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Singular principal normality in the Cauchy problem
By

F. CoLomBiNL, D. DEL SANTO and C. ZUILY

1. Introduction

It is well known now, after the work of Hormander [H] and Alinhac [A],
that the two relevant concepts for the uniqueness in the Cauchy problem are
principal normality and pseudo-convexity. However there are simple examples
of operators for which uniqueness holds but principal normality fails on the
initial surface. The purpose of this work, whose starting point has been the
understanding of the recent example given in [CD], is to show that, in some
cases, one can relax the notion of principal normality. Indeed, for operators
with simple characteristics we introduce a notion of singular principal normality
and we prove that it ensures compact uniqueness. In a second part we show
that this condition is relevant in proving that if it is violated in a strong sense
then non uniqueness holds for a zero™ order perturbation of the operator.

The uniqueness result uses Carleman estimates with singular weights, which
are proved by the method introduced by Lerner [L] in the standard case. The
main difficulty is then that the proof requires a Fefferman-Phong inequality for
pseudo-differential operators with symbols in a non temperate class in the sense
of Hormander [H]. However this inequality has been established in a recent
paper by the authors [CDZ]. The proof of the non uniqueness result uses the
method developed in earlier works (see [A], [Z]) with new difficulties related to
the singularities.

2. Statement of the results

Let P be a homogeneous differential operator of order m > 1, with complex
valued C® coefficients, in a neighborhood V of a point x, in R", and symbol p.
Let S be a C* hypersurface through x,, given in V by SNV = {x e V: p(x) = 0},
with ¢ € C*™ and ¢'(x) #0 in SNV. We shall set V* = {xe V: ¢(x) > 0}.

The symbol p will be assumed to have simple complex roots

H1) { EeR" 1eR and  p(xo, & + i19'(x0)) = {p, ¢} (xo, & + i1¢'(X0)) = 0
imply £=1=0.

Here {,} is as usual the Poisson bracket.
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The second assumption is an extension of the usual principal normality
condition (see [H]).
N U .
We can write Z{ P,p} =4 +r where g, r are two functions such that

(H.2) i) there exists C>0 such that |q(x, &) < C|p(x, &) |€|™ ! in VT x R"
ii) there exist e€]0, 1[ and pe L®(V* x R") with u(x, &) <1 —¢
and @(x)r(x, &) = u(x, &)(Im p{p, })(x, &) in V* x R".

Then we can state

Theorem 2.1. Assume that the operator P satisfies (H.1) and (H.2). Then if
u is a C® function in V such that

D(I
2.1) Pui<c Y DUy
laj<m—1 (@(x)) ,
(2.2) suppu < {x € V: ¢(x) > 0} and suppuNS is compact ,

there exists a neighborhood W of x, in which u vanishes.

Remarks 2.2. a) In fact Theorem A still holds under the slightly more
general condition

there exist e€ 0, I[, pe L*(V* x R") and v>0
such that u(x,¢)+v<1—¢ and

P(X)r(x, &) = p(x, &) Im p{p, @} (x, &) + s(x, &)

with [s(x, &)l < vIp(x, &) |{p, @} (x, &I .

b) If n =2 one can remove in Theorem 2.1 the assumption that supp uS is
compact which means that we have true uniqueness. This follows from the fact
that, according to Remark a), the condition (H.2) is invariant under the singular
change of coordinates t = T(6 — | X|*), x = X (when S is given by {t = 0}) which
convexify the support of u. The invariance mentioned above is a consequence
op
ot

(H.2) iiy

of the inequality |[Im ﬁg—g < C|p| which holds for any non characteristic

symbol in two dimensions.

¢) We note that the condition (H.2) depends on the surface S but not on the
function o.

d) In the case of the operator considered in [CD],
P = D} — D} — D} + i((D, + tD,)* + at*D3)

and S = {t = 0}, the condition (H.2) ii) is equivalent to a >} (and we take g = 0).
Another example for which Theorem 2.1 applies is P = D, + it“D,, ke N.

e) If there are tangent bicharacteristics, the condition (H.1) should be replaced
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by a pseudo-convexity condition. However the method used here does not allow
such an extension.

We show now that the condition (H.2) is in some sense necessary for
uniqueness.

Let us consider in a neighborhood of the origin in R%Z™' x R, a differential
operator P=D"+ Y a,(x, t)DID; with principal symbol p.

la|+j<m
j<m

According to thé hypothesis (H.1) we shall assume that p has a smooth

simple characteristic which means that in a conic neighborhood V' x I' of a point

0, 0; &, to) We can write
p(x, t; &, 1) = (t — Alx, t, £))q(x, ; ¢, 1)

where 4, g are C*® functions and q(x, ;& 1) #0 in V x I We shall set 1=
Ay + ik, with A; and 4, real.
Then we can state

Theorem 2.3. Let U be a neighborhood of the origin in R"™* and §, € ]O, 1[.
Assume that one can find a function & in C*(U x [0, §,], R) with V,.£(0,0) = &,
such that

there exist ¢ >0 and he L*(U x [0, d,]) such that
h(x,t) > 1 + ¢ and, with { = (x, t, V.E(x, 1), A,(x, t; V. E(x, 1)),

(C.1) t
Z{ﬁ’ p}(C) = h(x, t)(Im p{p, t})({) .

We assume moreover that there exists an integer M > 1 such that, for |a| +j <
M —1 and (x,t) in U x [0, 8,], one has

(C2) (0£072,)(x, t; V. &(x, 1)) = tM7¥ g (x, 1) ,

where g,; are C* and goo(x, t) # 0.
Then there exist two C® functions u and a, vanishing for t <0, such that
Pu + au = 0 near the origin and (0, 0) € supp u.

Remark 24. This result can be applied to the example given in Remark
2x,

22 d) if ae [0 5[ by taking £(x.1) = tx, — 35~ .
o

3. Proof of Theorem 2.1

As usual one can assume that x, =0, SNV = {(x,t)e R x R:t =0}. The
uniqueness will follow from a Carleman estimate. We shall prove

Theorem 3.1. There exist positive constants C, y, and a neighborhood W of
Xo such that

(3.1) Y TR EDNy |, < ClleTY TP

la|]<m-—1
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for y =7y, and ue C§(W), suppu < {(x,t):t > 0}.
Proof of Theorem 3.1. We set u=t’v. Then
P(x,t; D,, D)u=t"P(x, t; D, D, — iyt )v.
Since P is homogeneous we get
t"P(x, t; D,, D,) = t"P(x, t; tD,, tD, — iy) + t'"R,,_{(x, t; tD,, tD, — iy),
where R,,_, is a symbol of order <m — 1.
In it easy to see that (3.1) will follow from

(3.2) Y TR D || < CETRP(x, £ tDy, tD, — iy)vllp2 -

laj<m—-1
In the L? norms which appear in (3.2) we set t = ¢’. This is a difffomorphism
from 0, I[ to ]J—o0, e[. Let us set w(x, y) = v(x, e’). Then w is rapidly decreas-
ing when y - —oo. A straightforward computation shows that (3.2) will follow
from
(3.3) Yy T2 (e?D, ) Dywll 2 < C| P(x, €% e’D,, Dy — i)Wl

la|+k<m—1
if y is large enough.

We set
Py = P(x’ ey; enya Dy - l'))) = U;H;: aﬂk(x, ey)ewaf(Dy - l'}’)k .

The usual symbol of P, is p(x, e’ e*s, n —iy). Following Lerner [L] we shall
denote by R, the operator whose Weyl symbol is p(x, e”; e’{, n —iy). Then R, —

P, is a differential operator whose usual symbol is

1/i\M .
b(x,y. &, 9) = ) ;(5) DyDip(x, e’ e’¢, n — iy)]
P

where X = (x,y), &= (& n).
If follows from Proposition A.l in the Appendix that
(34) (P, — R)wla<C Yy ™ 7P D, )’ Dywlla .

1Bl +k<m—1
It follows that (3.3) will be a consequence of

3.5) Y T2 )(eD, Y Dywl 2 < CIIR, Wl L2 -
1Bl+tk<m-—1
Now ||Ryw||2 = (R¥R,w, w) and the advantage to work with R, instead of P, is
that the Weyl symbol of R¥ is simply p(x, e, e’, n — iy).
To compute the Weyl symbol of R¥R, let us recall the following formula

1 1/1\™ 1\
w _ _ ap B A
(3.6) ¢"(A o B) = Zﬂ; 5 F!(E) < 2) DzofaDfab
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if a and b are the Weyl symbols of the differential operators 4 and B. Here
we take a = p(0), b = p({) where { = (x, e’,e’é,n — iy). The term in (3.6) with
a=pf =0 is equal to [p({)|* and that with |a| + || =1 can be written as

op ap . 0Op ap ., Op
—Z(—(C) ©- (C)aé(C)> —(a(C)E(C)—b—t(C)E(CQ

1 (3 e

v
(1)

Now since p is homogeneous of degree m we have
op
2 et () +(n—tv) (C) mp(() .
J aéj
It follows that
_1[op dp, 0P O _ 0p p
(1 —2_[6 mp — a('? - ’Y)é; - é?mp a—(ﬂ + '?)6 (©)-

_m ap _ ap
(1= ( o ”&)‘C’”a—“’

Then if we set X = (x,t), &= (& 1) we find that the Weyl symbol of R}¥R, is
equal to

ap . 2 0
(37 o¥(R3R,) = pQ)I* + ¢’ Im—(C) —(C) +7 —(s) + mIm a—i(C)'p(C) +8

where

i +1g>2 o! B!

11 /1\* 1\#
(38) S = Z - _<§> <_§> D({ ) Y(x, y)[p(C)]D(%,q)a‘(zx,y)[p(C)] .

(Note that this is a finite sum.)
The main part of the proof of Theorem 3.1 is then:

Lemma 3.2. Assume that p satisfies (H.1) and (H.2). Then there exists a
positive constant c, such that for |x|+ e’ <c, and y > e®

(39 6" (R¥R,) = coy(€’[E] + Inl + p)>m=2, VE neR™ xR.

Proof. 1t is first easy to see that one can find a positive contact C indepen-
dent of y such that if y > 1

(3.10) S| < C(’IE| + Inl + 9% Vye]—oo, e, V(& neR"™ xR,

It follows from (3.7) that (3.9) will be a consequence of
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0 0
POl +mIm a—’j@)-p(()

2
-0

(.11) PO + ¢’ Im —(C) (C) 7|5,

0=

> ¢y p(e”|E] + Inl + y)*" 2

if y is large enough. Recall that { = (x,e%; e’é, n —iy), £ = (& 1) and X = (x, t).
Since e¥¢ appears in { and in the right hand side of (3.11), this inequality will
follow from the following claim:

there exists ¢, such that for x|+t < ¢, y>e® (§,n)eR"™" xR,

) op ., 0p o, .| dp
(3.12) P(Z) + tIm 52(2) 5 (2) + y‘a(Z) +mIm 2 (Z)p(2)

> coy([E]* + [n2 + )"t

where Z = (x, t; &, n — iy).
Let us set A% = | + [n]®> + y? and

==, Z=(x1t¢&iqf—il).

=

y oz ¢
(3.13) r=—,8=-,

Dividing both sides of (3.12) by A?™ ! and using the homogeneity, we find that
(3.12) is equivalent to

(3.14) I 2(p(Z)® + tI' " Im p; ( 2)\i(Z) + !— +mI ™ Im pAZ)p(Z) > ¢, -

We prove (3.14) by contradiction. If this claim is not true one can find sequences
() (&), (Ea)s (me), (), (Ty) such that

(3.15) |xk|+tk<_ &L+ 12+ T2 =1, 5 > €
a 2
(3.16) Yedic 2|P(Zk)|2 + tkrk ' Im p= (Zk)pX(Zk) + (Zk)
1) &)

3)

) — 1
+ mI7 Im p(Z,)p(Z,) < i
AN ~ J
4)

Where Zk (xk’ tka ék’ He — lI—;c)
Taking subsequences one may assume that
(B17) & —&p M=o =Ty as k— 400,  with [E2+n+1¢=1.

Let us note that for every continuous function F of (x,t, & n,y) the quantity
F(Zk) is bounded by a constant independent of k (by (3.15)). We shall write

F(Z,) = 0(1).
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Case 1: I3 #0

Then t, ;7! Im p'(Z,)px(Z,) = t,[;'0(1) » 0 as k - +o0. Moreover

2

_ — 1 _ ~ _,10p =5
(3.18) ImI; Im py(Z,)p(Z,)] < ZYkrk 21p(Z)1* + eyt b—lj(zk)

It follows from (3.16) that

1 ~ 1 -
IRTIPEOR + (1 - )| P(Z)| < L+ arioq).

~ op ~
Then |p(Z,)| and 6_5(2") tend to zero. By (3.17) we get p(0,0; &y, o — ily) =

%IT)(O, 0; &g, ng — ily) =0 with Iy # 0. This contradicts (H.1).

Case 2: I;=0

We can write in (3.16), (2) = t, I, 'F(I;) with

F(I) = Im p(Z,)px(Z,) = F(0) + L,O(1).

Now F(0) = {p, p}(m,) where m, = (x,, t,, &, 7). It follows that

1
@ =0 % {P. p}(my) + 1,0(1) .

Thanks to (H.2) we can write

(3.19) () = 4, ;7 q(my) + t, ;7' r(my) + 1,0(1)
(5) (6)
and

I(5) < ety 7" [p(my)] .

Since p(m,) = p(Z,) + I,0(1) we get

|- 5 _
(3.20) 16 < 21« 2Ip(Z)1? + eyt + 0(1)
Let us consider the term (6) in (3.19). By (H.2) ii) we have

0
(6) = 13" ulmy) Im pmy) 3" (m,)

- _0p 0 p ~
Now plm) = p(Z) + il 5 (Z) + I0(1), and Sm) = 2Z) + Row.

Therefore
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op ~
Pz

2
e +(7)

(6) = — pu(my)

(3.21) 1
(D < 4 L2nIPZIE + LO() + entO(D).

It follows from (3.19), (3.20) and (3.21) that

op 5 [ 1 ~
(322 (2) = —nulmy) é—[:(zk) + Eﬂ_zhlp(zk)lz + &, & —0.

Using (3.16), (3.18), (3.22) and (H.2) ii) we get

1 -2 (7 V|2 op 5 ? Y
Zyk[l'( IP(Z)I" + ¢ E(Zk) <&, §—0.

Letting k go to +o00 we get

op

p(09 0; é()» '70) = a
T

(0’ 0; 60’ '10) = 0

with, by (3.17), |&|®> + n3 = 1. This contradicts (H.1). The proof is complete.
End of the proof of Theorem 3.1. Let 0 C*(R) be such that, with ¢,
defined in Lemma 3.2,

e’ if e <cq
(3.23) 0(y) = { 26, if o> 2" 0<0(y) <2 .

Let y € C® be such that, 0 < y <1 and

I oif x| +er <
(3.24) 2(x, y) = 2

0 if |x|+e’>c¢cy.
Let us set @2 = 0%(y)|E12 + [n]® +y% It is easy to see that
(3.25) |o*(R¥R,)| < M®™, |x| + e* <o, y 2 €.
Let us consider the following symbol in R"™' x R x R"™! x R,
(3.26) q = xo"(R¥R,) + (1 — YM(O*|C]> + n* + y*)".
We shall show that, with the notation in Appendix

g € S(®*", g)

27 .
(327) {q > cy@?m? for all (x,y,&n) in R"! x Rx R xR, y>e®.

Indeed if |x| + e” < ¢, we write

g =c"(R¥R,) + (1 — PIM(O* () + n* + )" — a"(RIR,)],
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therefore, by Lemma 3.2 and (3.25) we have q > c,y®*™ 2 in this region. If
x| + e*>co then y =0 so g = M(0?|E]2 + n? +9?)" > My®*™~ 2. This proves
(3.27).

It follows from (3.27) and Proposition A.1 in the Appendix that (qyu, u) >
cyllul|_, for every u in CP(R"™' x R). Now, since ¢* is a differential operator,
we have gy = ¢” and if u has its support in |x| + e’ < 1co, where ¥ = 1, we get
IR,ulZ, > cyllulZ_,. This proves (3.5) and completes the proof of Theorem 3.1.

4. Proof of Theorem 2.3

The proof of Theorem 2.3 is inspired by that one of Theorem 1 in [A]
First of all we show that, without any restriction, we can always suppose
that for all (x,t)e U x [0, dq]

4.1 do.olx, ) < —c' <0,

for some ¢’ > 0. In fact if gg o(x, t) > ¢ > 0 we consider the point (0,0, —&o, —10)
and we obtain (4.1) together with the conditions (C.1) and (C.2) for A and ¢
where A(x, t; &) = — A(x, t; — &) and E(x, ty = —&(x, t). Moreover we remark that,
eventually taking smaller U and §,, there exists ¢” > 0 such that, for all (x,t)e
U x [Os 50]»

4.2) Aa(x, 65 VE(x, 1) + (0,4, + {4, A ) (X, £; P E(x, 1)) > tMc".

In fact

I _
2*1.{17, P} =(—0,4; — {'{2, /11})|‘1|2 +(t — 41)g:1 + 4292

where g, and ¢, are C* functions, and
Im (p{p, t}) = 4,1qI* + [t — 4 Im (§{q, t}) .
Setting { = (x, t; V. .E(x, t), A,(x, t, V. &(x, 1)), by the condition (C.1) we have

t(— 0,4y — {43, A P)(x, 1, V (x, 1)

A, Im (g
= Ay, 1, PE(x, D)h(x, t)[l + %‘f—@m - t(%) (C)],

and consequently

(2 + 104, + {A, L P(x, 15V L(x, 1) = — A,(x, 15 P E(x, 1)) (x, 1)

where /€ L® and I(x, t) 2% in U’ x [0, 65] with U' € U and ;€ ]0, §,]. Using
now (C.2) and (4.1) we obtain (4.2).
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Construction of the phase ¢

Lemma 4.1. There exist a neighborhood U of the origin in R"™!, two positive
constants sq, 0, < 1, and a function @ in C*(U x [—sg, so] % [0, o], C) such that

é 1

4.3) p<x, o+ s6, V. E(x, d) + 7 V.o(x,s, d), 765(p(x, s, 5)) = 0(s®)
where O(s®) means C® function vanishing together with all its derivatives for s = 0.
Moreover

4.4) ¢(x,0,0)=0 and 0,0(x, 0, 0) = iA(x, 9; V. .&(x, 0)) ;
2
4.5) 1¢¢m&m=5%}uﬁn+Mnm%+Rmxaé]

where A, B, Re C®, and for all (x,d)e U x [0, d,],

(4.6) M&&26>QAW®+Bm&s—%<Q
Proof. We want to solve formally the following problem

{6sw(x, s,0) = A(x, 6 + 86; V. .E(x, 8) + SV (x, s, 8)), |s| < s

“7 Y(x,0,6)=0.

As a necessary condition we determine all the derivatives in s of y for s =0,
using (4.7). We have
oW (x,0,0) = Ax, 6; V.£(x, )

and
(4.8)
02 (x, 0, 8) = 89,A(x, J; V,.E(x, 9))

n-1 n—1

+0 ), 0,Ax, 05 V. L(x, 0)) [6le + ) 6xk/10xj6¢kéj|(x, 8; V. E(x, 8)) .
j=1 k=1

We prove now that we have

oy (x, 0, 8) = 6* 1 Gy(x, 9), k>1,
4.9) f M
0¥ Im yY(x, 0, 6) = SMH,(x, 9), k>1,

where G, and H, are smooth functions.
Indeed setting 0 = 6y we show easily by induction on k, using (4.7), that

0k0(x, s, 8) = 6*M,(x, 6, 50, (030)41<k)
0 Im O(x,s,0) = 6% Y aul(x, s6,(020)5<k)0G 642X, 6 + 50, V. L(x, 8) + V,.0)

la|<k—1

where M,, a,, are smooth functions. Now (4.9) follows from the hypothesis (C.2).
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From (4.9) we deduce that there exist two sequences of real valued C®
functions (hy),, j =1, 2, such that

0 (x,0,8) = 641 (hy,(x, 8) + idmO-M-k+Dp, (x, 8)) .

We construct now a solution of (4.7) as usual. We take a function y e CP(R),
0<yx<1, x(uy=1 for |u| <1, and we set
k

N +o
J(x, s, 8) = k; 8% hy(x, ) + 6™ M=k+Dp (1 5] x(/lks)%

where (4,) is an appropriate positive divergent real sequence. Then y is a C®
solution of (4.7). Therefore ¢(x, s, d) = ilﬂ(x, s, 0) is a solution of (4.3), (4.4) which
satisfies (4.5), by (4.9).

Let us prove (4.6). Condition (C.2) gives

5MA(x9 5) = as(Re (P)(x’ Oa 5) = _}'Z(Xa 6; fo(x7 6)) = _6Mgo,o(x, 6) 5

so that, by (4.1), A(x,d) = —gg o(x,0) =c" > 0.
From (4.8) we have

n—1
SMB(x, §) = —5[5,12 + Y O, A8, Ay + 0,210, s
i=

n—1
+2 ) aéjzlaékxzaxjaxkc}(x, 0; V.E(x, 9)).
Jok=1
Recalling that 4,(x, d; V.&(x, 8)) = 6Mgo o(x, 5) we deduce
n—1
alez(x’ 5» Vxé(x» 5)) + Z a{k'{Z(x’ 6? Vxé(x’ 6))axjaxké(x’ 5) = 5Maqu0,0(x’ 6)’
k=1

consequently

n—1
( Z 6{,4'116{,‘]’26)(1«6):,(6) (X, 5; Vx‘f(x’ 6))

Jrk=1
n—1 n—1
- < — Zl de, 4,0, 4, + OM zl 6¢jllaxjg0'o>(x, 8; V,&(x, ).
J= J=

So that
SMB(x,8) = — (0,4, + {25, A })(x, 6; V. E(x, 5))

n—1
- 26M+l Zl aéjj‘l(xa 5, Vxé(xs 6))axjg0,0(x’ 5)
j=

and

A(x, 0) + B(x, 8) = 6" M[— A, — 6(84; + {42, 21 })1(x, &; V&(x, 6))

n—1
=20 3 O, 5 V8 (x, 8)dy 0.0(x, 9)
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and the condition (4.2) gives the conclusion if §, is sufficiently small. This ends
the proof of Lemma 4.1.

Construction of the function y. We define the function h: U x [ —sy, So] X
10, 6o] = C in the following way

— ivo~M-1 -M
h(x,s, 6)=e Yx,9)pivé 8(x,8), vé "’("‘s"s’w(x, s, 5)

where v is a parameter, y, £, @, w are functions, with y and w to be determined.
We set § =8, =k, v=y, =k’ with p, 6 >0. For (x,t)e U x [0+, G-y ] We
define

hk(x’ t) — e—y(x,ﬁk)eivké,;'“"{(x.ﬁk)evkék‘Mlp(x.(l—ék)/ék,tsk)w (X 5 6" 5")
k

We construct now the function y. For t € [f;4,, 6%-,] we define

6k+1 5 >
s 2 UYk+1 ] -

6k+1

t—9
G(x, t) = vké,:MReq)(x, Tk 6k> — Vs Re (p(
k

Lemma 4.2. We set m, = % +25k“ and I, (x) = G(x,m,). For k— +00 we
have
I(x) = —pk° T A(x, 0)(1 + o(1)).
Proof.

_ d _ O — O
Li(x) = v, [51( MRe (p( k+125 * 5k>] — Vk+1 [5k+hll Re ¢ <X, %—kﬂs 6k+l>]
k k+1

— O Opry — O
_ k+1 A 5 k+1 k O ka—'z .
=V A(x, &)~ 25, + Ver1 A, k+1)-—“25,(+1 + O( )

But

_ _ 1
Dt Z0 B 0 g o) = ke (04 0

Vk——_25k = Vik+1 *25k+1

and A(x, 6,) = A(x, 0)(1 + O(k™*)).
Then I(x) = —pk® 'A(x, 0)(1 + o(1)). The proof is complete.
k—1

We set y.(x) = — Z Ii(x) and consequently, for k — +oc0
J=ko

n(x) = gk"A(x, 0)(1 + o(1)).

We choose a function § € C® such that & °°§(x, &) = y.(x) and we set y(x, §) =
57 PH(x, S).
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Transport equation. We will call B® the set of the functions which are C®
in x, s and in a positive rational power of é (6 €[0,5,]). By using a simple
recurrence argument it is possible to show the following

Lemma 4.3. Let q(x, t; D, D,) be a homogeneous operator of order k with C*
coefficients and

d(x,s,0) = —y(x, 8) + ivd M 1E(x, §) + vo Mp(x, s, 5) .

Assume that 0 < o < p. Then there exists a function g € B® such that
6M+1 5M 5M+1 1 5M 5M
q(x,é+s§: Dx,TDs>e"’=[q(x,5+sé; . ;Vx¢,—DS¢>+Tg e?.
v v )

5M+1 6M

-V, —Dsd5> is a B* function, we deduce
1 v

Remarking that q(x. o + s0,

M+1

oM .
from Lemma 4.3 that e'¢q<x,5+sé;—Dx,7Ds)e"’ is a B* function.
vV
Consequently if w(x,s,8) is a B® function, then by Leibniz formula

M+1 5M
q(x,é + sé;—Dx,—Ds>e¢w is a B® function, in fact
v v

N 5M+1 M
4.10) q<x, 3 + sb, TD"’ TDs>e"’w

11 6(M+1)|a|+Mj . 5M+l 5M .
= S (a,Jj) . i @ a ,
- az al jl oy I:q ! (x, 6 + s0; ” D,. . D, |e® | DiDiw

v J
where q*(x, t; &, 1) = 080iq(x, t; &, 7).
Lemma 4.4. Assume 0 <o < p. There exist H(x,s), K(x,s) C® functions

with H(0, 0) # 0, an operator Q(x, s, 8; D, D,) with B® coefficients, a positive ratio-
nal number ¥ >0 and a function F(x,s, ) which is O(s*) such that

6M+1 m
e“”( . ) P(x, 8 + s, D,, 67 'D,)(e®w)

M

o .
= T[H(x, s)D,w + K(x, s)w + 6"Q(x, s, 6; D,, Ds)w] + F(x,s, 0)w.

Proof. We have

6M+1 m
( ; > P(x, 8 + s, D,, 67'D,)
5M+1 5M
= p<x, 0 + 89, TD"’ —Ds>
v

(SM m 5M+1 k—1 5M+1 5M
+ —[6. y < ) pm_k<x, 0 + 0, . Dx,TDs>] .

v
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m M+1\k—-1
By using (4.10) the terms coming from Y ( . ) Pm—i Will be absorbed in
k=1

0. Again using (4.10) we have

5M+1 M M+1 M
p(x, o + s TDx’ 6—V—Ds>(e"’w) = [p <x, S + s 0 D,, 5TD5>e"]w

v

5" 5M+1 M
+ 7[6,p <x, d + sé, . D,, 5TDS>e¢] D,w

5M+1 n—1

Y [0,p(...)e®1D,w

J=1

+

5(M+1)|a|+blj
+

la|+j=2

[020.p(...)e®1DDiw .

ylal+i

Then by Lemma 4.3 we deduce

6M+1 6M M+1 6M 5M
p<x,5+s§, . DX,TDS>(e"’w)=|:p<x,5+s5; " 77x¢,TDs<D>w+Tgw

M

S 5M+1 1 5M
+ TG,p (x, 0 + so; . V.o, TD‘(p) Dyw
1

~

5M+1
+ . Q(x,s,é;Dx,Ds)w:'e‘p,

where g € B®. From Lemma 4.1 and the choice of y we have

5M+1 1 5M 5M+] 1 1
p<x, o + 56; ——v— Ydej, TDs(p) = p<x, ) + 56, v le'y + Vxé + ?Vx(p, —,65(p>
1

5M+l—(d/p)

=0(*)+ ——9
v

where g€ B®. Using a similar argument for J,p we obtain

5M+1 5M
e P (x, S + s6; . D,, TDS> (e®w)

M

B 1 1
= _[a,p <x, o+ s0; V.E+ ;5V,cp, fésw)Dsw
v

+g(x, s, O)w + 6'0(x, 5, 8; Dy, Ds)W] + F(x, s, 0)w

where g, Fe B®, and F is O(s®). We conclude the proof of the Lemma with
Taylor expansions for the functions d.p and g with respect to d, recalling moreover
that 9,p(0, 0; &,, o) # 0.
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We construct a sequence (wj(x, s, 6)); of B functions solving

H(x, s)Dywg(x, s) + K(x, s)wg(x,s) =0
Wo(x, 0) =1

and for j> 1

H(x, s)D,wj(x, s, 6) + K(x, s)w,(x, s, §) = Q(x, s, 05 D, Dw;_,(x, s, 8)
wi(x, 0, 0) =

We consider then a function z(x, s, y, 8), C* in x, s, y and in a positive fractional
power of &, such that for all xe N7, j, N € N, there exists C, ; y > 0 such that

D"‘D’<z (x,s,y,0)— i W(x, s, 0 )

Finally we define

S (jat,j,le|N+l .

w(x, s, 8) = z(x, s, 6%, 9) .

As a consequence of this definition we have that for all « e N"7, j, N e N, there
exists C, ; y > 0 such that

4.11) |DDJ((HD, + K + 6"Q)w)| < C,.ino".
By using (4.11) and Lemma 4.4 it is possible to prove the following
Lemma 4.5. For (x,t)e U X [8,41, 0] let us define

P(x, t; D,, D,)h(x, t)
hk(x’ t)

r(x, t) =
Then there exists ko € N such that for all e N"™', j, N € N there exists C, ; y >0
such that
(4.12) IDEDir(x, 1) < C, j nk™
for all k> ko and for all (x,t) € U X [641, Ok_q]-
The set where |h;| = |h;,,|. For (x,t)e U x [+, 6] we define

hi(x, 1)

F(x,t)=Log ——— .
W 0)=Logp Dl

We have

-5 _
0w x,!,ék o,w x,&,ék+1
L1 5 % Sers

B _ Bt _ ‘
k W(x, t 5,,’ 5,‘) k+1 W(x, t (5k+1 ’ 6k+1)
Oy Ok +1
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Lemma 4.6. Let 6 > | and assume that for all xe U
(6 + p)A(x,0) + pB(x,0) < —c < 0.
Then there exists ko€ N such that for all k > ko and for all (x,t)e U X [6441, 6]

O, F(x, 1) > %k"*”“ :

Proof. Using (4.5) we can write
0, F(x, 1)

_ _ _ 2
ot | A 80 + Ble o)t =% 4 R % 6, ) (L5
3, 5 5,

t— 34, t—9 - 2
— Vir1 Ot |:A(x~ Oe+1) + Blx, 5k+1)$ + R’ (Xa ¢» 5k+1><t 5“1) :|

5k+l 6k+1 ()k+1

+ O(k%)

t— o

O

t— 9
= vkék_l [A(X, o) + B(x, 6,) :I - Vk+15k_+11 [A(x, O+1) + B(X, 6441) kﬂ:l

5h+1
+ 0(k*72) + O(k”).

B _ t— 9 t— 9
= A(x, &) [V 6y 1— Vk+15k+11] + B(x, 5k)|:"k 52 k- Vi+1 52 k+l]
% k+1

+ O(k°**7%) + O(k*).
And, as ¢ > 1, we deduce that for k - +o0
O, F(x.1) = —k7*P"[(p + 0)A(x, 0) + pB(x, 0)](1 + o(1)).
The proof is complete.

Recalling the definition of y and m, we have

F.(x, m;) = Log

If ¢ >2 then, for all xe U, F(x, ) — Fi(x, d4,)— +o0 for k— +00. Conse-
quently we can find a C* function m(x) such that F(x, m(x)) =0. Moreover
defining e, (x) = my(x) — m, we have

e (x) = Ok,

Choice of ¢ and p. We set ¢ = 3 and, recalling (4.6), we fix p > ¢ in such
a way that

"

<1 +5>A(x,0)+3(x,0)s _¢ <o.
p 4
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End of the proof. From this point on the proof is standard. We give only
a sketch, refering to [Z] for the details.

Using Whitney’s Theorem we construct a sequence of B® functions (y,(x, 1)),
such that, setting

w(x, 0= o 01+ v, 0)  and  Rx 1) = 450D

u(x, t)

we obtain that 7, satisfies (4.12) and it is flat on the surfaces t = m,(x) and
t =m_(x).

After that we consider a real function y e C*(R), 0 < y <1, with y(u) =1
for |[u| <32 and y(u) =0 for |u| > 1. We define

t—9
x() = X<_‘—k ) and U, 1) = Y xOulx, 1).
O — Os1 k>ko
. . . . Pu(x,t) . .
It is a routine computation to verify that a(x,t) = — u(x. 1 is a C* function,

flat on t = 0. Moreover, as

A(x, 0k’(1 + o(1)) and < Ck° ',

'))(X, 5k) =

QI

-9
v ™ Re (p(x,t 5 k,6k>
k

we have that u is flat on t =0. Finally remarking that u can be zero only
on t = my(x), we deduce that (0,0)e supp u and this achieves the proof of the
Theorem.

Appendix

We collect in this Appendix some results used in the proof of Theorem 2.1.
These results, which include the Fefferman-Phong inequality, are particular cases
of those in [CDZ] to which we refer.

We consider the metric in R ! x Rx R" ! x R=W

d&? + dn?
DA(x, y, &)’

where @2(x,y, & n) = 0*(y)IE2+n*+9% y>1, and 0 is a C® function in R
such that 6(y) = e’ if e” <cq, O0(y) = 2¢, if €’ > 2¢, and 0 < 6 < 2c,.

We shall denote by G by Euclidian metric in R"™! x R. It is then easy to
see that

(A1) Gxyeg = dx* + dy* +

9% vem = P0x, v, & n)(dx? + dy?) + d&* + dn?
(A2) Gey < Gxyen for every (x,y,& 1) in W,

gx.y.ﬁ.'l — ¢_2(X, ¥, f, ’1) <1.

g;-y. &n
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It is also easy to see that g is slowly varying but not temperate in the sense
of Hormander [H]. However g is locally temperate in the sense of Dencker
[D] as we shall show. We have to prove that one can find positive constants
¢, C and N e N such that Gx(X — X') < ¢ implies gyz < Cgx =(1 + g3:((X, &) —
(X', NN for every X =(x,y), X' =(x',y), E=(&n), T =&, 7).

A straightforward computation shows that this will be implied by

P2+ 602 (y)IE” +1n?
P2+ OP(WIEF +n?

(A.3) Sc+[E=EP +n—n)"

if ly—yl<ec
We have y2 + |n'|* <2(y> + n* + |n — n'|*). Since y > 1 we get

y +n”
Y2+t + 0%()E
Now, since 6 < 2c,, we have 02(y')|E'|> < 20%(y')|E|* + 8c¢3|E — &'|%. Therefore
0% (y")|¢&'? 0%(y")

2 2 2 2 < 2 2
“WIC+n°+y 0<(y)

|2s2+|n—n’|2-

+8c1E — &7,

Assume |y — y'| < Log2. Then if y < Log%2 we have y' < Logc,. Therefore
0(y) = e’ 0(y) = ¢ and
0%(y')

2
6%(y)

=2V <8,

Finally if ye[Log%o, +oo[ then 6(y) is bounded below by a fixed constant c,
and 0(y') < 2¢,. Therefore
0%(y") _ 8¢cd

< — .
0%*(y) ~ ¢}

The above considerations show that we can apply, for these metrics, the
results of [D] and [CDZ].
We introduce now the Sobolev spaces for me N,

A = {u: Jull2 = 3 y¥mR(0(y)D, yDsul 2 < +oo} :

|laj+k<m
Then we can state

Proposition A.1. 1) If ae S(@7% g), ke N then a} is continuous from L?* to
HE,

2) If aeS(®™, g), meN, then a} is continuous from #™ to L>.

3) Let ae S(®>,g). Assume that a > coy®*™ 2 in W. Then there exists
¢, >0 such that (aju,u) > c,y|ull-,, ue CF(W).
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Proof. 1) This is true if k =0, by the L* — continuity of operators with
symbols in S(1,g) proved by Dencker [D]. By induction let aeS@*", g).
Then |layull,s, < yllayuly + 10(y)Dayull, + |Dyayull,. Now if reS(®,g) the
symbolic calculus in [D] shows that r)’a)’ = (ra), + s, with ra and s in S(P7, g).
Since y, 8(y)¢ and n are in S(®, g) the result follows by induction.

2) Taking yx real and symmetric gives @} self adjoint. Then

| Dyull 2 = (DByu, u) = (D). w) + (u, u)

where re S(®,g). Since @2 is a polynomial in (& n) we have (@) = (D*)* =
72 — 02(y)4, — d7. Therefore for u in Cg® we get

(A4) I®yulf. = y*lluliz + 10(y)Duliz + [Dyulliz + O(lulf:) .
Now we use an induction on m. Let ae S(®™, g) we can write

ayu=ayo(® ") ody+ayry, reS(@',g).

It follows that a) = (a®')y®} + s* with se S(®™"',g). Then
layull . < [(@ao @' )o®yullz + lIsyull: < C(|Pyullm—y + tllm-1)

by the induction. We have
1Pyl = 3, Y2 TEN(O(y) DLy Dy Pyull 2 -

la|+tk<m—1

Then we commute @} with the operators in front of it (which belongs to S(®", g))
and we use (A.4) to get the result.
3) Let us set u=(@'"™)yv. It follows that

(ayu, u) = (@' ™)ay (@), v).
But, by the symbolic calculus, we have
(@ ray(@ )y = (PP ma)y + vy
where r e S(1, g). It follows that
(ayu, u) = (P*72™a — coy)pv, v) + coy IVlIE, + (ryv, v).

Now @272"q — coy € S(P%,g) = S(h™%,g) and P> 2"g — ¢,y >0. We can apply
the Fefferman-Phong inequality proved in [CDZ] to get

(ayu,u) > coylvllz, — Clvlli, — C'lIvllE, > scoyllvlize

if y is large enough, since the constants C and C' depend only on the semi
norms of @272"q — ¢,y in S(®2, g) and therefore are independent of 7.
Now by 1, [ulZ-, = (@' "™}vllZ-, < Clvl},. The proof is complete.
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