A note on residually transcendental prolongations with uniqueness property

By

Sudesh K. KHANDUJA

1. Introduction

Throughout $K(x)$ is a simple transcendental extension of a field K , and v is a (Krull) valuation of K with value group G_n and residue field k_n . Let w be a valuation of $K(x)$ extending v whose residue field is a transcendental (to be abbreviated as tr.) extension of k_n ; such a valuation w is called a residually transcendental prolongation of v. We say that w has uniqueness property if there exists $t \in K(x) \backslash K$ such that (i) w coincides with the Gaussian valuation v^t of the field $K(t)$ defined on $K[t]$ by $v'(\sum a_i t^i) = \min v(a_i);$ (ii) w is the only valuation of $K(x)$ which extends v^t .

In 1990, Matignon and Ohm $[3, Cor. 3.3.1, Remark 3.4]$ proved that if (K, v) is henselian or of rank 1, then each residually transcendental prolongation w of v to $K(x)$ has uniqueness property. Alexandru, Popescu and Zaharescu have shown that such prolongations w of v have uniqueness property provided the completion (\hat{K}, \hat{v}) of (K, v) is henselian and each finite simple extension of \hat{K} is defectless (cf. [1, Theorem 4.5]). The converse problem is dealt with here. We prove:

Theorem 1.1. *Let y be a valuation of any rank of a field K . Each residually transcendental prolongation of y to* $K(x)$ *has uniqueness property if and only if the completion of* (K, v) *is henselian.*

2. Definition, notation and some preliminary results

Recall that for a finite extension $(K_1, v_1)/(K, v)$ of valued fields, the henselian defect is defined to be $[K_1^h: K^h]/ef$, where "h" stands for henselisation with respect to the underlying valuation and *e, f* for the index of ramification and the residual degree of v_1/v . We shall denote this defect by def^h $(K_1, v_1)/(K, v)$ or by def^h (v_1/v) .

The proof of the following already known lemma is omitted (cf. $[4, p. 306,$ Lemma]).

Research was partially supported by CSIR, New Delhi vide grant No. 25(72)/1993/EMR-II. Communicated by Prof. K. Ueno, September 21, 1995 Revised February 14, 1996

Lemma 2.1. *Let* $(K, v) \subseteq (K_1, v_1)$ *be a finite extension of valued fields, t an indeterminate and* v^t , v^t_1 *be the Gaussian valuations of* $K(t)$, $K_1(t)$ *respectively* $extending v, v_1$. Then $\det^n(v_1/v) = \det^n(v_1/v^t)$.

Notation. Let v be a valuation of K with value group G_v and residue field k_v . Let w be a residually transcendental prolongation of v to $K(x)$ having value group G_w and residue field k_w . For any ξ in the valuation ring of w, ξ^* will stand for its w-residue, i.e., the image of ξ under the canonical homomorphism from the valuation ring of w onto k_w . We shall denote by E, I, R (more precisely by $E(w/v)$ etc.) the numbers defined by

 $E = \min \{ [K(x): K(\xi)] | w(\xi) \ge 0, \xi^* \text{ tr. over } k_n \},$ $I = [G_w: G_v],$

 $R = [A: k_n]$, where *A* is the algebraic closure of k_n in k_w .

Let *t* be an element in the valuation ring of w with t^* tr. over k_n ; this is the same as saying that w coincides with the Gaussian valuation v^t on $K(t)$ (cf. $[2, §10.1;$ Prop. 3]). Such an element *t* will be called residually transcendental (with respect to w/v). We shall denote by $Dⁿ(w/v)$ (or briefly by $Dⁿ$) the henselian defect of the finite extension $(K(x), w)/(K(t), v^t)$; in view of [3, Thm. 2.2] $D^n(w/v)$ is independent of the choice of the residually tr. element *t.*

Fix completions $(\hat{K}, \hat{v}) \subseteq (K(x), \hat{w})$ of v and w. Let w, denote the valuation of $\hat{K}(x)$ obtained by restricting \hat{w} . Since residue field does not change on taking completion, the residue field of w_c must be k_w . So w_c is a residually tr. prolongation of \hat{v} . As in [3, Lemma 2.2.2], it can be easily shown that

$$
E(w_c/\hat{v}) = E(w/v). \tag{1}
$$

The following results of Matignon and Ohm (whose proofs are omitted) are quoted for future reference (cf. [3, Cor. 2.3.2, 3.3.1]).

Theorem 2.2. *Let y be a valuation of K and w be a residually transcendental prolongation of* v *to* $K(x)$ *. With* E *,* I *,* R *,* D^h *as above, we have:*

- (i) *w* has uniqueness property if and only if $E = IRD^h$ holds for w/v .
- *(ii) If (K , y) is henselian, then w has uniqueness property.*

3. **Proof of Theorem 1.1**

Suppose first that (K, v) has henselian completion. Let w be a residually tr. prolongation of v to $K(x)$. Fix a completion $(K(x), \hat{w})$ of $(K(x), w)$ and a completion (\hat{K}, \hat{v}) of (K, v) contained in this completion. Since (\hat{K}, \hat{v}) is henselian, there exists a henselisation (K^h, v^h) of (K, v) which is contained in (K, \hat{v}) as a valued subfield. Let w_c , w_h denote the valuations obtained by restricting \hat{w} to $K^{h}(x)$ respectively. Then clearly w_c/\hat{v} and w_h/v^h are residually tr. prolongations, and

$$
I(w_h/v^h) = I(w/v), \qquad R(w_h/v^h) = R(w/v). \tag{2}
$$

In view of the fact that $K \subseteq K^h \subseteq \hat{K}$, we have

$$
E(w_c/\hat{v}) \le E(w_h/v^h) \le E(w/v)
$$

which together with (1) gives

$$
E(w_h/v^h) = E(w/v). \tag{3}
$$

Since (K^h, v^h) is henselian, by Theorem 2.2(ii) w^h has uniqueness property and consequently w has this property in view of (2) , (3) and Theorem 2.2(i).

To prove the converse, assume that a completion (\hat{K}, \hat{v}) of (K, v) is not henselian. We shall construct a residually tr. prolongation w of v to $K(x)$ satisfying $E(w/v) > 1$ and

$$
I(w/v) = R(w/v) = Dh(w/v) = 1.
$$

In view of Theorem 2.2(i), such a prolongation w does not satisfy uniqueness property.

Fix a prolongation \bar{v} of \hat{v} to an algebraic closure \vec{K} of \hat{K} and a henselisation (K^h, v^h) of (K, v) contained in (K, \bar{v}) as a valued subfield. As the completion of a henselian field is henselian (see [2, Exercises §8 Ex. 14(a)]) and (\hat{K}, \hat{v}) is assumed to be non-henselian, it follows that K^h is not contained in \hat{K} . Let β be an element of K^h which is not in \hat{K} . Then the set $\{v^h(\beta - a) | a \in K\}$ is bounded above, i.e., there exists $\delta = v(d)$ in the value group of v such that

$$
v^h(\beta - a) < \delta \qquad \text{for all } a \text{ in } K. \tag{4}
$$

Let v_1 denote the valuation of $K_1 = K(\beta)$ obtained by restricting v^h and w_1 the valuation of $K_1(x)$ defined on $K_1[x]$ by

$$
w_1\left(\sum_i a_i(x-\beta)^i\right) = \min_i \left(v(a_i) + i\delta\right), \qquad a_i \in K_1.
$$
 (5)

As in the proof of $[2, §10.1, Prop. 2]$, one can easily see that the residue field of w_1 is the simple tr. extension of k_{v} (x_1^*) of the residue field k_{v} of v_1 , where x_1^* is the w₁-residue of $x_1 = (x - \beta)/d$. Since (K^n, v^n) is an immediate extension of (K, v) , so is (K_1, v_1) . It is now clear that if w is the valuation obtained by restricting w_1 to $K(x)$, then

$$
I(w/v) = R(w/v) = 1.
$$

Claim is that $E(w/v) > 1$. Suppose not, then there exist *a*, *b* in *K* such that the w-residue of $(x - a)/b$ is tr. over k_p . By virtue of (5) and (4), we have

$$
w_1(x-a) = \min(\delta, v_1(\beta - a)) < \delta,
$$

which implies that

$$
\left(\frac{x-a}{b}\right)^* = \left(\frac{x-\beta}{b}\right)^* + \left(\frac{\beta-a}{b}\right)^* = \left(\frac{\beta-a}{b}\right)^*
$$

is algebraic over k_n . This contradiction proves the claim.

It only remains to be shown that $D^h(w/v) = 1$. Let $t \in K(x)$ be a residually tr. element with respect to w/v and v' , v'_1 be the Gaussian valuations of $K(t)$, *K*₁(*t*) respectively. Since $K_1 \subseteq K^h$, the henselisations of (K_1, v_1) and (K, v) coincide; in particular def^h $(v_1/v) = 1$. Therefore by Lemma 2.1,

$$
\operatorname{def}^{h}(v_{1}^{t}/v^{t}) = 1. \tag{6}
$$

Keeping in view the first assertion of $[3, Thm 2.2]$ and the fact that the generator $x_1 = (x - \beta)/d$ of $K_1(x)/K_1$ is residually tr. with respect to w_1/v_1 , we see that

$$
\operatorname{def}^h ((K_1(x), w_1)/(K_1(t), v_1')) = \operatorname{def}^h ((K_1(x), w_1)/(K_1(x_1), w_1)) = 1. \tag{7}
$$

If follows from (6) , (7) and the multiplicative property of henselian defect that $def^h(w/v^t) = 1$ as desired.

> CENTRE FOR ADVANCED STUDY IN MATHEMATICS PANJAB UNIVERSITY CHANDIGARH 160014 INDIA

References

- [1] V. Alexandru, N. Popescu and A. Zaharescu, Minimal pairs of definition of a residual transcendental extension of a valuation, J. Math. Kyoto Univ., 30 (1990), $207-225$.
- [2] N. Bourbaki, Commutative Algebra Chapter 6 Valuations, Hermann Publishers in Arts and Science, 1972.
- [3] M. Matignon and J. Ohm, Simple transcendental extensions of valued fields III: The uniqueness property, J. Math Kyoto Univ., 30 (1990), $347-366$.
- [4] J. Ohm, The henselian defect for valued function fields, Proc. Amer. Math. Soc., 107 (1989), 299-308.