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Root lattices and pencils of varieties

By

H . A . VERRILL

1. Introduction

In  this paper a  particular pencil of K3 surfaces is investigated. The Picard-
Fuchs equation, solutions, and the m onodrom y group  a re  fo u n d . T h e  paper
[21] gives the Picard-Fuchs equation for several families of elliptic curves. Similar
methods a re  a lso  used  in  [1 4 ]  a n d  [1 5 ]  to  o b ta in  the Picard-Fuchs equation
for the case of certain pencils of K 3 surfaces. In these papers finding the Picard-
Fuchs equation comes down to finding a  recurrence relation for some sequence
of combinatorially defined terms, e.g., in  [5 ] , recurrence relations are found for
a„ in  the  following cases:

a  n k i 0 (nk y  (n  +k  k 0 (nky

I n  these examples, the  symmetry o f the  defining equations o f the  varieties
leads to the determination of the Picard-Fuchs equations from the combinatorial
d a ta . T h is  gives m otivation to  t r y  a n d  find further examples, by considering
other pencils o f varieties with a  good degree of symmetry.

T he  pencil o f  K 3  surfaces in  [1 5 ]  is  ac ted  o n  b y  the W eyl group of the
root lattice A , x A , x A„, a n d  the pencil can be view ed a s  being constructed
from  this la ttice . This construction is described in  section 2, for a  general root
lattice.

In  this paper, the A ,  case is investigated. The corresponding pencil of K3
surfaces is denoted by SrA3.

T o  fin d  the Picard-Fuchs equation for 1 A 3 ,  o n e  h a s  to  f in d  a  recurrence
relation for

2(  nE
p+q+r+s=n p q rs

)

n n!
where pqrs p!q!r!s! •

The following result is obtained (cf. 4.3, Proposition 7):
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P roposition . F o r n  >  2  there is a  recurrence relation:

n3 a„ = 2(2n — 1)(5(1 2 — 5n + 2)a 1 — 64(n — 1) 3 a _ 2 .

This recurrence relation is  one of the keys to proving the  following

Theorem 1 (cf. 4.4, Theorem  1). The Picard-Fuchs equation f or the family
l ' A 3  is giv en by

:= 1(1 + 4)(1 — 12)y" + 6(2 2 — 71 — 12)y" + 
( 7 . 1 2  —  1 2 1  —  9 6 )

y
,  

+  y — 0 .
(2 + 4) + 4

Theorem 2. T he m onod rom y group f o r .TA ,  is isomorphic to

4 ( 0 +  3

The group To (6)+ 3  is  one of the groups associated to the  Monster group, given
in  th e  paper [6]. Explicitly,

F 0 ( 6 ) ,_ 3 =  { ( a 1)
)

(  a b / 3 )  

e SL 2 (R)la, b, c, d e z } .
6 c  d ' d

The group Fo (6)+ 3  is  the im age of F0 (6)+ 3  after quotienting o u t by scalars.
Finally (in 6.2, theorem 3), the solutions of the above Picard-Fuchs equation

are  given:

11( 1(Theorem 3. I f  1 =  2 (0 = t)1 3T)  )6 4 , where ri is  the Dedekind eta
11(2.-E))7(60)

function, then the Picard-Fuchs equation f o r •TA ,  has solution space

G(t)(CC) Tc e T2c)

where

G( E) =
(111'01/(3 T)/2

Although this paper only deals w ith the  A 3  case, it is  show n in section 2
tha t the A„ case gives a n  n — 1 dimensional pencil of Calabi-Yau manifolds. In
the A 4  case, we obtain a  pencil of Calabi-Yau 3-folds, with Picard-Fuchs equation

(x — 20)(x + 4)(x — 4)(5 + x)2 
 d 4

4  g(x)
dx

+ 2(5 + x)(5x 3 — 65x 2 — 248x + 560)
3

 g(x)
dx

+ (25x 3 — 143x 2 — 1466x — 1080) 
 d 2

2 g(x)
d x  

+ (3x + 10)(5x — 32)—
d

g(x) + g(x)x
dx "

M27)11(60)4
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The proof of this is not given in th is paper, but i t  is  the same method as
for the A , case. At the end of the paper, a combinatorial application is given.

2. Preliminaries

2.1. Notation and Definitions. This notation follow s [8] and [9]. Let
R  be a root system (of rank n), and let M R  b e  the root lattice generated by R.
Moreover the lattice dual to M R  is denoted N R .  The Weyl Chambers in NR C) Q
can be defined as follows:

for r E R , let H, = Is e NR C) Ql<s, r>  =  0 1 . A  Weyl cham ber is the closure
of any connected component of

N R ®  Q\r U

Let E R  b e  the fan in N R  Q  consisting of the W eyl chambers, together with
all their sub-faces. W e denote by X (E R )  the toric variety associated to the fan
E .  Let A R  be  the polyhedron in MR  Q  with vertices given by r e R , and let
L(A R )  be  the space of Laurent polynomials with support in zJR . The notation
ex  denotes the passing from M R  to  C [M R ], —■ ex , so  tha t each  r e R  gives a
monomial e r E  C [ M ,J .  The character of the adjoint representation means the
polynomial

Zit := E er .

r E R

Then w e have XR G L (4 , ) ,  so w e have a rational function

XR: X (ER) P1 .

For 2 E 13 1 ,  XA is defined to  be the closure in the ambient tonic variety X (E R ),
of the inverse image of 2  u n d e r  xR • I.e., set XA := (2 ) X  

(E  R).
Let A': X R —> X (Er )  be the blow up of the base locus, so that w e obtain the

following commutative diagram:

X (E r )

For simplicity, we denote by X R  the family

TR: XR—'

with fibres X , := =  2).
The family XR  i s  the object under consideration in th is paper.

2.2. Exam ples. The two dimensional cases are show n in Table 1. The
family /A' i s  the main concern of this paper. The 1:A ; case is the family in [15].
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Table 1: The 2-dimensional lattices

Name and
Dynkin diagram E 1  and  X (E ,) the fiber X 2 ,  an d  reference

A2

0 - 0

L,-L , (X + Y  + Z)(XY + YZ + Z X )=  (,1 +  3 )X Y Z ,
which appears in  [S B ] as W

LI

L-

FPAWVAL.
14invillir a
t g l l
L llb•p-

L., L

B13(P2 )

B2 LL,
0

1. .1.1,
p.,

XA: (1 + X ± X 2 )(1 + z + z 2 ) = zx(1 + ).)
where x comes from L1, and  z from L2

B14(P1 x 13 1 )

• •

A ,  x A,

• •
1.,

(x + y)(xy + 1) = ilxy,
This is example s i r  in  [SB].

.1,,
-i,

PI x p i

G2 .1-2LtLH,2L,-L,L, u L
X2: - +  y + +  1 ) ( : - + + + 1) = + 1y z x x y z

IPIRPIA ■ 1 '
i_,.t. w i l l ,

L - L a

i i i • . ii 1

A
-

• •

2L 1-1.,, I,2L-L-L I

B13(B16(P2))

L em m a 1 .  The family ,TA, is  a pencil o f Calabi-Y au manifolds.

P roo f. In  this case, M A be  g iven  by

MA„= CIL i, L 2, , + L2 + • • • + L is + , = O),

and the roots are the differences L i — L  ([9], §15.1). In  th e  to ric  construction,
le t X i =  e 1-", with 11 X i =  1 , so  the  roots correspond to  X i XT 1 ,  and

: • • :  X n + 1 )) = y x i xi - i.

The fibre X , is given by the closure of the locus of points where this has value 2.
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Now we shall apply Theorem 4.1.9, of [2]. In  [2], X ,„ is called a  MPCP-
desingularization of P .  H ere A  = A A n i s  a n  integral polyhedron in  MA „, with
vertices at L. — L i . This desingularization corresponds to  a maximal projective
triangulation of the dual polyhedron A * .  The only integral point in the interior
of A  is O.

W e claim  that: Faces of A  are given by the  hyperplanes

Ix e MA i ]<x, EJ > =1}

where

n — k
EJ —

n  j e j n J E T

and

J OE 11, ..., ril, J' = 11, ..., nl\J, k =  # J .

(N ote that H o = H 1 2=  0)
This claim  means that (A , MA )  is  a  reflexive pair, so Theorem 4.1.9 o f [2]

says that the fibre X  i s  a  Calabi-Yau manifold.
Proof o f C laim : It is easy to  show that:
a) A  is contained in the intersection of the

E E j >  <  1} ,

and that:
b) each Hi is spanned by vertices of A.
This gives the  result.

R em a rk . I) An i x • • x A n kE  N )  also gives a  pencil of Calabi-Yau
manifolds.

2) In  general this construction does not give rise to Calabi-Yau manifolds.
In A X linearly equivalent to the anti-canonical divisor of X (A ), so
by adjunction O. This does not happen in  general.

3. The A , case

From  now  on, only the  A , case is considered. B y Proposition 1, IA , is  a
pencil of K3 surfaces. For theory and definitions of K3 surfaces, see [1 ] chapter
VIII.

3.1. X(A 3 ). Figures 1, 2, 3, show the construction of the fan for X A ,.
Define local coordinates a s  follows: Set X . := ( i  =  1, ... 4). Let U(1 , 2, 3. 4)

be the cone in  N  spanned by 1, 1 — L 2 ,  L 2  —  L 3 ,  L 3  —  L 4 . Then A ( 1 , 2 , 3 , 4 ) ,  
the

affine piece corresponding to Cr( '1' , 2, 3. 4 ) , has local coordinates

x = X 1 /X 2 , y = X 2 /X 3 ,  z  = X 3 /X 4

Similarly for any permutation of the indices.
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Figure 1: The root system A 3

Figure 2: The dual lattice N  and a Weyl chamber, cr.

3.2. X 2 .  In the A3 case, w e have

xA 3 (X1 , X2, X3, X4) = (Xi + X2 + X3 + X4)(X 1 ±  XV + X3- 1  ±  X ,–t 1 ) — 4 .

Therefore the fibre X 2  restricted to A(
1 , 2 , 3 , 4 )

 is g iv e n  b y  the equation

(1) (1 + x + xy + xyz)(1 + z + zy z y x )  = 4)xyz .

In terms of these local coordinates, xA ,  is replaced by

(1 + x + xy + xyz)(1 + z + zy + zyx) — 4xyz
0(x, y, z ):= zA 3 (xyz : zy : y :  1) — 

xyz

3.3. X .  T he fibre  X  a t  2  =  oo  is  g iven  in  term s of local coordinates by
xyz = O.
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Figure 3: The fan  defining X

Figure 4 : Some stars

Proposition 1. The fibre X of  eight copies of  B13 (P 2 )  and six
copies of 13 ' x 13 ' , configured as in Figure 5.

P ro o f . These facts follow from toric geometry (cf §5.7, [8]). Figure 4 shows
the configuration of X d e s ire d  the  result.

3.4. The base locus. Locally the base locus is defined by

(1 + x + xy + xyz)(1 + z + zy + zyx)= (2 + 4)xyz = 0 .

It consists o f 20  rational curves, in configuration as indicated in Figure 6.

3 .5 .  The Picard group o f  X , .  In  the  sec tion  w e show  th a t  the  family is
non-constant and th a t the P icard  group of general X , has rank 19.

Lemma 2. W e have p ( X J  19 f or general 2.
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Figure 5: X c e

Figure 6: The base locus-rational curves o n  X 0 ,

P ro o f . X , is  a  K 3 surface, so p ( X )  20. S h io d a  a n d  Inose [19] show
that K3 surfaces with p = 20 from a  discrete countable family, so if p = 20, X A

would have to be locally constant, and the monodromy would be finite. After
some base change, w hich w e can assume to  have been m ade, the monodromy
would be trivial.

The kind of degeneration that occurs shows that the monodromy is infinite.
A t  co, th e  degeneration is good in  th e  sense o f  Kulikov; th e  degeneration is
semistable (all fibres are reduced with normal crossings), and  the  canonical class
is  tr iv ia l in  a  neighborhood o f  each fibre. Clemens—Schmidt exact sequence
im plies that the  loca l monodromy is  triv ia l on  cohomology if  a n d  only if  pg

(general fibre) = Epg  (component), where the sum is over all components of the
degenerate fibre. (cf. e.g. [Theorem 2.7.5, 15])

In  this case, pg  o f  th e  general fibre, a K3 surface, is  1, and the components
of X  a ll ra tiona l surfaces, and so  have pg  = 0. Hence the  monodromy is
n o t trivial, which implies the assertion.



Root lattices 431

Proposition 2. W e have p (X )  = 19 f o r general 2 , and the discrim inant of
the Picard lattice is 6.

P ro o f . Since p ( X )  19 (Lem m a 2), w e just have to  f in d  a  s e t  o f  lines
which have an intersection m atrix of rank 19.

The base locus consists of 20 rational curves, and the corresponding intersec-
tion matrix has rank 16.

F o r  some m ore lines, take the intersection of

(2) XA: (X 1  ±  X 2  ±  X 3  ±  X 4 )(X 1 -1  x - 2 - 1 ,x4-1) ( 2  ±

with the hyperplane X , = — X2, to give a  quadratic curve, with

2 + 2 + .\ /(2(2 + 4))
X 3 /X 4  =

2

B y the  ac tion  o f the  W eyl group there  a re  1 2  su c h  lin e s . T h e  resulting
intersection m atrix  has rank 19 and discriminant 6.

Since 6 is square free, these 32 lines generate the P icard group over Z.

Proposition 3. W ith respect to som e basis, the intersection m atrix  of  the
lattice of  transcendental cycles, T = T(X ,):= Pic(X ,) ±  is

0  1  CC
1 0 0
0  0  6 _ ,

Pro o f . For a  K 3 surface  X , H 2 (X, Z ) is  a n  even unimodular lattice, with
signature (3, 19), ([1] Chapter VIII).

Since the Picard lattice is even, with rank 19, signature (1, 18) (Hodge index
theorem), d iscrim inant 6  (P roposition  2), the la ttice  o f  transcendental cycles,
T (X ) =  Pic(X ) 1- is  even , rank  3 , signature (2, 1), discriminant +6.

Two quadratic forms are defined to have the same genus if they are equiva-
lent over the p-adic integers for a ll primes p  (cf. [§7, 7]).

In [7] table 15.4, genera of forms with ((let' < 11 are listed. For determinant
+ 6 , the genera are /,.,(2 x 3 )  a n d  1412 x  3  ± ) . (This notation is described in
§7.8 of [7].)

Since (r, s) = (2, 1), th e  determinant is —6 a n d  w e are  in  the  2  x  3 -  case.
The lattice is even, so of type II. Hence the  genus is 11 2 , 1 (2 x 3 - ).

T he  above m atrix  is a lso  o f  th is genus. B y T heorem  21  in  [7 ] , there is
only one genus in  th is class, hence we obtain the assertion.

4. The Picard-Fuchs equation

In this section we determine the Picard-Fuchs equation for the family 1,43 .

4.1. Notation and Definitions. As we see from the equation (1) in 3.2, the
fibre X , is  a  sm ooth K 3 surface for
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e  B  := C\{0, —4, 12, cc}.

Therefore, up to scalar multiplication, there is a unique 2-form co, é H "(X „, C),
and  fo r a  fixed value A , of 2, w e have a  monodromy representation

7r1 (B, —> Aut (PH2 (XA , Z)) .

The im age of this m ap, F, is  the  monodromy group of the  family /143 •
L e t yu , ,  T22 , b e  a  basis fo r  H2 (XA , Z), w hich  is  f la t w ith  respect to

parameter A.
W e can define the  map

(pm: B  p 2 1 / F

by

(3 ) (yi,, co,) = co, : • • • : c o „ )  ,

which we call the period m ap. (H ere, P2 ' = P(H 2 (X,t , Z)).) Each function f co,
r.,

is a  period.
The Picard-Fuchs equation is a  differential equation fo r  th e  periods, with

the  same monodromy.
Throughout this section, 1(A) is defined by

1 ( 2 )  : =  

1
.(27u) 1.1=-13,1= =1 — A

d x  d y  d z
where Q  is  the  3-form o n  1(43 lifted  from  th e  3-form — A  —  A o n  X(E', 3 ) ,

Xy z
and  0(x, y, z) = )(,,(xyz : yz : z : 1).

F o r th e  rest o f the  paper, the  differential equations a n d  g  are  defined
as follows:

d 3d 2 —  122 — d A
:= A(A + 4)(2 — l2) 3 + 6(2 2 — 72 12) 

c / 2 2  

+ 
(72 29 6 )

  (A  + 4) dA 
+  

 +  4

:= + 4)(2 — 12)y" + 2(2 2 — 7)  — 12)y' + 1(2 — 4)y.

4 .2 .  The existence of the Picard-Fuchs equation

Proposition 4. The Picard-Fuchs equation is a  third order linear dif ferential
equation.

P ro o f .  W e have Hi.
) ,(X „, C) H2 (X,, C) C 2 2 , and

C) Pic (X ,) C C 1 9
.

So if co, is a  2-form o n  XA, then

[0(DA /02], [32(0,/a22], [030),/323] e HL R /Pic(X  ,) 0 C

Y I, T 2 2 ,
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m u st satisfy a  linear re la tio n  in  1-1,i,/Pic (X ,) 0 C , s in c e  th is  h a s  dimension
22 —  19 = 3. So for some C "  functions o f A, f o ,  . . . ,  f 3 ,  w e have

f o u), + • • • + f3 03 w2 /0/13 e Pic (X ,) 0 C.

Integrating round  a  cyc le  in  Pic(X A )  gives zero, th is  relation becomes a  third

order differential equation fo r  th e  p e r io d  fc o „ , v ia  differentiating under the
y

integral. H e n c e  w e  have  a  third order differential equation for the  periods.

Proposition 5. T he integral 1(2)  is  a  period f or the  fam ily  1,43 .

P ro o f . By the Poincaré residue theorem, we obtain

1
1(A) = 

( 2 n i ) 2

i l ( Q
, ,

Resx a(0, j
where TA i s  a 2-cycle on X , .  Hence 1(A) is  a  period.

1
Proposition 6. I f  y = 

A  +  4
,  then there is a  power series expansion for AA)

given by

—E v n+ia n

where

(  n 2
an = E

p+q+r+s=n ffirs

)

'

and is  the binomial coefficient, 
n !  

(  npg rs) ' p!g!r!s!

P ro o f . W e have

1 d x  d y  d z1(A) = 
(2ni)3 Ix H Iy H z I =1xyz((0 + 4) — (A + 4))

In  terms of the  X i s (x = X 1 /X 2 , y = X 2 /X 3 , z  = X 3 /X 4 ),

+ 4 = (X , + X 2 + X 3 + X 4 )(X 1 + X V  + X V  + X V ),

SO

d X ,  d X ,  d X 2 d X ,  d X ,
Q A  = A A A

X 4  X 1  X2 X 3  X 4

and

(27t04 1(u)

=I
d X i  A  d X 2  A  d X 3  A  dX4

IX ;1= 1  X I  X2 X3 X 4 ( X i ± X2 ± X3 + X4)(X1- 1  +  XV +  XV +  XV ) 1 1
1 < i <4
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where y  =  +  4 .  If y = 1/p. then

— (20 4 I(v)

dX4
= 1 . ( 2  A E 1 , " (X1 ± X2 ± X3 ± X 4 )(X 1

- 1

X4 p i > 0

_  E  v n+ian

.),q1 x-4-1

w here a„ = constant te rm  i n  (X , + X 2  +  X3 + X 4 )(X i- X 2 - 1  ±  X 3 - 1  +
So we get

)2
anE

p + q + r+ s = n (P q rs •

T o  f in d  a  differential equation satisfied by 4.1), w e  ju s t  have to  f in d  a
recurrence relation for the an s.

4.3. A  recurrence relation

Proposition 7. Fo r n > 2, there is a  recurrence relation

n 3 a„=  2(2n — 1)(5n 2  — 5n + 2)a n _1 — 64(n — 1) 3 an _2  .

P ro o f . Since n = p + q + r  +  s ,  n m a n can be expressed in  terms of sums of
the form

p+q+r+s=n pqrs 

)2
q, r, s)

where is  a  monomial in  p ,  q ,  r ,  s .  F o r example, we have

n  2 n 2
n 3 a„ = E — (p  +  q  +  r +  s) =  E (4p3 + 36p 2 g + 24pqr).

pqrs ( p q r s )

Squares in the monomial can be cancelled with squares in the denominator

of 
(  n  ) 2

,  e.g.:
pqrs

)2
=

nt2(  n \ 
2

P 2
 E  E PL E  E

1,-En +r-Fs=n pqrs p=1 q+r+s=n— p pqrs p=1 q+r+s=n— p (p — 1)Mr!s!

=
n-1 n — 1) 2

 E E
p = 0  q + r+ s = n -1 — p  pqrs

= n 2

an _i .

Define
2

h,, = E nt ) P
p + q + r+ s= n  P q rS

n
2
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2
c,, = E

p - F q + r+ s = n  Mrs

)

2
d = E pqr. .

Pqrs)

We obtain

na„ = 4 b ,

n2 a„ = 4n 2 an_1 +  1 2 c ,

n'a„= 40n 2 ba _1 + 4n 2 aa _1 + 24d„

n5 an = n 2 (4a a _1 + 136(n — 1) 2 a 2

+ 72b„_ 1 +  (n — 1) 2 544b„_ 2 + 360c„_ 1 + 480d„_ i ) •

So, using the first three to eliminate the ba s, c a s , and d„s of the fourth relation,
we obtain the result.

Proposition 8. W e obtain

.F(I(A ))= 0 .

P ro o f . From the recurrence relation of Proposition 7, 1(v) satisfies the differ-
ential equation

(0 — 1)3 — v2(20 — 1)(50 2 — 50 + 2) + v 2 640 3

where

n,d
v  dv

After a change of variables, w e see  tha t l(A) satisfies the differential equation
= 0.

4.4. is  the Picard-Fuchs equation. The argument is  the same as in  [5].

Lemma 3. i) is irreducible.
ii) The C-linear space spanned by all branches obtained by analytic continua-

tion of  a non-triv ial solution of  g y  = 0  has dimension 3.

Pro o f . i) . ° F  is  a  Fuchsian differential equation, with the local exponents
(0, 0, 0) a t  ). = —4, (0, —1, 1) a t  0  an d  12, and (1, 1, 1) a t  oo. U sing Fuchs'
formula, as in the lemma of [5 ]  gives the result.

ii) This follows from (i), as in  [5].

Theorem 1. The Picard-Fuchs equation f or the  fam ily  IA , is given by

/1.
:= 2(.1. + 4)(,1, — 12)y"' + 6(.1 2 — 7A — 12)y" + 

(7A29 6 )  ,
y  + 

A +
4 y —0.

(A + 4)
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Pro o f . This follows from the  above lemmas, as for Corollary 1 in  [5].

5. The monodromy group

T he first few results o f  th is  section a im  a t show ing  tha t th e  monodromy
group  is  a  discrete subgroup o f  PSL(2, R). T he  cusps a n d  elliptic points are
determined by studying the Picard-Fuchs eq u a tio n . T his allows th e  group to
be given explicitly.

5.1. Notation. In  this section, the following notation is used, and remains
for the  rest of the paper.

W e denote by T  the  transcendental lattice o f X 2 ,  and  w e set:

SO(T) = A e PSL(3, R) AT
0 1 0
1 0 0
0 0 6 

A =
0 1 0
1 0 0
0 0 6 

—

SO(T, Z) = SO(T)n PSL(3, Z) .

(6) = { ( 6
ac

d  )  
e  S L 2 ( Z ) a ,  b ,  c ,  d Z }

1)) b/33 (a
F0(3)+

{(31 d ) ' c d  )
S L , ( R )

b) ( a b/3)
SL 2 (R)F0 (6)+ 3 = {( 6

a
c d ) ' 2c d

a, b, c, d E Z}

a, b, c, d e Z} .

F ° (6), F ° (3)+ , F ° (6)± 3  are obtained from F0 (6), F0 (3)+ , F0 (6)+ 3  by conjuga-
(  0

tion by
— 1  0 ) •

F o r  G a  subgroup of SL(2, R), G denotes the im ages of G in  SL(2, R)/12 ,
and  using square brackets fo r  a  matrix in  G means the class o f the  matrix G.

These groups act naturally o n  Yt', the  upper half plane,

Proposition 9. The monodromy group T  is isom orphic to a  subgroup T of
SO(T, Z). The period map reduces to

(pT: B —>P2/T ,

P ro o f . First the restriction from P 2 '  to  P 2 is because f = 0 for i > 3,

so  T is isom orphic to a  subgroup of PSL,(R).
Now, y e T takes a n  integral basis to a n  integral basis since moving round

a  loop o n  B  takes curves to other curves, so  T a  SL(T, Z). The inner product
is preserved, since everything varies smoothly, and the intersections are in Z  and
so c o n s ta n t. Hence i;  g  SO(T, Z).
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Proposition 10. I f  w n H2 m, with co = + b  + cy l`, w ith  a, b, c functions
of A , then a, b, c satisfy

ab + 3c 2  = 0

and for all A  e B,
1m (b(A)/ c(A))O .

P ro o f . This is from  the  facts that co A w  =  0  and  co A i  >  0  ([1 ] chapter
VIII).

Because of th is relation between the roots of the  problem of solving ..f;
can be reduced to a  problem of solving a second order differential equation.

If A  is a  differential equation, then its symmetric square, S 2 A  is a  differential
equation whose solution space consists o f the  products of solutions of A.

Proposition 11.

=

P ro o f . Proposition 10 gives a  quadratic relation between a  certa in  choice
of roots of this equation, ah + 3c 2  = 0, so  w e can find C, with

c2 a

= b ,

= C .

Now we can find a  differential equation with roots ç and and the Picard-Fuchs
equation will be its symmetric square.

Using the lemma in  6.5 o f [14], w e find that the Picard-Fuchs equation is
the  symmetric square of a

Proposition 12. The group T is isom orphic to a subgroup A  o f SL 2 (R), and
the period map becomes

(4) (PA: B OA •

P ro o f . By the above result, a is determined by b, c, and the m ap 9 .  induces

B

(f f  co) .
Y3 Y2

Hence a n  a c tio n  o n  a, c ,  h  is determ ined by a n  a c tio n  o n  b , c , s o  r  is
isomorphic to some subgroup of SL 2 (R).

cpA  i s  the quotient of two integrals, 1 (DA and w2.
yx, f Y , 2



roots of indicial equation image of

elliptic point, order 2
cusp
elliptic point, order 2

co 1, i cusp

0 0, 1
—4 0, 0
12 0, +
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B y Proposition 10, Im (  0  0 ,  so by changing -y3 to  — y 3 i f  necessary, we

can  take  g604  to  m a p  to  Y t/4.

By considering the conditions imposed on the matrix entries, it can be shown
that:

Lemma 4. Corresponding to the map [ : (]1— > H 2 : — 3( 2 : there  is  an
isomorphism

j: SL(2, C) S O (T  C )

given by

b i
d 2 1 c2 2dc

[a
C d

—3b2 a
2

—  6ba
db —  ca ad + cb

This restricts to an isomorphism A —> r, and j - 1 (S0(T, Z)) = Fo( 3 )+

From  the  above lemmas we obtain:

Corollary 1. The monodromy group is isom orphic to a  subgroup of T 0 (3 ) .

Proposition 13. The period map (f),: B
0/A

 is given by  — ' w here is
C

a certain basis for the  space of  solutions to  the differential equation and (pA

can be ex tended to

P1 

The singularities of  the equation, 0, — 4, 1 2 , c ic  w ill be m apped to elliptic
f ix ed points or to cups by  (p", (see Table 2).

P ro o f . Let r1 , r 2  b e  ro o ts  of the indicial equation at a  singular point A.
If r, — r2  E Z, then either A is mapped to a cusp, or this is only an apparent

singularity.
H ow ever, w hen r, = r 2  t h e n  t h e r e  i s  a  s o lu t io n  involving logarithms

([§15.31, 10]), so  th e  singularity is not apparent; the universal cover will have
infinite order here, and  so  the point m ust correspond to  a cusp.

I f  r, — r2  = p /q , p , q  e  Z , (p, q) = 1, g 1 , th en  A  w ill b e  m ap p ed  to  an
elliptic point of order q. (For more details about the indicial equations. see [10].)

Table 2: Orders of monodromy at singularities
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The results of inspection of the equation are  given in  T able  2 , which gives
the result.

There is a  form ula for the  'area ' o f the  fundamental domain o f subgroups
in SL 2 (Z), which will also give a n  area of our subgroups:

Proposition 14. W e have

2

1

7r f.,/, y - 2  dx dy = 2g — 2 + m + (1 — 1/e t,)
v=i

where g  is the genus of  ,Y t*/4, m is the number of  inequivalent cusps, and e1 , e,.
are the orders o f  the  inequivalent elliptic points of  4.

P ro o f . [17], § 2.5, Theorem 2.20.

Proposition 15. The group A  has 2 cusps and 2 elliptic points of  order 2, and

[r0(3 )+  z i] = 3.

P ro o f . From  C orollary  1 , 4  c  To (3)+ .
There is a  map

cp'21: —>,Ye.Azo

so  the  genus g  o f Y t*/4 is 0  (R iem ann-H urw itz). W e d o  no t know  w hat the
order o f  ce, is , so  w e  can  a s  y e t o n ly  sa y  th a t 4  h a s  o n e  o r  tw o cusps, and
one of two elliptic points.

F rom  Proposition 14, w e have the following possibilities fo r ,104.

G possibilities for 4 To(3)+

g 0 0 0 0 0
m 2 2 1 1 1
r 2 1 2 1 2
e l 2 2 2 2 6
e2 2 — 2 2

area (dr/G) 1 1 0 — i I 
3

T he ra tios o f the  a reas is  equa l to  the  index  o f the  subgroups, hence the
only possibility is a s  stated.

Lemma 5 .  T he group I n 6 )  is generated by

r1  6 1  [7  — 1 8 ]
[ _ i  ij' Lo L2— 5

P ro o f . This can be show n from  the  results of [11].

Lemma 6 . I f  V  is  a  subgroup o f  index  3  in  F ° (3)± w i th  2  cusps and  2
elliptic points, then up to conjugation by an element of F 0 (3)+ , 17  has a fundamental
domain as  in  Figure 8.
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—1 01 3  2
Figure 7: The fundamental region for F ° (3) divided into 2 fundamental regions for r (3 ) +

0
Figure 8: The fundamental domain of 17

P ro o f  The fundamental domain fo r V  in  Y e will be the union of 3 copies
of the  fundamental domain for F ° (3)+ , corresponding to 3 coset representatives
for V  in  F 0 (3). The identity matrix I  can be taken as one  coset representative,
and the others can be chosen so that the union is connected. (See [16] Theorem
2.4.3 (ii).) U p  t o  translation, there a re  only 5 connected regions form ed by the
union of three fundamental domains fo r F ° (3)+ . U sing that fact that V  has 2
cusps, it can be shown that its  fundamental domain m ust be  a s  s ta te d . In the
figure, coset representatives in  F ° (3)+ a r e  labeled.

L em m a 7. I f  V is  a  subgroup o f  index  3  in  r ( 3 ) ± w i th  2  cusps and  2
elliptic points, w ith a  fundamental domain F  as in  Figure 8, then F

°
(6) V.

P ro o f  Because transla tes of F  cover V  m ust contain some element
9

fixing oo a n d  m apping -
-

2

3  

t o  —
2

. T h e  only  possib ility  is 
[ 1  6 ]

. Similarly,
0  1

F t  01
e V.LI 1

The group V has two elliptic p o in ts . These must be elliptic points of F ° (3)+ .
S o 3 + LO  is  a n  elliptic po in t of V.

A  calculation show s th a t  th e  on ly  non-trivial elements o f  F ° (3)+ fix ing
, 1 

3 + iO  a re  \ /
1

3
3 a n d  its  inverse . So these elements a re  in  V , and

— 1 
1

so is
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(5 )
[ 7  — 1 8 1  r 1 —41

-1- 1- 1 6 1 -1 r 1 —4

[ 2— 5 ] [ 1 / 3  — LO 1] L1/3 —1

Hence by Lemma 5 w e have F ° (6) g V.

Corollary 2. Up to conjugation by  an  element o f  F0 (3) + ,  we have

F0(6) g A ,

w ith index  2.

0  1
Pro o f . This is just from conjugation by 

[

]  
of Lemma 6 and Proposi-

— 1 0
tion 15.

Theorem 2. T he monodromy group is isomorphic to

4 (0 + 3

P ro o f . B y  Proposition 12, th e  monodromy group  is  isom orph ic  to  A  c
SL(2, R). By Corollary 2 we may assume tha t 4(6) g A , and the index in two,
s o  A  m u st b e  in  the  no rm alise r fo r F0 (6). T h e  normalising quotient i s  the
four-group, so there are 5 groups of genus zero between Fo (6) and its normaliser:
F0 (6) - , F0 (6)+ 2, F0 (6)+ 3, F0 (6)+ 6, F0 (6)+ . The only one with the right index and
the  right number o f cusps (listed in  [6], table 2), is  F0 (6)+ 3.

6. Solutions to  the Picard-Fuchs equation

In  this section we shall find the solution space for the Picard-Fuchs equation
This is done by making a  series of transformations, starting from an equation

6', with known solutions, and finishing with

6.1. Notation and Definitions. The Dedekind eta function 1) is given by

('r) = e 2 n ir TI ( 1  _  e 2rzirn) E .
n=1

W e write q en't1 1 2 .
The functions s(t), V (t) and .1(r) are  defined by

)7(6081)(04

(6) s(T) — 
r/(21-)8 ri(3T)4

r/(2Tri/(3T)
(7) VW ;1(0'71(6-02

(8 ) )L(t) = (r/(T) 11(3 t)  ) 6
4 .

i'l(2-r)17(6r)

Lemma 8. W ith A  and s as above,

A —(1 — 3s) 2 /s .
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Table 3: Stabilizers of the cusps and elliptic points

t stabilizer ,1(r)

0
CI 01)

—4

oo
(1 6)
0 1

oo

(3 + i )
0 (—  1  4 )

0
1 I

(3 + i0)/2
0 ( 1 —2)

i — I
12

T he value o f  A(T) at elliptic points and cusps are as in  T able  3.

P ro o f . Lines 9 and  12  of tab le  3 , in  Rd, say that

1/(2 0 81/(3 '04 
( 6E = ti(6,08riery _1_ C I

is  a H auptm odul for F0 (6), that

t 5 c  =  
q(T) .11(3

T)  )6
c 2ti(2r)r/(6r)

is  a H auptm odul for F0 (6) +  3 , and that

(9 ) t6C = t6E 9/t6E •

The constants c1 , C 2  can be determ ined by expanding in  term s o f q , and
comparing coefficients: we can take

c i = 0 , c2 = 10 .

Then from Equation 9, and the relations

s = 1/t  6E , and A =  t 6 C  ±  ,

we obtain the  required relation between and s.
The q  expansion of is given by

= + 2— 15q + 32q 2 —

Hence A(ico) = oo . From  the  above relations for

( 1( 3-  6

2 )
 =  2  

(  q(r)ri (3r) V 6

2r)ri (6r))
q (2 —1)n  ( 6 -1)

T T

where r = — , so .1.(0) = — 4.

87q 3 + 192q 4 — 343q 5 + 672q 6 • • •
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The branch points of s(T) must m ap to  the branch points of 2(T) (i.e., cusps
are  m apped to  cusps). T he  branch points of —(1 — 3s)2  /s a re  a t  s =  +  1 , and
here —(1 — 3s) 2 / s = 0  o r  1 2 .  By a computer estimation we can determine which
cusp takes which value.

6.2. The solutions of the Picard-Fuchs equation

Lemma 9. T he differential equation

d 2 v dv
(v) = s(s — 1)(9s 1 )  

d s 2  
+ (27s2 — 20s + 1) —

d s  
+ (9s —  3)v = 0

has solution space

V(T)(C 0 TC) .

P ro o f . In  [3] §  1 , it is show n that 6 ' has a solution

f (x ) = vnsn
n= 0

vn( n k ) 2  /2k
)

with

 e M I (T, (6)) .

In [21] §10, §11 a n d  §14 , it is show n that 6 ' is the Picard-Fuchs equation
o f  a  family 66  of elliptic curves, the  elliptic modular family associated to R (6),
and  th a t the  g , has solution space

h(T)(C TC) ,

where h(T) e M I (r i (6)). W e  c a n  ta k e  h(T) = f  (s(r)).
T o  show that f(s(T)) = V(T), the q  expansions are compared. Computation

shows that these agree to high enough order to im ply the  equality.

Lemma 10. T he differential equation

d 2 y dy 1
g = A (A  + 4)(2 1 2 )  

d 2 2  
+ 2(2 2 — 7 A — 12) 

d
- 2  + 

4
— (A — 4)y

has solution space

s1/2(T)v(T)(c e T c ) .

P ro o f . This is  because  g  is  ob ta ined  from  2 ' by  a change of variables

y = s i l2 v

A = —(1 — 3s) 2  /s .

Theorem 3. The Picard-Fuchs equation

d 3 y d2 y = A (A  + 4)(A + 12) 
d A 3  

+ 6(2 2 — 71 — 12)
A
 +    Yd 2  ( 7 1

2 — 121 — 96) dy A
 ( A  +  4) dA 

+  

A + 4
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has solution space

G(T)(C 0 TC 0 T2 C)

where

G(t) =
171(T)11(3 T))2

P ro o f . Since g; = S 2 g  (Proposition 11), from Lemma 10,

sol (g) = (sol (g)) 2 = s(T)V 2 (T)(C T C  T 2 C) .

R em ark . It can  be  show n  tha t F  is  a lso  the Picard-Fuchs equation for a
pencil o f  abelian surfaces .91. d  is constructed from  th e  family W, using the
method of [14] §5. (6 in  our notation is the family 1,4 2 . It can also be shown
th a t fibres of these two families have the  sam e trnascendental la ttice, so [12]
gives a  geometrical relation between the fibres; but we d o  not know  if this can
be extended to a  g lobal relationship.

7. A  combinatorial application

We remark in this section that the an a re  related to something purely combi-
n a to r ia l. For m ore details, see [20], chapter 1.

Consider a  random  w alk o n  th e  root lattice A 3 ,  starting from  the origin.
This means that we take the state space to be the elements of A3 R 4 ,  and for
z e A 3 ,  the transition function P  is given a s  follows:

1
P(z , z  + r) = 1 2 ,i f  r is  a ro o t ,

= 0o t h e r w i s e .

At time t = 0, the position is  a t the origin of A 3 , and at tim e t > 0, the possible
position is determined by the position at tim e t — 1, and the transition function
P .  Set bn = the probability of getting back to the origin in  n  steps, and denote
the generating function fo r the  b„s by

.4(v) = E v"b„ .
n>0

Lemma 11.

(- 4 ) 'a „, 1
(-3 )"b„= n ! E 

.= . m! (n — m)! •

Theorem 4. If

01(2-011(60r
v(c) =

1207W/7(3-0r — 40/(2'017(60)6

01(10;1(60)4
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then

(r1(t) 11(3 T))4  

.4(v(r)) —
(;)(2-r)r/(6T))2

P ro o f . In  4.1, we defined /(A) =  E n > , vn+ 1  an ,  where y = — 1/(A + 4). For
convenience, define .1,(v) = I(A). Now by considering the relationship between
a s  an d  bn ,s , / n (y) and .4  are related as  follows:

1 + 4v (   1 2 v  
.4(v) =

12v 1 + 4v) •

The function / W  is  a solution of the Picard-Fuchs equation °?-7,  and so by
Theorem 3  can be expressed a s  G(T)(a + bi + ct 2 ). Considering coefficients of
the q  expansions (q = e 2 ' )  shows that a s  a  function o f T, 1(2) = — G (T ). A
change of variables gives the result.
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