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Homotopy-commutativity in rotation groups
By

Hiroaki HAMANAKA

1. Introduction

Assume G is a topological group and S, S’ are subspaces of G, each of
which contains the unit as its base point. There is the commutator map ¢ from
SAS to G which maps (x,y))eS A S to xyx'y'eG We say S and §
homotopy-commute in G if ¢ is null homotopic.

In this paper, we describe the homotopy-commutativity of the case G =
SO(m 4+ m—1), S = SO(n) and S’ = SO(m) where n, m > 1. Here we use the usual
embeddings

SO(1) = SO2) = SO(3) = ---.

Trivially SO(n) and SO(m) homotopy-commute in SO(n + m). And it is known
that if n + m > 4, SO(n) and SO(m) do not homotopy-commute in SO(n + m — 2).
(See [1] and [2].) But the homotopy-commutativity in SO(n + m — 1) has not
been solved exactly.

We shall say a pair (n, m) is irregular if SO(n) and SO(m) homotopy-commute
in SO(n + m — 1), and regular if they do not. In [1] the following problem is
proposed; “when is (n, m) irregular?”, and the next theorem is showed.

Theorem 1.1 (James and Thomas). Let n+m#4, 8. If n or m is even or
if d(n)=d(m) then (n, m) is regular, where d(q), for q > 2, denotes the greatest
power of 2 which devides q — 1.

In this paper we shall prove the more strict result as showed in the next
theorem.

n+m-—2

Theorem 1.2. If n or m is even or if < 1
n f—

> = 0mod 2 then (n, m) is
regular.

We identify RP*"! &»SO(k) by the following way. Let i;: RP*™' — O(k) be
the map which attaches a line [ € RP*"! with i;(l) € O(k) defined by

(D) =v—2(v, e)e,

where e is a unit vector of | and veR* And let i,(l) = iy(ly)"' i (]) where I,
is the base point of RP*"!. Then i, preserves the base points.
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Theorem 1.2 follows from the next theorem.

Theorem 1.3. Let n and m be odd. RP"' < SO(n) and RP™ ! = SO(m)
homotopy-commute in SO(n + m — 1) if and only if

<n+m_2>zlmod2.
n—1

Let SO be lim_ (SO(1) = SO2) = SO(3)=---) and consider the fibration
SO(n +m—1)-» SO —»S0O/SO(n + m — 1). Then we have a sequence of spaces

o 080 % Q(80/S0(n + m — 1)) 3 S0 + m — 1) > SO 5 SO/SO(n + m — 1),

We can see ioc|gpnigpmt =~ * RP"1 A RP"! 5 S0. This means there exists
A:RP"! A RP™ ! 5 QSO/SO(n + m — 1) such that do Al =c|gpn-1gpm-i. The
construction of A and the cohomology map A* are argued in §2. We describe
about lifts of 4 in §3 and finally, in §4, we determine when a lift of 4 exists,
which means when c|gpn-1,gpm-1 = *.

2. Lift 1 of ¢
Definition. A sequence of spaces X; and continuous maps f;
o X ﬁXi‘*"' L‘;XO

is called a fibration sequence if, for any i > 0, there exists a fibration Y}‘Z’i‘v
Y'Y 5 ¥, homotopy equivalence maps y*: X;,, —» Y,¥ (k =0, 1, 2), and the fol-
lowing diagram commutes upto homotopy.

Si1 Si
XH-Z " Xi+1 > X

1

zlwt‘;) 214,('_1) :l,/,(io)

Y@ i Yy —H, yo
For example, given a fibration F —» E — B, there is a fibration sequence
> QF > QF >QB—>F—->E—-B.

Consider the fibration SO — SO/SO(n + m — 1) with the fibre SO(n + m — 1).
Then we have a fibration sequence.

> QSO B QS0/SOM +m — 1)) > S0(n + m — 1) 5> SP 5 SO/SO(n + m — 1)

Obviously i o c: SO(n) A SO(m) — SO is null homotopic. This means there exists
a lift of ¢, that is, a map A:RP"!' A RP"! - Q(SO/SO(n + m — 1)) such that
dol~c.

In R. Bott [3] it is showed that the following map A,:SO(n) A SO(m)—
Q(SO/SO(n + m — 1)) is a lift of c.

Recall the fibration SO(k — 1) > SO(k) % S*'. Define h as h = Z(p, A p,):
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Z(SO(n) A SO(m)) - (8" A §" ')~ S§"*m~1 Then ad h is a lift of ¢ in the fol-
lowing fibration sequence. (See [5].)
- QS0 +m) - QS o S0(n+m— 1) S0(n + m)— STt
adh c
SO(n) A SO(m)

The fibration SO(n + m) — S™*™ ! is the restriction of SO —»SO/SO(n + m — 1)

to S"*" 1 = SO(n + m)/SO(n + m — 1) <, SO/SO(n + m — 1). Therefore we define
Ao as Qjoadh. Refer to the commutative diagram below.

The rest of this section is devoted to the computation of the cohomology
map of 4. And throughout this paper we use Z/2Z as the coefficient ring of
cohomology unless mentioned.

QS0
Qp
Qstm-t %, (S0/SO(n + m — 1))
adh '}

SO(n) A SO(m) —— SO(n+m—1) SO(n + m—1)

RP" ! A RP™! SO(n + m)

|

srm=t 1, SO/SO(n+m— 1)

First we refer to the cohomology rings of spaces which are used in this
paper, that is,

H*(Q,S0) = Z)2Z[ a5, oy, g, ... 1/(0gr — %30)s
H*(Q(SO/SO(n + m — 1)) = Z/2Z[ 0425 %o - -- I/ — 450),
H*(SO(k)) = A(xy5 ..y Xg—1)s
H*(SO(k)/SO(k — 1)) = A(Xy—ys -5 X1 )s
where deg (a,;) = 2i, deg (a3;) = 2i, deg(x;) =i. And also
Qp*(o4) = .
Lemma 24. A§(06,4n-2) = Xp—q @ Xpy.

Proof. Consider the fibration p,: SO(k) — S*~' with the fibre SO(k — 1). Let
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¢; be the generator of H(S’). Then p¥(ci—;) = x;—;. Thus we have
h*(Cpam—1) = 2(pn A Pm)*(ECyy @ Cpp—y)
=2(X,_; ®X,,_41)-

Hence (ad h)*(o¢,4m—1) = Xp—1 ® X,,_;, Where ¢ is the cohomology suspension o:
H**1(X) - H*(QX).
On the other hand, j*(X,4m-1) = Cpem—; Means
() +m-2) = (2)*(0Xp4m-1)
= ac

n+m-—1-
Therefore it follows that
Ay m—2) = (ad W)*(Q5)* (4 m-2)
=X,_1 ® Xpp_y- Q.E.D.

Now let A = 10 (i, A i,): RP"™' A RP™"! 5 Q(SO/SO(n + m — 1)) and in the
following we use ¢ as the commutator map from RP"™! A RP™™! to SO(n + m — 1).
Easily we have i¥(x,_,) = t*"! where t means the generator of H'(RP*™!). (See
Whitehead [4].) Thus

'q'*(a;ﬁ-m—-Z) = (lm A in)* ° 'lg(a;l+m—2)

— T"_l ® Tm—l‘

3. Lift of A and homotopy commutativity

In this section we prove the next theorem.

Theorem 3.5. Let n, m be odd.

1. c~= if and only if there exists a lift of 4, that is, a map x: RP"™' A
RP™! 5 Q,(SO) such that A = Qpo x.

2. c¢~=x if and only if there exists x: RP"* A RP™™ ' - Q,(SO) such that
X*(pymer) =TT @ T

Proof. 1. The sequence
cr = Q,(SO) Q—»”Q(SO/SO(n +m—1)3500n+m-—1)

is a fibration sequence and 4 is a lift of ¢. Therefore the statement follows.
2. By the first statement it is sufficient to prove that x is a lift of 4 if and
only if x*(t,4,—,) =" ' ®1t™ . We need the following lemma.

Lemma 3.6. Let n and m be odd. Then

0 i<n+m-—2
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Proof. Consider the fibration
SO(n+m+ 1)/SO(n +m — 1) > SO/SO(n + m — 1) - SO/SO(n + m + 1)

and see the homotopy exact sequence. Remark that =,(SO/SO(2k + 1)) = 0 for
i <2k and we obtain

Ttm-1(80/S0( + m — 1)) = 7., (SO(n + m + 1)/SO(n + m — 1)).

It is known that =n,,,,_,(SO(n + m + 1)/SO(n + m — 1)) = Z/2Z provided n + m —
1 is odd. Hence we obtained the statement. Q.ED.

By Lemma 3.6 it follows that

0 i<n+m-3

Now add cells ¢; (i > 1) to 2(SO/SO(n + m — 1)) so that 7, (2(SO/SO(n + m — 1))
vanishes for k> n + m — 1, where dime; > n+ m. We shall call the obtained
space K, that is,

Q(SO/SO(n + m — 1)) = QSO/SO(n + m — 1))Ue; Ue, U =K (1)
and

Z2Z i=n+m-—2
m(K) {0 otherwise.

2

Thus K is an Eilenberg-Maclane space K(Z/2Z;n + m —2). Let y denote the
inclusion map from Q(SO/SO(n + m — 1)) to K. Here

Y*: nn+m—2(Q(SO/SO(n +m— 1))) - nn+m—2(K)
is not a 0-map. This means that by the isomorphism
Q(SO/SO(n + m — 1)), K] = H""™ 2(Q(SO/SO(n + m — 1)))

y corresponds to a,,,_,. that is, y*u=a;,,, , where u is the generator of
Hr+m2(K),

On the other hand, (1) and (2) imply that y,: 7,(2(SO/SO(n + m — 2))) - n,(K)
is isomorphic for i <n + m — 2 and epic for i > n + m — 1. Then by Whitehead’s
theorem

[RP""' A RP™!, Q(SO/SO(n + m — 1))] = [RP"™' A RP™! K]
=~ H"*™ 2(RP""! A RP™1).

Thus maps f and g: RP""! A RP™! 5 Q(SO/SO(n + m — 2)) are homotopic if
and only if f*(o, s —2) = ¥4 m-2)-

Now we assume x: RP"™!' A RP™ ! - Q(SO/SO(n + m — 1)) satisfies that
X*(tyame2) ="' ®1t™ !, Then
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(2p o X)Xty 4m-2) = el

By §2 A*(l,ym-2) = T" P ®1t™'. Thus we obtain Qpo x ~ A and x is a lift of 4.
The inverse is trivial and the proof of theorem 3.5 is finished.

4. Existence of lift of A4

In this section we prove the next theorem which completes the proof of
Theorem 1.3.

Theorem 4.7. Let n and m be odd. There exists a map x: RP"™' A RP™™! —
Q,(S0) such that x*(0p4m_2) ="' @™ if and only if

n+m-—2
n—1

)zlmodZ.

Proof. First consider
0:=(r, — D®(r, — YR (r, — ) ® (ry, — 1) € KO(Z2(RP® A RP)),

Here r, is the Mobius line bundle over S' and r, is the canonical line bundle
over RP®. Now we compute the total Stiefel Whitney class of 6. We start
from the next lemma.

Lemma 48. Let A =1 + a, + a, + - € H*(RP® x RP®) where a; €
H{(RP® x RP®) and let s;€ H*(S' x S' x RP® x RP®) (i = 1,2) be the pull back
of the generator of H!(S') by the canonical projection from S* x S' x RP® x RP®
to the ith factor S*. Then we have

(A+s,+5)4  A*+55,

H**S! x S! RP® x RP®).
Ars)A+sy) a4z SHTE XS xRPTRET)

Proof. By direct computation, we see

(A+s;+5)A  {(A+5)+(A+5))s,}A

(A + 5)(A4 +53) (A+5)%(4 +s3)

(A2 + 5,4+ 5;5,)A
A%(A + s,)

_A(A + 5, + (A + 53)515,
- A(A + s,)?

A+ 5.8,

o QED.

Let 7: S!' x S' x RP® - Z2(RP® A RP®) be the canonical projection and de-
compose 7n*f as
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T¥O =1 X Py X Py X b+ 1 X1 X0y X Ty — 1 X Py X Ty X Ty
—r X I Xrg Xrg—r XXl xrg—1x1x1xry,
+FlxryxIxrg+r x1Ix1 xr,—r xrxryxl1
—IxIxrygxl+lxrxrgxl4+ryxlxryxt4+rxrxlxl
+IxIxIxl—Ixrxlxl—rxlxlxl
Then the total Stiefel Whitney class w(n*0) of n*0 is given by

T+t +1+s +s)(L+1,+715) (145 +5s;)

*0) = 22
W = s ¥ s 4t 41, 78, (450 +55)

.{(ii“ +5i4+5)(+1) (L+1,+5 +5)(1+ rz)}"
T+t +s)I 4+t 4+58) T+t +s)(1 +1, +5,))

Here t; (i=1,2) is the pull back of the generator of the cohomology ring of
the ith factor of RP® x RP*. By the previous lemma, we obtain

1+ 12412 +5,5, T+ 12485\ (1 +12+5;5,\"
5 s— (1 + sy8){ —- 3 : 3
]+1'1 +T2 1+T1 1+T2

w(n*6) =

{1+ + 134+ 3) sys, (1 + sy5) {1+ (1 + t3) 7 sys, )

{1+ (14 13)  sis, )

Ttsis {0+ +) P+ 14+0+) P+ +1H)7Y)

=1 +sls2{

=1 +s1s2{

Therefore we see

M8

Q0 a0
O(t%+r§)'+ T+ Y i+ ) ri'}
i=0 i=0

i—1 l . . .
Yoo ) e,
2 j=1 \J

o i—1 /
w(0) = 1 + 22 { y <’.)sz ® 12"—21‘}.
i=2 j=1 \J

Let f be the classifying map of 6, that is, the map

M8

f: Z2(RP* A RP®) - BSO

such that f*(£) = 0 where ¢ = lim, (¢, — n) and &, is the universal SO(n) vector
bundle over BSO(n).

It is known that H*(BSO) = Z/2Z[w,, w,,...] where w; is the ith Stiefel
Whitney class. Let 1,: RP* > RP® be the inclusion map and let

xo:=(ad?® f)o(,_; A 1,_,): RP""" A RP™"! - QSO.

Then it follows that for N > 1|
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x3(2an) = (=g A lm—l)*(adz f)*02W2N+2

N-1
= (ln—l A lm—l)* < 21 <22]]V> ¥ ® ‘L'2N—2j>-
j=

. -2 . -
Particularly x§(et+m-2) = (n :T 1 )T"_l ® ™', Thus if (n -; " : 2> =1 then

there exists xo: RP"™' A RP™! - QSO such that x¥(a, m_;) =" ' ®@1™ "
n+m_2>50mod2
n—1
then x*(,4,-,) =0 for any x:RP"' ARP" !> QSO. Let n=2a+1, m=
2b + 1 where a, beZ, a, b>1. Moreover we set a < b.
Here we use the Steenrod’s square operators Sq'. In H*(©2,S0), Sq’ acts
as follows

Now we shall prove the inverse, that is, prove that if <

<2j +1
Sqi(azl‘) = i
0 i is odd.

>a2j+,~ i is even

Let x: RP? A RP?* -» Q,SO be an arbitrary map.
Lemma 4.9. We set a, b, x as above then
x*a,) =0 and x*ag)=1@t* +1*®1> or 0.

Proof. Since x*(a,) € H¥(RP?* A RP??), x*(a;) =t ® 1 or 0. If x*(a,) =1 ®
7, then we have

Sq! x¥(o,) =P @1+ T® T2
On the other hand,
Sq' x*(xy) = x*(Sq" &) = 0.
Therefore x*(a,) = 0.
Next we consider x*(ag). If (a, b) = (1, 1) then x*(ag) = 0, and if (a, b) = (1, 2)
we can see x*(og) = 12 ® t* or 0 as asserted. And otherwise, set
X*ag) = TR T+ P2 T + Py R+t @12 + psTC ® T,
where p; € Z/2Z and the statement follows the next two equations.
Sq' x*(ag) = x*(Sq' ) =0
Sq? x*(ae) = x*(otg) = x*a)* =0 Q.E.D.

2(a + b)
2i
for any ieZ such that 0 <i<a+b. And also when 2(a + b) =2¢ for some

deN,

Remark that if 2(a + b) = 2¢ — 2 for some d € N, then ( ) =1 mod 2
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2(a + b) _ 1 mod 2 i=0ora+b
2i “ | O0mod 2 otherwise.

In this case
X*(0za+p) = X*(024)
= x* (a power of a;)
=0

as asserted. Hence we can assume that 2(a + b) # 2* or 2¥ — 2 for any ke N.
Next we shall prove the next theorem.

Theorem 4.10. Let a, b and x be as above. If x*(ag) = O then x*(ay,45) = 0.
Proof. Let d be the number which satisfies
29<2a+b)<2¥t =2 deN. (d=3)
We distinguish between the following two cases.
I)
29<2a+b)<3-241 -2 3)
II)
3271 —2<2a+ b <24 -2 4)

Lemma 4.11. Let a, b and x be as above. In any of the case 1) and T1I),
if x*(ag) =0 then one of the following holds.

i) x*¥ou_,)=0 for 3<k<d-—1.

i) 2a=2"—2 for some reN, r<d—1 and

0 3<k<r
AN~ R Tt r+l<k<d-—1.

x*(0k—3) = {

Proof. We use induction, that is, we prove the next two propositions.
a) If x*(oay-1-,) =0 and 4 <k <d — 1, then one of the followings holds.
o x*amu_,)=0.

o 2a=2'"_-2and x*omu_,) =1 2@ 2.
b) If 2a=2"—2 and x*(p-1_;) =12 2®71* "' and r+2<k<d-—1,
then

X*¥ou_,) =122 @ Y

First we assume 4 <k <d — | and x*(-1_,) =0 and prove a). Let

t
XM p) = Y, prt @ T,
t=s

where
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s = max {1, (2* — 2) — 2b}.
t = min {2* — 3, 24},
pi € Z/2L.

Since Sq! (x*(ax_2)) = x*(SqQ" a2x_,) = 0, we have that

1

1=s

— Z pi(TH‘l ® 1,(2"—2)—!' + ti ® T(Z“—Z)—H—l)
s<i<t,i:odd

Z pi(,ti ® r(2"—2)—i+1) + Z pi—l(Ti ® T(Z“—Z)—H—l)

s<i<t,i:odd s+1<i<t,i:even

=0.

Here, 1/ ® t*"27*1 £ 0 for s+ 1 <i <t. Therefore
p;i=0 for i: odd, s<i<t )

Next we use Sq>. By (5) we can set

¢

. o

X)) = ) Pt @I,
i=s’

k2
where s’ = max {1, 2 — b}

2

" = min -4 a
= 5 ar-

Since
Sq? X*(oyx_;) = X*(Sq* ozx)
= x*(azx)
= x*a3")
=0,
we have

Sq? ( i Pt ® T(Zk_z'_2i>
i=s’

= Paj SP W TV 4+ Y py St ® [2-2-ai+2y

s'<2j<t s'<2j-1<t

IA
A

= pati @Y+ ) Paj-2 T @Y =0 (6)

s'<2j<t s'<2j-1<t’

IA

Here t¥ ® 12" % #£0 for s’ + 1 <2j <t Thus

Paj = Paj—,  for s'+1 <2<t (7
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Next we consider Sq*. Since
Sq* x*(aze_;) = x*(Sq* az._,)
= x*(azx42)
= x*(Sq*"" Sq* agi-1_,)
=Sg%7" Sq* x*(otyr-1_5)
=0,

we have that
v
Sq4< Z pZiTZi ® t(Z“—Z)—Zi)

_ 4 8j (2k—-2)-8j 8j—2 (2k—2)—8j+2
=Sq ( PeiTY ® 1T + Y pgt i@ J
s <a<r

s'<4j-1<t’

8j—4 (2k-2)-8j+4
+ pgj_4f d ®T J +
"

8j+2 o (2Kk—2)-8j-2
Pgj+2T ®7
s <42

s'<4j+1<t’

_ 8j (o ~2k+2-8j 8j+2 o 2%~ 8]
= peiT ® T + Y pgiat ®1

v <ajsr s'<dj=1 s
+ Prj—atV @ TFTIH 4N pe ¥t @ P
s'<aj—2<r’ s'<djF1<t’
=0. (8)
Thus
{paj = Pgj-a for s’ +2 < 4}: <t )
Pgj—2 = Pgj+2 for s +1<4j<t —1
We set 4 as the set {ieN|s'<i<1t'}. (7) and (9) mean that
2i,2i —1eA then pgy_, = pyi (10)
4i,4i —2€ A then pg ~ pgi_a, (11)
4i—1,4i+ 1€ A then pgi_,= Pgiss- (12)

Therefore, for ie A — {s',t' — 1, 1"}, py = p,iso- The reason is this: if i is odd,
it is trivial from (10); if i = 4j for some j, pg; = pgj—» = Pgj+2; if i = 4j for some
Js Psj-a = Pgj = Pgj-2-
We obtain that
Pas+2 = Pas+4a = 77 = Par-2-

Also, we see

2k_2 d—1 _
—bsiirz—y”<l (13)

2b>a+b>2" and
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k—.
s’=max{1,2 5 2—b}=1.

We see again (8) and look into the term of 1> ® 2", then we have that p, =0
and from (10) p, = p,- Hence we have

and we have

O0=p,=ps=""= P2
that is,
X*(oguz) = par T @ T I (14

If 2a > 2* — 4 then we have

K4
t =min{2 ,a}= 2kt _ 2

2
and from (10)
Par-2 = Pars
that is,
X*(ogr—5) = 0.
Therefore we can assume
2a <2k —4, (15)

that is, ¢’ = a. Here if 2a = 2¥"* — 2, then by (14) x*(ap_,) =¥ 2@ 1> " or
0 as asserted. Hence what we have to prove is that if 2a # 2*"* — 2 then p,, = 0.
We set p(2a) so that 2% is the greatest power of 2 which devides 2a + 2.
Let p:=p(2a). We remark that p <k —2 since, if it were not, by (15)
2a =21 — 2. Using Sq*, we see

Sq?” x*(azx_3) = X*(Ak+20-2)

271 8q" x*(dgu-1-2)

= Sq
=0.
Thus it follows that
SqZP(pZ"Tla ® ,r(Zk—Z)—Za) — Pz;'Tza ® SqZPTZ"—Z-Za
— pzr,tla ® ,[2"+2P—2—2a

=0

Here 129® t2“*2"72724 2 ( since by (3) and (4)
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2b>24—2a

>2-2—2a

>2k4+2°P -2 - 2a. (16)

Thus p,, = 0, that is, x*(a._,) =0 as asserted.
Next we shall prove b). Let x*ou-1_,) =12 2@t "2 r+2<k<d-—1
and 2a =2"—2. Then

Sqf x*(atzx-1_,) = ¥ 72 ® Sq’ (12177
_ (2k_l - 2'> 22 ® Tzk-l~2r+.
; :

Here we remark that r > 2. For, if r =2, by a) x*(,:_,)=0 for 3<i<
d— 1. Thus Sq* x*(ze-1_,) = 0 and we obtain

Sq! (x*(aizx—2)) = x*(Sq" oze_,) =0,
Sq? (x*(azx-;)) = x*(@3") = 0,
Sq* (x*(otzx—2)) = S Sq* x*(2tpu-1_,) = 0.
Then it follows from the previous argument in a) that
XHag_,) = pr¥ P @ T,

where p € Z/2Z.
Next using Sq?", we have

Sq¥ x*(dzx_5) = p SQ* (2@ ¥ )
=pt P @,
while
Sq¥ x*(yn_y) = X*(@zerr2)
= x*Sq*"" Sq%" aze-1,)

27 8q% x*(oger o)

= Sq
=121
Here 1272 ® 12“ # 0 since
2a=2"-2
2b =2(a+ b) — 2a
>24-2r42

> 247!

> 2 17)
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Therefore p =1 and
x*(0_,) = 122 @Y.

Thus lemma 4.11 is proved.

Lemma 4.12. In the case 1) if x*(ag) =0 then x*(ayu+s) = 0.

Proof. By Lemma 4.11

X*¥(pa-1-,) =0
or
2a=2 —2 and x*0pai_,) =1t ® 1> 7.
Since
X*(0pa+p)) = Sq** ' 8@ P D xK(oyan ),

if x*(aty4p) # O then x*(opa-1-,) # 0 and 2(a + b)= —2mod 2". But if 2(a + b) =

—2mod 2" then
2(a + b))\ 2(a+ b)\ _
( 2 >—<2r_2 = 1 mod 2.

Thus if (2(02: b)> = 0mod 2 and x*(ag) =0 then

x*(aZ(a.H,)) = 0 Q.E.D.
Now we consider the case II) we start from the next lemma.

Lemma 4.13. Assume i +j=2*—2 for some de N, d >3, i and j are even,
i, j>2 and

-1
i: Z Skzk,
k=1
where ¢, =0 or 1. Then
. . ’ti+2p®‘[j 6 = 1
St @t =< . : r
q T'®T {I'®T1+2p 8,;:0
for 1 <p<d—1 where 1'® v/ € H** " 2(RP® A RP®).
Proof. We use induction. Let & =1 —¢g. Then j =3 ]152"

The statement is true for p=1. Let we assume that the statement is true
for Sq**"" and also ¢,_, = 1. Then
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2p-1

S '@t/ = ) (Sq' ) ®(Sq*" 1)
=0

(i J i+l j+20-1-1
21;) J\2rt — | e

=" Q1

i j _fo o=<ig2rt -1
J\2r=t — 1) |1 [ =2r1,

(! e
_ 2r-1 <;> (2pj 1>Ti+’ ® it
=0 -
2t i / i+2P 14 jt2pr -l
T\ )\ )T ©r
Epmt J i+l j+2pr—1
< 1 )(2 - I>T o
5 <8p1_1><§> <2:»—{ 1>r"+2"“+' SRR
1=0 -
Qo e
(?)ri ® it2r + <81p>ri+2p ® o

as asserted. And even if ¢,_; = 1, it can be proved in the same manner.
Q.E.D.

that is,

Hence

Il
- N
3
<>
N———

Lemma 4.14. Let b > a. In the case 1), if x*(ag) =0, then

ngi"l—4)/2 ,[21' ® T(Zd—ZD—Zi + p/tZd“—Z ® TZ""
where 2a=21"'—2 if p'=1
x*(atga_) =
or

2 2®12?Y and 2a=2-2, 3<r<d-2.

Proof. We start from the computation of x*(xa 1_,). By lemma 4.11
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0

X*(otpa-1_5) = < OF

¥ 2®12'"? jn this case 2a=2"—2, 3<r<d—1.

Next we consider x*(o,4_,). Since

Sql (x*(2tza-3)) = x*(Sq‘ ta_p) =0, (18)
Sq? (x*(atza-5)) = X*(“gd_l) =0, (19)
Sq* (x*(0t2a-2)) = Sq>*" Sq* x*(atza 1-,) =0, (20)

as in the proof of Lemma 4.11, we have

t—1
a-2)- ¢ i d-2)-2i d_a)—
X*(Otzd_z)=przs®‘c‘2 2) 25+p z .L.21®,r(2 2)-2i +pu121®r(2 2) 2,?
i=s+1

242
s=max{l, 5 —b},

t = min 24
= ,ap.
2

Firstly we assume x*(a,a-1_,) = 0. And we shall prove p = p’. If s =1 then

where

the equation Sq* x*(a,a_,) = 0 means p = p". Thus we assume s = z ; :- b
that is,
2b < 24— 4 (21)
Here we remark that by (4),
2b>a+b (22
>2171 2 (23)

Let g := p(2b) then (21) and (23) mean g <d — 2. Also
Sq2* x*(0t3a_5) = Sq**7" Sq2* x*(0t3a-1_,) = 0.

Thus, by Lemma 4.13, compare tterm of t2“"2720%2 ® ¢2 in §q?* x*(aya_,) and

we obtain
(P + p')T(Zd—Z)—2b+24 ® ‘L'Zb =0. (24)

Here we remark that (29 —2) — 2b + 29 < 2a by (4). Thus (24) means p' = p”.
Therefore

—1
i d_2y—2i ’ d—_2y—
x*(dzd_z) — pl Z 121®r(2 2)—2i + p!r21®t(2 2) 21'
i=s
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Next we consider the term p"t¥ ® 2”272 If 2t =2¢ — 4, then by the
computation of Sq? x*(a,4_,) we have p' = p” and x*(0pa_,) = ¥ 1 T2 @ 1?7272
or 0 as asserted. Thus we assume 2t = 24, that is,

2a<?2?—4 (25)

Let p:= p(2a). Here from (25) p<d—1. And p=d—1 if and only if
2a =241 -2
If 2a =2%"—2 then
(24—-4)/2

Hapag)=p Y @I (o 4 ) @
i=1

If p<d—2 then
Sq2” x*(aya_,) = Sq2* ' Sq? x*(03a-1_,) = O. (26)
By Lemma 4.13 look into the term of t2¢ ® t2“~2724+2” of (26) and we obtain
(p' + p')r? @t B2z < g, (27
Remark that by (4)
(24 —2) — 2a + 2P < 2b.

’

Therefore p’ = p” and

t
x*(cxzd_z) = p/ Z T,'Z' ® T(zd_2)—2'.
i=s

— d-1_9r
Secondly we assume x*(ot,a1_,) =712 2 ® 12" '"? and 2a=2"—2 and ob-
2 2
serve x*(o,a_,) again. We reset

t—1
d_2)— , i d_2y—2; d_2)—
X*(azd_2)=p725®f(2 2) 2s+p } TZI®T(2 2)—2i +pﬂ,r2!®r(2 2) 21’
i=s+1

where
s = max{],zdz_z— b},
t = min {%“_—4 a}.
2
Then
2b=2(a+b)—2a (28)
>(3-27'=-2)— (247 -2 (29)
=2 (30)

This means s = 1. Thus by the computation of Sq? x*(a,a_,) we have

p=y
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and also by the computation of Sq* x*(x,a_,) and by (30) we have
p=0.
Therefore we obtain
X*¥0ga_y) = p' T 2@ T
Finally we have obtained the following result
p TR 2 @ D72 g prg2t 2 @ 2
where 2a=21-2 if p'=1
x*(otga_y) =
or
2@t and 2a=2"-2, 3<r<d-2.
Lemma 4.15. In the case 1) if x*(ag) = 0 then x*(03,+p) = 0.
Proof. By (4)

2(a+b)—(29-2)

x*(a21a+b)) = Sq x*(al“—Z)‘

And by Lemma 4.14 we shall prove that
Sq2(a+b)—(2d—2)(Zgid‘—ltill TZi ® r(2"—2)—21') — 0
SqREth=R=2( "2 @ 2" =0 in case a=2"—2, 3<r<d—1
Since
(24-4y2 . i
er ® T(Z —-2)-2i — xg(azd_z),
i=1
it follows that
(29-4)/2

—(2d— i d-2)-2i (24—
qu(a.H,) 2 2)< Z T2l®1'(2 2) 21) — Sq21a+b) (2 Z)X(’l)‘(azd_z)

i=1

X3(%23a+1))

= (2((1 + b)> ,L.Za ® TZb
2a

=0.
Also
qum+b>—(2d—z)(rzr—2 ® 124°7)

= 2® 2 -7 p2la+b)—(24-2)
2a+b)—(2°—2)

{12’_2 ® t2leth=(2r-2) if 2(a + b) = —2 mod 2"

otherwise
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But if 2(a + b) = —2 mod 2" then
2a+b)\ 2(a+ b)\
(D) (245 < moa

2a+ b
Thus if ( (“2: )> = 0 mod 2 then x*(ayqsp) = 0. Q.E.D.

Now we shall finish the proof of Theorem 4.7. Let x: RP"™' A RP"™'

n+m_2>50mod2. If
n—1

x*(ag) = 0 then by Lemma 4.12, Lemma 4.15 we obtain x*(at,4,-,) = 0. There-

fore we assume x*(aq) # 0. The from Lemma 4.9

Q2,80 be an arbitrary map, n>1, m>1 and (

x*og) = 2@ + ' ® 1

Let x + xo: RP"™' A RP™! - ©Q,SO be a map which is contained in the homotopy
class [x] + [x,]. Since 2,SO is an H-space and it is known that a,; € H*(£2,S0)
are primitive elements,

(x + Xxo)*ae) =22 @ * + * ® 1) = 0.
Therefore
(x + xO)*(an+m—2) = 0*
while

(x + X)*(+m=2) = X*(%yrm—2) + X§(%sm-2)

-2
= X*(yy ) + (" o | >r"" ®m!
n p—

= X*(an+m—2)'

Finally we obtained that x*(a,,,,_,) =0 and Theorem 4.7 is proved.
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