
(H.1)
im p l y  =  =  .

E e R  and

Here { , } is a s  usual the Poisson bracket.

p(x 0 + (x0)) = }(x0, + itcp '(x o )) = 0
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Singular principal normality in the Cauchy problem

By

F. COLOMBINI, D . DEL SANTO and C. ZUILY

1. Introduction

It is well known now, after the w ork of Hiirmander [H] and Alinhac [A],
th a t the  tw o  relevant concepts for the uniqueness in  the  C auchy  problem are
principal normality a n d  pseudo-convexity. However there are sim ple examples
o f  operators fo r  which uniqueness holds but principal norm ality fails on  the
initia l surface. The purpose o f  this w ork, w hose starting p o in t has been  the
understanding o f  th e  recent example given in  [C D ], is  to  show  tha t, in  some
cases, one c a n  re lax  the notion of principal norm ality . Indeed, fo r  operators
with simple characteristics we introduce a  notion of singular principal normality
and  w e prove that it ensures compact uniqueness. In  a  second  pa rt w e show
that this condition is  relevant in proving that if it is violated in  a  strong sense
then non  uniqueness holds fo r  a  zeroth o rd e r  perturbation of the operator.

The uniqueness result uses Carleman estimates with singular weights, which
are proved by the method introduced by Lerner [L] in  the standard case. The
main difficulty is then that the  proof requires a Fefferman-Phong inequality for
pseudo-differential operators with symbols in  a  n o n  temperate class in  the  sense
of W irm ander [ H ] .  However this inequality has been established in  a  recent
paper by the au th o rs  [C D Z ]. The proof of the  non  uniqueness result uses the
method developed in  earlier works (see [A ], [Z ]) with new difficulties related to
the singularities.

2. Statement of the results

Let P be a  homogeneous differential operator of order m > 1, with complex
v a lu e d  C  coefficients, in a neighborhood V  o f a  p o in t x , in  R", and symbol p.

Let S  be a  C ' hypersurface through x 0 , given in  V  by S n V = e  V  cp(x) = 01,
with cp e C' and  cp'(x) 0 0 in  S  n v. W e shall se t  V+  =  {x  e  V: cp(x)> 0}.

The symbol p  will be assum ed to have simple complex roots
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The second assum ption is an  ex tension  o f the  usua l principal normality
condition (see [H]).

1
We can write —

2 i
05, p l =  q + r  where g, r  are  two functions such that

(H.2)j )  t h e r e  e x i s t s  C > 0 such that q(x, )1 --• C1P(x, )1 ' 11 m -1  i n  V + x  12"
1

ii) there exist e e ]0 , 1[ and tt e Lm(V +  x  R") with ,u(x, ) 1 — e
and  cp(x)r(x, ) = /.1(x, )(Irri p { p, cp} )(x, ) in  V + x  W .

Then we can state

Theorem 2.1. A ssume that the operator P  satisfies (H.1) and (H .2 ) . Then tie
u  is  a  C  function in  V  such that

1
(2.1)P u  (x) C  E I D Œ u ( x )

 i n  v ,
1.1<.-1 (iP(x)) -lœ l

(2.2) supp u c Ix e V: p(x) > 0} and supp u n s  is compact,

there ex ists a  neighborhood W  o f  x o  i n  which u  vanishes.

Remarks 2.2. a )  I n  fact Theorem  A  still ho lds under th e  slightly more
general condition

{

there exist c e  ]0, 1E, 1.1 e L"(V + x  R") and y > 0
such that p (x , ) + y 1  —  e and
9(x )r(x , ) = ii(x, ) Im  fill), 91(x , ) + s(x , )
with 1s(x, 01 LÇ, y ip(x,  ) H {  q)1(x, 01 •

b) If n  =  2  one can remove in  Theorem 2.1 the  assumption that supp u fl S is
compact which means that we have true uniqueness. This follows from the fact
that, according to Remark a), the condition (H.2) is  invariant under the singular
change of coordinates t = T O — IV ) ,  x =  X  (when S  is given by It = 01) which
convexify the support of u. The invariance mentioned above is a  consequence

(H.2)

o f  th e  inequality  Im  
_Op

symbol in  tw o dimensions.

< c 11, 1
Op
at

w hich holds fo r  a n y  n o n  characteristic

   

c) W e note th a t the condition (H.2) depends on the surface S  but n o t on the
function (p.

d) In  the  case  of the  operator considered in  [CD],

P = D,2 — D —  D + i((D, + .tD 2 )2 + at 2 D1)

and S = It = 01, the condition (H.2) ii) is equivalent to a >  4 (and we take g 0).
Another example for which Theorem 2.1 applies is P = D, + k e N.

e) If there are tangent bicharacteristics, the condition (H.1) should be replaced
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by a  pseudo-convexity co n d itio n . However the method used here does not allow
such an extension.

W e  show  n o w  th a t  the condition (H .2) i s  i n  som e sense necessary for
uniqueness.

Let us consider in  a  neighborhood of the origin in  K - 1  x  Ri
+  a  differential

operator P = De" + a(x, t)D a"Dil w ith principal symbol p.

A ccording to th e  hypothesis (H.1) we shall assume th a t  p  h a s  a  smooth
simple characteristic which means that in  a  conic neighborhood V x F of a point
(0, 0; ,  to) we can write

p(x, t; -c) = (t —  2 (x, t, ))q(x, t; -r)

where 2, q  a re  C "  functions a n d  q(x, t; et) 0 0  i n  V x F .  W e shall set 2  =
+ i2 2 w ith  A , and  2 2  real.

Then we can state

Theorem 2.3. L et U  be a  neighborhood of  the origin in R" -
1 and  6 0 E 1[.

A ssume that one can f ind a function in  C (U  x [0, 60 ], R) w ith 17,g(0, =
such that

(C.1)

{ there ex ist e  > 0  and h e L " (U  x  [0, On ]) such that
h(x, t) 1 + e  and, w ith C = (x, t, 17), tx, 0, 2 1(x, t; Vx (x, t))

PI (C) = h(x, t)(Im P{p, t } ) ( ) .

W e assume m oreover that there ex ists an  integer M  >  1 such that, f o r loci + j
M —  1 and (x, t) in  U  x [0, 60 ] ,  one has

(C.2) (apti22)(x, t; f t)) = t m g  a i (x, t)

where ga i  a re  C "  and go o (x, t) O.
T hen there ex ist tw o C "  functions u an d  a, vanishing f o r t < 0 , such that

Pu + au = 0  near the origin and (0, 0) e supp u.

Remark 2.4. T his resu lt can  be  applied  to  the  example given in  Remark
2x 22.2 d) if a e [0, by taking t) = tx,

3(1 +

3. Proof of Theorem 2.1

As usual one can assume that x, = 0, S n v = {(x, t) e R"- 1  x  R : t = 0 } .  The
uniqueness will follow from a C arlem an estim ate. We shall prove

Theorem 3.1. T here ex ist positive constants C, y , an d  a neighborhood W  of
x ,  such that
(3.1) E y m—lal-1/2  t -y -1 /2  +  1211Yull 1.2 C11 y-1/2-1-m p„

"II L 2  ,
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for y  yo  an d  u E C,T(W ), supp u c 1(x, t): t 01.
Proof  o f  Theorem 3.1. W e set u  = C.v. Then

P(x, t; D x , D t )u  = P(x , t ; D x , D, —  iyt - 1 )v.

Since P  is homogeneous we get

trnP(x, t; D x , D,) = tY  P(x, t; tD x , tD, — iy) + ty R„,_ 1 (x, t; tD x , tD, — iy)

where Rm _ , is  a symbol of order <m — 1.

In it easy  to  see  that (3.1) will follow from

(3.2) ym-lal-112 11c l / 2 + 4 1 .0 2 1)4 2 C  t - 1 1 2 P(X, t; tD x , tD, — .

In the L 2 norm s w hich appear in (3.2) we set t = e .  T h is  is  a diffeomorphism
from ]0, 1[ to  ] —oo, e[. Let us set w(x, y) = v(x, eY). Then w is rapidly decreas-
ing when y — ce. A  straightforward computation shows tha t (3.2) will follow
from

(3.3) E Ym-121-"1211(eYDxrDykwIlL2 eY; eYDx , D y  — iy)wIl L 2
Ial+k.çm-1

if y is  large enough.
W e set

P = P(x, eY ; eY  D x , Dy  — iy) = E  ap k (x, eY)eY 1131Df(Dy  — iy)k .Y

The usual symbol of P y  i s  p(x, eY ; eY ,11 — iy). Following Lerner [L ]  we shall
denote by Ry the operator whose Weyl symbol is p(x, eY; e , —  iy). Then R y —
Py  i s  a differential operator whose usual symbol is

1
b(x, y, y) = —  -  DDŒE [p(x, eY ; — iy)]

1.1<m (x! \2J

iy i

where X  = (x, y), ." 7' = )1).
If follows from Proposition A.1 in the Appendix that

(3.4) II(Py — Ry )wIlL2 C E Ym - 1 - 1 "  iR e Y D.) 1 Dy
k w111.2

It follows that (3.3) w ill be a consequence of

(3.5) E yrn-1111-k-112 11(eYpyDykw 
II L 2c  II R y w I l •

N ow  IlR y wIl 2 = (R;PR y w, w) and the advantage to work with Ry  instead of Py  is
tha t the Weyl symbol of lq `  is simply p(x, eY , e , —  iy).

To com pute the Weyl symbol of IZ.,̀ R y let us recall the following formula

1 1  (1 ) 1Œ1( 1 )ifil
(3.6) o-w (A  B ) = E - - - - DŒOI2aD b

„, 13 a! (3! 2 2 4

Ifil+k=m

ci#0
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if a  and b are the W eyl symbols of the differential operators A  and B .  Here
w e take a =b  = M O w h e r e  = (x, eY, e , ij — iy). The te rm  in (3.6) with
ot = fi =  0  is  equa l to  Ip(C)12 and that withi  + I 1 can be w ritten as

e Op O p ap a p eY la p  O p ap Op \
fi axi() ax. (C) a i

g ) ) + 2i (C ) at (C)a t  (C) at (C) )

+ 1 ( aP (O l e  
O p  

( 0

 O p

 (c) E eY  
Op

 (0 )2 i at • at • j

j ( 1 )

Now since p is homogeneous of degree m  w e have

Op OpE (C) + iY) mP(C) •
j at

It follows that

1 [0 p
 m

op ap
P. ( 1 1 1Y)(1) —

. Op]
2t at at a t + at +  IY ) OT (C)

(1) = a
o

P
T — p   *a

o
l i
t )(C ) + Y  ao P

T (C)

Then if w e set X = (x, t), E = r )  w e find  that the W eyl symbol of R'R y is
equal to

       

ap Op
(3.7) v-w (W;R y ) = 1P(C)12 + eY Im z.,(0 • a x (C) +

Op
(C)

2O p
+ m Im (C)• p(C) + S

O T

where

(3.8) S =
1 1  ( ly (  1 \1 i3 1

1.1+1/31>2 a! 13! 2) 2 )  D r a (fix,y)[ P( 0 ] , 9 4,0a7x,y)EP(C) ]

(N ote  that th is is a finite sum.)
The main part of the proof of Theorem 3.1 is then:

Lemma 3.2. A ssume that p satisfies (H .1) and (H.2). Then there exists a
positive constant co such that f o r 1x1 + eY co a n d  y  ec°

(3.9) aw(R;k By) > c0 y(eY11 + 1111 + Y)2 ' 2, n) E R H ' x R.

P roo f. It is first easy to see that one can find a positive contact C indepen-
dent of y  such that if y > 1

(3.10) 1,5'1 C(eY 11 + 1111 + Wm- 2 , Vy e[, n) e 14"-1  x  R.

It follows from (3.7) tha t (3.9) will be a consequence of

2
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ap ap Op 2
(3.11) 1/3(012 + eY Tm (C) (C) + YOE a X (C)

UT
±

ap

(Cl•1 m  pg)at

ciy(e Y 11 + 1 1/1 + y) 2 m - 2

if y is  large e n o u g h . R e c a ll th a t  =  (x, eY; e , —  iy ) , E  =( ,  t )  and X  = (x, t).
Since e a p p e a r s  in a n d  i n  t h e  right hand side of (3.11), this inequality will
follow from the  following claim:

there exists c o su c h  th a t for 1x1 + t <  co , y > ec°, ri) E R n - 1  X  R,

    

2 ap
+  I m (Z)p(Z)

CT

ap ap
(3.12) 1P(412 + t Im (Z) (Z) +  y

a E  a X
ap

(Z)at

> c0Y(11 2  +1r/1 2  + Y 2 )m - 1

where Z = (x , t; — iy).
Let us set A 2  =1W  +1 1112 +  y2  and

Y - - -(3.13)r =  —

A '  
= —

A
, = 

A
, Z = (x, t, Z, —  iF) .

Dividing both sides of (3.12) by A 2 ( m- 1 )  a n d  using the homogeneity, we find that
(3.12) is equivalent to

   

ap -_(z )at
2

+ M r - 1  Im  p(Z )p(Z ) > c0 .(3.14) y1 ' - 2 1/3(2 )12 +  t r - 1  1m /3'3.(2 )13'x(2 ) +

     

We prove (3.14) by contradiction. If this claim is not true one can find sequences
(xk ), (4), (Zk ), k ), (y,), (17,) such that

1
(3.15) Xki + tk 1(.1,12 + Ifik1 2 =  I, y ke k

   

ap 2
(4)

OT

(3)

(3.16) Ykrk-21/3(2k)2 + /1,/;,-1 Tm /3 E.(2 k)6 ( 2 k) +
(1) (2)

+ mlk- 1  Im P(Zk)P(Zk) ,

(4)

where 4  =  (x k , tk , k , f lk  — i rk ).
Taking subsequences one m ay assume that

(3 .1 7 ) k Pk FO as k  - 4  + , with 101 2 + 3/Z• + rg = .
L et u s  no te  th a t  fo r every continuous function F  of (x, t, y ) th e  quantity
F ( Z )  is bounded by a  constan t independent o f  k  (by (3.15)). W e shall write
F(2 k ) = 0(1).
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CASE 1:T 0 0

Then tk Fk
-1  1m P ( 2 k )P ( 2 k) =  tk iT, 10(1)— 0  a s  k +co.

Op -

Moreover

2

Im  P ( 2 k)P(Zk)I t Ykii- 2 11)(2 k)12(3.18) m F1 + c71 1 ___(Z
k )ar

It follows from (3.16) that

1 Op - 2
-

2  
Ykrk- 2 1P(4)1 2 + ( 1 — cY1 1) (Z k )OT

< — tk/i- 1 0(1)
k

Then 1P(2 k)i and ;°  ( 2 k) tend to  zero. By (3.17) we get p(0, 0; iro) =

(0, 0; 1E0) = 0 w ith F , 0  0. This contradicts (H.1).
OT

CASE 2: F0 = 0

W e can write in  (3.16), (2) = tkrk-1 F (rk ) with

F ( f )  = 1m P'. ( .2k)P'x(2 k) = F(0) + Fk 0(1) .

1 „
Now F(0) = —

2 i  
u), pl (mk ) where m k  =  1X 0 & ,  1 c ) -  It follows that

(2) = tkrk {P, (mn) +  t k 0(1) .

Thanks to (H.2) we can write

(3.19) (2) = tkri- l q(mk) +  t k r k
- l r(m k ) +  4 0 (1 )

(5) (6)

and

1(5)1 ctkrk-1 1P(mk)1 •

Since p(mk) = P(2 k) + 40(1) w e get

1
(3.20) R5)1 < — FC 2 Yk IP(2k)12 + tk + .

— 4

Let us consider the term (6) in  (3.19). By (H.2) ii) we have

Op
(6) = 4 -1 /1(ink)

 1 m
 P(mk) (mk) •

u2

N ow  P(m k) =  P(2 k ) +  i e a
P
T (2 k ) +  4 2 0(1), and (mk )  =  ;1 (2 k)

Therefore

+  Fk0(1).

Op
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(3.21)
1 -1(7 )1
4

- 2 Yk IP(2k)12 +  Fk O(1) + cy, 1 0(1)

Op -(4)
OT

2
+ (7)

  

It follows from (3.19), (3.20) and (3.21) that

(3.22) (2) = - P(mk)
Op(4)
CT

2
—
2

rk 2 yklp(Z)1 2 + ck,

   

Using (3.16), (3.18), (3.22) and (H.2) ii) we get

1
-

4  
Ykrk- 2 1P(2k)12 +  g

Op -(Zk )at
2

g/C, glcr -40 .

Letting k  go  to +co we get

  

Op
P(0 , 0; 1:), 11,3) = (0, 0 ; 0, 11()) = 0

CT

with, by (3. 1 7), 1.(:112r l ô  =  1 .  This contradicts (H .1 ) . T he proof is complete.

E n d  o f  th e  proof o f  Theorem 3.1. Let O e  C ( R )  be such that, with co

defined in  Lemma 3.2,

(3.23) 0 (Y ) = e Y1 2co

if eY  < co

if eY  > 2c0 ' 0 < 0(y) 2c0  .

L et x E C  be such that, 0 <  x  < 1 and

1 if  Ix +  eY
co

(3.24) X(x, Y) =
J ) if lx1 +  eY c0 .

L et us set 02 =  0 2 (y)I,1 2I I / 1 2  + y 2 . I t  is easy to see that

(3.25) I a w (IqR , MO 2 m, x  +  eY co , y > ec°

L et us consider the following symbol in x R x Itn - 1  x  R ,

(3.26) g = x0- w(R;,6 Ry ) + (1 - x )M (0 2 1 12 + U2 y 2 ) "  •

We shall show that, with the notation in  Appendix

0.

Indeed if  Ix' +  eY  < co we write

g = aw(R;K R y ) + (1 - x)CM ( 0 2  1 12 + U2 ±  7 2 ) " '  — aw(R;KRy)]
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therefore, by Lem m a 3.2 and (3.25) w e  have g > c o 70 2 m -
2  i n  th is  re g io n . If

xl + e >  co  t h e n  x =  0  s o  g = M (0 2 1 12 + 172 + y 2) m m 7 0 2 . - 2. T his proves
(3.27).

It follows from (3.27) and Proposition A .1 in the Appendix that (gt7u, u) >
cyilu _1 for every u  in  C ( R ' 1 x  R ) .  Now, since qw is  a  differential operator,
we have q ww = qw and if u has its support in Ix + e  <  l c o ,  where x = 1, we get

This proves (3.5) and  completes the proof of Theorem 3.1.

4. Proof of Theorem 2.3

The proof of Theorem  2.3 is inspired by that one of Theorem  1 in [A].
F irst o f  a ll w e  show that, w ithout any restriction, w e can alw ays suppose

that for all (x, t) E U  x [0, 60 ]

(4.1) go,o(x, —c' < 0 ,

for some c' > 0. In fact if go, dx, t) c  >  0 we consider the point (0, 0, - -  to)
and  we obtain (4.1) together w ith the conditions (C.1) and (C.2) for ;1.- and  Z ,
where ;(x, t; =  -2 (x , t; - ) and '4'(x, t) = -  t). Moreover we remark that,
eventually taking smaller U  and  So , there exists c" > 0 such  that, for all (x, t)
U x [0, be ],

(4.2) A2(x, t; V ( x, t(aiA2 + { 2 2, Ai })(x , t; 17
.„ (x, t)) tm c".

In  fact

= ( - a,22  -  { 2 2, A1})1(112 +  (t- -  A1)g1 + 2 g2

where g ,  and g 2 a r e  C  functions, and

Im (PIA =  2, 21912 + 1m (Ca, tl)

= (x , t; 17x (x , t), 1(x , t, (7 x (x , t)), by  the condition (C.1) w e have

t ( - a 1A2 - A1 })(x, t, vx(x, t))

lq12 t(1:212)(01,
= A 2(x l f7x(x, t))h(x, t)[1 + (112 

Im (4- 1q, t1)) ( )

and consequently

(112 ±  t(at ) 2 ±  { A 2 ,} M x ,  t; r7x (X , =  — 2 2(x, t ;  /7) , (X , t))•

Setting

where 1 c L '  and /(x, t) > -

2  
in  U' x [0, 6( ]  w ith U' U  and SO E 6 0 1  Using

now (C.2) and (4.1) we obtain (4.2).
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Construction of the phase

Lem m a 4.1. There ex ist a neighborhood U of  the origin in Rn- 1 , two positive
constants s„, c5 < 1 , and a function cp. in CN U x  [ - s 0 , ,s0 ] x [0, (5,], C) such that

6 1
(4.3) p (x, 6 + s6, 17,g(x , (5) + 1 7„(p(x, s, (5), -

i
as (p(x, s, 6)) = 0(s")

where 0(s") means C  function vanishing together with all its derivatives f or s = 0.
Moreover

(4.4) 9(X, 0, 6) = 0 and ax (p(x, 0, 6) = iA(x, 6; 17
x  (x, 0)) ;

(4.5) Re ço(x, s, (5) = 6"[A(x, 6)s + B(x, + R(x, s, 6),s 3]

where A , B , R  e C", and f or all (x, S)E U x [0, 0 0],

(4.6) A ( x ) > c' > 0 ,  A (x, 6) + B(x, 6) < 0 .

P ro o f . W e want to solve formally the  following problem

(4.7)
asikx, s, = + s6; V„(x, 6) + 6f7

x 0(x, s, 6)), sl so
1. 0(x, 0, 6) = 0 .

A s  a  necessary condition we determine all th e  derivatives in  s o f 0 fo r s = 0,
using (4.7). W e have

0, = A(x, 6; Vx (x, 6))

and

(4.8)
a.N(x, 0, (5) = 6a,A(x, 6; V x(x, 6 ))

+ (51-1 n- 1
a,,A(x, 6; f7,c (x, 6))[ax +  E ax Aax a doc 6 ; Vx(x, 6 ))

k "j=1 =1

W e prove now  that w e have

a:0(x, 0, 6) = 6 k
-

1G,(x, 6), k > 1
(4.9) Im k(x, 0, 6) = Hk (x, 6), k > 1 ,

where G k  and  H k  a re  smooth functions.
Indeed setting 6 = 6 0  w e show easily by induction on k , using (4.7), that

s, 6) = 6 k Mk (x, 6, s6, (aao),„,„)
e(x, s, 6) = 6" E a,(x, s6, (a 120) 1 0 1 < k )aj, 4 ) 22 (x, ô + s6, f7x (x, 6) + VA)

where M k , a ,  are smooth functions. Now (4.9) follows from the hypothesis (C.2).
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F rom  (4.9) w e deduce that there exist tw o sequences o f  rea l va lued  C '
functions (hi k )k , J = 1 , 2 , such that

asko x ,  0 ,  (5)  =  b k-l o i k ( x ,  ( 5 )  ± i6max(o,m-k+t)h2k(x, (5))

W e construct now a solution of (4.7) a s  u su a l. W e  tak e  a  function x E  C (R ),
0  x 1, x(u) =  1  fo r 1141 < 1, and  we set

s
k

s, 6) = E  p k_i h i k ( x , (5) ± i 6 m a x ( 0 , M - k + 1 ) 1 1

2k(X ,  6 ) ]X (A k S ) —

k !k=1

where (2k)  is  a n  appropriate positive divergent real sequence. Then IT/ is  a  Cc°
solution of (4.7). Therefore cp(x, s, (5) = itkx, s, (5) is a solution of (4.3), (4.4) which
satisfies (4.5), by  (4.9).

L et us prove (4.6). Condition (C.2) gives

A(x, (5) = (3,(Re (p)(x, 0, (5) = —2 2 (x, 6; Vx (x, (5)) = go,o(x, 5),

so  that, by  (4.1), A(x, (5) = —g o ,o (x, (5) c'
From  (4.8) w e have

> O.

6m B(x, 6) = — 6 422[

n-1

n-1
+  E a  / 1 2 a x  A i  +

i _1J J
a4 , A1 ax / 12

+  2  E
j, k=1

Ai a4 k 22 .0x j ax ,d (x, (5; r7. (x, (5))

Recalling that 12 (x, (5; rvx (x, 6 )) = 6 m go,o(x, (5)  we deduce
n-1

a„,,12 (x, (5; r7x ( x , 6 ) )+  E  aw 12 (x, 6; f7„(x, (5))(9x yax , (x, (5) =  6m ax ,q0,0(x, (5);

consequently

( n Ei a,,,,12.ax,ax,0(x, 6; )7x (x, 6))
k=1

n-1 n-1

= E 84 Ai8x + (5m E 84 2  tax,9 o,o)(x, 6 ; Fx (x, 6 )) .
J 1 j = 1

So that

6m B(x, (5) = — (5(2 2 + { ) .2, 21})(x, (5; V„(x, 6 ))
n-1

_ 26m+1 E  a 4 /11 (x, (5; vx(x,6)).0x,g0,0(x, (5)
j=1

and

A(x, (5) + B(x, (5) =  6 - M E— 22 — (5(a,22 + {A2, ) 1 })] (x, (5; vx(x, (5) )

n-1
—  2 6  E 11 (x, 6; f7„(x, (5))exi g0,0(x, 5 ),
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and the condition (4.2) gives the conclusion if 60  is sufficiently sm all. This ends
the  proof o f Lemma 4.1.

Construction of the function y. W e define the  function h: U  x  [—so , so ] x
]0, 60 ] C  in  the  following way

h(x , s, 6) = e - Y(xme i"' m - i ( "m ev ' m q1(x.smw(x, s, 6)

where v is a  parameter, y, w are functions, with y and w  to be determined.
W e set 6 = 6 4 = v = v k  =  ,  with p, o - > O. F o r  ( x ,  t) U  x[<5k+l,(5k-i] we
define

h k (X , t )  =  e e i vk6 k m  1 4 ( x , 5 1devk 6 k -  m (x,( 1
- 60/ 4, 6k)w  x ,

t
 —  

(5k A(

5 ̀ -'1i •
(5k

W e construct now the  function y. F o r  t E I- 6,  k + 1 5  (5k-1] we define

( _s
t — 6k

Gk (x , t) = v k 6k
- m R etp  x , , Uk — Vk+1(5k+At Re to x,

t  - - - - 6 1 c +1

"k Uk+1

(5k +  
6

k+1 Lemma 4.2. We se t mk  = and Ik (x) = G k (x, m k ). Fo r k +co we
2

have

Ik (x )  =  P k 6 - 1 A ( X , +  OM )  .

Proof.

—[ '51c
6

k+i / k (x) = vk  6 , -,-m Re yo
(

x,
6 k + 1 ( 5 k  A

5 "k Vk+1 6k
-

+
11 Re to x,

26k . L u k . . „

(5.1-1. (5k= v k A(x, 6k)
( 5 k + 1 (51c

 + v k + 1  A (x, 6k + i )  ,.., +  0 ( 0 - 2 ) .
26, Lok+1

But

(5k+1 (5k
VicV k + 1

(5k +1 (5k
(1  +  0 (k - 1 ) )  = pie - 1 (1 + 0(k - 1 ))

26k2 S k + i 2

and A(x, 6k ) = A(x, 0)(1 + 0(k -  P)).
Then / k (x) = — A (x, 0)(1 + o(1)). The proof is complete.

k -1

W e set y(x) = — /i (x) and consequently, for k +co
J =ko

Yk(x) = AO(' + o( 1 )) •

We choose a  function y- E C '  such that 6,a/Pey7(x, 6k ) = yk (x) and  we set y(x, 6) =
6 - ' 1P17(x, 6).
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Transport equation. W e will call B " the set of the functions which are  C "

in  x, s and  in  a  positive  rational power of 6  (6 e [0, 60 ]). By using a simple
recurrence argument i t  is  possible to  show the following

Lemma 4.3. L et q(x, t; Dx , D1) be a homogeneous operator of  order k with C '
coefficients and

0(x, s, (5) = — y(x, (5) + iv6 - m ( 5 ) + v6 -  9(x, s, 6) .

A ssume that 0 < a  <  p. T hen there ex ists a  function g e  B  such that

q (x, 6 + s6;
V D x , Ds )  e'' =[q(x, 6 + s6;

Vv i

( 5M+1 (5M 6'  1

Remarking that q ,   V 0, —
(5 m

(x 6 + s6, 
( 5M+1 1

Da b ) i s  a B ' function,
V i x V  

from  L em m a 4.3 t h a t  e ('q  x , 6  +  s6 ;

Vx 0, +
(5A1) (5M

we deduce

(5M+1 6 A4
D  D

s

) e ' is a  B '  function.

b y  Leibniz formulaConsequently if w(x, s, (5) is a  B '  function, then

q (
(5M+1 (5M 

x, 6 + s6;
V D x , Ds)e 'w  is  a  B '

(
, 6 M+1 6 m

(4.10) q  x, 6 + s(5, Dx, Ds)e 'w
Vv

function, in  fact

1 1 (5(M+1)icci+mi e+1 (5 .n4

= a! j!
 q ( " i )  x ,  6  +  s (5; Dx, Ds )e 'iD D lw

Œ
I ,.; 1 / 1 " + i

where q(" i ) (x, t; = t; T).

Lemma 4.4. A ssume 0 < a  < p. T here ex ist H(x, s), K(x, s) C. ' f unctions
with H(0, 0) 0 0, an o p e rato r (x, s, (5; Dx , Ds ) with B ' coefficients, a positive ratio-
nal num ber i" > 0 and a function F(x, s, (5)  w hich is 0 (s " ) such that

c
u

m+iy
P(x, 6 + s6, Dx , (5- 1 Ds )(e'w)

6 / 4

 [H (x, s)D (5s w + K(x, s)w + V- (x, s, 6; Dx , Ds )w1= + F(x, s, 6)w .

Pro o f . We have

o m + i y
P(x, 6 + s6, Dx ,(5 1Ds )

(
(5M+1 (5M  )

= p x, 6 + s6, Dx, Ds

( 51  m

k

 ( 5 M

V

 +1)k-1 (5M+1 (5M
—  6 . 1   p,"(x , 6  +  s6 , Dx, Ds ) ]  .
v =1 V V
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By using (4.10) th e  term s com ing from  V  p,n_k w ill be absorbed in
k=1 V

Q. A gain using (4.10) w e have

b m+1. b m bm+1 (5 m
p (x, + s6; DX, Ds )(e  'IA)) = [p ( x ,  +  so; Dx, Ds ) e ' lw

Sm (5m +1
+ [o r p (x, O + sS, D  

6  m
D , Ds ) e ' ] D s w

6M+1 n-1
[ a  p (. . . )e ]D x , wj=1

( 5(M+1)1a1+Mi

+ E  [qatp(...)e']DD1w .
V

Then by Lemma 4.3 we deduce

(
(5m+1 (5 m (5m+1 I( 5 m (5m

p  x ,  +  Dx, Ds )(e 'w ) = [p  (x , +  sS ;  . Fx0, Ds 0 w  + gw
v

)

0 m bm1 (5m
+ — atp (

-1 -
x, +  s S ;  17„0, Ds0) Ds w

V

0M +1

+ I2(x, s, 6; Dx , Ds )w ie ' ,

where g e B .  F ro m  L e m m a  4.1 and the choice of y w e have

(5 m+1 (5m (5m 1 1 )
p (x, +  s 6;    Y 0 D )  = p ( x, ±  Wxy + 17:g + 7 Px(1), 7 as(PV

0M+1-(n/p)
=  0 (s") +  

where g E B .  U s in g  a  similar argument for at p we obtain

(5 m+1 (5m
e- ° P (x, + s6; Dx, Ds )(e 'w )

1 1
— [ 4 ( x ,  +  s6; 6 Vx(P, aS(P)Dsw

+ g(x, s, S)w + S 1x, s, 5; Dx , DOw1+ F(x, s, S)w

where g, F e B", and  F  is  0 ( s ' ) .  We conclude the  proof o f the  Lemma with
Taylor expansions for the functions at p and g with respect to  6, recalling moreover
that 8 r p(0, 0; c), To) O .
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W e construct a  sequence (14); (x, s, 5)) .; o f  13  functions solving

5 H(x, s)Ds wo (x, s) + K(x, s)w o (x, s) = 0
wo (x, 0) = 1

and for j  > 1

{

H(x, s)Ds wi (x, s, (5) + K(x, s)wi (x, s, (5) = 0(x, s, (5; Dx , D ) w i - i ( x ,  s, 5)
wi (x, 0, (5) = O.

We consider then a  function z(x, s, y, (5), C ' in x, s, y and in a positive fractional
power of (5, such that for a ll a e N ''', j, N  e  N, there exists CŒ,i ,,,, > 0 such that

 

DA (
N

z(x, s, y, (5) — E wk oc, s, 6) y k

k=0
ca ,i, Nly1N +1 .

Finally we define

 

w(x, s, (5) = z(x, s, (5) .

A s a consequence of this definition we have that for a ll a e j, N  e N, there
exists C OE, i , N  > 0 such that

(4.11) IM DA (HD, + K  + 5" -0)w)1

By using (4.11) and  Lemma 4.4 it  is  possible to  prove the  following

Lemma 4.5. For (x, t) e U x  [k +1, k -1] le t  u s  define

P(x, t; Dx , Df )hk (x,
rk (x, t) = 

hk(x, t)

Then there exists !c o  E N such that f or all a e NH- 1 , j, N  e N  there exists C„, i , N  > 0
such that

(4.12) IDPI rk(x, t) I
for a ll k > 1( 0  an d  f o r all (x, t) E U X  

[ k+1
, 6 k-11

The set where Ihk1 = Ihk + 1 1. F or (x, t) E  u x  rsk +1, c5k] we define

IhFk (x, t) = Log
k ( x ,

W e have

4Fk (x, t) = vy5k
- m - 1 0, Re (p x ,

t  —

5 k

.5k 

,  ö ) "-1 es Re yo x, 
t —  (5 k + ,

,  6 k + 1 )
(  

"k+1

t —  5,
w (x

'1 s bk u k )
t

as W (X ,
6k+1  ( 5 k +1 )

Ck+1
6 k t — S k , ) 6 k+1 t 6k+1 AW  X W ( X +1 )6 k k

,
C'1+1 k

Ihk+1(x, 01
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Lemma 4.6. L et a  > 1 and  a ssum e that f o r  all x a  U

(0. + p)A(x, 0) + pB(x, 0) —  c  <  0 .

Then there exists k, E N such that f o r  all k k ,  a n d  fo r  all (x, t) e U x  [Sk + 1 , Sk ]

a(Fk(x, i) 

P ro o f . Using (4.5) we can write

atFk(x, t)

= vk k i [A(x, (5k ) + B(x, Sk ) t
 6 : 5k + R x, t

 6 :
5k , Sk ) ( t

 c 5 k
6 k ) 2 1

t  -  ( 5 t  6  A 6
- Vk-1-1 6

k-F1 [A(X, (5k+1)
k+1

°k+ 1) A +  -1‘'
(

X,
k+1

 u k + 1 ) (

t

 A
k+1 2

u k+1 uk+1 uk+1

+ 0(kc)

t  —  Sk t  — Sk + ,
= vkSkl[A(x,

k
(5k ) + B(x, ok ) bk+i[A(x, 6 k-Ft) + B(x, ok+1)

o uk41 1

+ 0(k" ± P- 2 ) +  0 (k ).

k A 2 Vk+i
Uk+1

t Sk t 6k +11—  

+  0 (k " 2 ) + 0 (k ).

And, as a >  1, we deduce that for k + o o

ei Fk (x, t) = — P- 1 +  o -)A (x, 0) + pB(x, 0)](1 + o(1)) .

The proof is complete.

Recalling the definition of y and m,, w e have

Fk (x, mk ) = Log

  

(  
6

k+1 (5k
W  X ,

26k

  

—  0(1) .

      

6
k 6k+1 

W ( X ,  ,,,, u k + 1 )
LUk+1

        

If a >  2 then, fo r a ll  x E U, Fk (x, Sk ) — Fk (x, Sk + l ) -4 + c o  fo r  k +  co. Conse-
quently we can find a  Cc° function mk (x) such that Fk (x, mk (x)) = 0. Moreover
defining ek (x) = in k (x) — mk  w e  have

ek (x) =

Choice of a  and p .  W e set a  = 3 and, recalling (4.6), we fix p > a  in  such
a  way that

c"
(1  + A (x, 0) + B(x, 0) —  —

4  

< 0 .

= A(x, (5k )[v k Sk
 1 v k + i  b a t] + B(x, Sk )
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End of the proof. From  this point on the proof is s ta n d a rd . We give only
a sketch, refering to  [Z ]  for the  details.

Using Whitney's Theorem we construct a  sequence of B "  functions (yk (x, t))k

such that, setting

uk(x, t) = h k (x, t)(1 + y k (x, t)) and Pk (x, t) — 
Puk (x, t)

  
uk (x, t)

w e obtain that P k satisfies (4.12) a n d  i t  i s  f la t on  the  su rfaces t = m k (x ) and
t = m e _1 (x).

A fter that w e consider a  real function z e  C " (R ) , 0  z  1 , w ith  z (u )  =  1
for <  a n d  z (u )  =  0  fo r  lu 1. We define

Xk(t) = z t 6 k

V5k (5k +11
and u(x, t )  = E z k wuk (x, t) .

k>ko

Pu(x, t) .I t  is  a  rou tine  com putation to verify that a(x, t) =  is  a  C  function,
u(x, t)

fla t on  t = O. M o re o v e r , as

T(x, bk) = 0)1(6(1 + 0 (1)) and
— Skvk 6k "  Re 9 (x ,

t  

(5k
6 k

   

w e have th a t  u  is  f la t  o n  t = O. F in a lly  re m a rk in g  th a t u  c a n  b e  zero  only
o n  t = mk (x), we deduce that (0, 0) a supp u  a n d  this achieves th e  proof of the
Theorem.

Appendix

We collect in  this Appendix some results used in  the  proof of Theorem 2.1.
These results, which include the Fefferman-Phong inequality, are particular cases
of those in  [C D Z ] to  w hich w e refer.

W e consider the metric in  R " ' x  R  x  R " ' x  R  =  W

(A.1) gx.y,40 = dx 2 +  dy 2  +
+ cln2

0 2 (X, y, q)

where 0 2 (x, Y, i t )  = + 112  + T2 , y 1 , a n d  0  i s  a  C '  function in  R
such that 0(y) = eY  if eY c„, 0 (y ) = 2c 0  i f  eY > 2c0  a n d  0  <  0 < 2c0 .

W e shall denote by G  by Euclidian metric in  I t" '  x  R .  It is then easy to
see that

= 0 2  (X , y, q)(dx 2  + dy 2 ) + d 2  + de ,

(A.2)
Gx o , for every (x, y, t i )  i n  W ,

g x ,y 4 0 0 -2 ( x ,  y , 1 1 ) <
g

 (XT,
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It is  a lso  easy  to  see  tha t g  is slowly varying b u t not tem perate in  th e  sense
o f  Hbrmander [ H ] .  However g  is  locally temperate in  th e  sense o f Dencker
[D ] a s  we shall s h o w . W e have to  prove that one can find positive constants
c, C  and N e N  such that Gx (X — X') < c  implies gx ,, + g̀ j, .4(X , :F.) —
(X ', E))) N  f o r  every X = (x, y), X ' = (x', y'), E = (1), E' =

A  straightforward computation shows that this will be implied by

,y 2 02(y,)1,12. ,12
(A.3) < c(1 + — + In —7 2 ± 02(.01 v + ij

if I .)) — .11'1
W e have 72  + 1 171 2  2 (y2 +  112 +  11 — 1112 ). Since 7 > 1 we get

y 2  ±  tr2

+  

172

 +  0 2 ( . 0 1 1 2
2  + /7'12 •

Now, since 0 < 2c0, w e have 02 (Y') 202(.11') I + 8e4 —

02 (3;')I V 2 02(.11')
O2

( y ) I 2 +  112 +  y 2  
< 2 

 0 2 (y )  
+ 8c (2i1 — •

Therefore

Assume Iy — 31'1 Log 2. T hen if y L o g w e have y' L o g  c0 . Therefore

0(y) = eY , 0(y') = and

2 
02(y')
02(y) — 2e

2 IY- 1 1  < 8 .

Finally if y c [Lo g 7 ,  + o o  then 0(y) is bounded below by a  fixed constant c,

and  0(y') 2 c o . Therefore

2 
02 (y') 8c,,

 <  .
0 2 (0

T h e  above considerations show  tha t w e  can  app ly , fo r  these metrics, the
results o f  [D ] a n d  [CDZ].

W e introduce now the  Sobolev spaces for m e N,

=  { u : 114 2 = y2("1-41-k)11(19(Y/DxrDykull <  ± GC) } •
lal+k rn

Then we can state

Proposition A.1. 1 )  If a e S (0 - k , g), k e N  then (17 is continuous from L 2  to
yek .

2) If a  E S(ø", g), m E N , then ai" is continuous f rom  Y rn to L 2 .
3) L et a  E  S (0 2 m , g). A s s u m e  th at  a >  c0y0 2 m- 2  i n  W .  T hen there ex ists

c 1 > 0 su c h  th at (axwu, u) c1yllullm2  -1 , u  e Cj)(W).
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P ro o f .  1) This is  tru e  if  k = 0, b y  th e  L 2 — continuity o f  operators with
symbols i n  S(1, g ) p roved  by  Dencker [ D ] .  B y  induction  le t a e g).

T h e n  11a7ullk+1 Yllax
wullk + 110 (Y)D.a71411k + 1lDyax

w ullk. N o w  i f  r e S(0, g )  the
symbolic calculus in [D ] show s that r;a xw = (ra)w + s,pw with ra and s in S (0 ',  g).
Since y, O(y) a n d  ri a re  in  S(0, g) the result follows by induction.

2) Taking x real and  symmetric gives Oxw se lf ad jo in t. Then

11V ;( 4 1 12 = (070714, u) = u) + (r u, u)

where r e S(0, g). Since 0 2 i s  a polynomial in q) w e have (0 2 )(7 = (0 2 )w =
— 82 (y),(1 x  — q. Therefore for u in  CiT we get

(A.4) 110"u111.2 = 72 1141,2 + 110(Y)Dxulli2 + 11Dy ulli,2 + 0 (11ulli.2)•

Now we use  an  induc tion  on  m . L e t a e S(0m, g ) we can write

a u  = al;o (0 - 1 ))7 + a'xvr:pv, r E  S (0 - 1 , g) .

It follow s that 4 ' = +  s ' with s e S(0"1 - 1 , g). Then

a7u111.2 11(a 0 0 - 1 ) (411/.2 + + 110. - 1)

by the  induc tion . W e have

110 7u11.-1 = E —k)11(0(Y)Dx)aDi;0)71411L2 •
m-1

Then we commute 0%; with the operators in front of it (which belongs to S(0*, g))
and w e use (A.4) to  g e t the  result.

3) L et us se t u = (0 ' ) ' » ) .  It follows that

(4'u, u) = ((0 1 - T a 7 (0 1 - 7 ") )7v, y).

But, by  the  symbolic calculus, we have

( 0 1--m)xva ,; ( 0 1-m)xv = ( 0 2-2mayvv,

where r E S(1, g). It follows that

(au , u) = ((0 2 -
2 ma —  co y)v, y) + coY v 2 + y).

N o w  2 _ 2m  —  co y e S(0 2 , g) =  S (h ', g ) a n d  0 2 - 2 ma — co y > O . W e can apply
the  Fefferman-Phong inequality proved in  [CDZ] to get

(au , u) co)) CIAC2 — C

if  y is  large enough, since the constants C  a n d  C ' depend only o n  th e  semi
norms of 0 2 - 2 ma — co y  in  S(0 2 , g ) and  therefore are  independent of y.

N ow  by  1, = 11(0 1 ' ) ; ("v11,,-1 C1101.2. The proof is complete.
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