W ,  then {qw } w  an d  {Tw} w
satisfy  (0.2.2).

Let us explain our motivation. In [4, p.109, 1.5], T. A. Springer conjec-
tured that the algebra of self - intertwining operators (=  the Hecke algebra) of
a  representation o f  a  fin ite  Chevalley group with connected center induced
from  a  cuspidal representation of a  parabolic subgroup is isom orphic to the
tw isted group ring of a  certain  subgroup W (w ) of the W eyl group  w ith  a
2-cocycle y (w) in H 2 ( W (w ), Cx). This conjecture was proved affirmatively
by R. Howlett and G . L ehrer [ 2 ]  (cf. [ 3 ] )  a n d  r (w ) tu rn s  out to be always
the trivial cohomology class. The motivation of the present w ork is to under-
stand why a twisted version of the Hecke algebra does not appear.

Before concluding the introduction, it would be worth mentioning the re-
cent work of S. Ariki [6], where he considers for an irreducible finite Coxeter
group W, when W  W /  (center of W) = : W is the representation group of W,
i.e., the universal central extension of IT, and h e  shows th a t  th is  is  the case if
and only if W is of type E8, H4 or /P" ) • Then he constructs 'a q- deformation of
the twisted group ring of W

1. Let H be a  vector space over C w ith  a  b asis  {ew } w E  w. Define linear endo-
morphisms Ps, q t (s , t E  s )  of H as follows:

(1.1) Ps (ew) = f cs,w esw
cs,wesw+dsew

ew,t ewt

( sw  > w)
(sw < w),

(wt > w)
(1.2) qt (ew) = t ,

, W,t E•Wt L,t0 (wt < w),

where s, t E  S, w E W, es,w, Cw,t C  Cx, ds C  C x .  (The same cs,t (s, t E  s )
appear both in  (1 .1 ) and  (1.2) .)

Lemma. T he following three conditions are equivalent:

(1 . 3) Ps q t=o s ,

Ps (ei) = qs(ei) =  es ( s ,  t  E  s ).

(1.4) cw,res,wr=csw,rcs,w,

ci,s=c so.=  1 (S , t E S, W  E W ),

ds cw ,r=cs,w  dr ,  if sw=wt.



s ,w  esw
esew —  c s,w esw+ds,wew
elew =e w ei=e w .

(sw > w)
(sw < w),
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(1.5) There is an associative algebra structure in H such that

p s (4 ,)= e s e u ,,q t(e w )=  ewer,

eiew=ewei=ew (s, t E  S, W  E  W).

Proof. The proof of (1.3)<=> (1.4) can be easily done by using the follow-
ing fact: I f  s , t  E  5, w  E  W , (S W )  =  (w t) and 1 (swt) = 1(w), then sw = wt.
Since (1.5) ( 1 . 3 )  is  trivial, let us p ro v e  (1.3) ( 1 . 5 ) .  Let w = s i ••• S251
(s, E  s) be a reduced decomposition of w  (E  TO .  Let

PW 
=

CS21,S1 CS3S2SI • • • CS1,1S1-1 — S1 P S I  • • • Psi

and

cs- ,s1 ,-1,31-2 • • qsi • •

Then, b y  (1 .3 ), we have

Px(ei) = qx ( e i )  =  ex,

Px (4) = Px qy (ei) = qyPx (ei) = qy (ex) (x, y C ).

Since px (ey )  does not depend on the choice of the reduced decomposition of y,
qy is well defined. In the same way, we can show that Px is well-defined. Let us
define a multiplication by ex ey =p x (es ) .  Then, as we have shown above,

qy  (ex ) = P x  (et ) =  ex  ey .

Hence, noting Pxqz=qzPx, we get

ex (eyez) = Pxqz (4) = qzPx(e n ) = (exey) e5 .

Thus we have defined a desired C - algebra structure.

2. Let H be as in §1 and {cs,w} E  
(cx)sxw,

 {
ds,w

}
 c  csxw .

Lemma. The following conditions are equivalent:

(2.1) There is an associative C - algebra structure in H such that

(2.2) (a) ds ,u,=d s ,s , which we shall denote by ds.

(b) Ic s ,w 1 can be extended to a 2- cocycle x,yew of H2  (147 , Cx) , i.e.,
egby exbio,zex,yz cx; = 1 (x, y, z  E  W).
(S uch  an extension i s  unique. S e e  [5; Chap. 2 , § § 7 - 9 ]  fo r  group
cohomologies.)

(c) dscw,t = c s o d t, if sw=wt.
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(d )  c i ,s = cs, i = 1.

Here s , t  E  S, w  E  W.

Proof. First, let us prove (2.1) (2.2). If sw > w, then

es (es e = cs,we sesw

=cs,wcs,swew+es,wds,swesw,

(eses)ew = (cs,seid - ds,ses)ew

=cs,sew - l- ds,scs,wesw.

Hence ds,sw=ds,s and w e  ge t (a). Let W SI••• szsi (s i E  s )  be a  reduced de-
composition of w (E 10. Then

(2. 3) , -1ewer = (cs- 21,si '•' (esi,ies2,sit

if w t >  w

(2.4)
,.-

1

ewer = (cs21,s1 • • ' , s1,51-1...51 0,tes3,s2* - • c51,51-1...52)ewt±dtew,

if t =  s i.

cw,tewid- drew

W rite  (2.3) and  (2 .4) as

Cw
ewer=

,tew t (w t >  w )
(w t <  w )

w ith suitable cw,r E  C x .  Define linear endomorphisms Ps and q t by Ps (ew) =
es ew  a n d  qr (ew) =  ew e t .  Then p s  an d  q t a re  o f  th e  fo rm s (1 .1 ) a n d  (1.2), and
satisfy the condition (1.3). Hence fcs,w1, {cw,r} a n d  {ds }  satisfy the condition
(1.4). In particular, w e get (c ) a n d  (d). Note that, even if we replace d s  b y  0,
(1 .4 ) remains valid. Hence, by the im plication (1.4) ( 1 . 5 )  for d s =  0, we
get an associative C - algebra structure in H such that

es* ew=cs,w esw, * ew =  * e i  =ew.

Then

ex* ey=cx,y  ex y  ( x ,  y  E  VIT)

with some {cx,y )  E  (C x ) w x w . As is easily seen {cx,y} E  H 2 ( W, C 5 ). The uniqueness
of ex,y  can  be  p roved  by  an induction on 1(x ) ,  using the  cocycle condition on
(cx, y ) .  Thus w e get (b). The implication (2.2) ( 2 . 1 )  is  a  direct consequence
of Lemma in §1.

3. Let {cx,y }  be a  cocycle in H 2 ( W , C x) normalizd so that cw,1=e1,w=1. (The
cocycle appeared in  (2 .2) satisfies this condition.)

Lemma. The following conditions are equivalent:

(3 .1 )  There is {d s }  G  (C 5 ) 5 such that ds  cw,i=cs,w di , if  sw=wt.
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(3 .2) cs ,w = c w ,s , if  sw=ws.

Here s, t E  S  and w E  W .
A 2-cocycle which is normalized as above and satisfies these equivalent condi-
tions is said to be admissible, provisionally in th is paper. The admissibility de-
pends only on the cohomology classes.

Proof. Since (3.1) (3 .2 )  is  trivial, let us prove (3.2) (3.1).

F irst, assume that sz=zt, sw=ws, s, t E  S  and w, z E  W . Then

cw,z6,1,zcs ,„,zcs- ,L=  1,

cs,1 cu,s,c t7.41SZ C14),S =  1 ,

- 1cz,tcwz,tcw,ztcw!i =1.

Multiplying these three equalities, we get

cs,wz/cwz,t.

This implies that, if sw=wt, cs,w/cw,t does not depend on w, which we shall de-
note by as,t. Note that as,t (s, t E  S ) is defined if and only if s and t are conju-
gate in W.

Next, assume that sw =w t, tz=zu, s, t, u E  S  and w, z  C  W. Then
- 1cw,zcsw,z cs,wzcs- ,L= 1,

-1 - 1,.,

Ct,Z CIVI,ZGW ,t2 GW ,t = 1,
- 1 - 1  —

C Z ,U C ZW ,tt CW ,Z UC
1

W ,Z  —

Multiplying these three equalities, we get

(c5, / c , )  ( c  / c 5 ,)  = csozicwz,u•

Hence as,tat,u=as,u. Let {S,} be the W -conjugacy classes of S  and fix a  repre-
sentative ut for each S i. Let d5 —a , ,  if  s E  S i .  Then as,t=ds/dr. Hence

cs,w/cw,t=ds/dt if sw=wt.

4. Now, our task  is to  prove that an admissible cocycle is  a coboundary, i.e.,
there exists {b.r).rEw E (C x ) w such that

(4.1) x ,y =  byb.Xili b

In  fact, if (4 .1) holds, the multiplication law a s  in  (2 .1 )  can be written as

_ r bw1G41,bse5w (sw>w)
e s e w —  t bwb.;lbsesw+dsew (sw<w).

If we put fw=b:Vew, then

(4.2) fsfw = f fsw (sw >w )
(sw <w ),
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and fifw = f wfi = f w  (s  E  S, w  E  10 .  (Note th a t  an adm issible cocycle is
assumed to be normalized as in  §3, and tha t b1=1.) L et {rs}sEs be an element
o f  (O s such that

(4.3) ry=rt, i f s and t are conjugate in  W,

(4.4)W d s r y = i i —  1.

(Note that from  (3.1) follows W d5=b7 1 d t if  sw =w t.)  L et {rw}wEw be an ele-
ment o f  (C x ) w  w hich is an extension of {rs}sEs and satisfies

(4.5) rxrv=rxy, i f  (xy) = 1(x) ± 1(Y)

B y  (4.3), such an extension (uniquely) exists. Let T w = r yf ty and qw = r 2
w . Then

b y  (4.2), (4.4) a n d  (4.5), we get

TfTw
T s w ( s w > w )

19sT5fy+ (95 - 1) Tty( s w < w ) ,

and

qx qy = qr y , i f  1 (xy) = 1 (x) 1 (y) .

The remainder of this paper is devoted to prove that an admissible cocycle
is  a  coboundary.

5. In th is section, we give some preliminaries on group cohomologies. S e e  [5;
Chap. 2, §9].

Let W be a group and present it as a quotient F/K  of a free group F. Let
17 =K/ [K , F ] and F F /  [K , , w h e re  [K , F ] is  the group generated by
the commutators [k, f ] = k fk - 1( k  E  K , f C  F ). Then

K  Z ( F ) ,

where Z ( F )  is the center of F .  F o r  each x  c  W , le t us fix an element f  r  of
F  such that f x x. Then

f  x  f  y = k x ,y f xy ( x ,  y  E VV)

with som e k x,y  E  K ,  and

k y ,w k k x ,y w  k (x, y, z  E 147).

We have the following exact sequence:

(5.1) 0— , I -10M (W, C x )  — ) H0m(F, C x ) — ' Hom(K, C x ) LH 2 (W, C x )

where r is defined by

(5 . 2) r(0)={0(17„,)}.

S e e  [5; Chap. 2, (9.5)] for the proof.
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For a group G, denote Hom (G, C x )  by  Gv . . Then (5.1) can be w ritten as
follows:

(5 .3 )  0 — > ( W /[W , 1/1]) v .— ( F / [ F ,  F ] ) vK v ± >H2 (W , C x )
Since

is exact,

Hence

(5.4)

0 — > K n [F ,  F] --> K  — > F / [F , F]

image p= c  K " ;  I kn[p, p, =1 }.

112 (W, Cx) =K v /image p= (K  n [F , F ] ) v

Here q5 E  (K  n [  F-  , F- ] ) V  is identified with { x ,y ) )  E H 2 (W, C x ),
where Y-5  e  if- v is any extension of 0. Since

K / (K  n [F ,  F ]) = K [F ,  F ] / [F ,  F ]C F / [F ,  F ]= F / [F ,F ] ,

k/ (K  n  [F  ,  F ])  is torsion free. Hence

(5.5) torsion (K )  C  K  n [ F ,

6 .  From now on, we assume that W  is a Coxeter group, i.e., W is defined by
the following presentation:W is generated by a  finite set S  which satisfies the
relations

s2==1 ( s  E S)
(st) M ( S '" = 1 (3, t  E  S ),

where m (s, (s, t E  S ) are given integers. We assume that S =- , In
our case, we may take the free group generated by the set {7s -  I  s  E  s }  as F.
(See the preceding section.) Then K  is the minimal normal subgroup of F con-
taining

I s, t E S).

L et.T  be  the image of F. b y  F —> F, a n d  take  f  x  so  tha t 7 s  T  ( s  E  S).
Then K  is the subgroup of F  generated by

{ F2 , (T  T) 7 n ( s '").

Remember that K  is contained in  the center of F .  A ssum e s ,  t  E  S  given.
First, assume that ni (s, t) =- m = 2k and let I T =  T T "  T T  ( 2 k - 1  f a c to r s ) .
Then

=  ( ( . T -t--2 F-2)2

2k-1 factors
= -t-) 2m 7--2 T - 2) k  1--2) k -1 )

Hence



68 Akihiko Gyoja

(6.1) (( T  T )") 2 = ( T 2 )'" ( 1- 2 )m.

Next, assume that m (s, =  m  = 2 k  + 1  and let ÙT = T.T••• T  T  ( 2 k  factors)
and  T '=  -.3- T T  (2k  factors) . Then

T 2 ,  ( 171-  ,T  147 1 -9 2 ,  ( 17 , 1---1117-1117,-92
(( -

•  1

-)m 1)) 2

• m ( T -2 1--2 .„  7- 2 ) )  2

2k factors
_ 712m 1- - 2  ( T -2) 2k ( 7-2) 2k .

Hence (6 .1 )  holds also in  th is case. Since 17 is  a commutative group generated
by

—2 ( S  E  S)

and

( T m's'" (s, t  E  s) ,
we have

rank  K 1

b y  (6 .1 ). On the other hand,

K /(K  f l  [F, F]) '=" image (K — F /  [ F ,  F ] )
-="image (K — T /  [F , F] )
—  < .; 2 ;m ( s , t )  7 ni(s,0 >

= <; 2 ; 7  (m (s , t) odd) >,
w here ( x )  is the group generated by X, and ;  denotes the image of F by F —>
F / [F ,F ].  Hence K /(K  n [F ,  F ] )  is  a free Z-module of rank 1. Hence

(6.2) torsion K  = K  n  [ F ,  F]

and

(6.3) rank  K =1.

(See (5 .5 ) . Although the  following fact is not used in  the  sequel, it would be
worth noting here :  Since K  is finitely generated, torsion K  is  a  finite group.
Hence, by (5 .4 )  a n d  (6 .2 ) , we have

H2 ( W, Cx) = (torsion .F(- ) V t o r s i o n  K .)

Thus, what we should prove is the following fact:

(6.4) I f  { 0 (k-  x,y)}  w ith  0  G  f  i s  admissible, then

torsion k —  1.

(See the end of §4. See also (5 .1 )  a n d  (5.2)
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7. In th is section, w e shall w rite the admissibility condition on {0 ( k x ,y )}  in
terms of 0 (E  If v ).

Let us apply the argument of §5 to  our situation. If s E  S, w E W, SW =
W S, then

f s f-  w =  k  say f sw,
— —  —  —

f w f S  k f  w s ,

[  e ,  f  w] e s,w/ 17w,s•

Hence {q)(k x,y)) is admissible if and only if

(7.1) ([ f s , f w ]) =1  ( s  E S, w  E w ,  SW  =WS) .

Let

M =  <  [ f s , f w ] [s , iv ] = 1 > ( C  K )

The condition (7 .1) is equivalent to

(7.2) 0  A T ' 1 .

Let K = K / M  and F = F / M .  It suffices to prove that

(7.3) K

In fact, b y  (6 .3 ), (7 .3 ) is equivalent to say that

(7.4) (torsion K )= M .

Hence (7 .2) im plies (6 .4), which is what we should prove.

_  _
8. Denote the image of f x, k x, y  in  F /M  b y  f x, k x,m, respectively. Note that—
k s ,w = k , 5  i n  F ,  if sw = ws. Hence, by the  same argum ent as in the proof of
Lemma in §3 we can find an element {cTs} E  K  such that

d s  k w ,t = k 5 ,w d t , if sw=wt.

Lemma. We have

(8.1)
—( f  s  f  t ) m(s,t) ,  (  f  2s  f  )n ,

m  t )  = 2 n ,

(8.2) (Ts7 i)-("= (cTs/ I t )  (7i) n

m =2n+1.

Proof. F o r  th e  s a k e  o f  b re v ity , w e  sh a ll p ro v e  (8 .1 ) (re sp . (8 .2 ))
assuming n-=2 (resp. n=1). F irst, let us prove (8.1). Since

—  —  —
fs ftfs f t=ksa kst,sks tsa fs ts t
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k k si,s k r,sts f tsts

= f r f s f i f s ,

we have

(TsT,)4= (TT, Ts Tf) (T,T,T, Ts) = (T.29TD2

Next, let us prove (8.2). Since

(8.3) d ifs f  r fs = d rk s ,rk s t ,s fs ts

=  k k t,st d s f  tst

= d s f r f s f  t ,

we have

( Ts Tt) =  (T t  Tt • d5/ d) T t Ts Tt)

=  cis/ 70 2

Lemma. If m (s , t ) is odd, then

(8 . 4) A f d t2 t-2.

Proof. For the sake of brevity, we shall prove (8.4) assuming that m (s, t) =3.
By (8.3), we have

d f ( f  s f  t  f ( f  s f  t f  . ) = d i ( f  t f  s f ( f  t f  s f
_

d i f  i f i f i =  d  I -

Hence we get (8.4).

9. Let S = {Si, " , Si), f i = f s t , d' i s f )  and nu =
[mu/2]. Define a  character 075i E  F y  b y  Oi ( Fi) = 2  a n d  Oi ( Fi) = 1  ( j i ) .
Since F v , , Tv and Tv are naturally identified with each other, Ol can  be re-
garded as a character of T. Remember that we are assum ing that f  i =  T i.

Lemma. The following two conditions for xi, x i; E  Z  a r e  equivalent:

(9.1) ( f ) ( ( f  i f  J)m")x"=1.

(9.2) 2 x i+ E  m i;  x i i+ E x - 0  ( 1 l ) .
i<J i> j

(In  (9 . 2), the summations are taken for j.)

Note that this Lemma implies:
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(9.3)f ? ) ' = - 1  if and only if x i =•••=xi=0.

—(9.4) I f  f  := H  ( i l ) x i l l ( ( f  i n)m")x" 1, then
j=1

f 2, f 3 ,

Since (9 .3 )  a n d  (9 .4 )  together w ith  (6 .3 )  im pliesK Z', this lemma con-
cludes our proof. By applying 0 , t o  (9 .1 ), w e get (9 .2 ). Hence our task is to
prove implication (9.2) ( 9 . 1 ) .

Proof of (9 .2 )( 9 . 1 ) .  Assum e t h a t  (9 .2 )  h o ld s . B y  u sin g  (8 .1 )  and
(8 .2), the left hand side o f  (9 .1 ) can be written as follows:

_
(9.5) n ( f i ) . ( f in )  n i l  Xii

j =1 i• j
mu even

n  ( ( d  d 12 n0+1)xuj )
i<j

mu odd

= n  cd dd.ox"lli=1
mu odd

where

(9.6) y i =x i + E  n o x i i + E f l j jX j

even mu even

±E  n ig ij E  ( n j i + 1 ) X j i
i<j j< i

mu odd mu odd
1= -
2  

(2xi E

- -

2
(E Xjj xii)

mu oddmu odd

= Z.,
1

X j j E .2  1<1 l >1
mu odd mu odd

(Here the summations are taken for j . )  Hence (9 .5 ) is equal to

(9.7) H ( d  i f  )
i=1

where y i is g iven  by  (9 .6 ), and our task  is  to  p rove  tha t (9 .7 ) equals 1. For
this purpose, it suffices to prove that

1

(9.8) fl (d i f T 2 )Y i=1
sieS'
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for each W-conjugacy class S ' of S. B y (8 .4 ), d  u12  is  constant on S'. Hence,
b y  (9 .6 ), w e  c a n  p ro v e  (9 .8 ) . Thus w e conclude the  im plica tion  (9.2)
(9 .1) and the proof of our main theorem is over.
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