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Introduction

The Berezin transformation, which links the covariant symbol (the Bere-
zin symbol) and the contravariant symbol (the symbol for a Toeplitz
operator) of an operator A, plays an important role in Berezin's theory of
quantization, see [4]. Let us begin the present paper with the definition of
Berezin transformation. Consider a domain D in C” and a Borel measure g on
D. Let § be a closed subspace of L*(D, du) consisting of continuous functions
and we denote by P the orthogonal projection L2(D, du)— &. For each ¢ €
L= (D) we define the Toeplitz operator T(¢) with symbol ¢ by T (@)h:=
P(ph) (h € H). We assume that § has a reproducing kernel & (2, w). The
Berezin symbol of a bounded operator A on @ is the function o(4) on D given by

(AIC(',Z)‘K('.Z))@.

o(A)(2):= PIE)

Then by [15, 1.19], the maps T and o are adjoint to each other in a suitable
sense. We will accordingly write 6* for T. The Berezin transformation B associ-
ated to § is, by definition, the positive selfadjoint operator go*, which turns
out to be a bounded operator on L%(D, duy), where duo:=k (2, z) dy. Moreover

2
B is an integral operator with integral kernel given by x(lxz(flc%)bl
and [15].

When $ carries an irreducible unitary representation of a Lie group G
acting on D, the operator B is G-invariant, so that it is a very interesting
problem to find its spectrum. In the case where D=C",  the Fock space and
G the Heisenberg group, one knows that B is expressed as the exponential of
the euclidean Laplacian 4 on C": B =-exp (4/4), see [4, §4], [15, 1.27] and
[11, §1] etc. If D is the open unit disk D in C and if §=Ha (@> —1) is the
Hilbert space of holomorphic functions on D) which are square integrable rela-

o) See (4]
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atl
T
holomorphic discrete series representation of the universal covering group of
2
]"(a-l-%-l—iA)l
Tla+DIatz) Vith A=

tive to the measure (1—1z1)%xdy (z=x +1iy) (note that H, carries a

SU(1,1), see [2, §9] for example), then B =

2
(—Ap—1/4)"? where Ap:= (1 —|z|2)zazaz. is the Mabius-invariant Laplacian

on D and the substitution of the operator A into the gamma function I is done
through the spectral analysis using the spherical Fourier transformation as
developed in [8], see [1, §10], [6, 84] and [12, Example 2] for details. This
example was generalized to the open unit ball in C" by [5], see also [12, Ex-
ample 2'], and has been further generalized recently to the case of bounded
symmetric domains by [15].

Now from the above it is possible to define the Berezin transformation
provided one has a subspace of L? which possesses a reproducing kernel. A
situation for this occurs when a compact Lie group U acts linearly on a
finite-dimensional complex vector space V in a multiplicity-free way, see [9],
[3]. This means that the space % (V) of holomorphic polynomial functions on
V decomposes into a direct sum of mutually inequivalent U-irreducible sub-
spaces P4 (V) (@ €A). The spaces Po(V), though finite-dimensional, provide
plenty of reproducing kernel subspaces of L®(V, dy), du being the normalized
Gaussian measure on V. In 81 of this paper, we treat the Berezin transforma-
tion Bg associated to Pq (V). Let kq be the reproducing kernel of P4 (V). To
exhibit various Ba (@ € A) within a single fixed space, we transfer Bq from
L?(V, ka (2, 2)dp) to the ordinary Lebesgue L*-space L?(V). Then we show in
Theorem 1.2 that the (transferred) Berezin transformation acts on the
U-invariant functions as the one-dimensional orthogonal projection onto C¢aq,
where ¢q(2) :=ka(z, 2) Y267 1#1%2 In §2 we treat the case V=C", U=U () in
detail and describe the spectral decomposition of Bx (k=0, 1, ..) explicitly:
note in this case that the parameter set A for $,(V) is the set of non-negative
integers Z; reflecting the degree of homogeneity. To describe our result we
need some notational preparations. Let %;; be the space of spherical harmonics
of type (j,7) on S¥'CC” In other words, ¥;; is the space of the restrictions

to S2*°! of harmonic polynomials h(z, z) which are homogeneous of degree j
both in z and z . Then, denoting by E the orthogonal projection

L2(V)—=C oy @ Y5, where @, (r) =v*¢""2(r>0), we show in Theorem 2.8 that
: n+j+e—1\"(k
Bk:Z o ) Ew
i=0 ] J

The contents of this paper form a part of the first author’s master thesis
submitted to Kyoto University.
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§1. Generalities

Let V be a finite-dimensional complex vector space and U a compact Lie
group acting linearly on V. We will denote by 7 the corresponding action on
functions on V: m (u) f (x):=f(u ') (u EU). We fix a U-invariant hermitian
inner product (+|*) on V. Suppose that the U-action on V is multiplicity-free.
This means that the space # (V) of holomorphic polynomial functions on V
has a decomposition 2 (V) = 2 %, (V) into mutually inequivalent U-irreduci-

aeA
ble subspaces, where A is an index set. Note that %, (V) is finite-dimensional.
Let § denote the Fock space, that is, & is the Hilbert space of holomorphic
functions f on V such that

|lf||§i=#fv () o1 dm(z) < oo,

where n:=dim V, |lz|?:= (2| 2) and dm is the Lebesgue measure on V defined
by the euclidean structure Re (|) The space & has an orthogonal decomposi-
tion F= @ Po (V). The Hilbert space § has the reproducing kernel « (z, w)

aceA
given by k(z, w):=e?'* (2, wE V). This means that f(w) = (f| £ (+, w)) 5 for
any fE€ . Moreover, the function kq (2, w) defined through the orthogonal de-

composition k (+, w) = 2 kq (+, w) is easily seen to be the reproducing kernel
a€A

for the space Po (V). Since #,(V) is U-invariant, £, has the property

(1.1) kauz, uw) =ka(z, w) for all u € U.

Proposition 1.1. There is an open dense subset O in V such that ko (w, w)
*0 for any wEOD.

Proof. Let H=U¢CGL(V), the complexification of the compact Lie group
U. We have

ke (W72, h*w) =Ko (2, w) for all hEH,

where h* stands for the adjoint of h relative to the inner product (+|*) we are
fixing. Now it is known by [14, Theorem 6.2] and [17, Theorem 2] that the
H-action on V possesses an open dense orbit #. We claim that &, (w, w) #0 for

any wE€ 0. In fact suppose kq (wo, wo) =0 for some w, € 0. Then la (¢, wo) ||;2*s=
Ka (wo, wo) =0, so that k4 (2, wo) =0 for all zE V. Let wE O be arbitrary and
take h € H such that w=hw,. Then we have

(1.2) Ko (z, w) =kq (2, hwo) = ko (h*z, wo) =0 for all z€ V.

Since kg is the reproducing kernel of 4 (V), (1.2) implies that any fEP, (V)
vanishes on the open dense set &, whence the contradiction P, (V)= {0}.

Let P, be the orthogonal projection L? (V, e '*"*dm)— %P, (V). Making use
of Pa, we define the Toeplitz operators oa(¢) (¢ € L*(V)) on P.(V) by
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oX(@)p:= Pal@p) (p € P,(V)). Noting Proposition 1.1, we set ef(z):=
Koz, w)

Ko (w, w) 2

A associated to P, (V) is defined to be 0a(4)(2):= (4e | e2)g. Put

For every bounded operator A on &, the Berezin symbol da(4) of

dpa (2) 3=# Kalz, 2)e " dm (2).

Then by [15, 1.19], the Berezin transformation 0404 associated to %o (V) is

the integral operator on %o =L%(V, dita) with kernel |(eZ | e) 3. We transfer
the Berezin transformation from %o to L2(V):=1L%(V, dm) via the unitary
transformation I, given by

e h @)= ke VR (hE L),

Then by a simple computation, we see that the Berezin transformation B, on
L%(V) is an integral operator

Baf(2) =fv ba(z, w)f (w) dm(w)

with kernel given by

—lzlzs2 e-llw!lz/z "fa (2, w) |2

1
balz, w) =—>e -

T Kalz, 2 )e

By (1.1) we have bq(uz, uw) = ba(z, w) for all u € U, so that By is a
U-invariant operator on L?(V), that is, Bs commutes with 7 (1) for all u € U.
Moreover Bq is selfadjoint and positive.

Let L2(V)V be the closed subspace of L%(V) consisting of U-invariant
functions. By U-invariance of Ba. it is clear that L2 (V)Y is stable under Ba.
The action of B on L2(V)Y is given by the following theorem.

Theorem 1.2. Let ¢ €EL*(V)Y be the unit veclor defined by

. 1 -
ba(2):= — g1 Koz, 2) V2712172,
a

where do: =dim P, (V). Then B acts on L2(V)V as the one-dimensional orthogo-
nal projection ¢o Q @a.

To prove Theorem 1.2 we need

Lemma 1.3. For a, BEA, one has
j; Ko (uz, w) Kg (uz, w) du=20as" di Ka (Z. Z) Ka (w, w) )
a

where the left hand side is the integration over the compact Lie group U with re-
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spect to the normalized Haar measure du.

Proof. This is a simple consequence of Schur’s orthogonality relations. In
fact it suffices to note that the reproducing property together with (1.1) yields

Ko (uz, w) = (ka (*, w)| Ko (*, u2) ) = (Ko (*, w) | TW) Ka(+, 2))5.

Then the equality | ka(+, w) [5= ka(w, w) immediately gives Lemma 1.3, be-
cause by the assumption Pq (V) and Ps(V) carry inequivalent irreducible
representations of U if a#§.

Proof of Theorem 12. Let fEL?(V)U. Then we have Bo fEL?(V)Y, so that

Baf(2) =f Ba f(uz) du=f duf bo (uz, w)f (w) dm(w)
_ —I|zl|2/2 f ‘]:/ Ilca (uz w)l f(w)e._nwp/z dm(w)

R Ko (w, w)'?

Changing the order of integration and applying Lemma 1.3, we find that
f(2) = (f| )2 da (2), where (+]+), denotes the inner product of L2(V). To
see that ||¢a||2 1, we recall that k,(z, w) is the reproducing kernel of @, (V).

Thus kq (2, 2) = Z lg; (z) |* for any orthonormal basis {¢;17%, of Po (V) C§.

Hence
—lnf kalz, 2) e "V dm(z) =d,.
adv

This clearly implies [[@q/5=1.

§2. Spectral decomposition: the case of U(n) -action on C”

Throughout this section we treat the case V=C" and U=U (n) in detail
and describe the spectral decomposition of the Berezin transformation. The
canonical hermitian inner product on C* will be denoted by z * w instead of
is known to be multiplicity-free. In
fact denoting by %,(C") the space of homogeneous holomorphic polynomial

functions on C” of degree k, we have a decomposition 2 (C") = 2. 2, (C") into
k=0
mutually inequivalent U (1) -irreducibles and the corresponding orthogonal de-

composition F = @ P, (C") for the Fock space §. The expansion ¢ 7 =
k=0

Z(Z ‘w)

m shows that the reproducing kernel & (z, w) of %, (C") is given by
k=0

« ) K
ke (2, w) =Lz—k‘ﬂL. Thus the Berezin transformation B associated to @, (C")

is the integral operator
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Bis@) = [ bule, w)ftw) amw)

on L%(C™) with kernel given by

. 1 |z - ]
2.1 by (2, —. ,~lzlr2 —lwlz/z J€ 21
@D e L

Through the polar coordinates z=ru (r>0, u €S*~!), we have dm(m) =
" Yrdo(u), where do is the canonical rotation-invariant measure on the
sphere S#*7!, Hence

LA€™) =L%((0, ), " ldr) @ L2(S*7}, do).

In order to study the operators B, we need a decomposition of L?(S?*~! do)
into U (n) -irreducibles, which we now describe. Our reference is the books
[16, Chapter 11] and [13, Kapitel V].

Let #,, be the space of polynomial functions h(z, Z) on C” which are
homogeneous of degree p in z and degree g in z. We denote by #,, the har-
monic polynomials in %5, Then

min(p,q)
(2.2) Pye= Z Iz |7 5o sas.
j=0
Moreover putting ¥pe: = {hlsm1; h € #,ye |, we have the following orthogonal

decomposition into mutually inequivalent irreducible U (n) -modules ¥, :

(2.3) L2 (52"_1, dO’) = é ‘fypq.
9,4=0
We have
(2.4) dim ¥, = B FpFa=D) (1Hp=2) 1 (n+g—2))
. \ |

mh=1)t—2)1pl g

We put £y =L2((0, ), " 'dr) @ ¥, Then we have L2(C") = D £y, and
0,4=0
every 9p, is invariant under By.
Lemma 2.1. Unless p=q =k, the restriction of By to pq is zero.

Proof. Suppose that f € g is of the form f(ru) =f, ()Y (u) >0, u€
$2=1) with YEY,, Then

—s2
s"e §2/2

" k!

Bif(sv) = ﬂwrz”*"‘lfo (e drfsm_lY(u) v« #l* do(u),

where s> 0 and v € S Since the function S 'y |v » 7|%* belongs to

k
@ ¥;; in view of (2.2), we get the lemma by (2.3).
j=0
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Therefore we have only to consider the action of By on ;; for 0 Sj <k,
The proof of Lemma 2.1 indicates that it suffices to decompose the function

lv « #]®*=1u - 9]%*. To do this we consider e,;="'(0, .., 0, 1) €$?*~! and denote
by L the stabilizer in U () at the vector e,. Then

L=( Un—1)| 0 >
0 1

Put n(2):=1|z+ e,|* (z€C"). Then 1 belongs to P and is L-invariant:

k s
n(lz) =7 (z) for all IEL. Decompose 3 as 1 (z) =2 ||z2[**n; (2) according as
i=0
(2.2). Then 71; belongs to #;; and is L-invariant. We quote here the following
proposition, see [16, 11.3.2] or [13, V.2.10].

Proposition 2.2. Let Y% be the space of L-invariant functions in Y.
Then dim ¥5=1 and Y5 consists of the scalar multiples of the function Yj(u):=
PP20 (2 |y en|2—1), where PS*® stands for the Jacobi polynomial of degree j de-
fined through the Gauss' hypergeometric function oF:

a+tj -
P}""‘”(t)Z( .]>'2F1<—j,j+a+,8+1, atl —175>
]

Since ¥;; is a finite-dimensional space consisting of continuous functions

on S7! it possesses a reproducing kernel @, (u, v). The U(n)-invariance of
%;; implies

(2.5) D, (gu, gv) = 0; (u, v) for all g€EU (n).

In particular @;(, e,) € %L, so that @;(+, e,) is a constant multiple of the

function Y; in Proposition 2.2. Now for every v € 81 we take g€ Um) so
that ge,=v. Then by (2.5)

D; (u, U) =Q, (g_‘u, en) =C;'Y; (g_'u) :Cj‘P}"_z'O) (2 ‘u . 17'2—1)

for some C;€C. Though not necessary in the sequel, we compute the constant
C; for completeness.

Proposition 2.3. The reproducing kernel @;(u, v) of ¥,; is given by
D; (u, v) =C; P29 (2 |u - 512—1),

_ m+2j—1) (n+;—2)!

2" j! '

Proof. Put m=dim ¥,;. We know by (2.4) that

= m+2;j—1) [(n+;—2)1]2
m—1)1mn—2)!(1?

where C;: Note that ®; is real-valued.
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Since @; is the reproducing kernel of ¥;;, we have for any orthonormal basis

{(,bl”n:l Of @/jj
E ¢ @) P=D; (v, v) = D; (e, e,) for all vES#1,

the second equality being a consequence of (2.5). Hence

—f 0;(v,v) do(v) =D; (e, e,) 0 (S¥1) =C;- (n—2+j> (nzf’i)!'

which gives the proposition.

Combining Proposition 2.2 with Proposition 2.3, we see that ¥5=C®; (-, e,).

Therefore N;lsem-1=a¥+ @, (¢, e,) for some a¥E€C. For every v €S*~! we choose
gEUm) so that v=ge,. Then

|u . ,JIZk:'g—lu . en|2"’—‘7](g_lu)
(26) k k
:Z a}' (pi (g—lu’ en) :Z a}“ ¢j (u, 1)).

j=0 j=0
To compute the constants af we need the following integral formula.

Lemma 2.4. For f €LY (S do) one has
[ 7w do)
=f”/2(sin0)2""3 cos@dﬁfndgof f((sin@)w+ (cos)e™e,) do(w)
0 - 5213 S '

Proof. We give here a direct proof for readers’ convenience. Consider the
function F(z):=e¢ %" f(z / |lzl}). Then

Il=f F(z) dm(z)=f dm (w)j;F(w-l-te,,) dm(t)
__f dm (w)f ( wﬁz-_t:hz )e—<||wu2+mz> am ().

Putting t=7¢"* and w=pv (0>0, vES?3), we get

ip
= f pZn 3dp son- 3d0'(’l)>f —(p2+712) Td?’f ﬂf(M) de.

Jor+7

Finally setting r=scosf, p=ssinf (0S60<m/2), we arrive at
0 m/2
I=j; e~ S"stn1 dsj; cosf(sinB) 346

xfsm_sdd(v) f_,;f((sinﬁ)v—l-(cosﬁ)e“"en)dgo.
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On the other hand, I=j;we"'212”“d1'fsm_1f(u) do(u). This together with the

above computation yields the lemma.

Proposition 2.5. Recall that 0 (u) =|u * e,|?*. Then

21"k (nti—2
(n-2,0) o l2— —__ &t Rk .7k
Szn_ln (M)PI (2 lu enl 1) do(u‘) (n_l,_k__, 1>| < ] > Af:

nt+i+e—1\"/k
where A¥:= ) )
] ]

Proof. Let ] be the integral on the left hand side. Applying Lemma 2.4, we
get

J=270(52%-3) f ™ (sin) -3 (cos§) 2+ P29 (c0s26) d .

+a +
The formula P\ (£) =2- fz(] z )(’ B)(H—l) (t—1)-1[10, p. 211] gives

1=0 7l

o N g (T2
paeaserf e () )

X f”/z (cosB) 21+P+1 (sin @) 24-H+1-v-1 46
0

Since Zfom (cosB) 21 (sinh)? 1 d0= I;wgz_l':; ) . we get

eV (itn=2\( 0\ DD TG4 —1)
J=mols )Z( D < ! )(j—z/ Intj+5)

o ntj—2 (jn? i (4R
=2n ( j > m+j+Ee—1)! Z (=1 G=nr?

_ 2 n—1
where we have used o (S*%) =T =2)1" Proposition 2.5 now follows from the

next combinatorial identity.
Lemma 2.6. One has

Gnz i (e k! o
(m+jt+e—1)! Z(_ G—n1)?  mt+e—1)1 A7

Proof. The left hand side is equal to

Fi i I+k
T = 1>'ZH) < z )<z>_
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(=1 R [ntitR—1 TG k-1 Ji
(k1)) j Z I 1)

1=0

where we used < ; >=(~1)1< I ) The sumSI=Z< l )(1)13
1=0

the constant term of the Laurent expansion at x=0 of the function

Fla)i= (+z) = (14+1)
Since f(xr) =z (1+x)~**V we see that S is the coefficient of x’ of the func-

) —k—1 k
tion (1+x)’ %! Hence S= (] ] >= (—1)’(

j .

>. This clearly yields the
J

lemma.
Proposition 2.7. The constants a¥ in (2.6) are given by

2wk

h— =& T Lk
G e —1)! A5.

k
Proof. Recall that 7 (u) =lu + el =2 a¥ ®; (4, e,) for u €S ', There-

j=0
fore taking the inner product of both sides with @; (-, e,), we get
n—2+j
(2.7) j;z 17] (M) Q; (u, e,) do(u) =af' D, (en. €,) :a}c C; < . ! >
" ]

where C; is the constant appearing in Proposition 2.3. Again by Proposition
2.3, we see that the left hand side of (2.7) equals C; times of the integral in
Proposition 2.5. These observations lead us to Proposition 2.7.

To describe the spectral decomposition of By we need some notational prepa-
rations. Let ¢, be the unit vector in L2((0, o), #¥**~'dr) given by

Y
o= e e

and A, the one-dimensional orthogonal projection of L2 ((0, o), "' dr) onto
Co,. We remark that

o (§2m-1)-1/2 O (”z") =m Ki (z, z) 1/2 e—lzllz/z‘
k

) . nt+k—1 ) ) ) ]
where d;=dim 2, (C") = A . Compare this with the function ¢, in

Theorem 1.2. We denote by E; the orthogonal projection L%(S*!, do)—%;.
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The operator E; is an integral operator on L?(S*~! dg) with reproducing ker-
nel @;(u, v) of ¥;; as integral kernel.

Theorem 2.8. One has the spectral decomposition
k
nt+i+k—=1\"(k
BkZZ( . ) <,>'(Ak®Ei)‘
par j j

Proof. By (2.1), (2.6) and Proposition 2.7 we have for r, s>0 and u, vE

SZn—l

—s2 —r2 —s2 —r2
slzerlzrksk $2/2 r2/2 Lk k

K
e v -ﬂ2k=MZaf'@;(u, v)

blev. m) =" e d

=0u (1) 9u(5) )| 25+ @, (u, v).

ji=0

This clearly gives Theorem 2.8 in view of the explicit formula for A¥ given in
Proposition 2.5.
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