Spectral decompositions of Berezin transformations on C^{n} related to the natural $\boldsymbol{U}(\boldsymbol{n})$-action

Dedicated to Professor Takeshi Hirai on his 60th birthday

By
Etsuro Fujita and Takaaki Nomura

Introduction

The Berezin transformation, which links the covariant symbol (the Berezin symbol) and the contravariant symbol (the symbol for a Toeplitz operator) of an operator A, plays an important role in Berezin's theory of quantization, see [4]. Let us begin the present paper with the definition of Berezin transformation. Consider a domain D in \boldsymbol{C}^{n} and a Borel measure μ on D. Let \mathfrak{G} be a closed subspace of $L^{2}(D, d \mu)$ consisting of continuous functions and we denote by P the orthogonal projection $L^{2}(D, d \mu) \rightarrow \mathfrak{F}$. For each $\varphi \in$ $L^{\infty}(D)$ we define the Toeplitz operator $T(\varphi)$ with symbol φ by $T(\varphi) h:=$ $P(\varphi h) \quad(h \in \mathfrak{G})$. We assume that \mathfrak{g} has a reproducing kernel $\kappa(z, w)$. The Berezin symbol of a bounded operator A on \mathfrak{g} is the function $\sigma(A)$ on D given by

$$
\sigma(A)(z):=\frac{(A \kappa(\cdot, z) \mid \kappa(\cdot, z))_{\hat{j}}}{\kappa(z, z)}
$$

Then by $[15,1.19]$, the maps T and σ are adjoint to each other in a suitable sense. We will accordingly write σ^{*} for T. The Berezin transformation B associated to \mathfrak{S} is, by definition, the positive selfadjoint operator $\sigma \sigma^{*}$, which turns out to be a bounded operator on $L^{2}\left(D, d \mu_{0}\right)$, where $d \mu_{0}:=\kappa(z, z) d \mu$. Moreover B is an integral operator with integral kernel given by $\frac{|\kappa(z, w)|^{2}}{\kappa(z, z) \kappa(w, w)}$, see [4] and [15].

When \mathfrak{S} carries an irreducible unitary representation of a Lie group G acting on D, the operator B is G-invariant, so that it is a very interesting problem to find its spectrum. In the case where $D=\boldsymbol{C}^{n}, \mathfrak{F}$ the Fock space and G the Heisenberg group, one knows that B is expressed as the exponential of the euclidean Laplacian Δ on $\boldsymbol{C}^{n}: B=\exp (\Delta / 4)$, see $[4, \S 4],[15,1.27]$ and [11, §1] etc. If D is the open unit disk \boldsymbol{D} in \boldsymbol{C} and if $\mathfrak{S}=\mathfrak{S}_{\alpha}(\alpha>-1)$ is the Hilbert space of holomorphic functions on \boldsymbol{D} which are square integrable rela-
tive to the measure $\frac{\alpha+1}{\pi}\left(1-|z|^{2}\right)^{\alpha} d x d y(z=x+i y)$ (note that \mathfrak{S}_{α} carries a holomorphic discrete series representation of the universal covering group of $S U(1,1)$, see $[2, \S 9]$ for example), then $B=\frac{\left|\Gamma\left(\alpha+\frac{3}{2}+i \Lambda\right)\right|^{2}}{\Gamma(\alpha+1) \Gamma(\alpha+2)}$ with $\Lambda:=$ $\left(-\Delta_{D}-1 / 4\right)^{1 / 2}$, where $\Delta_{D}:=\left(1-|z|^{2}\right)^{2} \frac{\partial^{2}}{\partial z \partial \bar{z}}$ is the Möbius-invariant Laplacian on \boldsymbol{D} and the substitution of the operator Λ into the gamma function Γ is done through the spectral analysis using the spherical Fourier transformation as developed in [8], see $[1, \S 10],[6, \S 4]$ and $[12$, Example 2] for details. This example was generalized to the open unit ball in \boldsymbol{C}^{n} by [5], see also [12, Example $\left.2^{\prime}\right]$, and has been further generalized recently to the case of bounded symmetric domains by [15].

Now from the above it is possible to define the Berezin transformation provided one has a subspace of L^{2} which possesses a reproducing kernel. A situation for this occurs when a compact Lie group U acts linearly on a finite-dimensional complex vector space V in a multiplicity-free way, see [9], [3]. This means that the space $\mathscr{P}(V)$ of holomorphic polynomial functions on V decomposes into a direct sum of mutually inequivalent U-irreducible subspaces $\mathscr{P}_{\alpha}(V)(\alpha \in A)$. The spaces $\mathscr{P}_{\alpha}(V)$, though finite-dimensional, provide plenty of reproducing kernel subspaces of $L^{2}(V, d \mu), d \mu$ being the normalized Gaussian measure on V. In §1 of this paper, we treat the Berezin transformation B_{α} associated to $\mathscr{P}_{\alpha}(V)$. Let κ_{α} be the reproducing kernel of $\mathscr{P}_{\alpha}(V)$. To exhibit various $B_{\alpha}(\alpha \in A)$ within a single fixed space, we transfer B_{α} from $L^{2}\left(V, \kappa_{\alpha}(z, z) d \mu\right)$ to the ordinary Lebesgue L^{2}-space $L^{2}(V)$. Then we show in Theorem 1.2 that the (transferred) Berezin transformation acts on the U-invariant functions as the one-dimensional orthogonal projection onto $\boldsymbol{C} \phi_{\alpha}$, where $\phi_{\alpha}(z):=\kappa_{\alpha}(z, z)^{1 / 2} e^{-\| z^{\| 2 / 2}}$. In $\S 2$ we treat the case $V=\boldsymbol{C}^{n}, U=U(n)$ in detail and describe the spectral decomposition of $B_{k}(k=0,1, \ldots)$ explicitly: note in this case that the parameter set A for $\mathscr{P}_{\alpha}(V)$ is the set of non-negative integers \boldsymbol{Z}_{+}reflecting the degree of homogeneity. To describe our result we need some notational preparations. Let $\mathscr{Y}_{j j}$ be the space of spherical harmonics of type (j, j) on $S^{2 n-1} \subset \boldsymbol{C}^{n}$. In other words, $\mathscr{Y}_{j j}$ is the space of the restrictions to $S^{2 n-1}$ of harmonic polynomials $h(z, \bar{z})$ which are homogeneous of degree j both in z and \bar{z}. Then, denoting by $E_{k j}$ the orthogonal projection $L^{2}(V) \rightarrow \boldsymbol{C} \varphi_{k} \otimes \mathscr{Y}_{j j}$, where $\varphi_{k}(r)=r^{k} e^{-r^{2 / 2}}(r>0)$, we show in Theorem 2.8 that

$$
B_{k}=\sum_{j=0}^{k}\binom{n+j+k-1}{j}^{-1}\binom{k}{j} \cdot E_{k j} .
$$

The contents of this paper form a part of the first author's master thesis submitted to Kyoto University.

§1. Generalities

Let V be a finite-dimensional complex vector space and U a compact Lie group acting linearly on V. We will denote by π the corresponding action on functions on $V: \pi(u) f(x):=f\left(u^{-1} x\right)(u \in U)$. We fix a U-invariant hermitian inner product $(\cdot \mid \cdot)$ on V. Suppose that the U-action on V is multiplicity-free. This means that the space $\mathscr{P}(V)$ of holomorphic polynomial functions on V has a decomposition $\mathscr{P}(V)=\sum_{\alpha \in A} \mathscr{P}_{\alpha}(V)$ into mutually inequivalent U-irreducible subspaces, where A is an index set. Note that $\mathscr{P}_{\alpha}(V)$ is finite-dimensional. Let \mathfrak{F} denote the Fock space, that is, \mathfrak{F} is the Hilbert space of holomorphic functions f on V such that

$$
\|f\|_{\mathfrak{F}}^{2}:=\frac{1}{\pi^{n}} \int_{V}|f(z)|^{2} e^{-\|z\|^{2}} d m(z)<\infty,
$$

where $n:=\operatorname{dim} V,\|z\|^{2}:=(z \mid z)$ and $d m$ is the Lebesgue measure on V defined by the euclidean structure $\operatorname{Re}(\cdot \mid \cdot)$. The space \mathfrak{F} has an orthogonal decomposition $\mathfrak{F}=\bigoplus_{\alpha \in A} \mathscr{P}_{\alpha}(V)$. The Hilbert space \mathfrak{F} has the reproducing kernel $\kappa(z, w)$ given by $\kappa(z, w):=e^{(z \mid w)}(z, w \in V)$. This means that $f(w)=(f \mid \kappa(\cdot, w))_{\mathfrak{F}}$ for any $f \in \mathfrak{F}$. Moreover, the function $\kappa_{\alpha}(z, w)$ defined through the orthogonal decomposition $\kappa(\cdot, w)=\sum_{\alpha \in A} \kappa_{\alpha}(\cdot, w)$ is easily seen to be the reproducing kernel for the space $\mathscr{P}_{\alpha}(V)$. Since $\mathscr{P}_{\alpha}(V)$ is U-invariant, κ_{α} has the property

$$
\begin{equation*}
\kappa_{\alpha}(u z, u w)=\kappa_{\alpha}(z, w) \quad \text { for all } u \in U \tag{1.1}
\end{equation*}
$$

Proposition 1.1. There is an open dense subset \mathfrak{O} in V such that $\kappa_{\alpha}(w, w)$ $\neq 0$ for any $w \in \mathscr{O}$.

Proof. Let $H=U_{\boldsymbol{c}} \subset G L(V)$, the complexification of the compact Lie group U. We have

$$
\kappa_{\alpha}\left(h^{-1} z, h^{*} w\right)=\kappa_{\alpha}(z, w) \quad \text { for all } h \in H,
$$

where h^{*} stands for the adjoint of h relative to the inner product $(\cdot \mid \cdot)$ we are fixing. Now it is known by [14, Theorem 6.2] and [17, Theorem 2] that the H-action on V possesses an open dense orbit \mathscr{O}. We claim that $\kappa_{\alpha}(w, w) \neq 0$ for any $w \in \mathfrak{O}$. In fact suppose $\kappa_{\alpha}\left(w_{0}, w_{0}\right)=0$ for some $w_{0} \in \mathfrak{O}$. Then $\left\|\kappa_{\alpha}\left(\cdot, w_{0}\right)\right\|_{\mathfrak{F}}^{2}=$ $\kappa_{\alpha}\left(w_{0}, w_{0}\right)=0$, so that $\kappa_{\alpha}\left(z, w_{0}\right)=0$ for all $z \in V$. Let $w \in \mathscr{O}$ be arbitrary and take $h \in H$ such that $w=h w_{0}$. Then we have

$$
\begin{equation*}
\kappa_{\alpha}(z, w)=\kappa_{\alpha}\left(z, h w_{0}\right)=\kappa_{\alpha}\left(h^{*} z, w_{0}\right)=0 \quad \text { for all } z \in V . \tag{1.2}
\end{equation*}
$$

Since κ_{α} is the reproducing kernel of $\mathscr{P}_{\alpha}(V)$, (1.2) implies that any $f \in \mathscr{P}_{\alpha}(V)$ vanishes on the open dense set \mathfrak{O}, whence the contradiction $\mathscr{P}_{\alpha}(V)=\{0\}$.

Let P_{α} be the orthogonal projection $L^{2}\left(V, e^{-\|z\|^{2}} d m\right) \rightarrow \mathscr{P}_{\alpha}(V)$. Making use of P_{α}, we define the Toeplitz operators $\sigma_{\alpha}^{*}(\varphi)\left(\varphi \in L^{\infty}(V)\right)$ on $\mathscr{P}_{\alpha}(V)$ by
$\sigma_{\alpha}^{*}(\varphi) p:=P_{\alpha}(\varphi p) \quad\left(p \in \mathscr{P}_{\alpha}(V)\right)$. Noting Proposition 1.1, we set $e_{w}^{\alpha}(z):=$ $\frac{\kappa_{\alpha}(z, w)}{\kappa_{\alpha}(w, w)^{1 / 2}}$. For every bounded operator A on \mathfrak{F}, the Berezin symbol $\sigma_{\alpha}(A)$ of A associated to $\mathscr{P}_{\alpha}(V)$ is defined to be $\sigma_{\alpha}(A)(z):=\left(A e_{z}^{\alpha} \mid e_{z}^{\alpha}\right)_{\mathfrak{F}}$. Put

$$
d \mu_{\alpha}(z):=\frac{1}{\pi^{n}} \kappa_{\alpha}(z, z) e^{-\|\left. z\right|^{2}} d m(z) .
$$

Then by $[15,1.19]$, the Berezin transformation $\sigma_{\alpha} \sigma_{\alpha}^{*}$ associated to $\mathscr{P}_{\alpha}(V)$ is the integral operator on $\mathscr{L}_{\alpha}:=L^{2}\left(V, d \mu_{\alpha}\right)$ with kernel $\left|\left(e_{z}^{\alpha} \mid e_{w}^{\alpha}\right)\right|_{\mathfrak{F}}^{2}$. We transfer the Berezin transformation from \mathscr{L}_{α} to $L^{2}(V):=L^{2}(V, d m)$ via the unitary transformation I_{α} given by

$$
I_{\alpha} h(z):=\frac{1}{\pi^{n / 2}} \kappa_{\alpha}(z, z)^{1 / 2} e^{-|z| 2 / 2} h(z) \quad\left(h \in \mathscr{L}_{\alpha}\right) .
$$

Then by a simple computation, we see that the Berezin transformation B_{α} on $L^{2}(V)$ is an integral operator

$$
B_{\alpha} f(z)=\int_{V} b_{\alpha}(z, w) f(w) d m(w)
$$

with kernel given by

$$
b_{\alpha}(z, w)=\frac{1}{\pi^{n}} e^{-\|z\| 2 / 2} e^{-\|w\| 2 / 2} \frac{\left|\kappa_{\alpha}(z, w)\right|^{2}}{\kappa_{\alpha}(z, z)^{1 / 2} \kappa_{\alpha}(w, w)^{1 / 2}} .
$$

By (1.1) we have $b_{\alpha}(u z, u w)=b_{\alpha}(z, w)$ for all $u \in U$, so that B_{α} is a U-invariant operator on $L^{2}(V)$, that is, B_{α} commutes with $\pi(u)$ for all $u \in U$. Moreover B_{α} is selfadjoint and positive.

Let $L^{2}(V)^{U}$ be the closed subspace of $L^{2}(V)$ consisting of U-invariant functions. By U-invariance of B_{α}, it is clear that $L^{2}(V)^{U}$ is stable under B_{α}. The action of B_{α} on $L^{2}(V)^{U}$ is given by the following theorem.

Theorem 1.2. Let $\phi_{\alpha} \in L^{2}(V)^{U}$ be the unit vector defined by

$$
\phi_{\alpha}(z):=\frac{1}{\pi^{n / 2} d_{\alpha}^{1 / 2}} \kappa_{\alpha}(z, z)^{1 / 2} e^{-\|z\| / 2},
$$

where $d_{\alpha}:=\operatorname{dim} \mathscr{P}_{\alpha}(V)$. Then B_{α} acts on $L^{2}(V)^{U}$ as the one-dimensional orthogonal projection $\phi_{\alpha} \otimes \phi_{\alpha}$.

To prove Theorem 1.2 we need
Lemma 1.3. For $\alpha, \beta \in A$, one has

$$
\int_{U} \kappa_{\alpha}(u z, w) \overline{\kappa_{\beta}(u z, w)} d u=\delta_{\alpha \beta} \cdot \frac{1}{d_{\alpha}} \kappa_{\alpha}(z, z) \kappa_{\alpha}(w, w),
$$

where the left hand side is the integration over the compact Lie group U with re-
spect to the normalized Haar measure du.
Proof. This is a simple consequence of Schur's orthogonality relations. In fact it suffices to note that the reproducing property together with (1.1) yields

$$
\kappa_{\alpha}(u z, w)=\left(\kappa_{\alpha}(\cdot, w) \mid \kappa_{\alpha}(\cdot, u z)\right)_{\mathfrak{F}}=\left(\kappa_{\alpha}(\cdot, w) \mid \pi(u) \kappa_{\alpha}(\cdot, z)\right)_{\mathfrak{F}}
$$

Then the equality $\left\|\kappa_{\alpha}(\cdot, w)\right\|_{\mathfrak{F}}^{2}=\kappa_{\alpha}(w, w)$ immediately gives Lemma 1.3 , because by the assumption $\mathscr{P}_{\alpha}(V)$ and $\mathscr{P}_{\beta}(V)$ carry inequivalent irreducible representations of U if $\alpha \neq \beta$.

Proof of Theorem 1.2. Let $f \in L^{2}(V)^{U}$. Then we have $B_{\alpha} f \in L^{2}(V)^{U}$, so that

$$
\begin{aligned}
B_{\alpha} f(z) & =\int_{U} B_{\alpha} f(u z) d u=\int_{U} d u \int_{V} b_{\alpha}(u z, w) f(w) d m(w) \\
& =\frac{1}{\pi^{n}} \frac{e^{-\|z\| 2 / 2}}{\kappa_{\alpha}(z, z)^{1 / 2}} \int_{U} d u \int_{V} \frac{\left|\kappa_{\alpha}(u z, w)\right|^{2}}{\kappa_{\alpha}(w, w)^{1 / 2}} f(w) e^{-\|w\|^{2 / 2}} d m(w)
\end{aligned}
$$

Changing the order of integration and applying Lemma 1.3, we find that $B_{\alpha} f(z)=\left(f \mid \phi_{\alpha}\right)_{2} \phi_{\alpha}(z)$, where $(\cdot \mid \cdot)_{2}$ denotes the inner product of $L^{2}(V)$. To see that $\left\|\phi_{\alpha}\right\|_{2}=1$, we recall that $\kappa_{\alpha}(z, w)$ is the reproducing kernel of $\mathscr{P}_{\alpha}(V)$. Thus $\kappa_{\alpha}(z, z)=\sum_{j=1}^{d \alpha}\left|\varphi_{j}(z)\right|^{2}$ for any orthonormal basis $\left\{\left.\varphi_{j}\right|_{j=1} ^{d_{\alpha}^{\alpha}}\right.$ of $\mathscr{P}_{\alpha}(V) \subset \mathfrak{F}$. Hence

$$
\frac{1}{\pi^{n}} \int_{V} \kappa_{\alpha}(z, z) e^{-\|z\|^{2}} d m(z)=d_{\alpha}
$$

This clearly implies $\left\|\phi_{\alpha}\right\|_{2}^{2}=1$.

§2. Spectral decomposition: the case of $\boldsymbol{U}(\boldsymbol{n})$-action on \boldsymbol{C}^{n}

Throughout this section we treat the case $V=\boldsymbol{C}^{n}$ and $U=U(n)$ in detail and describe the spectral decomposition of the Berezin transformation. The canonical hermitian inner product on \boldsymbol{C}^{n} will be denoted by $z \cdot \bar{w}$ instead of $(\cdot \mid \cdot)$. The natural action of $U(n)$ on \boldsymbol{C}^{n} is known to be multiplicity-free. In fact denoting by $\mathscr{P}_{k}\left(\boldsymbol{C}^{n}\right)$ the space of homogeneous holomorphic polynomial functions on \boldsymbol{C}^{n} of degree k, we have a decomposition $\mathscr{P}\left(\boldsymbol{C}^{n}\right)=\sum_{k=0}^{\infty} \mathscr{P}_{k}\left(\boldsymbol{C}^{n}\right)$ into mutually inequivalent $U(n)$-irreducibles and the corresponding orthogonal decomposition $\mathfrak{F}=\bigoplus_{k=0}^{\infty} \mathscr{P}_{k}\left(\boldsymbol{C}^{n}\right)$ for the Fock space \mathfrak{F}. The expansion $e^{z \cdot \bar{w}}=$ $\sum_{k=0}^{\infty} \frac{(z \cdot \bar{w})^{k}}{k!}$ shows that the reproducing kernel $\kappa_{k}(z, w)$ of $\mathscr{P}_{k}\left(\boldsymbol{C}^{n}\right)$ is given by $\kappa_{k}(z, w)=\frac{(z \cdot \bar{w})^{k}}{k!}$. Thus the Berezin transformation B_{k} associated to $\mathscr{P}_{k}\left(\boldsymbol{C}^{n}\right)$ is the integral operator

$$
B_{k} f(z)=\int_{C^{n}} b_{k}(z, w) f(w) d m(w)
$$

on $L^{2}\left(\boldsymbol{C}^{n}\right)$ with kernel given by

$$
\begin{equation*}
b_{k}(z, w)=\frac{1}{\pi^{n} k!} e^{-\|\left. z\right|^{2 / 2}} e^{-\|w\|^{2 / 2}} \frac{|z \cdot \bar{w}|^{2 k}}{\|z\|^{k}\|w\|^{k}} . \tag{2.1}
\end{equation*}
$$

Through the polar coordinates $z=r u\left(r>0, u \in S^{2 n-1}\right)$, we have $d m(r u)=$ $r^{2 n-1} d r d \sigma(u)$, where $d \sigma$ is the canonical rotation-invariant measure on the sphere $S^{2 n-1}$. Hence

$$
L^{2}\left(\boldsymbol{C}^{n}\right)=L^{2}\left((0, \infty), r^{2 n-1} d r\right) \otimes L^{2}\left(S^{2 n-1}, d \sigma\right)
$$

In order to study the operators B_{k} we need a decomposition of $L^{2}\left(S^{2 n-1}, d \sigma\right)$ into $U(n)$-irreducibles, which we now describe. Our reference is the books [16, Chapter 11] and [13, Kapitel V].

Let $\mathscr{P}_{p q}$ be the space of polynomial functions $h(z, \vec{z})$ on C^{n} which are homogeneous of degree p in z and degree q in \bar{z}. We denote by $\mathscr{H}_{p q}$ the harmonic polynomials in $\mathscr{P}_{p q}$. Then

$$
\begin{equation*}
\mathscr{P}_{p q}=\sum_{j=0}^{\min (p, q)}\|z\|^{2 j} \cdot \mathscr{H}_{p-j, q-j} . \tag{2.2}
\end{equation*}
$$

Moreover putting $\mathscr{Y}_{p q}:=\left\{\left.h\right|_{s^{2 n-1}} ; h \in \mathscr{H}_{p q}\right\}$, we have the following orthogonal decomposition into mutually inequivalent irreducible $U(n)$-modules $\mathscr{Y}_{p q}$:

$$
\begin{equation*}
L^{2}\left(S^{2 n-1}, d \sigma\right)=\bigoplus_{p, q=0}^{\infty} \not Y_{p q .} . \tag{2.3}
\end{equation*}
$$

We have

$$
\begin{equation*}
\operatorname{dim} \mathscr{Y}_{p q}=\frac{(n+p+q-1)(n+p-2)!(n+q-2)!}{(n-1)!(n-2)!p!q!} \tag{2.4}
\end{equation*}
$$

We put $\mathfrak{S}_{p q}:=L^{2}\left((0, \infty), r^{2 n-1} d r\right) \otimes \mathscr{Y}_{p q}$. Then we have $L^{2}\left(\boldsymbol{C}^{n}\right)=\bigoplus_{p, q=0}^{\infty} \mathfrak{S}_{p q}$ and every $\mathfrak{S}_{p q}$ is invariant under B_{k}.

Lemma 2.1. Unless $p=q \leqq k$, the restriction of B_{k} to $\mathfrak{S}_{p q}$ is zero.
Proof. Suppose that $f \in \mathfrak{F}_{p q}$ is of the form $f(r u)=f_{o}(r) Y(u) \quad(r>0, u \in$ $S^{2 n-1}$) with $Y \in \mathscr{Y}_{p q}$. Then

$$
\left.B_{k} f(s v)=\frac{s^{k} e^{-s^{2} / 2}}{\pi^{n} k!} \int_{0}^{\infty} r^{2 n+k-1} f_{0}(r) e^{-r^{2 / 2}} d r \int_{s^{2 n-1}} Y(u) \right\rvert\, v \cdot \bar{u}^{2 k} d \sigma(u)
$$

where $s>0$ and $v \in S^{2 n-1}$. Since the function $S^{2 n-1} \ni u \mapsto|v \cdot \bar{u}|^{2 k}$ belongs to $\underset{j=0}{\stackrel{k}{e}} \mathscr{Y}_{j j}$ in view of (2.2), we get the lemma by (2.3).

Therefore we have only to consider the action of B_{k} on $\mathfrak{g}_{j j}$ for $0 \leqq j \leqq k$. The proof of Lemma 2.1 indicates that it suffices to decompose the function $|v \cdot \bar{u}|^{2 k}=|u \cdot \bar{v}|^{2 k}$. To do this we consider $\mathbf{e}_{n}:={ }^{t}(0, \ldots, 0,1) \in S^{2 n-1}$ and denote by L the stabilizer in $U(n)$ at the vector \mathbf{e}_{n}. Then

$$
L=\left(\begin{array}{c|c}
U(n-1) & 0 \\
\hline 0 & 1
\end{array}\right) .
$$

Put $\eta(z):=\left|z \cdot \mathbf{e}_{n}\right|^{2 k}\left(z \in C^{n}\right)$. Then η belongs to $\mathscr{P}_{k k}$ and is L-invariant: $\eta(l z)=\eta(z)$ for all $l \in L$. Decompose η as $\eta(z)=\sum_{j=0}^{k}\|z\|^{2(k-j)} \eta_{j}(z)$ according as (2.2). Then η_{j} belongs to $\mathscr{H}_{j j}$ and is L-invariant. We quote here the following proposition, see [16, 11.3.2] or [13, V.2.10].

Proposition 2.2. Let $\mathscr{Y}_{j j}^{L}$ be the space of L-invariant functions in $\mathscr{Y}_{j j}$. Then $\operatorname{dim} \mathscr{Y}_{j j}^{L}=1$ and $\mathscr{Y}_{j j}^{L}$ consists of the scalar multiples of the function $Y_{j}(u):=$ $P_{j}^{(n-2,0)}\left(2\left|u \cdot e_{n}\right|^{2}-1\right)$, where $P_{j}^{(\alpha, \beta)}$ stands for the Jacobi polynomial of degree j defined through the Gauss' hypergeometric function ${ }_{2} F_{1}$:

$$
P_{j}^{(\alpha, \beta)}(t)=\binom{\alpha+j}{j} \cdot{ }_{2} F_{1}\left(-j, j+\alpha+\beta+1, \alpha+1 ; \frac{1-t}{2}\right) .
$$

Since $\mathscr{Y}_{j j}$ is a finite-dimensional space consisting of continuous functions on $S^{2 n-1}$, it possesses a reproducing kernel $\Phi_{j}(u, v)$. The $U(n)$-invariance of $\mathscr{Y}_{j j}$ implies

$$
\begin{equation*}
\Phi_{j}(g u, g v)=\Phi_{j}(u, v) \quad \text { for all } g \in U(n) \tag{2.5}
\end{equation*}
$$

In particular $\Phi_{j}\left(\cdot, \mathbf{e}_{n}\right) \in \mathscr{\mathscr { Y }} \mathcal{Y}_{j j}$, so that $\Phi_{j}\left(\cdot, \mathbf{e}_{n}\right)$ is a constant multiple of the function Y_{j} in Proposition 2.2. Now for every $v \in S^{2 n-1}$ we take $g \in U(n)$ so that $g \mathbf{e}_{n}=v$. Then by (2.5)

$$
\Phi_{j}(u, v)=\Phi_{j}\left(g^{-1} u, \mathbf{e}_{n}\right)=C_{j} \cdot Y_{j}\left(g^{-1} u\right)=C_{j} \cdot P_{j}^{(n-2,0)}\left(2|u \cdot \bar{v}|^{2}-1\right)
$$

for some $C_{j} \in \boldsymbol{C}$. Though not necessary in the sequel, we compute the constant C_{j} for completeness.

Proposition 2.3. The reproducing kernel $\Phi_{j}(u, v)$ of $\mathscr{Y}_{j j}$ is given by

$$
\Phi_{j}(u, v)=C_{j} \cdot P_{j}^{(n-2,0)}\left(2|u \cdot \vec{v}|^{2}-1\right),
$$

where $C_{j}:=\frac{(n+2 j-1)(n+j-2)!}{2 \pi^{n} j!}$. Note that Φ_{j} is real-valued.
Proof. Put $m=\operatorname{dim} \mathscr{Y}_{j j}$. We know by (2.4) that

$$
m=\frac{(n+2 j-1)[(n+j-2)!]^{2}}{(n-1)!(n-2)!(j!)^{2}}
$$

Since Φ_{j} is the reproducing kernel of $\mathscr{\mathscr { Y }}_{j}$, we have for any orthonormal basis $\left\{\psi_{l}\right\}_{l=1}^{m}$ of $\mathscr{Y}_{j j}$

$$
\sum_{l=1}^{m}\left|\psi_{l}(v)\right|^{2}=\Phi_{j}(v, v)=\Phi_{j}\left(\mathbf{e}_{n}, \mathbf{e}_{n}\right) \quad \text { for all } v \in S^{2 n-1}
$$

the second equality being a consequence of (2.5). Hence

$$
m=\int_{S_{2 n-1}} \Phi_{j}(v, v) d \sigma(v)=\Phi_{j}\left(\mathbf{e}_{n}, \mathbf{e}_{n}\right) \sigma\left(S^{2 n-1}\right)=C_{j} \cdot\binom{n-2+j}{j} \frac{2 \pi^{n}}{(n-1)!}
$$

which gives the proposition.
Combining Proposition 2.2 with Proposition 2.3, we see that $\mathscr{Y}_{j j}^{L j}=\boldsymbol{C} \Phi_{j}\left(\cdot, \mathbf{e}_{n}\right)$. Therefore $\left.\eta_{j}\right|_{s^{2 n-1}}=a_{j}^{k} \cdot \Phi_{j}\left(\cdot, \mathbf{e}_{n}\right)$ for some $a_{j}^{k} \in \boldsymbol{C}$. For every $v \in S^{2 n-1}$ we choose $g \in U(n)$ so that $v=g \mathbf{e}_{n}$. Then

$$
\begin{align*}
\mid u \cdot \vec{v}^{2 k} & =\left|g^{-1} u \cdot \mathbf{e}_{n}\right|^{2 k}=\eta\left(g^{-1} u\right) \\
& =\sum_{j=0}^{k} a_{j}^{k} \cdot \Phi_{j}\left(g^{-1} u, \mathbf{e}_{n}\right)=\sum_{j=0}^{k} a_{j}^{k} \cdot \Phi_{j}(u, v) . \tag{2.6}
\end{align*}
$$

To compute the constants a_{j}^{k} we need the following integral formula.
Lemma 2.4. For $f \in L^{1}\left(S^{2 n-1}, d \sigma\right)$ one has

$$
\begin{aligned}
& \int_{S_{2 n-1}} f(u) d \sigma(u) \\
& \quad=\int_{0}^{\pi / 2}(\sin \theta)^{2 n-3} \cos \theta d \theta \int_{-\pi}^{\pi} d \varphi \int_{S^{2 n-3}} f\left((\sin \theta) w+(\cos \theta) e^{i \varphi} \mathbf{e}_{n}\right) d \sigma(w)
\end{aligned}
$$

Proof. We give here a direct proof for readers' convenience. Consider the function $F(z):=e^{-\|z\|^{2}} f(z /\|z\|)$. Then

$$
\begin{aligned}
I & :=\int_{C^{n}} F(z) d m(z)=\int_{C^{n-1}} d m(w) \int_{C} F\left(w+t \mathbf{e}_{n}\right) d m(t) \\
& =\int_{C^{n-1}} d m(w) \int_{C} f\left(\frac{w+t \mathbf{e}_{n}}{\sqrt{\|w\|^{2}+|t|^{2}}}\right) e^{-\left(\|w\|^{2}+|t|^{2}\right)} d m(t) .
\end{aligned}
$$

Putting $t=r e^{i \varphi}$ and $w=\rho v\left(\rho>0, v \in S^{2 n-3}\right)$, we get

$$
I=\int_{0}^{\infty} \rho^{2 n-3} d \rho \int_{s^{2 n-3}} d \sigma(v) \int_{0}^{\infty} e^{-\left(\rho^{2}+r^{2}\right)} r d r \int_{-\pi}^{\pi} f\left(\frac{\rho v+r e^{i \varphi} \mathbf{e}_{n}}{\sqrt{\rho^{2}+r^{2}}}\right) d \varphi
$$

Finally setting $r=s \cos \theta, \rho=s \sin \theta(0 \leqq \theta \leqq \pi / 2)$, we arrive at

$$
\begin{aligned}
I=\int_{0}^{\infty} e^{-s^{2}} s^{2 n-1} d s & \int_{0}^{\pi / 2} \cos \theta(\sin \theta)^{2 n-3} d \theta \\
& \times \int_{S^{2 n-3}} d \sigma(v) \int_{-\pi}^{\pi} f\left((\sin \theta) v+(\cos \theta) e^{i \varphi} \mathbf{e}_{n}\right) d \varphi
\end{aligned}
$$

On the other hand, $I=\int_{0}^{\infty} e^{-r^{2}} r^{2 n-1} d r \int_{S^{2 n-1}} f(u) d \sigma(u)$. This together with the above computation yields the lemma.

Proposition 2.5. Recall that $\eta(u)=\left|u \cdot \mathbf{e}_{n}\right|^{2 k}$. Then

$$
\int_{S^{2 n-1}} \eta(u) P_{j}^{(n-2,0)}\left(2\left|u \cdot \mathbf{e}_{n}\right|^{2}-1\right) d \sigma(u)=\frac{2 \pi^{n} k!}{(n+k-1)!}\binom{n+j-2}{j} \cdot \lambda_{j}^{k}
$$

where $\lambda_{j}^{k}:=\binom{n+j+k-1}{j}^{-1}\binom{k}{j}$.
Proof. Let J be the integral on the left hand side. Applying Lemma 2.4, we get

$$
J=2 \pi \sigma\left(S^{2 n-3}\right) \int_{0}^{\pi / 2}(\sin \theta)^{2 n-3}(\cos \theta)^{2 k+1} P_{j}^{(n-2,0)}(\cos 2 \theta) d \theta
$$

The formula $P_{j}^{(\alpha, \beta)}(t)=2^{-j} \sum_{l=0}^{j}\binom{j+\alpha}{l}\binom{j+\beta}{j-l}(t+1)^{l}(t-1)^{j-l}[10$, p. 211] gives

$$
\begin{aligned}
& J=2 \pi \sigma\left(S^{2 n-3}\right) \sum_{l=0}^{j}(-1)^{j-1}\binom{j+n-2}{l}\binom{j}{j-l} \\
& \times \int_{0}^{\pi / 2}(\cos \theta)^{2(l+k)+1}(\sin \theta)^{2(j-l+n-1)-1} d \theta
\end{aligned}
$$

Since $2 \int_{0}^{\pi / 2}(\cos \theta)^{2 p-1}(\sin \theta)^{2 q-1} d \theta=\frac{\Gamma(p) \Gamma(q)}{\Gamma(p+q)}$. we get

$$
\begin{aligned}
J & =\pi \sigma\left(S^{2 n-3}\right) \sum_{l=0}^{j}(-1)^{j-l}\binom{j+n-2}{l}\binom{j}{j-l} \frac{\Gamma(l+k+1) \Gamma(j-l+n-1)}{\Gamma(n+j+k)} \\
& =2 \pi^{n}\binom{n+j-2}{j} \frac{(j!)^{2}}{(n+j+k-1)!} \sum_{l=0}^{j}(-1)^{j-l} \frac{(l+k)!}{(j-l)!(l!)^{2}},
\end{aligned}
$$

where we have used $\sigma\left(S^{2 n-3}\right)=\frac{2 \pi^{n-1}}{(n-2)!}$. Proposition 2.5 now follows from the next combinatorial identity.

Lemma 2.6. One has

$$
\frac{(j!)^{2}}{(n+j+k-1)!} \sum_{l=0}^{j}(-1)^{j-l} \frac{(l+k)!}{(j-l)!(l!)^{2}}=\frac{k!}{(n+k-1)!} \cdot \lambda_{j}^{k} .
$$

Proof. The left hand side is equal to

$$
\frac{j!k!}{(n+j+k-1)!} \sum_{l=0}^{j}(-1)^{j-l}\binom{l+k}{l}\binom{j}{l}=
$$

$$
=\frac{(-1)^{j} k!}{(n+k-1)!}\binom{n+j+k-1}{j}^{-1} \sum_{l=0}^{j}\binom{-k-1}{l}\binom{j}{l}
$$

where we used $\binom{l+k}{l}=(-1)^{l}\binom{-k-1}{l}$. The sum $S:=\sum_{l=0}^{j}\binom{-k-1}{l}\binom{j}{l}$ is the constant term of the Laurent expansion at $x=0$ of the function

$$
f(x):=(1+x)^{-(k+1)}\left(1+\frac{1}{x}\right)^{j} .
$$

Since $f(x)=x^{-j}(1+x)^{j-(k+1)}$, we see that S is the coefficient of x^{j} of the func. tion $(1+x)^{j-k-1}$. Hence $S=\binom{j-k-1}{j}=(-1)^{j}\binom{k}{j}$. This clearly yields the lemma.

Proposition 2.7. The constants a_{j}^{k} in (2.6) are given by

$$
a_{j}^{k}=\frac{2 \pi^{n} k!}{(n+k-1)!} \cdot \lambda_{j}^{k} .
$$

Proof. Recall that $\eta(u)=\left|u \cdot \mathbf{e}_{n}\right|^{2 k}=\sum_{j=0}^{k} a_{j}^{k} \cdot \Phi_{j}\left(u, \mathbf{e}_{n}\right)$ for $u \in S^{2 n-1}$. Therefore taking the inner product of both sides with $\Phi_{j}\left(\cdot, \mathbf{e}_{n}\right)$, we get

$$
\begin{equation*}
\int_{S^{2 n-1}} \eta(u) \Phi_{j}\left(u, \mathbf{e}_{n}\right) d \sigma(u)=a_{j}^{k} \cdot \Phi_{j}\left(\mathbf{e}_{n}, \mathbf{e}_{n}\right)=a_{j}^{k} C_{j} \cdot\binom{n-2+j}{j}, \tag{2.7}
\end{equation*}
$$

where C_{j} is the constant appearing in Proposition 2.3. Again by Proposition 2.3, we see that the left hand side of (2.7) equals C_{j} times of the integral in Proposition 2.5. These observations lead us to Proposition 2.7.

To describe the spectral decomposition of B_{k} we need some notational preparations. Let φ_{k} be the unit vector in $L^{2}\left((0, \infty), r^{2 n-1} d r\right)$ given by

$$
\varphi_{k}(r):=\sqrt{\frac{2}{(n+k-1)!}} r^{k} e^{-r^{2} / 2},
$$

and A_{k} the one-dimensional orthogonal projection of $L^{2}\left((0, \infty), r^{2 n-1} d r\right)$ onto $\boldsymbol{C} \varphi_{k}$. We remark that

$$
\sigma\left(S^{2 n-1}\right)^{-1 / 2} \varphi_{k}(\|z\|)=\frac{1}{\pi^{n / 2} d_{k}^{1 / 2}} \kappa_{k}(z, z)^{1 / 2} e^{-\|z\|^{2 / 2}},
$$

where $d_{k}:=\operatorname{dim} \mathscr{P}_{k}\left(\boldsymbol{C}^{n}\right)=\binom{n+k-1}{k}$. Compare this with the function ϕ_{α} in Theorem 1.2. We denote by E_{j} the orthogonal projection $L^{2}\left(S^{2 n-1}, d \sigma\right) \rightarrow \mathscr{Y}_{j j}$.

The operator E_{j} is an integral operator on $L^{2}\left(S^{2 n-1}, d \sigma\right)$ with reproducing kernel $\Phi_{j}(u, v)$ of $\mathscr{Y}_{j j}$ as integral kernel.

Theorem 2.8. One has the spectral decomposition

$$
B_{k}=\sum_{j=0}^{k}\binom{n+j+k-1}{j}^{-1}\binom{k}{j} \cdot\left(A_{k} \otimes E_{j}\right)
$$

Proof. By (2.1), (2.6) and Proposition 2.7 we have for $r, s>0$ and $u, v \in$ $S^{2 n-1}$

$$
\begin{aligned}
b_{k}(s v, r u) & =\frac{e^{-s^{2} / 2} e^{-r^{2} / 2} r^{k} s^{k}}{\pi^{n} k!}|v \cdot \bar{u}|^{2 k}=\frac{e^{-s^{2} / 2} e^{-r^{2} / 2} r^{k} s^{k}}{\pi^{n} k!} \sum_{j=0}^{k} a_{j}^{k} \cdot \Phi_{j}(u, v) \\
& =\varphi_{k}(r) \varphi_{k}(s) \sum_{j=0}^{k} \lambda_{j}^{k} \cdot \Phi_{j}(u, v)
\end{aligned}
$$

This clearly gives Theorem 2.8 in view of the explicit formula for λ_{j}^{k} given in Proposition 2.5.

Department of Mathematics Kyoto University

References

[1] J. Arazy, S. Fisher and J. Peetre, Hankel operators on planar domains, Amer. J. Math., 110 (1988), 989-1053.
[2] V. Bargmann. Irreducible unitary representations of the Lorentz group. Ann. of Math., 48 (1947), 568-640.
[3] C. Benson, J. Jenkins and G. Ratcliff. Bounded K-spherical functions on Heisenberg groups, J. Funct. Anal., 105(1992), 409-443.
[4] F. A. Berezin, Quantization, Math. USSR Izv., 8 (1974). 1109-1165.
[5] F. A. Berezin, Quantization in complex symmetric spaces, Math. USSR Izv., 9 (1975), 341-379.
[6] F. A. Berezin, General concept of quantization, Comm. Math. Phys., 40 (1975), 153-174.
[7] V. Guillemin, Toeplitz operators in n-dimensions, Integ. Eq. Operator Th., 7(1984), 145-205.
[8] S. Helgason, Groups and geometric analysis, Academic Press, New York, 1984.
[9] R. Howe and T. Umeda, The Capelli identity, the double commutant theorem, and the multiplicity-free actions. Math. Ann., 290(1991), 565-619.
[10] W. Magnus, F. Oberhettinger and R. P. Soni, Formulas and theorems for the special functions of mathematical physics, Springer, Berlin, 1966.
[11] B. Ørsted and G. Zhang, Weyl quantization and tensor products of Fock and Bergman spaces, Indiana Univ. Math. J., 43 (1994), 551-583.
[12] J. Peetre, The Berezin transform and Ha-plitz operators, J. Operator Th., 24 (1990), 165-186.
[13] W. Schempp und B. Dreseler, Einführung in die harmonische Analyse, Teubner, Stuttgart, 1980.
[14] F. J. Servedio. Prehomogeneous vector spaces and varieties, Trans. Amer. Math. Soc., $\mathbf{1 7 6}$ (1973), 421-444.
[15] A. Unterberger and H. Upmeier, The Berezin transform and invariant differential operators, Comm. Math. Phys., 164 (1994), 563-597.
[16] N. Ja. Vilenkin and A. U. Klimyk, Representation of Lie groups and special functions, Vol. 2 .

Kluwer Academic Publ., Dordrecht, 1993.
[17] E. B. Vinberg and B. N. Kimelfeld, Homogeneous domains in flag manifolds and spherical subgroups of semi-simple Lie groups, Funct. Anal. Appl., 12 (1978). 12-19.

