Homotopy-commutativity in rotation groups

By

Hiroaki Hamanaka

1. Introduction

Assume G is a topological group and S, S' are subspaces of G, each of which contains the unit as its base point. There is the commutator map c from $S \wedge S'$ to G which maps $(x, y) \in S \wedge S'$ to $xyx^{-1}y^{-1} \in G$. We say S and S' homotopy-commute in G if c is null homotopic.

In this paper, we describe the homotopy-commutativity of the case G = SO(n + m - 1), S = SO(n) and S' = SO(m) where n, m > 1. Here we use the usual embeddings

$$SO(1) \subset SO(2) \subset SO(3) \subset \cdots$$
.

Trivially SO(n) and SO(m) homotopy-commute in SO(n+m). And it is known that if n+m>4, SO(n) and SO(m) do not homotopy-commute in SO(n+m-2). (See [1] and [2].) But the homotopy-commutativity in SO(n+m-1) has not been solved exactly.

We shall say a pair (n, m) is irregular if SO(n) and SO(m) homotopy-commute in SO(n + m - 1), and regular if they do not. In [1] the following problem is proposed; "when is (n, m) irregular?", and the next theorem is showed.

Theorem 1.1 (James and Thomas). Let $n + m \neq 4$, 8. If n or m is even or if d(n) = d(m) then (n, m) is regular, where d(q), for $q \geq 2$, denotes the greatest power of 2 which devides q - 1.

In this paper we shall prove the more strict result as showed in the next theorem.

Theorem 1.2. If n or m is even or if $\binom{n+m-2}{n-1} \equiv 0 \mod 2$ then (n, m) is regular.

We identify $\mathbb{R}\mathbf{P}^{k-1} \stackrel{i_k}{\hookrightarrow} SO(k)$ by the following way. Let $i_k' \colon \mathbb{R}\mathbf{P}^{k-1} \to O(k)$ be the map which attaches a line $l \in \mathbb{R}\mathbf{P}^{k-1}$ with $i_k'(l) \in O(k)$ defined by

$$i'_{k}(l)(v) = v - 2(v, e)e$$

where e is a unit vector of l and $v \in \mathbb{R}^k$. And let $i_k(l) = i'_k(l_0)^{-1} \cdot i'_k(l)$ where l_0 is the base point of \mathbb{RP}^{k-1} . Then i_k preserves the base points.

Theorem 1.2 follows from the next theorem.

Theorem 1.3. Let n and m be odd. $\mathbb{RP}^{n-1} \subset SO(n)$ and $\mathbb{RP}^{m-1} \subset SO(m)$ homotopy-commute in SO(n+m-1) if and only if

$$\binom{n+m-2}{n-1} \equiv 1 \bmod 2.$$

Let SO be $\lim_{\to} (SO(1) \subset SO(2) \subset SO(3) \subset \cdots)$ and consider the fibration $SO(n+m-1) \to SO \to SO/SO(n+m-1)$. Then we have a sequence of spaces

$$\cdots \to \Omega \mathbf{SO} \xrightarrow{\Omega_p} \Omega(\mathbf{SO}/SO(n+m-1)) \xrightarrow{\delta} SO(n+m-1) \xrightarrow{i} \mathbf{SO} \xrightarrow{p} \mathbf{SO}/SO(n+m-1).$$

We can see $i \circ c|_{\mathbf{RP}^{m-1} \wedge \mathbf{RP}^{m-1}} \simeq *: \mathbf{RP}^{n-1} \wedge \mathbf{RP}^{m-1} \to \mathbf{SO}$. This means there exists $\lambda : \mathbf{RP}^{n-1} \wedge \mathbf{RP}^{m-1} \to \Omega \mathbf{SO}/SO(n+m-1)$ such that $\delta \circ \lambda = c|_{\mathbf{RP}^{n-1} \wedge \mathbf{RP}^{m-1}}$. The construction of λ and the cohomology map λ^* are argued in §2. We describe about lifts of λ in §3 and finally, in §4, we determine when a lift of λ exists, which means when $c|_{\mathbf{RP}^{n-1} \wedge \mathbf{RP}^{m-1}} \simeq *$.

2. Lift λ of c

Definition. A sequence of spaces X_i and continuous maps f_i

$$\cdots \to X_{i+1} \stackrel{f_i}{\to} X_i \to \cdots \stackrel{f_0}{\to} X_0$$

is called a fibration sequence if, for any $i \ge 0$, there exists a fibration $Y_i^{(2)} \xrightarrow{j_i} Y_i^{(1)} \xrightarrow{\pi_i} Y_i^{(0)}$, homotopy equivalence maps $\psi_i^{(k)}: X_{i+k} \to Y_i^{(k)}$ (k = 0, 1, 2), and the following diagram commutes upto homotopy.

$$X_{i+2} \xrightarrow{f_{i+1}} X_{i+1} \xrightarrow{f_i} X_i$$

$$\simeq \left| \psi_i^{(2)} \right| \simeq \left| \psi_i^{(1)} \right| \simeq \left| \psi_i^{(0)} \right|$$

$$Y_i^{(2)} \xrightarrow{j_i} Y_i^{(1)} \xrightarrow{\pi_i} Y_i^{(0)}$$

For example, given a fibration $F \rightarrow E \rightarrow B$, there is a fibration sequence

$$\cdots \rightarrow \Omega F \rightarrow \Omega E \rightarrow \Omega B \rightarrow F \rightarrow E \rightarrow B$$
.

Consider the fibration $SO \rightarrow SO/SO(n+m-1)$ with the fibre SO(n+m-1). Then we have a fibration sequence.

$$\cdots \to \Omega \mathbf{SO} \xrightarrow{\Omega_p} \Omega(\mathbf{SO}/SO(n+m-1)) \xrightarrow{\delta} SO(n+m-1) \xrightarrow{i} \mathbf{SP} \xrightarrow{p} \mathbf{SO}/SO(n+m-1)$$

Obviously $i \circ c : SO(n) \wedge SO(m) \to SO$ is null homotopic. This means there exists a lift of c, that is, a map $\lambda : \mathbf{RP}^{n-1} \wedge \mathbf{RP}^{m-1} \to \Omega(\mathbf{SO}/SO(n+m-1))$ such that $\delta \circ \lambda \simeq c$.

In R. Bott [3] it is showed that the following map $\lambda_0: SO(n) \wedge SO(m) \rightarrow \Omega(SO/SO(n+m-1))$ is a lift of c.

Recall the fibration $SO(k-1) \to SO(k) \xrightarrow{p_k} S^{k-1}$. Define h as $h = \Sigma(p_n \land p_m)$:

 $\Sigma(SO(n) \wedge SO(m)) \to \Sigma(S^{n-1} \wedge S^{m-1}) \simeq S^{n+m-1}$. Then ad h is a lift of c in the following fibration sequence. (See [5].)

$$\cdots \to \Omega SO(n+m) \to \Omega S^{n+m-1} \to SO(n+m-1) \to SO(n+m) \to S^{n+m-1}$$

$$\downarrow \text{ad } h \qquad \uparrow c$$

$$SO(n) \land SO(m)$$

The fibration $SO(n+m) \to S^{n+m-1}$ is the restriction of $SO \to SO/SO(n+m-1)$ to $S^{n+m-1} = SO(n+m)/SO(n+m-1) \stackrel{j}{\hookrightarrow} SO/SO(n+m-1)$. Therefore we define λ_0 as $\Omega j \circ \operatorname{ad} h$. Refer to the commutative diagram below.

The rest of this section is devoted to the computation of the cohomology map of λ . And throughout this paper we use $\mathbb{Z}/2\mathbb{Z}$ as the coefficient ring of cohomology unless mentioned.

First we refer to the cohomology rings of spaces which are used in this paper, that is,

$$H^*(\Omega_0 \mathbf{SO}) = \mathbf{Z}/2\mathbf{Z}[\alpha_2, \alpha_4, \alpha_6, \dots]/(\alpha_{4k} - \alpha_{2k}^2),$$

$$H^*(\Omega(\mathbf{SO}/SO(n+m-1))) = \mathbf{Z}/2\mathbf{Z}[\alpha'_{n+m-2}, \alpha'_{n+m}, \dots]/(\alpha'_{4k} - \alpha'_{2k}^2),$$

$$H^*(SO(k)) = \Delta(x_1, \dots, x_{k-1}),$$

$$H^*(SO(k)/SO(k-1)) = \Delta(x'_{k-1}, \dots, x'_{k-1}),$$

where $deg(\alpha_{2i}) = 2i$, $deg(\alpha'_{2i}) = 2i$, $deg(x_i) = i$. And also

$$\Omega p^*(\alpha'_k) = \alpha_k.$$

Lemma 2.4. $\lambda_0^*(\alpha'_{n+m-2}) = x_{n-1} \otimes x_{m-1}$.

Proof. Consider the fibration $p_k: SO(k) \to S^{k-1}$ with the fibre SO(k-1). Let

 c_i be the generator of $H^i(S^i)$. Then $p_k^*(c_{k-1}) = x_{k-1}$. Thus we have

$$h^*(c_{n+m-1}) = \Sigma(p_n \wedge p_m)^*(\Sigma c_{n-1} \otimes c_{m-1})$$
$$= \Sigma(x_{n-1} \otimes x_{m-1}).$$

Hence (ad h)*(σc_{n+m-1}) = $x_{n-1} \otimes x_{m-1}$, where σ is the cohomology suspension σ : $H^{*+1}(X) \to H^*(\Omega X)$.

On the other hand, $j^*(x_{n+m-1}) = c_{n+m-1}$ means

$$(\Omega j)^*(\alpha'_{n+m-2}) = (\Omega j)^*(\sigma x'_{n+m-1})$$
$$= \sigma c_{n+m-1}.$$

Therefore it follows that

$$\lambda_0^*(\alpha'_{n+m-2}) = (\text{ad } h)^*(\Omega j)^*(\alpha'_{n+m-2})$$

$$= x_{n-1} \otimes x_{m-1}.$$
Q.E.D.

Now let $\lambda = \lambda_0 \circ (i_m \wedge i_n)$: $\mathbf{RP}^{n-1} \wedge \mathbf{RP}^{m-1} \to \Omega(\mathbf{SO}/SO(n+m-1))$ and in the following we use c as the commutator map from $\mathbf{RP}^{n-1} \wedge \mathbf{RP}^{m-1}$ to SO(n+m-1). Easily we have $i_k^*(x_{k-1}) = \tau^{k-1}$ where τ means the generator of $H^1(\mathbf{RP}^{k-1})$. (See Whitehead [4].) Thus

$$\lambda^*(\alpha'_{n+m-2}) = (i_m \wedge i_n)^* \circ \lambda_0^*(\alpha'_{n+m-2})$$
$$= \tau^{n-1} \otimes \tau^{m-1}.$$

3. Lift of λ and homotopy commutativity

In this section we prove the next theorem.

Theorem 3.5. Let n, m be odd.

- 1. $c \simeq *$ if and only if there exists a lift of λ , that is, a map $x: \mathbb{RP}^{n-1} \wedge \mathbb{RP}^{m-1} \to \Omega_0(\mathbf{SO})$ such that $\lambda = \Omega p \circ x$.
- 2. $c \simeq *$ if and only if there exists $x: \mathbf{RP}^{n-1} \wedge \mathbf{RP}^{m-1} \to \Omega_0(\mathbf{SO})$ such that $x^*(\alpha_{n+m-2}) \simeq \tau^{n-1} \otimes \tau^{m-1}$.

Proof. 1. The sequence

$$\cdots \to \Omega_0(\mathbf{SO}) \stackrel{\Omega_p}{\to} \Omega(\mathbf{SO}/SO(n+m-1)) \stackrel{\delta}{\to} SO(n+m-1)$$

is a fibration sequence and λ is a lift of c. Therefore the statement follows.

2. By the first statement it is sufficient to prove that x is a lift of λ if and only if $x^*(\alpha_{n+m-2}) = \tau^{n-1} \otimes \tau^{m-1}$. We need the following lemma.

Lemma 3.6. Let n and m be odd. Then

$$\pi_i(\mathbf{SO}/SO(n+m-1)) = \begin{cases} 0 & i \le n+m-2 \\ \mathbf{Z}/2\mathbf{Z} & i = n+m-1 \end{cases}$$

Proof. Consider the fibration

$$SO(n + m + 1)/SO(n + m - 1) \rightarrow SO/SO(n + m - 1) \rightarrow SO/SO(n + m + 1)$$

and see the homotopy exact sequence. Remark that $\pi_i(SO/SO(2k+1)) = 0$ for $i \le 2k$ and we obtain

$$\pi_{n+m-1}(\mathbf{SO}/SO(n+m-1)) = \pi_{n+m-1}(SO(n+m+1)/SO(n+m-1)).$$

It is known that $\pi_{n+m-1}(SO(n+m+1)/SO(n+m-1)) = \mathbb{Z}/2\mathbb{Z}$ provided n+m-1 is odd. Hence we obtained the statement. Q.E.D.

By Lemma 3.6 it follows that

$$\pi_i(\Omega(\mathbf{SO}/SO(n+m-1))) = \begin{cases} 0 & i \le n+m-3 \\ \mathbf{Z}/2\mathbf{Z} & i = n+m-2. \end{cases}$$

Now add cells e_i $(i \ge 1)$ to $\Omega(\mathbf{SO}/SO(n+m-1))$ so that $\pi_k(\Omega(\mathbf{SO}/SO(n+m-1)))$ vanishes for $k \ge n+m-1$, where dim $e_i \ge n+m$. We shall call the obtained space K, that is,

$$\Omega(\mathbf{SO}/SO(n+m-1)) \hookrightarrow \Omega(\mathbf{SO}/SO(n+m-1)) \cup e_1 \cup e_2 \cup \dots = K$$
 (1)

and

$$\pi_i(K) = \begin{cases} \mathbf{Z}/2\mathbf{Z} & i = n + m - 2\\ 0 & \text{otherwise.} \end{cases}$$
 (2)

Thus K is an Eilenberg-Maclane space $K(\mathbb{Z}/2\mathbb{Z}; n+m-2)$. Let γ denote the inclusion map from $\Omega(SO/SO(n+m-1))$ to K. Here

$$\gamma_*$$
: $\pi_{n+m-2}(\Omega(\mathbf{SO}/SO(n+m-1))) \rightarrow \pi_{n+m-2}(K)$

is not a 0-map. This means that by the isomorphism

$$\Omega(\mathbf{SO}/SO(n+m-1)), K] \cong \mathbf{H}^{n+m-2}(\Omega(\mathbf{SO}/SO(n+m-1)))$$

 γ corresponds to α'_{n+m-2} , that is, $\gamma^* u = \alpha'_{n+m-2}$ where u is the generator of $H^{n+m-2}(K)$.

On the other hand, (1) and (2) imply that γ_* : $\pi_i(\Omega(\mathbf{SO}/SO(n+m-2))) \to \pi_i(K)$ is isomorphic for $i \le n+m-2$ and epic for $i \ge n+m-1$. Then by Whitehead's theorem

$$[\mathbf{R}\mathbf{P}^{n-1} \wedge \mathbf{R}\mathbf{P}^{m-1}, \Omega(\mathbf{SO}/SO(n+m-1))] \cong [\mathbf{R}\mathbf{P}^{n-1} \wedge \mathbf{R}\mathbf{P}^{m-1}, K]$$
$$\cong \mathbf{H}^{n+m-2}(\mathbf{R}\mathbf{P}^{n-1} \wedge \mathbf{R}\mathbf{P}^{m-1}).$$

Thus maps f and $g: \mathbb{RP}^{n-1} \wedge \mathbb{RP}^{m-1} \to \Omega(SO/SO(n+m-2))$ are homotopic if and only if $f^*(\alpha'_{n+m+-2}) = g^*(\alpha'_{n+m-2})$.

Now we assume $x: \mathbb{R}P^{n-1} \wedge \mathbb{R}P^{m-1} \to \Omega(SO/SO(n+m-1))$ satisfies that $x^*(\alpha_{n+m-2}) = \tau^{n-1} \otimes \tau^{m-1}$. Then

$$(\Omega p \circ x)^*(\alpha'_{n+m-2}) = \tau^{n-1} \otimes \tau^{m-1}.$$

By §2 $\lambda^*(\alpha'_{n+m-2}) = \tau^{n-1} \otimes \tau^{m-1}$. Thus we obtain $\Omega p \circ x \simeq \lambda$ and x is a lift of λ . The inverse is trivial and the proof of theorem 3.5 is finished.

4. Existence of lift of λ

In this section we prove the next theorem which completes the proof of Theorem 1.3.

Theorem 4.7. Let n and m be odd. There exists a map $x: \mathbb{RP}^{n-1} \wedge \mathbb{RP}^{m-1} \to \Omega_0(\mathbf{SO})$ such that $x^*(\alpha_{n+m-2}) = \tau^{n+1} \otimes \tau^{m-1}$ if and only if

$$\binom{n+m-2}{n-1} \equiv 1 \bmod 2.$$

Proof. First consider

$$\theta := (r_1 - 1) \, \hat{\otimes} \, (r_1 - 1) \, \hat{\otimes} \, (r_\infty - 1) \, \hat{\otimes} \, (r_\infty - 1) \in \widetilde{KO}(\Sigma^2(\mathbf{RP}^\infty \wedge \mathbf{RP}^\infty)).$$

Here r_1 is the Möbius line bundle over S^1 and r_{∞} is the canonical line bundle over \mathbf{RP}^{∞} . Now we compute the total Stiefel Whitney class of θ . We start from the next lemma.

Lemma 4.8. Let $A = 1 + a_1 + a_2 + \cdots \in H^{**}(\mathbf{RP}^{\infty} \times \mathbf{RP}^{\infty})$ where $a_i \in H^i(\mathbf{RP}^{\infty} \times \mathbf{RP}^{\infty})$ and let $s_i \in H^*(S^1 \times S^1 \times \mathbf{RP}^{\infty} \times \mathbf{RP}^{\infty})$ (i = 1, 2) be the pull back of the generator of $H^1(S^1)$ by the canonical projection from $S^1 \times S^1 \times \mathbf{RP}^{\infty} \times \mathbf{RP}^{\infty}$ to the ith factor S^1 . Then we have

$$\frac{(A+s_1+s_2)A}{(A+s_1)(A+s_2)} = \frac{A^2+s_1s_2}{A^2} \in \mathbf{H}^{**}(S^1 \times S^1 \times \mathbf{R}\mathbf{P}^{\infty} \times \mathbf{R}\mathbf{P}^{\infty}).$$

Proof. By direct computation, we see

$$\frac{(A+s_1+s_2)A}{(A+s_1)(A+s_2)} = \frac{\{(A+s_1)^2 + (A+s_1)s_2\}A}{(A+s_1)^2(A+s_2)}$$

$$= \frac{(A^2+s_2A+s_1s_2)A}{A^2(A+s_2)}$$

$$= \frac{A(A+s_2)^2 + (A+s_2)s_1s_2}{A(A+s_2)^2}$$

$$= \frac{A^2+s_1s_2}{A^2}.$$
 Q.E.D.

Let $\pi: S^1 \times S^1 \times \mathbf{RP}^{\infty} \to \Sigma^2(\mathbf{RP}^{\infty} \wedge \mathbf{RP}^{\infty})$ be the canonical projection and decompose $\pi^*\theta$ as

$$\pi^*\theta = r_1 \times r_1 \times r_\infty \times r_\infty + 1 \times 1 \times r_\infty \times r_\infty - 1 \times r_1 \times r_\infty \times r_\infty$$
$$-r_1 \times 1 \times r_\infty \times r_\infty - r_1 \times r_1 \times 1 \times r_\infty - 1 \times 1 \times 1 \times r_\infty$$
$$+ 1 \times r_1 \times 1 \times r_\infty + r_1 \times 1 \times 1 \times r_\infty - r_1 \times r_1 \times r_\infty \times 1$$
$$- 1 \times 1 \times r_\infty \times 1 + 1 \times r_1 \times r_\infty \times 1 + r_1 \times 1 \times r_\infty \times 1 + r_1 \times r_1 \times 1 \times 1$$
$$+ 1 \times 1 \times 1 \times 1 - 1 \times r_1 \times 1 \times 1 - r_1 \times 1 \times 1 \times 1.$$

Then the total Stiefel Whitney class $w(\pi^*\theta)$ of $\pi^*\theta$ is given by

$$w(\pi^*\theta) = \frac{(1+\tau_1+\tau_2+s_1+s_2)(1+\tau_1+\tau_2)}{(1+\tau_1+\tau_2+s_1)(1+\tau_1+\tau_2+s_2)} \cdot \frac{(1+s_1+s_2)}{(1+s_1)(1+s_2)} \cdot \frac{(1+\tau_1+s_1+s_2)(1+\tau_1)}{(1+\tau_1+s_1)(1+\tau_1+s_2)} \cdot \frac{(1+\tau_2+s_1+s_2)(1+\tau_2)}{(1+\tau_2+s_1)(1+\tau_2+s_2)}^{-1}.$$

Here τ_i (i = 1, 2) is the pull back of the generator of the cohomology ring of the *i*th factor of $\mathbf{RP}^{\infty} \times \mathbf{RP}^{\infty}$. By the previous lemma, we obtain

$$\begin{split} w(\pi^*\theta) &= \frac{1+\tau_1^2+\tau_2^2+s_1s_2}{1+\tau_1^2+\tau_2^2} \cdot (1+s_1s_2) \cdot \left(\frac{1+\tau_1^2+s_1s_2}{1+\tau_1^2}\right)^{-1} \cdot \left(\frac{1+\tau_2^2+s_1s_2}{1+\tau_2^2}\right)^{-1} \\ &= \left\{1+(1+\tau_1^2+\tau_2^2)^{-1}s_1s_2\right\} (1+s_1s_2) \left\{1+(1+\tau_1^2)^{-1}s_1s_2\right\} \\ &\quad \cdot \left\{1+(1+\tau_2^2)^{-1}s_1s_2\right\} \\ &= 1+s_1s_2 \left\{(1+\tau_1^2+\tau_2^2)^{-1}+1+(1+\tau_1^2)^{-1}+(1+\tau_2^2)^{-1}\right\} \\ &= 1+s_1s_2 \left\{\sum_{i=0}^{\infty} (\tau_1^2+\tau_2^2)^i+1+\sum_{i=0}^{\infty} \tau_1^{2i}+\sum_{i=0}^{\infty} \tau_2^{2i}\right\} \\ &= 1+s_1s_2 \left\{\sum_{i=1}^{\infty} \sum_{j=1}^{i-1} \binom{i}{j} \tau_1^{2j} \tau_2^{2i-2j}\right\}. \end{split}$$

Therefore we see

$$w(\theta) = 1 + \Sigma^2 \left\{ \sum_{i=2}^{\infty} \sum_{j=1}^{i-1} {i \choose j} \tau^{2j} \otimes \tau^{2i-2j} \right\}.$$

Let f be the classifying map of θ , that is, the map

$$f: \Sigma^2(\mathbf{RP}^{\infty} \wedge \mathbf{RP}^{\infty}) \to \mathbf{BSO}$$

such that $f^*(\xi) = \theta$ where $\xi = \lim_{n \to \infty} (\xi_n - n)$ and ξ_n is the universal SO(n) vector bundle over **BSO**(n).

It is known that $H^*(\mathbf{BSO}) = \mathbb{Z}/2\mathbb{Z}[w_1, w_2, ...]$ where w_i is the *i*th Stiefel Whitney class. Let $\iota_k \colon \mathbf{RP}^k \to \mathbf{RP}^{\infty}$ be the inclusion map and let

$$x_0 := (\operatorname{ad}^2 f) \circ (\iota_{n-1} \wedge \iota_{m-1}) : \mathbf{RP}^{n-1} \wedge \mathbf{RP}^{m-1} \to \Omega \mathbf{SO}.$$

Then it follows that for $N \ge 1$

$$x_0^*(\alpha_{2N}) = (\iota_{n-1} \wedge \iota_{m-1})^*(\operatorname{ad}^2 f)^*\sigma^2 w_{2N+2}$$
$$= (\iota_{n-1} \wedge \iota_{m-1})^* \left(\sum_{j=1}^{N-1} \binom{2N}{2j} \tau^{2j} \otimes \tau^{2N-2j}\right).$$

Particularly $x_0^*(\alpha_{n+m-2}) = \binom{n+m-2}{n-1} \tau^{n-1} \otimes \tau^{m-1}$. Thus if $\binom{n+m-2}{n-1} \equiv 1$ then there exists $x_0 \colon \mathbf{RP}^{n-1} \wedge \mathbf{RP}^{m-1} \to \Omega \mathbf{SO}$ such that $x_0^*(\alpha_{n+m-2}) = \tau^{n-1} \otimes \tau^{m-1}$.

Now we shall prove the inverse, that is, prove that if $\binom{n+m-2}{n-1} \equiv 0 \mod 2$ then $x^*(\alpha_{n+m-2}) = 0$ for any $x: \mathbb{RP}^{n-1} \wedge \mathbb{RP}^{m-1} \to \Omega SO$. Let n = 2a+1, m = 2b+1 where $a, b \in \mathbb{Z}$, $a, b \geq 1$. Moreover we set $a \leq b$.

Here we use the Steenrod's square operators Sq^i . In $H^*(\Omega_0SO)$, Sq^i acts as follows

$$\operatorname{Sq}^{i}(\alpha_{2j}) = \begin{cases} \binom{2j+1}{i} \alpha_{2j+i} & i \text{ is even} \\ 0 & i \text{ is odd.} \end{cases}$$

Let $x: \mathbb{RP}^{2a} \wedge \mathbb{RP}^{2b} \to \Omega_0 SO$ be an arbitrary map.

Lemma 4.9. We set a, b, x as above then

$$x^*(\alpha_2) = 0$$
 and $x^*(\alpha_6) = \tau^2 \otimes \tau^4 + \tau^4 \otimes \tau^2$ or 0.

Proof. Since $x^*(\alpha_2) \in H^*(\mathbf{RP}^{2a} \wedge \mathbf{RP}^{2b})$, $x^*(\alpha_2) = \tau \otimes \tau$ or 0. If $x^*(\alpha_2) = \tau \otimes \tau$, then we have

$$\operatorname{Sq}^{1} x^{*}(\alpha_{2}) = \tau^{2} \otimes \tau + \tau \otimes \tau^{2}.$$

On the other hand,

$$Sq^1 x^*(\alpha_2) = x^*(Sq^1 \alpha_2) = 0.$$

Therefore $x^*(\alpha_2) = 0$.

Next we consider $x^*(\alpha_6)$. If (a, b) = (1, 1) then $x^*(\alpha_6) = 0$, and if (a, b) = (1, 2) we can see $x^*(\alpha_6) = \tau^2 \otimes \tau^4$ or 0 as asserted. And otherwise, set

$$x^*(\alpha_6) = \rho_1 \tau \otimes \tau^5 + \rho_2 \tau^2 \otimes \tau^4 + \rho_3 \tau^3 \otimes \tau^3 + \rho_4 \tau^4 \otimes \tau^2 + \rho_5 \tau^5 \otimes \tau^1,$$

where $\rho_i \in \mathbb{Z}/2\mathbb{Z}$ and the statement follows the next two equations.

$$Sq^{1} x^{*}(\alpha_{6}) = x^{*}(Sq^{1} \alpha_{6}) = 0$$

$$Sq^{2} x^{*}(\alpha_{6}) = x^{*}(\alpha_{8}) = x^{*}(\alpha_{2})^{4} = 0$$
 Q.E.D.

Remark that if $2(a+b) = 2^d - 2$ for some $d \in \mathbb{N}$, then $\binom{2(a+b)}{2i} \equiv 1 \mod 2$ for any $i \in \mathbb{Z}$ such that $0 \le i \le a+b$. And also when $2(a+b) = 2^d$ for some $d \in \mathbb{N}$,

$$\binom{2(a+b)}{2i} \equiv \begin{cases} 1 \mod 2 & i=0 \text{ or } a+b \\ 0 \mod 2 & \text{otherwise.} \end{cases}$$

In this case

$$x^*(\alpha_{2(a+b)}) = x^*(\alpha_{2^d})$$

$$= x^* \text{ (a power of } \alpha_2)$$

$$= 0$$

as asserted. Hence we can assume that $2(a+b) \neq 2^k$ or $2^k - 2$ for any $k \in \mathbb{N}$. Next we shall prove the next theorem.

Theorem 4.10. Let a, b and x be as above. If $x^*(\alpha_6) = 0$ then $x^*(\alpha_{2(a+b)}) = 0$.

Proof. Let d be the number which satisfies

$$2^{d} < 2(a+b) < 2^{d+1} - 2$$
 $d \in \mathbb{N}$. $(d > 3)$

We distinguish between the following two cases.

I)

$$2^{d} < 2(a+b) < 3 \cdot 2^{d-1} - 2 \tag{3}$$

II)

$$3 \cdot 2^{d-1} - 2 \le 2(a+b) < 2^{d+1} - 2 \tag{4}$$

Lemma 4.11. Let a, b and x be as above. In any of the case I) and II), if $x^*(\alpha_6) = 0$ then one of the following holds.

- i) $x^*(\alpha_{2^{k}-2}) = 0$ for $3 \le k \le d-1$.
- ii) $2a = 2^r 2$ for some $r \in \mathbb{N}$, $r \le d 1$ and

$$x^*(\alpha_{2^{k-2}}) = \begin{cases} 0 & 3 \le k \le r \\ \tau^{2^{r-2}} \otimes \tau^{2^{k-2^r}} & r+1 \le k \le d-1. \end{cases}$$

Proof. We use induction, that is, we prove the next two propositions.

- a) If $x^*(\alpha_{2^{k-1}-2}) = 0$ and $4 \le k \le d-1$, then one of the followings holds.
 - $\bullet \quad x^*(\alpha_{2^{k}-2})=0.$
- $2a = 2^{k-1} 2$ and $x^*(\alpha_{2^{k-2}}) = \tau^{2^{k-1}-2} \otimes \tau^{2^{k-1}}$. b) If $2a = 2^r 2$ and $x^*(\alpha_{2^{k-1}-2}) = \tau^{2^{r-2}} \otimes \tau^{2^{k-1}-2^r}$ and $r+2 \le k \le d-1$, then

$$x^*(\alpha_{2^{k}-2}) = \tau^{2^{r}-2} \otimes \tau^{2^{k}-2^{r}}.$$

First we assume $4 \le k \le d-1$ and $x^*(\alpha_{2^{k-1}-2}) = 0$ and prove a). Let

$$x^*(\alpha_{2^{k}-2}) = \sum_{i=s}^{t} \rho_i \tau^i \otimes \tau^{(2^{k}-2)-i},$$

where

$$s = \max \{1, (2^k - 2) - 2b\},\$$

 $t = \min \{2^k - 3, 2a\},\$
 $\rho_i \in \mathbb{Z}/2\mathbb{Z}.$

Since $Sq^{1}(x^{*}(\alpha_{2^{k}-2})) = x^{*}(Sq^{1}\alpha_{2^{k}-2}) = 0$, we have that

$$\begin{aligned} &\operatorname{Sq}^{1}\left(\sum_{i=s}^{t}\rho_{i}\tau^{i}\otimes\tau^{(2^{k}-2)-i}\right) \\ &= \sum_{s\leq i\leq t,\,i:\operatorname{odd}}\rho_{i}(\tau^{i+1}\otimes\tau^{(2^{k}-2)-i}+\tau^{i}\otimes\tau^{(2^{k}-2)-i+1}) \\ &= \sum_{s\leq i\leq t,\,i:\operatorname{odd}}\rho_{i}(\tau^{i}\otimes\tau^{(2^{k}-2)-i+1}) + \sum_{s+1\leq i\leq t,\,i:\operatorname{even}}\rho_{i-1}(\tau^{i}\otimes\tau^{(2^{k}-2)-i+1}) \\ &= 0. \end{aligned}$$

Here, $\tau^i \otimes \tau^{(2^{k}-2)-i+1} \neq 0$ for $s+1 \leq i \leq t$. Therefore

$$\rho_i = 0 \quad \text{for } i: \text{ odd}, \quad s \le i \le t.$$
(5)

Next we use Sq². By (5) we can set

$$x^*(\alpha_{2^{k}-2}) = \sum_{i=s'}^{t'} \rho_{2i} \tau^{2i} \otimes \tau^{(2^{k}-2)-2i},$$
where $s' = \max\left\{1, \frac{2^{k}-2}{2} - b\right\}$

$$t' = \min\left\{\frac{2^{k}-4}{2}, a\right\}.$$

Since

$$Sq^{2} x^{*}(\alpha_{2^{k}-2}) = x^{*}(Sq^{2} \alpha_{2^{k}-2})$$

$$= x^{*}(\alpha_{2^{k}})$$

$$= x^{*}(\alpha_{2^{k-1}}^{2^{k-1}})$$

$$= 0,$$

we have

$$\operatorname{Sq}^{2}\left(\sum_{i=s'}^{t'} \rho_{2i} \tau^{2i} \otimes \tau^{(2^{k}-2)-2i}\right) \\
= \sum_{s' \leq 2j \leq t'} \rho_{4j} \operatorname{Sq}^{2} \left(\tau^{4j} \otimes \tau^{(2^{k}-2)-4j}\right) + \sum_{s' \leq 2j-1 \leq t'} \rho_{4j-2} \operatorname{Sq}^{2} \left(\tau^{4j-2} \otimes \tau^{(2^{k}-2)-4j+2}\right) \\
= \sum_{s' \leq 2j \leq t'} \rho_{4j} \tau^{4j} \otimes \tau^{2^{k}-4j} + \sum_{s' \leq 2j-1 \leq t'} \rho_{4j-2} \tau^{4j} \otimes \tau^{2^{k}-4j} = 0$$
(6)

Here $\tau^{4j} \otimes \tau^{2^{k-4j}} \neq 0$ for $s' + 1 \leq 2j \leq t'$. Thus

$$\rho_{4j} = \rho_{4j-2} \quad \text{for } s' + 1 \le 2j \le t'.$$
(7)

Next we consider Sq⁴. Since

$$Sq^{4} x^{*}(\alpha_{2^{k}-2}) = x^{*}(Sq^{4} \alpha_{2^{k}-2})$$

$$= x^{*}(\alpha_{2^{k}+2})$$

$$= x^{*}(Sq^{2^{k-1}} Sq^{4} \alpha_{2^{k-1}-2})$$

$$= Sq^{2^{k-1}} Sq^{4} x^{*}(\alpha_{2^{k-1}-2})$$

$$= 0,$$

we have that

$$\begin{split} & \operatorname{Sq}^{4} \left(\sum_{i=s'}^{t'} \rho_{2i} \tau^{2i} \otimes \tau^{(2^{k}-2)-2i} \right) \\ & = \operatorname{Sq}^{4} \left(\sum_{s' \leq 4j \leq t'} \rho_{8j} \tau^{8j} \otimes \tau^{(2^{k}-2)-8j} + \sum_{s' \leq 4j-1 \leq t'} \rho_{8j-2} \tau^{8j-2} \otimes \tau^{(2^{k}-2)-8j+2} \right. \\ & \quad + \sum_{s' \leq 4j-2 \leq t'} \rho_{8j-4} \tau^{8j-4} \otimes \tau^{(2^{k}-2)-8j+4} + \sum_{s' \leq 4j+1 \leq t'} \rho_{8j+2} \tau^{8j+2} \otimes \tau^{(2^{k}-2)-8j-2} \right) \\ & = \sum_{s' \leq 4j \leq t'} \rho_{8j} \tau^{8j} \otimes \tau^{2^{k}+2-8j} + \sum_{s' \leq 4j-1 \leq t'} \rho_{8j-2} \tau^{8j+2} \otimes \tau^{2^{k}-8j} \\ & \quad + \sum_{s' \leq 4j-2 \leq t'} \rho_{2j-4} \tau^{8j} \otimes \tau^{2^{k}+2-8j} + \sum_{s' \leq 4j+1 \leq t'} \rho_{8j+2} \tau^{8j+2} \otimes \tau^{2^{k}-8j} \\ & = 0. \end{split}$$

Thus

$$\begin{cases} \rho_{8j} = \rho_{8j-4} & \text{for } s' + 2 \le 4j \le t' \\ \rho_{8i-2} = \rho_{8j+2} & \text{for } s' + 1 \le 4j \le t' - 1 \end{cases}$$
 (9)

We set A as the set $\{i \in \mathbb{N} | s' \le i \le t'\}$. (7) and (9) mean that

$$2i, 2i - 1 \in A$$
 then $\rho_{4i-2} = \rho_{4i}$, (10)

$$4i, 4i - 2 \in A$$
 then $\rho_{8i} \sim \rho_{8i-4}$, (11)

$$4i - 1, 4i + 1 \in A$$
 then $\rho_{8i-2} = \rho_{8i+2}$. (12)

Therefore, for $i \in A - \{s', t'-1, t'\}$, $\rho_{2i} = \rho_{2i+2}$. The reason is this: if *i* is odd, it is trivial from (10); if i = 4j for some j, $\rho_{8j} = \rho_{8j-2} = \rho_{8j+2}$; if i = 4j for some j, $\rho_{8j-4} = \rho_{8j} = \rho_{8j-2}$.

We obtain that

$$\rho_{2s'+2} = \rho_{2s'+4} = \cdots = \rho_{2t'-2}.$$

Also, we see

$$2b \ge a + b > 2^{d-1}$$
 and $\frac{2^k - 2}{2} - b \le \frac{2^{d-1} - 2}{2} - 2^{d-2} < 1$ (13)

and we have

$$s' = \max\left\{1, \frac{2^k - 2}{2} - b\right\} = 1.$$

We see again (8) and look into the term of $\tau^2 \otimes \tau^{2^k}$, then we have that $\rho_2 = 0$ and from (10) $\rho_2 = \rho_4$. Hence we have

$$0 = \rho_2 = \rho_4 = \cdots = \rho_{2t'-2},$$

that is,

$$x^*(\alpha_{2^{k}-2}) = \rho_{2t'}\tau^{2t'} \otimes \tau^{(2^{k}-2)-2t'}. \tag{14}$$

If $2a > 2^k - 4$ then we have

$$t' = \min\left\{\frac{2^k - 4}{2}, a\right\} = 2^{k-1} - 2$$

and from (10)

$$\rho_{2t'-2}=\rho_{2t'},$$

that is,

$$x^*(\alpha_{2^{k-2}})=0.$$

Therefore we can assume

$$2a < 2^k - 4.$$
 (15)

that is, t'=a. Here if $2a=2^{k-1}-2$, then by (14) $x^*(\alpha_{2^{k}-2})=\tau^{2^{k-1}-2}\otimes\tau^{2^{k-1}}$ or 0 as asserted. Hence what we have to prove is that if $2a\neq 2^{k-1}-2$ then $\rho_{2t'}=0$.

We set p(2a) so that $2^{p(2a)}$ is the greatest power of 2 which devides 2a + 2.

Let p := p(2a). We remark that $p \le k - 2$ since, if it were not, by (15) $2a = 2^{k-1} - 2$. Using Sq^{2p} , we see

$$Sq^{2^{p}} x^{*}(\alpha_{2^{k}-2}) = x^{*}(\alpha_{2^{k}+2^{p}-2})$$

$$= Sq^{2^{k-1}} Sq^{2^{p}} x^{*}(\alpha_{2^{k-1}-2})$$

$$= 0.$$

Thus it follows that

$$\begin{aligned} \operatorname{Sq}^{2^{p}}(\rho_{2t'}\tau^{2a} \otimes \tau^{(2^{k}-2)-2a}) &= \rho_{2t'}\tau^{2a} \otimes \operatorname{Sq}^{2^{p}}\tau^{2^{k}-2-2a} \\ &= \rho_{2t'}\tau^{2a} \otimes \tau^{2^{k}+2^{p}-2-2a} \\ &= 0 \end{aligned}$$

Here $\tau^{2a} \otimes \tau^{2^{k+2p-2-2a}} \neq 0$ since by (3) and (4)

$$2b > 2^{d} - 2a$$

$$\geq 2 \cdot 2^{k} - 2a$$

$$> 2^{k} + 2^{p} - 2 - 2a.$$
(16)

Thus $\rho_{2t'} = 0$, that is, $x^*(\alpha_{2k-2}) = 0$ as asserted.

Next we shall prove b). Let $x^*(\alpha_{2^{k-1}-2}) = \tau^{2^{r-2}} \otimes \tau^{2^{k-1}-2^r}, \ r+2 \le k \le d-1$ and $2a=2^r-2$. Then

$$\begin{split} \operatorname{Sq}^{i} x^{*}(\alpha_{2^{k-1}-2}) &= \tau^{2^{r}-2} \otimes \operatorname{Sq}^{i} (\tau^{2^{k-1}-2^{r}}) \\ &= \binom{2^{k-1}-2^{r}}{i} \tau^{2^{r}-2} \otimes \tau^{2^{k-1}-2^{r+i}}. \end{split}$$

Here we remark that $r \ge 2$. For, if r = 2, by a) $x^*(\alpha_{2^{i-2}}) = 0$ for $3 \le i \le d-1$. Thus $\operatorname{Sq}^4 x^*(\alpha_{2^{k-1}-2}) = 0$ and we obtain

$$\begin{aligned} & \operatorname{Sq}^{1}\left(x^{*}(\alpha_{2^{k}-2})\right) = x^{*}(\operatorname{Sq}^{1}\alpha_{2^{k}-2}) = 0, \\ & \operatorname{Sq}^{2}\left(x^{*}(\alpha_{2^{k}-2})\right) = x^{*}(\alpha_{2}^{2^{k-1}}) = 0, \\ & \operatorname{Sq}^{4}\left(x^{*}(\alpha_{2^{k}-2})\right) = \operatorname{Sq}^{2^{k-1}}\operatorname{Sq}^{4}x^{*}(\alpha_{2^{k-1}-2}) = 0. \end{aligned}$$

Then it follows from the previous argument in a) that

$$x^*(\alpha_{2^{k}-2}) = \rho \tau^{2^{r}-2} \otimes \tau^{2^{k}-2^{r}},$$

where $\rho \in \mathbb{Z}/2\mathbb{Z}$.

Next using Sq^{2r}, we have

$$Sq^{2^{r}} x^{*}(\alpha_{2^{k}-2}) = \rho Sq^{2^{r}} (\tau^{2^{r}-2} \otimes \tau^{2^{k}-2^{r}})$$
$$= \rho \tau^{2^{r}-2} \otimes \tau^{2^{k}},$$

while

$$Sq^{2^{r}} x^{*}(\alpha_{2^{k}-2}) = x^{*}(\alpha_{2^{k}+2^{r}-2})$$

$$= x^{*}(Sq^{2^{k-1}} Sq^{2^{r}} \alpha_{2^{k-1}-2})$$

$$= Sq^{2^{k-1}} Sq^{2^{r}} x^{*}(\alpha_{2^{k-1}-2})$$

$$= \tau^{2^{r}-2} \otimes \tau^{2^{k}}.$$

Here $\tau^{2r-2} \otimes \tau^{2k} \neq 0$ since

$$2a = 2^{r} - 2$$

$$2b = 2(a + b) - 2a$$

$$> 2^{d} - 2^{r} + 2$$

$$\ge 2^{d-1}$$

$$\ge 2^{k}.$$
(17)

Therefore $\rho = 1$ and

$$x^*(\alpha_{2^{k-2}}) = \tau^{2^{r-2}} \otimes \tau^{2^{k-2^r}}.$$

Thus lemma 4.11 is proved.

Lemma 4.12. In the case I) if $x^*(\alpha_6) = 0$ then $x^*(\alpha_{2(a+b)}) = 0$.

Proof. By Lemma 4.11

$$x^*(\alpha_{2^{d-1}-2}) = 0$$

or

$$2a = 2^{r} - 2$$
 and $x^{*}(\alpha_{2^{d-1}-2}) = \tau^{2^{r}-2} \otimes \tau^{2^{d-1}-2^{r}}$.

Since

$$x^*(\alpha_{2(a+b)}) = \operatorname{Sq}^{2^{d-1}} \operatorname{Sq}^{2(a+b)-(2^{d-2})} x^*(\alpha_{2^{d-1}-2}),$$

if $x^*(\alpha_{2(a+b)}) \neq 0$ then $x^*(\alpha_{2^{d-1}-2}) \neq 0$ and $2(a+b) \equiv -2 \mod 2^r$. But if $2(a+b) \equiv -2 \mod 2^r$ then

$$\binom{2(a+b)}{2a} = \binom{2(a+b)}{2^r - 2} \equiv 1 \mod 2.$$

Thus if $\binom{2(a+b)}{2a} \equiv 0 \mod 2$ and $x^*(\alpha_6) = 0$ then

$$x^*(\alpha_{2(a+b)}) = 0.$$
 Q.E.D.

Now we consider the case II) we start from the next lemma.

Lemma 4.13. Assume $i+j=2^d-2$ for some $d \in \mathbb{N}, d>3$, i and j are even, $i, j \geq 2$ and

$$i = \sum_{k=1}^{d-1} \varepsilon_k 2^k,$$

where $\varepsilon_k = 0$ or 1. Then

$$\operatorname{Sq}^{2^{p}}\tau^{i}\otimes\tau^{j}=\begin{cases} \tau^{i+2^{p}}\otimes\tau^{j} & \quad \varepsilon_{p}=1\\ \tau^{i}\otimes\tau^{j+2^{p}} & \quad \varepsilon_{p}=0 \end{cases}$$

 $for \ 1 \leq p \leq d-1 \ where \ \tau^i \otimes \tau^j \in H^{2^{d-2}}(\mathbf{R}\mathbf{P}^\infty \, \wedge \, \mathbf{R}\mathbf{P}^\infty).$

Proof. We use induction. Let $\overline{\varepsilon_k} = 1 - \varepsilon_k$. Then $j = \sum_{k=1}^{d-1} \overline{\varepsilon_k} 2^k$.

The statement is true for p=1. Let we assume that the statement is true for $\operatorname{Sq}^{2^{p-1}}$ and also $\varepsilon_{p-1}=1$. Then

$$Sq^{2^{p-1}} \tau^{i} \otimes \tau^{j} = \sum_{l=0}^{2^{p-1}} (Sq^{l} \tau^{i}) \otimes (Sq^{2^{p-1}-l} \tau^{j})$$

$$= \sum_{l=0}^{2^{p-1}} {i \choose l} {j \choose 2^{p-1} - l} \tau^{i+l} \otimes \tau^{j+2^{p-1}-l}$$

$$= \tau^{i+2^{p-1}} \otimes \tau^{j},$$

that is,

$$\binom{i}{l} \binom{j}{2^{p-1} - l} = \begin{cases} 0 & 0 \le l \le 2^{p-1} - 1 \\ 1 & l = 2^{p-1}. \end{cases}$$

Hence

$$\operatorname{Sq}^{2^{p}} \tau^{i} \otimes \tau^{j} = \sum_{l=0}^{2^{p}} {i \choose l} {j \choose 2^{p} - l} \tau^{i+l} \otimes \tau^{j+2^{p}-l}$$

$$= \sum_{l=0}^{2^{p-1}} {i \choose l} {j \choose 2^{p} - l} \tau^{i+l} \otimes \tau^{j+2^{p}-l}$$

$$+ \sum_{l=0}^{2^{p-1}} {i \choose 2^{p-1} + 1} {j \choose 2^{p-1} - l} \tau^{i+2^{p-1}+l} \otimes \tau^{j+2^{p-1}-l}$$

$$= \sum_{l=1}^{2^{p-1}} {i \choose l} {\overline{\varepsilon_{p-1}} \choose 1} {j \choose 2^{p-1} - l} \tau^{i+l} \otimes \tau^{j+2^{p}-l}$$

$$+ \sum_{l=0}^{2^{p-1}} {\varepsilon_{p-1} \choose 1} {i \choose l} {j \choose 2^{p-1} - l} \tau^{i+2^{p}-1+l} \otimes \tau^{j+2^{p-1}-l}$$

$$+ {j \choose 2^{p}} \tau^{i} \otimes \tau^{j+2^{p}} + {i \choose 2^{p}} \tau^{i+2^{p}} \otimes \tau^{j}$$

$$= {\overline{\varepsilon_{p}} \choose 1} \tau^{i} \otimes \tau^{j+2^{p}} + {\varepsilon_{p} \choose 1} \tau^{i+2^{p}} \otimes \tau^{j}$$

as asserted. And even if $\varepsilon_{p-1}=1$, it can be proved in the same manner.

Q.E.D.

Lemma 4.14. Let $b \ge a$. In the case II), if $x^*(\alpha_6) = 0$, then

$$x^*(\alpha_{2^{d-2}}) = \begin{cases} \rho \sum_{i=1}^{(2^{d-4})/2} \tau^{2i} \otimes \tau^{(2^{d-2})-2i} + \rho' \tau^{2^{d-1}-2} \otimes \tau^{2^{d-1}} \\ where \quad 2a = 2^{d-1} - 2 \quad \text{if} \quad \rho' = 1 \\ or \\ \tau^{2^{r-2}} \otimes \tau^{2^{d-2^{r}}} \quad and \quad 2a = 2^{r} - 2, \quad 3 \le r \le d - 2. \end{cases}$$

Proof. We start from the computation of $x^*(\alpha_{2^{d-1}-2})$. By lemma 4.11

$$x^*(\alpha_{2^{d-1}-2}) = \begin{cases} 0 & \text{or} \\ \tau^{2^{r-2}} \otimes \tau^{2^{d-1}-2^r} & \text{in this case } 2a = 2^r - 2, \quad 3 \le r \le d - 1. \end{cases}$$
Next we consider $x^*(\alpha_{-r-1})$. Since

Next we consider $x^*(\alpha_{2^{d-2}})$. Since

$$Sq^{1}(x^{*}(\alpha_{2^{d}-2})) = x^{*}(Sq^{1}\alpha_{2^{d}-2}) = 0,$$
(18)

$$\operatorname{Sq}^{2}\left(x^{*}(\alpha_{2^{d}-2})\right) = x^{*}(\alpha_{2}^{2^{d-1}}) = 0,\tag{19}$$

$$Sq^{4}(x^{*}(\alpha_{2^{d-2}})) = Sq^{2^{d-1}} Sq^{4} x^{*}(\alpha_{2^{d-1}-2}) = 0,$$
(20)

as in the proof of Lemma 4.11, we have

$$x^*(\alpha_{2^{d}-2}) = \rho \tau^{2s} \otimes \tau^{(2^{d}-2)-2s} + \rho' \sum_{i=s+1}^{t-1} \tau^{2i} \otimes \tau^{(2^{d}-2)-2i} + \rho'' \tau^{2t} \otimes \tau^{(2^{d}-2)-2t},$$

where

$$s = \max \left\{ 1, \frac{2^d - 2}{2} - b \right\},$$
$$t = \min \left\{ \frac{2^d - 4}{2}, a \right\}.$$

Firstly we assume $x^*(\alpha_{2^{d-1}-2})=0$. And we shall prove $\rho=\rho'$. If s=1 then the equation $\operatorname{Sq}^2 x^*(\alpha_{2^{d-2}}) = 0$ means $\rho = \rho'$. Thus we assume $s = \frac{2^d - 2}{2} - b$, that is,

$$2b \le 2^d - 4. \tag{21}$$

Here we remark that by (4),

$$2b \ge a + b \tag{22}$$

$$> 2^{d-1} - 2 \tag{23}$$

Let q := p(2b) then (21) and (23) mean $q \le d - 2$. Also

$$\operatorname{Sq}^{2^{q}} x^{*}(\alpha_{2^{d-2}}) = \operatorname{Sq}^{2^{d-1}} \operatorname{Sq}^{2^{q}} x^{*}(\alpha_{2^{d-1}-2}) = 0.$$

Thus, by Lemma 4.13, compare term of $\tau^{(2^{d-2})-2b+2^q} \otimes \tau^{2b}$ in $\operatorname{Sq}^{2^q} x^*(\alpha_{2^{d-2}})$ and we obtain

$$(\rho + \rho')\tau^{(2^{d}-2)-2b+2^{q}} \otimes \tau^{2b} = 0.$$
 (24)

Here we remark that $(2^d-2)-2b+2^q\leq 2a$ by (4). Thus (24) means $\rho'=\rho''$. Therefore

$$x^*(\alpha_{2^{d-2}}) = \rho' \sum_{i=s}^{t-1} \tau^{2i} \otimes \tau^{(2^{d-2})-2i} + \rho'' \tau^{2t} \otimes \tau^{(2^{d-2})-2t}.$$

Next we consider the term $\rho''\tau^{2t}\otimes\tau^{(2^d-2)-2t}$. If $2t=2^d-4$, then by the computation of $\operatorname{Sq}^2 x^*(\alpha_{2^{d-2}})$ we have $\rho'=\rho''$ and $x^*(\alpha_{2^{d-2}})=\sum_{i=s}^t \tau^{2i}\otimes\tau^{(2^d-2)-2i}$ or 0 as asserted. Thus we assume 2t=2a, that is,

$$2a < 2^d - 4 \tag{25}$$

Let p := p(2a). Here from (25) $p \le d - 1$. And p = d - 1 if and only if $2a = 2^{d-1} - 2$.

If $2a = 2^{d-1} - 2$ then

$$x^*(\alpha_{2^{d-2}}) = \rho' \sum_{i=1}^{(2^{d-4})/2} \tau^{2i} \otimes \tau^{(2^{d-2})-2i} + (\rho'' + \rho') \tau^{2^{d-1}-2} \otimes \tau^{2^{d-1}}.$$

If $p \le d - 2$ then

$$Sq^{2p} x^*(\alpha_{2^{d-2}}) = Sq^{2^{d-1}} Sq^{2p} x^*(\alpha_{2^{d-1}-2}) = 0.$$
 (26)

By Lemma 4.13 look into the term of $\tau^{2a} \otimes \tau^{(2^{d}-2)-2a+2p}$ of (26) and we obtain

$$(\rho' + \rho'')\tau^{2a} \otimes \tau^{(2^{d}-2)-2a+2^{p}} = 0.$$
(27)

Remark that by (4)

$$(2^d-2)-2a+2^p \le 2b.$$

Therefore $\rho' = \rho''$ and

$$x^*(\alpha_{2^{d-2}}) = \rho' \sum_{i=s}^t \tau^{2i} \otimes \tau^{(2^{d-2})-2i}.$$

Secondly we assume $x^*(\alpha_{2^{d-1}-2}) = \tau^{2^{r-2}} \otimes \tau^{2^{d-1}-2^r}$ and $2a = 2^r - 2$ and observe $x^*(\alpha_{2^{d-2}})$ again. We reset

$$x^*(\alpha_{2^{d-2}}) = \rho \tau^{2s} \otimes \tau^{(2^{d-2})-2s} + \rho' \sum_{i=d+1}^{t-1} \tau^{2i} \otimes \tau^{(2^{d-2})-2i} + \rho'' \tau^{2t} \otimes \tau^{(2^{d-2})-2t},$$

where

$$s = \max\left\{1, \frac{2^d - 2}{2} - b\right\},\,$$

$$t = \min\left\{\frac{2^d - 4}{2}, a\right\}.$$

Then

$$2b = 2(a+b) - 2a (28)$$

$$\geq (3 \cdot 2^{d-1} - 2) - (2^{d-1} - 2) \tag{29}$$

$$=2^{d} \tag{30}$$

This means s = 1. Thus by the computation of $Sq^2 x^*(\alpha_{2^{d-2}})$ we have

$$\rho = \rho'$$

and also by the computation of Sq⁴ $x^*(\alpha_{2^{d-2}})$ and by (30) we have $\rho = 0$.

Therefore we obtain

$$x^*(\alpha_{2d-2}) = \rho'' \tau^{2r-2} \otimes \tau^{2d-2r}$$

Finally we have obtained the following result

$$x^*(\alpha_{2^{d-2}}) = \begin{cases} \rho \sum_{i=1}^{(2^{d-4})/2} \tau^{2i} \otimes \tau^{(2^{d-2})-2i} + \rho' \tau^{2^{d-1}-2} \otimes \tau^{2^{d-1}} \\ \text{where } 2a = 2^{d-1} - 2 \text{ if } \rho' = 1 \\ \text{or} \\ \tau^{2^{r-2}} \otimes \tau^{2^{d-2^r}} \text{ and } 2a = 2^r - 2, \quad 3 \le r \le d - 2. \end{cases}$$

Lemma 4.15. In the case II) if $x^*(\alpha_6) = 0$ then $x^*(\alpha_{2(a+b)}) = 0$.

Proof. By (4)

$$x^*(\alpha_{2(a+b)}) = \operatorname{Sq}^{2(a+b)-(2^{d}-2)}x^*(\alpha_{2^{d}-2}).$$

And by Lemma 4.14 we shall prove that

$$\begin{cases} \operatorname{Sq}^{2(a+b)-(2^d-2)}(\sum_{i=1}^{(2^d-4)/2}\tau^{2i}\otimes\tau^{(2^d-2)-2i})=0\\ \operatorname{Sq}^{2(a+b)-(2^d-2)}(\tau^{2^r-2}\otimes\tau^{2^d-2^r})=0 & \text{in case } a=2^r-2, \quad 3\leq r\leq d-1. \end{cases}$$

Since

$$\sum_{i=1}^{(2^{d}-4)/2} \tau^{2i} \otimes \tau^{(2^{d}-2)-2i} = x_0^*(\alpha_{2^{d}-2}),$$

it follows that

$$\operatorname{Sq}^{2(a+b)-(2^{d}-2)} \left(\sum_{i=1}^{(2^{d}-4)/2} \tau^{2i} \otimes \tau^{(2^{d}-2)-2i} \right) = \operatorname{Sq}^{2(a+b)-(2^{d}-2)} x_0^* (\alpha_{2^{d}-2})$$

$$= x_0^* (\alpha_{2(a+b)})$$

$$= \left(\frac{2(a+b)}{2a} \right) \tau^{2a} \otimes \tau^{2b}$$

$$= 0.$$

Also

$$\operatorname{Sq}^{2(a+b)-(2^{d}-2)}(\tau^{2^{r}-2} \otimes \tau^{2^{d}-2^{r}})$$

$$= \tau^{2^{r}-2} \otimes \binom{2^{d}-2^{r}}{2(a+b)-(2^{d}-2)} \tau^{2(a+b)-(2^{d}-2)}$$

$$= \begin{cases} \tau^{2^{r}-2} \otimes \tau^{2(a+b)-(2^{r}-2)} & \text{if } 2(a+b) \equiv -2 \text{ mod } 2^{r} \\ 0 & \text{otherwise} \end{cases}$$

But if $2(a + b) \equiv -2 \mod 2^r$ then

$$\binom{2(a+b)}{2a} = \binom{2(a+b)}{2^r - 2} \equiv 1 \mod 2.$$

Thus if
$$\binom{2(a+b)}{2a} \equiv 0 \mod 2$$
 then $x^*(\alpha_{2(a+b)}) = 0$. Q.E.D.

Now we shall finish the proof of Theorem 4.7. Let $x: \mathbf{RP}^{n-1} \wedge \mathbf{RP}^{m-1} \to \Omega_0 \mathbf{SO}$ be an arbitrary map, n > 1, m > 1 and $\binom{n+m-2}{n-1} \equiv 0 \mod 2$. If $x^*(\alpha_6) = 0$ then by Lemma 4.12, Lemma 4.15 we obtain $x^*(\alpha_{n+m-2}) = 0$. Therefore we assume $x^*(\alpha_6) \neq 0$. The from Lemma 4.9

$$x^*(\alpha_6) = \tau^2 \otimes \tau^4 + \tau^4 \otimes \tau^2.$$

Let $x + x_0$: $\mathbb{R}\mathbb{P}^{n-1} \wedge \mathbb{R}\mathbb{P}^{m-1} \to \Omega_0 SO$ be a map which is contained in the homotopy class $[x] + [x_0]$. Since $\Omega_0 SO$ is an H-space and it is known that $\alpha_{2i} \in H^*(\Omega_0 SO)$ are primitive elements,

$$(x + x_0)^*(\alpha_6) = 2(\tau^2 \otimes \tau^4 + \tau^4 \otimes \tau^2) = 0$$

Therefore

$$(x + x_0)^*(\alpha_{n+m-2}) = 0,$$

while

$$(x + x_0)^*(\alpha_{n+m-2}) = x^*(\alpha_{n+m-2}) + x_0^*(\alpha_{n+m-2})$$

$$= x^*(\alpha_{n+m-2}) + \binom{n+m-2}{n-1} \tau^{n-1} \otimes \tau^{m-1}$$

$$= x^*(\alpha_{n+m-2}).$$

Finally we obtained that $x^*(\alpha_{n+m-2}) = 0$ and Theorem 4.7 is proved.

DEPARTMENT OF MATHEMATICS, KYOTO UNIVERSITY

References

- [1] I. M. James and E. Thomas, Homotopy-commutativity in rotation groups, Topology, 1 (1962), 121-124.
- [2] I. M. James, The topology of Stiefel manifolds, London Math. Soc. Lecture Notes 24, Cambridge University Press, 1976.
- [3] R. Bott, A note on the Samelson product in the classical groups, Comment. Math. Helv., 34 (1960), 249-256.
- [4] J. H. C. Whitehead, On the groups $\pi_r(V_{n,m})$ and sphere-bundles, Proc. Lond. Math. Soc., 48 (1944), 243–291.
- [5] S. Y. Husseini, A note on the intrinsic join of Stiefel manifolds, Comment. Math. Helv., 38 (1963), 26-30.