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Root lattices and pencils of varieties
By

H. A. VERRILL

1. Introduction

In this paper a particular pencil of K3 surfaces is investigated. The Picard-
Fuchs equation, solutions, and the monodromy group are found. The paper
[21] gives the Picard-Fuchs equation for several families of elliptic curves. Similar
methods are also used in [14] and [15] to obtain the Picard-Fuchs equation
for the case of certain pencils of K3 surfaces. In these papers finding the Picard-
Fuchs equation comes down to finding a recurrence relation for some sequence
of combinatorially defined terms, e.g., in [5], recurrence relations are found for
a, in the following cases:

S CED - S

In these examples, the symmetry of the defining equations of the varieties
leads to the determination of the Picard-Fuchs equations from the combinatorial
data. This gives motivation to try and find further examples, by considering
other pencils of varieties with a good degree of symmetry.

The pencil of K3 surfaces in [15] is acted on by the Weyl group of the
root lattice A, x A; x A;, and the pencil can be viewed as being constructed
from this lattice. This construction is described in section 2, for a general root
lattice.

In this paper, the A, case is investigated. The corresponding pencil of K3
surfaces is denoted by Z,;.

To find the Picard-Fuchs equation for %, , one has to find a recurrence

relation for
2
n
a" N Z ( ) '
ptq+r+s=n quS
n n!

where = .

<pqrs> plq'r!s!

The following result is obtained (cf. 4.3, Proposition 7).

n
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424 H. A. Verrill

Proposition. For n > 2 there is a recurrence relation:
na, = 2(2n — 1)(5n* — 5n + 2)a,_, — 64(n — 1)3a,_, .
This recurrence relation is one of the keys to proving the following

Theorem 1 (cf. 4.4, Theorem 1). The Picard-Fuchs equation for the family
X4, is given by

L (122 —124—96) , 4

Fo=AMA+ 44— 12)y" +6(A% —Ti— 12 =0.
(4 + H( )y + 6( )y + Ty y+l+4y0

Theorem 2. The monodromy group for Z,, is isomorphic to
I,(6)73.

The group I,(6)*3 is one of the groups associated to the Monster group, given
in the paper [6]. Explicitly,

[o(6)3 = {(6"6 Z) ﬁ(:’( bf) € SL,(R)|a, b, c,d € z} .

The group I,(6)*3 is the image of I,(6)*3 after quotienting out by scalars.
Finally (in 6.2, theorem 3), the solutions of the above Picard-Fuchs equation
are given:

n(t)n(31)

n(21)n(67)
function, then the Picard-Fuchs equation for %, has solution space

6
Theorem 3. If A= A(1) = —< > — 4, where n is the Dedekind eta
G(1)(C® 1C P 120)
where

_ (27)n(60)*
S0 = oGy

Although this paper only deals with the A; case, it is shown in section 2
that the A, case gives an n — 1 dimensional pencil of Calabi-Yau manifolds. In
the A, case, we obtain a pencil of Calabi-Yau 3-folds, with Picard-Fuchs equation

d4
(x —20)(x + 4)(x —H(5 + x)zwg(x)

d3
+ 2(5 + x)(5x> — 65x* — 248x + 56O)Wg(x)

d2
+ (25x3 — 143x% — 1466x — lOSO)Wg(x)

+ (3x + 10)(5x — 32)%9()() + g(x)x .
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The proof of this is not given in this paper, but it is the same method as
for the A, case. At the end of the paper, a combinatorial application is given.

2. Preliminaries

2.1. Notation and Definitions. This notation follows [8] and [9]. Let
R be a root system (of rank n), and let My be the root lattice generated by R.
Moreover the lattice dual to My is denoted N;. The Weyl Chambers in Ny ® Q
can be defined as follows:
for reR, let H, = {se Ny ® Q|<{s,r) =0}. A Weyl chamber is the closure
of any connected component of

NR®Q\U Hr'

reR

Let X, be the fan in Ny ® Q consisting of the Weyl chambers, together with
all their sub-faces. We denote by X(Xg) the toric variety associated to the fan
2. Let 4i be the polyhedron in Mz ® Q with vertices given by r e R, and let
L(4g) be the space of Laurent polynomials with support in 4. The notation
e* denotes the passing from My to C[My], x+e*, so that each re R gives a
monomial e"€ C[My]. The character of the adjoint representation means the
polynomial

Then we have yi € L(4g), so we have a rational function
xr: X(Zg) — PL.

For 1€ P!, X, is defined to be the closure in the ambient toric variety X (Zy),

of the inverse image of A under yg. Le., set X, := yz'(4) = X(Z).
Let #: Xz — X(2,) be the blow up of the base locus, so that we obtain the
following commutative diagram:

Xr
P
X)) —— P!,
For simplicity, we denote by %' the family
¥z Xg — P!,

with fibres X, := 2 (g = A).
The family % is the object under consideration in this paper.

2.2. Examples. The two dimensional cases are shown in Table 1. The
family Z,,, is the main concern of this paper. The Z 43 case is the family in [15].
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Table 1: The 2-dimensional lattices

Name and
Dynkin diagram 2, and X(Z)) the fiber X, and reference
A, X+Y+2D)XY+YZ+ZX)=(A+3)XYZ,
which appears in [SB] as €
e
B, Ll L e X0+ x+x)1+z+2)=2zx(1 4+ 4)
N where x comes from L,, and z from L?
-L, L,
«——>» : :
-L-L, -L, LL
Bl,(P' x P')
Ay x A, (x+yxy + 1) = Axy,
: This is example .o’ in [SB].
° .
G, x y z y z x
Xpl-+Z+-+1)[Z+-+=+1)=4+1
v y z x X y z
—
AL, ALl
Bl,(Blg(P?))

Lemma 1. The family %, is a pencil of Calabi-Yau manifolds.
Proof. In this case, M, can be given by
My, =C{L,,L,,....L, }/(Li + Ly 4+ + L,y =0),

and the roots are the differences L; — L; ([9], §15.1). In the toric construction,
let X;=e", with [] X; =1, so the roots correspond to X;X;'!, and
Xa (X1 X)) = Z X.'Xj_1 .
lsi:fsjn+1

The fibre X, is given by the closure of the locus of points where this has value A.
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Now we shall apply Theorem 4.1.9, of [2]. In [2], X, is called a MPCP-
desingularization of P,. Here 4 =4, is an integral polyhedron in M, , with
vertices at L; — L;. This desingularization corresponds to a maximal projective
triangulation of the dual polyhedron 4*. The only integral point in the interior
of 4 is 0.

We claim that: Faces of 4 are given by the hyperplanes

H,={xeM, |{x,E;> =1},
where
n—

k k
>Li— 2L

n o jey njer

E; =

and
Je{l,...on}, J={1,....n}]\J, k= #J.

(Note that Hy=H, , ., =0)

This claim means that (4, M, ) is a reflexive pair, so Theorem 4.1.9 of [2]
says that the fibre X; is a Calabi-Yau manifold.

Proof of Claim: It is easy to show that:

a) 4 is contained in the intersection of the

{XEMA,,|<x’ E.I> < 1} ’

and that:
b) each H, is spanned by vertices of 4.
This gives the result.

Remark. 1) A4, x---x A, (n,,...n e N) also gives a pencil of Calabi-Yau
manifolds.

2) In general this construction does not give rise to Calabi-Yau manifolds.
In A, cases, X, is linearly equivalent to the anti-canonical divisor of X(4,), so
by adjunction Ky, = 0. This does not happen in general.

3. The A, case

From now on, only the A; case is considered. By Proposition 1, &, is a
pencil of K3 surfaces. For theory and definitions of K3 surfaces, see [1] chapter
VIIL

3.1. X(A;). Figures 1, 2, 3, show the construction of the fan for Xy,
Define local coordinates as follows: Set X;:=e™ (i=1,...4). Let 04,34
be the cone in N spanned by L, — L,, L, — Ly, Ly — L,. Then Ay , 3.4, the
affine piece corresponding to a7 , 3.4, has local coordinates
x=X/Xy, y=X,/X5, 2= X3/X, .

Similarly for any permutation of the indices.
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Li-L,
Lz-Ls
ZLI
L;L,
Im L-L,
[JiL \]_&-L
4
Ll'Lz
3L2 L,-

Figure 1: The root system A,

Figure 2: The dual lattice N and a Weyl chamber, o.

3.2. X,. In the A, case, we have

X, (X1, Xo, X3 X)) = (X, + X0 + X + X)X + XM+ X370+ X, ) — 4.
Therefore the fibre X; restricted to A, , 3.4, is given by the equation
N (I+x4+xy+xyz)(1 +z+4zy+ zyx) = (4 + 4)xyz.
In terms of these local coordinates, y,, is replaced by

(I +x+xy+xyz)(1 +z + zy + zyx) — 4xyz
xyz '

(X, y,2) = yq,(xyzizy:y:l) =

33. X,. The fibre X, at A= oo is given in terms of local coordinates by
xyz = 0.
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Figure 3: The fan defining X

Figure 4: Some stars

Proposition 1. The fibre X consists of eight copies of Bly(P?) and six
copies of P! x P!, configured as in Figure 5.

Proof. These facts follow from toric geometry (cf §5.7, [8]). Figure 4 shows
the configuration of X as desired the result.

3.4. The base locus. Locally the base locus is defined by
T+x+xy+xyz)(l +z+zy+zyx) =LA +4)xyz=0.
It consists of 20 rational curves, in configuration as indicated in Figure 6.

3.5. The Picard group of X,. In the section we show that the family is
non-constant and that the Picard group of general X, has rank 19.

Lemma 2. We have p(X,;) <19 for general A.
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Figure 5: X

Figure 6: The base locus-rational curves on X

Proof. X, is a K3 surface, so p(X;) <20. Shioda and Inose [19] show
that K3 surfaces with p = 20 from a discrete countable family, so if p = 20, X,
would have to be locally constant, and the monodromy would be finite. After
some base change, which we can assume to have been made, the monodromy
would be trivial.

The kind of degeneration that occurs shows that the monodromy is infinite.
At oo, the degeneration is good in the sense of Kulikov; the degeneration is
semistable (all fibres are reduced with normal crossings), and the canonical class
is trivial in a neighborhood of each fibre. Clemens—Schmidt exact sequence
implies that the local monodromy is trivial on cohomology if and only if p,
(general fibre) = Y p, (component), where the sum is over all components of the
degenerate fibre. (cf. e.g. [Theorem 2.7.5, 15])

In this case, p, of the general fibre, a K3 surface, is 1, and the components
of X, are all rational surfaces, and so have p, =0. Hence the monodromy is
not trivial, which implies the assertion.
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Proposition 2. We have p(X;)=19 for general A, and the discriminant of
the Picard lattice is 6.

Proof. Since p(X;) <19 (Lemma 2), we just have to find a set of lines
which have an intersection matrix of rank 19.

The base locus consists of 20 rational curves, and the corresponding intersec-
tion matrix has rank 16.

For some more lines, take the intersection of

2 Xo(X, + X+ X+ X)X+ X'+ X'+ X =04+ 9)
with the hyperplane X, = —X,, to give a quadratic curve, with
A+ 2+ JAA+ 4)
MYPRRELEN AT}

By the action of the Weyl group there are 12 such lines. The resulting
intersection matrix has rank 19 and discriminant 6.
Since 6 is square free, these 32 lines generate the Picard group over Z.

Proposition 3. With respect to some basis, the intersection matrix of the
lattice of transcendental cycles, T = T(X;):= Pic(X;)* is

010
1 00
0 0 6

Proof. For a K3 surface X, H*(X,Z) is an even unimodular lattice, with
signature (3, 19), ([1] Chapter VIII).

Since the Picard lattice is even, with rank 19, signature (1, 18) (Hodge index
theorem), discriminant 6 (Proposition 2), the lattice of transcendental cycles,
T(X;) = Pic(X;)* is even, rank 3, signature (2, 1), discriminant 6.

Two quadratic forms are defined to have the same genus if they are equiva-
lent over the p-adic integers for all primes p (cf. [§7, 7]).

In [7] table 15.4, genera of forms with |det| < 11 are listed. For determinant
+6, the genera are I, (2 x 3*) and II, (2 x 3*). (This notation is described in
§7.8 of [7])

Since (r, s) = (2, 1), the determinant is —6 and we are in the 2 x 37 case.
The lattice is even, so of type II. Hence the genus is I, (2 x 37).

The above matrix is also of this genus. By Theorem 21 in [7], there is
only one genus in this class, hence we obtain the assertion.

4. The Picard-Fuchs equation
In this section we determine the Picard-Fuchs equation for the family Z,..

4.1. Notation and Definitions. As we see from the equation (1) in 3.2, the
fibre X, is a smooth K3 surface for
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LeB:=C\{0, —4,12, 0} .

Therefore, up to scalar multiplication, there is a unique 2-form w, € H*°(X,, C),
and for a fixed value 4, of A, we have a monodromy representation

(B, Ag) = Aut (PH,(X,, Z)) .

The image of this map, I, is the monodromy group of the family %,..

Let y,,, ..., 7,5, be a basis for H,(X,,Z), which is flat with respect to
parameter A.

We can define the map

by

3) /“"()’ipwx)=<j wxi"'Zj wz)»
71 Y22,

i

which we call the period map. (Here, P*! = P(H,(X;, Z)).) Each function J W,
Vi,
is a period.
The Picard-Fuchs equation is a differential equation for the periods, with
the same monodromy.

Throughout this section, I(4) is defined by

1) = 1 J' 0
C@ni) Jizymp=m 6 — A
dy dz

d
where Q is the 3-form on X, lifted from the 3-form ?x A N A ~ on X(Z,,),

and @(x, y, z) = g4,(xyz:yz:z: 1)
For the rest of the paper, the differential equations # and 2 are defined
as follows:

_ \ d? 2 d> (72> — 124 —96) d A
f.—i(i+4)(/~—12)ﬁ+6(/1 —71—12)d—l—5+ 014 ﬂ+l+4’

D =AA+ DA —12)y" +2(4* —TA— 12)y + (A — 4)y.
4.2. The existence of the Picard-Fuchs equation

Proposition 4. The Picard-Fuchs equation is a third order linear differential
equation.

Proof. We have H3i(X;,C) = H*(X,, C) =~ C*?, and
H?*(X,,C)2 Pic(X;)® C = C'°.
So if w,; is a 2-form on X, then

[w,], [0w,/04], [0*w,/042], [83w,;/04%] € HEp/Pic(X;)® C
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must satisfy a linear relation in Hjg/Pic (X;)® C, since this has dimension
22 — 19 =3. So for some C*® functions of 4, fy, ..., f3, we have

fow; + -+ + f,0%w,/323 € Pic (X,) ® C.
Integrating round a cycle in Pic(X,) gives zero, this relation becomes a third
order differential equation for the period J‘wl, via differentiating under the
integral. Hence we have a third order diﬂ“er;ntial equation for the periods.
Proposition 5. The integral 1(A) is a period for the family Z,..

Proof. By the Poincaré residue theorem, we obtain

1 Q
I(4) = W J“ Resxl<¢ — /,’> ,

where I, is a 2-cycle on X,;. Hence I(4) is a period.

1
Proposition 6. If v = PR then there is a power series expansion for I(A)

given by

_Z vn+1a" ,

2
n
a,, = Z s
ptqtr+s=n qus

n!

where

n !
and , is the binomial coefficient, ————.
pqrs plqlris!

Proof. We have

_ dx A dy A dz
(27Ii)3 IxI=yl=|z|=1 xyz((¢ +4) — (A + 4) '

In terms of the X;s (x = X,/X,,y = X,/X3, 2z = X3/X,),

1(3)

P+4=(X,+ X, + X5+ X)X+ X'+ X3 + XY,
SO

dX, dX, dX, dX, dX
o A 4%a _diy 2 3 4
“x,Tx, x5 N x Vx>

and
2ri)*I()

B J dX, A dX, A dX; A dX,
xi=t XiXoXoXo (X, + X, + X+ X)X+ X'+ X3P+ X0 —
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where p=21+4. If v=1/u then
—(2ri)*(v)

dX
= fsz NS T VG + X X+ XK+ X X X
4 n

>0

— _Z v"“a,, ,

where a, = constant term in (X, + X, + X3 + X,)"(X;' + X, ' + X3 + X'y

So we get
2
n
a, =y ( ) )
ptq+r+s=n quS

To find a differential equation satisfied by I(4), we just have to find a
recurrence relation for the a,s.

4.3. A recurrence relation
Proposition 7. For n > 2, there is a recurrence relation
n*a, = 2(2n — 1)(5n* — 5n + 2)a,_, — 64(n — 1)%a,_, .

Proof. Since n=p + g +r+s, n"a, can be expressed in terms of sums of
the form

n \2
AM(p,q,r,S),
p+q§+s=n <qus> (P.q )

where .# is a monomial in p, ¢, r, s. For example, we have

2 2
a, =Y (" =y (") @+ 36p% + 24
n’a, Z(pqrs) (P+q+r+9) Z(pqrs> (4p* + 36p*q par) .

Squares in the monomial .# can be cancelled with squares in the denominator

n 2
of < ) , €8
pqu

2 n 2
n 2 n ) 2
p+q+r+s=n (pqrs) p=1 g+r+s=n—p (qus p

p

M=

Il

< n! )2
1 g+r+s=n—p m

1 2
n—1
0 g+r+s=n—1-p pqrs

=nla,_, .

n \2
b, = ,
p+q+;+s=n (P‘I”) P

I
3
|

Define
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n 2
C, = .
p+q§+s=n <qu5> pq

n 2
d,= r.
p+q§+s=u <P617‘S> P4

We obtain
na, = 4b, ,
n’a, = 4n*a,_, + 12¢, ,
n3a, = 40n*b,_, + 4n*a,_, + 24d, ,
n®a, = n*@4a,_, + 136(n — 1)%a,_,
+72b, | + (n — 1)2544b,_, + 360c,_, + 480d, ,).

So, using the first three to eliminate the b,s, c,s, and d,s of the fourth relation,
we obtain the result.

Proposition 8. We obtain
FU(A)=0.

Proof. From the recurrence relation of Proposition 7, I(v) satisfies the differ-
ential equation

(@ — 1) —v2(20 — 1)(560% — 560 + 2) + v?6460°3,

where
O=v—.

After a change of variables, we see that I(A) satisfies the differential equation
F =0.

44. % is the Picard-Fuchs equation. The argument is the same as in [5].

Lemma 3. i) % is irreducible.
il) The C-linear space spanned by all branches obtained by analytic continua-
tion of a non-trivial solution of ¥y =0 has dimension 3.

Proof. 1) &% is a Fuchsian differential equation, with the local exponents
(0,0,0) at A= —4, (0, —%,1) at 0 and 12, and (1,1,1) at co. Using Fuchs’
formula, as in the lemma of [5] gives the result.

i) This follows from (i), as in [5].

Theorem 1. The Picard-Fuchs equation for the family %,, is given by

(742 — 124 — 96) y)
F =L+ 4 - 12)y" 2 74— 12)y” ' =0
(4 + 4( )y + 6(4 )y" + a1 d y+“_4y
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Proof. This follows from the above lemmas, as for Corollary 1 in [5].

5. The monodromy group

The first few results of this section aim at showing that the monodromy
group is a discrete subgroup of PSL(2,R). The cusps and elliptic points are
determined by studying the Picard-Fuchs equation. This allows the group to
be given explicitly.

5.1. Notation. In this section, the following notation is used, and remains
for the rest of the paper.

We denote by T the transcendental lattice of X,, and we set:

01 0 01 0
SO(T)=< Ae PSLB3,R)[AT |1 0 0| A= |1 0 0O},
00 6 00 6
SO(T, Z) = SO(T)N PSL(3, Z).
ne =% PesL.m|abcdez
0 bt 6C d € 2 a, ,C, € 5
+ _Jfa b a b/3 .
I,(3) _{<3C d),ﬁ<c L )eSLaR)|a b cdeZy
+4_Jfa b a b/3
r0(6)3_{<6c d),ﬁ<2c L )eSLaR)|a b cdeZy.

reo®), r°a)*, re6)*3 are obtained from Iy(6), I5(3)*, I,(6)*3 by conjuga-

1
tion by <_(1) 0>.

For G a subgroup of SL(2, R), G denotes the images of G in SL(2, R)/R>,

and using square brackets for a matrix in G means the class of the matrix G.
These groups act naturally on #, the upper half plane,

Proposition 9. The monodromy group I is isomorphic to a subgroup I of
SO(T, Z). The period map reduces to

o B->PI,

Proof. First the restriction from P?' to P? is because f w=0 for i >3,
Vi

so I' is isomorphic to a subgroup of PSL;(R).

Now, y e I takes an integral basis to an integral basis since moving round
a loop on B takes curves to other curves, so I'e SL(T,Z). The inner product
is preserved, since everything varies smoothly, and the intersections are in Z and
so constant. Hence I" < SO(T, Z).
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Proposition 10. If we H>°, with w = ay¥ + by¥ + cy¥, with a, b, ¢ functions
of A, then a, b, c satisfy

ab +3c*=0
and for all A€ B,
Im (b(4)/c(4)) # 0.

Proof. This is from the facts that w A @ =0 and w A @ > 0 ([1] chapter
VIII).

Because of this relation between the roots of &, the problem of solving &
can be reduced to a problem of solving a second order differential equation.

If A is a differential equation, then its symmetric square, S?4 is a differential
equation whose solution space consists of the products of solutions of A.

Proposition 11.
F =S92

Proof. Proposition 10 gives a quadratic relation between a certain choice
of roots of this equation, ab + 3c?> =0, so we can find {, ¢ with

(?=a,
—3e2=b,
{E=c.

Now we can find a differential equation with roots { and &, and the Picard-Fuchs
equation will be its symmetric square.

Using the lemma in 6.5 of [14], we find that the Picard-Fuchs equation is
the symmetric square of 2.

Proposition 12. The group I is isomorphic to a subgroup 4 of SL,(R), and
the period map becomes

) QB H/A.
Proof. By the above result, a is determined by b. ¢, and the map ¢,, induces

¢': B—PYIp

/1»—»(c:b)=<f w:J w)

Hence an action on a, ¢, b is determined by an action on b, ¢, so I is

isomorphic to some subgroup of SL,(R).

¢, is the quotient of two integrals, J w, and I ;.
Ya Ya

3 2



438 H. A. Verrill

By Proposition 10, Im <g> # 0, so by changing y; to —y; if necessary, we
can take ¢, to map to /4.

By considering the conditions imposed on the matrix entries, it can be shown
that:

Lemma 4. Corresponding to the map [&:{]—[E%: —3(%:EC], there is an
isomorphism

j: SL(2,€) - SO(T ® C)

given by
. b > —ic? 2dc
j: |:c d:|l—> -3 a? —6ba
db —3ca ad+cb

This restricts to an isomorphism j: 4 — T, and j~'(SO(T, Z)) = I,(3)".
From the above lemmas we obtain:

Corollary 1. The monodromy group is isomorphic to a subgroup of I,(3)*.

Proposition 13. The period map ¢,. B— #/A is given by %, where &, ( is

a certain basis for the space of solutions to the differential equation 9, and ¢,
can be extended to

0% Pl 5 #*/4 .

The singularities of the equation, 0, —4, 12, oo will be mapped to elliptic
fixed points or to cups by ¢% (see Table 2).

Proof. Let r, r, be roots of the indicial equation at a singular point A.

If r, — r, € Z, then either 4 is mapped to a cusp, or this is only an apparent
singularity.

However, when r, =r, then there is a solution involving logarithms
([§15.31, 10]), so the singularity is not apparent; the universal cover will have
infinite order here, and so the point must correspond to a cusp.

If ro—rya=p/q, p, qeZ, (p,g)=1, g=>1, then 1 will be mapped to an
elliptic point of order ¢q. (For more details about the indicial equations, see [10].)

Table 2: Orders of monodromy at singularities

/. roots of indicial equation image of 4

0 0, 4 elliptic point, order 2
—4 0,0 cusp

12 0, § elliptic point, order 2
00 53 cusp
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The results of inspection of the equation are given in Table 2, which gives
the result.

There is a formula for the ‘area’ of the fundamental domain of subgroups
in SL,(Z), which will also give an area of our subgroups:

Proposition 14. We have

1 r
EJ‘”My'zdxdy=2g—2+m+ ;(I — 1/e,)

where g is the genus of #*/A, m is the number of inequivalent cusps, and ey, ..., e,
are the orders of the inequivalent elliptic points of A.

Proof. [17], §2.5, Theorem 2.20.
Proposition 15. The group A has 2 cusps and 2 elliptic points of order 2, and

[([,3):4]=3.
Proof. From Corollary 1, 4 < I3(3)".
There is a map v
@k Pl > A*)(4),

so the genus g of #*/4 is 0 (Riemann-Hurwitz). We do not know what the
order of ¢* is, so we can as yet only say that 4 has one or two cusps, and
one of two elliptic points.

From Proposition 14, we have the following possibilities for /4.

G possibilities for 4 L,3)*
g 0 0 0 0 0
m 2 2 | 1 1
r 2 1 2 1 2
e, 2 2 2 2 6
e, 2 — 2 — 2
area (#/G) 1 1 0 -1 1

The ratios of the areas is equal to the index of the subgroups, hence the
only possibility is as stated.

Lemma 5. The group I'°(6) is generated by

e T )

Proof. This can be shown from the results of [11].

Lemma 6. If V is a subgroup of index 3 in I'°(3)* with 2 cusps and 2
elliptic points, then up to conjugation by an element of I'°(3)*, V has a fundamental
domain as in Figure 8.
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i I

-2/3 -1 0 1 /32

Figure 7. The fundamental region for /"°(3) divided into 2 fundamental regions for I"°(3)*

0

Figure 8: The fundamental domain of ¥V

Proof. The fundamental domain for ¥ in s will be the union of 3 copies
of the fundamental domain for I"°(3)*, corresponding to 3 coset representatives
for ¥ in I'°(3). The identity matrix I can be taken as one coset representative,
and the others can be chosen so that the union is connected. (See [16] Theorem
2.4.3(ii)) Up to translation, there are only 5 connected regions formed by the
union of three fundamental domains for 7'°(3)*. Using that fact that ¥ has 2
cusps, it can be shown that its fundamental domain must be as stated. In the
figure, coset representatives in /"°(3)* are labeled.

Lemma 7. If V is a subgroup of index 3 in I'°(3)* with 2 cusps and 2
elliptic points, with a fundamental domain F as in Figure 8, then I'°(6) < V.

Proof. Because translates of F cover #, V' must contain some element

3 9 . |1 6 -
fixing oo and mapping — to -~. The only possibility is [0 1]. Similarly,

2 2
1 0
V.
e
The group F has two elliptic points. These must be elliptic points of I"°(3)*.

So 3 +i,/3 is an elliptic point of V.
A calculation shows that the only non-trivial elements of I'°(3)* fixing

I —4 .
3+ iﬁ are \/3[]/3 —':I and its inverse. So these elements are in V, and

so is
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5 7T 18] 1 —41*t 6] 1 -4
©) 2 =5 13 —1 0 1 13 —1|°
Hence by Lemma 5 we have I'°(6) = V.

Corollary 2. Up to conjugation by an element of I(3)*, we have

Lo <4,

with index 2.

0 1 .
Proof. This is just from conjugation by [ ) O] of Lemma 6 and Proposi-
tion 15.

Theorem 2. The monodromy group is isomorphic to
I,(6)"3.

Proof. By Proposition 12, the monodromy group is isomorphic to 4 <

SL(2, R). By Corollary 2 we may assume that I4(6) = 4, and the index in two,

so 4 must be in the normaliser for I,(6). The normalising quotient is the
four-group, so there are 5 groups of genus zero between I;(6) and its normaliser:
I,(6)~, I(6)72, I,(6)*3, I,(6)*6, I,(6)". The only one with the right index and

the right number of cusps (listed in [6], table 2), is I;,(6) 3.

6. Solutions to the Picard-Fuchs equation

In this section we shall find the solution space for the Picard-Fuchs equation
Z. This is done by making a series of transformations, starting from an equation
&, with known solutions, and finishing with &,

6.1. Notation and Definitions. The Dedekind eta function 5 is given by

',,(1.) — eZm't 1—[ (1 _ eZRirn) , Te .
n=1

We write g = e™¥2,

The functions s(z), V(r) and A(r) are defined by

(60 n()*
© SUNFTeERTERE
120 (37)
v TORTCO
8 ) = — M)G _4
® ® (71(2r)r1(6r)

Lemma 8. With A and s as above,

A=—(1—3s)7s.
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Table 3: Stabilizers of the cusps and elliptic points

T

stabilizer

A1)

0

—4

- 16
01 ®
3B +i/3)

G +i/3)2

A ) e

The value of A(t) at elliptic points and cusps are as in Table 3.
Proof. Lines 9 and 12 of table 3, in [6], say that
_n@9tBo*
R ICOR TG .
is a Hauptmodul for I(6), that
n(t)n(37) )6
tse=|———~] +c
> (n(zr)n(ér) ?
is a Hauptmodul for 75(6)*3, and that
9 tec = teg + I/tsk -

The constants c,, ¢, can be determined by expanding in terms of g, and

comparing coefficients: we can take
¢, =0, ¢, =10.

Then from Equation 9, and the relations

and

S=]/t6E, ).:'_[6c+6,

we obtain the required relation between A and s.
The q expansion of A is given by

A= —q' +2— 159+ 32¢> — 87g° + 192¢* — 343¢° + 672¢° -

Hence A(io) = co. From the above relations for #,

()0 |
\e) "\ =2<n(r)n(3r>>-6
1) n@nen)

(2l

where r = —3, so A(0) = —4.

6
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The branch points of s(r) must map to the branch points of A(7) (i.e., cusps
are mapped to cusps). The branch points of —(1 — 3s)?/s are at s= +3, and
here —(1 — 3s)?/s = 0 or 12. By a computer estimation we can determine which
cusp takes which value.

6.2. The solutions of the Picard-Fuchs equation

Lemma 9. The differential equation

2

d*v
EW)=s(s — 1)(9s — )d 3

+ (27s* — 20s + l)— +09s—3) =
has solution space
V() (C® ().

Proof. In [3] §1, it is shown that & has a solution
© n 2k
=S w= £ GG

J(s(1) € M, (17(6)) .

In [21] §10, §11 and §14, it is shown that & is the Picard-Fuchs equation
of a family € of elliptic curves, the elliptic modular family associated to I7(6),
and that the & has solution space

h(t)(C@ 1C),

where h(t) e M,(I;(6)). We can take h(t) = f(s(t))
To show that f(s(t)) = V(z), the g expansions are compared. Computation
shows that these agree to high enough order to imply the equality.

with

Lemma 10. The differential equation

d?y 5 dy 1
D =iAA+ 44— 12)d/12 + 24— 74— 12)&7 + Z(/I —4)y
has solution space
s V() (C®1C).

Proof. This is because 2 is obtained from % by a change of variables

A=—(1—35)%s.
Theorem 3. The Picard-Fuchs equation

(7/12 124 — 96) dy A
-+ y
dl’ (A+4) di  A+47"

=AML+ 44+ 12)d13 +6(22 — 71— 12)
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has solution space
G(1)(C® 1C @ 12C)

where

(n(20)n(67))*

7 G0
Proof. Since & = §2% (Proposition 11), from Lemma 10,
sol (F) = (sol (2))? = s(1) VA(1)(C D t1C @ t%C).

Remark. It can be shown that & is also the Picard-Fuchs equation for a
pencil of abelian surfaces /. &/ is constructed from the family %, using the
method of [14] §5. % in our notation is the family %, . It can also be shown
that fibres of these two families have the same trnascendental lattice, so [12]
gives a geometrical relation between the fibres; but we do not know if this can
be extended to a global relationship.

7. A combinatorial application

We remark in this section that the a, are related to something purely combi-
natorial. For more details, see [20], chapter 1.

Consider a random walk on the root lattice A5, starting from the origin.
This means that we take the state space to be the elements of 4; = R*, and for
z € A,, the transition function P is given as follows:

1 . .
P(z,z+r)=1—2, if ris a root,

=0 otherwise .

At time t = 0, the position is at the origin of A;, and at time ¢ > 0, the possible
position is determined by the position at time ¢t — 1, and the transition function
P. Set b, = the probability of getting back to the origin in n steps, and denote
the generating function for the b,s by

Bv) = ZO v"b, .

Lemma 11.
ny % (_4)_mam 1
(=3yb,=nt ¥ n—m)’
Theorem 4. If
(n(27)n(67))°
v(1)

~ 12(n(0)n(30)° — 420N (61)°
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then

_ (B
(127067

Proof. In 4.1, we defined I(4) =) ,.00""'a,, where v=—1/(1+4). For
convenience, define I,(v) = I(A). Now by considering the relationship between
a,s and b,s, I,(v) and # are related as follows:

1+ 4v 12v
7 =1 .
A0) 120 I"<l + 4v>

A(v(1))

The function I(A) is a solution of the Picard-Fuchs equation &, and so by
Theorem 3 can be expressed as G(t)(a + bt + ct?). Considering coefficients of
the g expansions (q = e?™*) shows that as a function of 7, I(r) = —G(1). A
change of variables gives the result.
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