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0. Introduction

In his paper [4], Jones introduced an index for a pair of type II; factors
and showed that the index value less than 4 is equal to 4cos® (m/n) for some
integer n=3. Since then the interests of study in the theory of operator
algebras have been gradually extended from a single factor to a pair of
factors. Pimsner-Popa [7] showed for a pair of factors NCM with finite
index, the existence of a special orthonormal basis, called Pimsner-Popa basis,
of M as an N-module. Kosaki [5] extended index theory to arbitary factors
and gave the definition of an index depending on a conditional expectation. In
the case of C*-algebras, Watatani defined an index by using a quasi-basis.

However it is not easy to calculate explicitly the index even for a pair of
[l factors from the definition itself or from such a basis. So many index
formulas were given by Pimsner-Popa [7]. Wenzl [13], Ocneanu [6] and the
present author [10] respectively. In the preceding paper [10], we treat a
pair of factors NCM generated by the increasing sequences {My).eny and
{N.}.en of finite direct sums of Il; factors such that the diagram

Mn c Mn+1
(A) U U
Nn C Nn+1

is a commuting square for any n €N, and obtained the following

Theorem. Let {My}.en and {N,}.en be increasing sequences of finite
direct sums of Il factors such that the diagram (A) is a commuting square for
any nEN. Set M= (UM,)" and N=(UN,)". If a certain periodicity condition
(Condition I in 1.4 below) holds, then there exists noEN such that

[M: N] = [M,: N,] for n=n,.
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In this paper we study commuting squares which generate increasing
sequences satisfying the above periodicity condition.
Let us explain more exactly, let a diagram

Ao € B
(©) N N
A C B

be a commuting square of finite direct sums of factors. By iterating the basic
construction, we get projections ¢,=eg,., and finite von Neumann algebras
Bus1= By, e and put Ay = (A, U {e,})” for n€EN.

Definition 2.1. A commuting square (C) is periodic if, for any n €N,
(i) trace matrices T4%" and TZ",{' are periodic modulo 2, and

(ii) T4 and T%; are primitive.

We give a neccesary and sufficient condition for a commuting square to
be periodic.

Theorem 2.1. A commuting squave (C) is periodic if and omly if there
exists a positive constant A such that Fa,= A, and Fi= A, where
n=dimeZ (4¢), m=dimcZ (Bo) and I, is the identity matrix in M, (C).

Moreover increasing sequences constructed from a periodic commuting
square satisty the periodicity condition.

Futhermore we consider a periodic commuting square, in which only one
von Neumann algebra among the four is not a factor, and show properties of
such squares.

Theorem 3.2. Let NCMCL be ll; factors such that [L: M]=[M: N1 =2,
and K be a nonfactor intermediate von Neumann algebra for NCL. Suppose that
the diagram

N C M
N N
K C L

is a periodic commuling squave. Then there exists an ouler action o of Zy on N
such that

N n = N N ,
K © L (NU{)" € NXaZ:XaZo

where p is the implementing unitary for Q.

This paper consists of three sections. In §1, we recall the notations
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(trace matrix, index matrix, the basic construction and Markov trace etc.)
concerning inclusions of finite direct sums of finite factors, and list up some of
their properties. Section 2 contains the definition of a periodic commuting
square. We give a neccesary and sufficient condition for a commuting square
to be periodic and show the symmetry of such squares. In the last section,
we give some examples and consider a periodic commuting square consisting
of three Il factors and one nonfactor von Neumann algebra. In particular we
study the periodic commuting square, in which all inclusions have positive
real numbers less than 4 as indices, and give its characterizations.

1. Preliminaries

m
1.1. Inclusions of von Neumann algebras. Let M = ©M; be a

j=1
finite direct sums of finite factors and {g;; 7=1,+:,m} the corresponding
minimal central projections. Since the normalized trace on a finite factor is
unique, a trace tr on M is specified by a column vector 5= (tr (g1) *** tr (gm)) ",

called the trace vector.

n
Let N=€N;CM be another finite direct sum of finite factors having the

i=1
same identity and {p; i=1 - n} the corresponding minimal central
projections. We assume that the trace on N is the restriction of the trace tr
and denote by Tthe trace vector for N.
The inclusion NCM is represented by two matrices, one is the index
matrix and the other is the trace matrix. The index matrix A¥ = (4;) is
defined by

_ [Mpiai: Npigs] Y2 oif pig;i#0,

s
Y 0 if pig;=0,

and the trace matrix T¥ = (t;;) is defined by li; = try, (big;), where try, is the

normalized trace on M, The following properties are easy consequences of

the definitions.

(1.1) Ai; €140} U {2cos (m/n); n=3} U [2,00].

n
(1.2) The trace matrix T is column-stochastic, i.e., {;=>0 and 2t;=1 for
i=1
allj.
(1.3) The equality = T%s holds.

(1.4) If NCMCL are finite direct sums of finite factors, then Th="T% Tk,

1.2. Basic construction. Now we suppose that N is of finite index
in M in the sense of [3] , i.e, there is a faithful representation 7 of M on a
Hilbert space such that 7 (N)’ is finite. Then the algebra (M, ex) obtained by
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the basic construction for NCM is a finite direct sum of finite factors and the
corresponding minimal central projections are Jupi/m, ", Jupn/u, Where [y is
the canonical conjugation on L?(M, tr). The following properties comes from
the definitions:

(1.4) exxen=En(x)en for zEM,

(1.5) exJupiJu=-enp;: for all i.

We now list up some of properties concerning the index matrix and the trace
matrix for MC (M, en);

(1.6) At = (A¥)*
(1.7) T =TH Y

~ it A% pigiF0, . ~ -
W"here (T%) ji: v ptqj F}Itll:dlag«Ol PR (p”) ’ ¢i: (ZJ: (T%/'I)]l) 11

0 pig;=0,
(1.8) for any trace Tr on M, en), Tr (enJupi/m) = @iTr Uspim).
The index [M: N] is defined as follows:

(1.9) [M: N1=r(T¥ T¥), where (T) is the spectral radius of T.

1.3. Markov traces. A trace tr is called a Markov trace of modulus
B for the pair NCM, if there exists a trace Tr on (M, ey) such that tr is the
restriction of Tr and PBTr(xey) =tr(x) for x€M. The following are
important properties of Markov traces.
(1.10) The trace tr is a Markov trace of modulus B if and only if
T8 T =85
(1.11) If inclusion NCM is connected, ie., Z(N) NZ(M)=C, there exists a
uninue normalized Markov trace for NCT M. Moreover it is faithful
and has modulus [M: N].

1.4. Index formula. We consider two increasing sequences {My}.en
and {N.}.en of finite direct sums of finite factors. Assume that the traces on
M, and N4, are restrictions of the one on My4+1 and that the diagram

Mn C Mn+1
U U
Nn C Nn+1

iS a communing square, Ii.e., ENrEMm = EN En:. where conditional
expectations EXr EM:, Ex: and EN:! are trace invariant.
We deal with following condition.
Condition I (Periodicity): There exist no=1 and p=1. such that for any
n2no,
(1) TN, Tit" and FM7 are periodic modulo p, and
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(2) Tw» and TH:" are primitive.
Now we put M= (UM,)” and N=(UN,)”. 1f Condition I holds, then
(1.12) M and N are II; factors,
and for all n=wn,.
(1.13) [M: N]=[Max: N,
(1.14) (MU {en})” = My, e .

2. Periodic commuting squares
Let a diagram

Ao T By
(©) n n
A C B
be of finite direct sums of finite factors, and suppose that all indices of
inclusions are finite and that the diagram is a commuting square with respect
to a Markov trace tr on B, for ByCB,.

By iterating the basic construction, we get projections e, =ep,., and finite von
Neumann algebras By41= (By, e») and then put A= (4,U{e,})” for n€EN.

Definition 2.1. A commuting square (C) is periodic if for any n€EN

(i) trace matrices Ta:" and T4 are periodic modulo 2, and

(ii) T4r* and Th* are primitive.

Remark 2.1. If a commuting (C) is periodic, then for any nE€N a
commuting square

A o Bn
N N

An+1 c Bn+1

is periodic. Moreover by Theorem 2.3 of [8] we see that a commuting square
Ay C By

N N is periodic for any n €N.
A, C B,

Remark 2.2. If a commuting square (C) is periodic, then it holds that

dimcZ (4o) =dimcZ (4;). By [10] , this is equivalent to A, = (A, e4,) . and
n n

the map € (4,, ea)—A>, defined by 0(Zxieay:) = 2xiesy; for xi, y;EAy, is
i=1 i=1

a * -isomorphism. So it follows that the central support of ep, in A, is equal
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Ao © By

to 1, and hence the commuting square N N is nondegenerate, i.e.,
A © B

spA1Bo=DBi, where spA denotes the linear span of A.

Example 2.1. Let NCM be II; factors with finite index and
L= (NUH{en})”. 1If [M: N]=2, then L has a cannonical decomposition as a
direct sum of two Il; factors. The diagram '

N C M
N N
L C (M, ey

is a commuting squafe, and it is periodic if and only if [M: N]=2,

Lemma 2.1. Assume thal lvace matrices T4 and Tg" are periodic

modulo 2 for any nEN.  Then the following are equivalent:

(i) T4 and TE™ ave primitive for any n EN;
Gi) Z(Ao) NZ(A,) =Z(By) NZ(By) =C. ie., inclusions AgC A, and BoC B, are
connected.

proof. By assumption, (i) is equivalent to primitivity of T4 and T#.
Since T4=T4 T and TE=TE§ T§’ T4 and Tf are primitive if and only
if T4 and T% are indecomposable. It is easy to see that indecomposability of
T4 and T% is equivalent to (ii).

In the following of this section, we assume that all inclusions are
connected.

Lemma 2.2. Let tr be a normalized Markov tvace on By for BoC B, and
{pi: i=1 -+, n} minimal central projections of Ao, and set @;= (FAa}) i for
1=1,+,n. Then the following are equivalent:

(i) A= <A1. €Ao>;
(ii) [By: Bol =2 07'tr (p3).
i=1
Proof. Let Tr be the Markov extension of tr to (By, esy). By the proof of
Lemma 2.1 in [10] , there exists a central projection z of A, such that

Az= (A1, ea, and Tr(z) =[B1: Bol ' 2@, 'tr (p;).  So, (ii) is equivalent to
i=1

Tr(z) =1, i.e., z=1, and hence the statement follows.
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Proposition 2.1. Let A= (A1 Ueg,)"” and By = (Bi, e , and suppose
that Az is * -isomorphic to (A1, eas). Then we have
(i) [Ax: Aol =[Bx: Bol,
(i) Th= (FﬁJ TR FR,
(iii) A%=

Proof. (i) Let tr be a normalized Markov trace, of modulus [B:i: Bol] , on
By for BoC B, and denote its extension to B, by Tr. Since A, = (A}, e4,), We

have a * -isomorpism 8: {(A;, e4s) —A; such that G(Zx,em,y,) = Zr,eaoy, for

xi, Yyi € A;. Then the trace Tr  on (A, ea,) deﬁned by Tr' =Tr 00 is a
normalized Markov trace for A, C (A, e4,) and has modulus equal to [Bi: Bol.
By uniqueness of modulus of normalized Markov trace, we obtain that

Aol = [B1: Bol.

(ii) Let {p;; i =1, ,n} and {gj; j =1,---.m} be minimal central
projections of A, and By respectively, then {5;=0apJa,); i=1,-+,n} and
{Gi=Jp:qi/B.;; j =1 ,---,m} are those of A; and B, respectively, where
Jg. (resp. Ja,) is the cannonical conjugation on L% (B, tr) (resp. L%(A,, tr)).
Hence it holds that (T%) ;;=trs, (Big;) =Tr (3;) "'Tr (Fig;). Define a trace
Tri; on a factor A; by Trij(x) =Tr Bixg;) for x EALpP;, then we see that
Trij (egoﬁi) =Tr (ECL) traz, (EBOﬁi) =Tr (ﬁ;(fj) Tr (ﬁ;) “ITr (egoﬁi) . Since epdi=epPi
and eppiqi = epypiqj, it follows that Tr (ﬁ;(i,) =Tr (ego;b;q;) Tr (ﬁ,) Tr (eBpr)_l.

By using (1.8), we have that

(T2) 5 ="Tr (g) ~"Tr (espigs) Tr (xF7) Tr (epaps) ™
=, Tr (esog;) "' Tr (epepiq;) 7"
= @i '¢;Tr(q;) 'Tr (pigy)
=i (TR) ;.
where @;= (F4)) i and ¢;= (F5) ;.
(iii) Since es, €BoN Aa, we see that (A5) 5= [ (Bai) egyair (Asa) esgir)

and (A%) 5 = [(Bong) egypa: (Aora) eppu). By using (1.4) and (1.5), it holds
that (szq,) esgir = (Bopa) eppar and (A z) esgiir = (Aopa) eppan SO wWe have AR =A%,

Now we obtain a neccesary and sufficient condition for a commuting
square to be periodic

Theorem 2.1. A commuting square (C) is periodic if and only if there
exists a positive constant A such that Fa,= Al, and F5:= Al,,, where n=dimc (4,),
m =dimcZ (By) and I, is the identity matrix in M, (C). Moreover, in this case,

the constant A is equal to [By: Bo) .

Proof. Suppose that the commuting square (C) is periodic, then it holds that



184 Atsushi Sakuramoto

A= (AL eay, Fa2"=F4 and F5*"=F% for any kEN. By using Proposition

2 1, we have that Ths= (F4) 7% TZ (F2)* that is, (T&.) ;= @i* (T4) i ¢f with
= (F4) 4 and ¢;= (F%),;. Since a trace matrix is column-stochastic, we see

that Z ©7*(T8) i ¢¥=1 for any kEN, so that 2lim (¢7'¢;)*(T4%);;=1. And

f=1k—o0
by Z( %) =1, we obtain that ¢;=¢; if (T4 );;+0. Because the inclusion

AoCBo is connected, we conclude that ¢;=¢; for all i and j.
Conversely, we assume that there exists a positive constant A such that

FA'=Al, and Fi.=Al,,. By virtue of Lemma 2.2, it follows that A= [By: Bo) ™’
and A, = (Ay, ea,), SO that Tﬁf=T§”,"‘“°>. And by a simple calculation, we get
T4+ =T4 and Te"=Tg? for any kEN. Since inclusions A¢C A, and ByCB,
are connected, it holds that T4'” and T3~ are primitive for *)€N. Therefore
the commuting square (C) is periodic.

Corollary 2.1. Let a diagram
Ay € By C (o
N N n
AL © B © G

consist of commuting squares. If the two small commuting squares are periodic,
then the big commuling square is periodic.

Proof. By using Theorem 2.1, it follows that FA.= Al,, F&=Al, and
F&=AI, for some A>0, and hence the big commuting square is periodic.

The following theorem is one of main results of this section.

Theorem 2.2. Let {en=ep,.; nENY} be projections and
{Bys1 = (By, en) ; nEN} finite von Newmann algebras obtained by iterating the
basic construction, and put Aps= (A,Ufe,))” for n€EN. If the commuting
square (C) is periodic, then two increasing sequences {An}n=o12.- and {Bu}n=o1z2.-
satisfy Condition I.

Proof. It is sufficient to prove that F% is periodic modulo 2. By using
Proposition 2.1 and Theorem 2.1, we have T%=T% and A% =A%. Hence it
holds that F2=F%  Similarly we can easily see that F4.=Fa for any n €N.

Corollary 2.2. If a commuting square (C) is periodic, then
[Bi: A1] =[Bo: Aol.
Proof. Put A= (U,A,)” and B= (U,B,)". By the preceding theorem and

(1.4), we obtain that [B: A] = [Bx: A,] for any n, so that
[B1: A1l = [Bo: Aol.
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Proposition 2.2. Set C1 = <Bl, e,q.> and Co = (Bo U {eAl})”. If the
commuting square (C) is periodic, then Co= (Bo, e, -

Proof. Let (B, ea) be a Il factor obtained by the basic construction for
ACB, tr a Markov trace on B, and {pi; i=1 ,-**,n} minimal central projections
of Ao. From (1.14) and Theorem 2.2, it follows that
(BoU {ea}) "= (Bo, easy. Hence, by Lemma 2.2, we have that

n N
2ot (p;) = [B: A] = [Bi: Ay], where ¢; = (F%) ;. And since tr|g is a
i=1

Markov trace on B, for A1 CBj, we obtain that (B1U {ea,} ) "= (Bo, ea .
The periodic commuting squares have the symmetry as below.

Theorem 2.3. Let
AO c BO
(©) n n
A © B
be a diagram of finite divect sums of finite factors such that any inclusions are
connected and indices arve finite. Assume that this diagram 1s a periodic

commuting square with respect to a Markov trace on By for BoC By, then the
commuting square

Ay © A,
() N N

By, C B
is periodic.

Proof. Since the trace matrix T4 is primitive and periodic modulo 2,
there exists an integer k such that all entries of T4i” are strictly positive.

Ay C By
Because the commuting square NN N is periodic, we have
Az C By

(Bo U f{ean))” = (Bo, eao) , by the preceding proposition. And by using
Proposition 2.1, it follows that T¢:= (F§) ~' T4" Fi, where Co= (BoU {ea,))”
and Ca = (B, €a;). Now denote by ! a suffix such that ¢; is maximum in
{@1,+-, @a}, and F4 (=F%) =diag(@1,***. @x). Then by (1.2) it holds that

n n n
2 (Ti*) u=1=2(T&) y= 2@ (T4") ue,. Since ¢, 1s maximum, we obtain
i=1 i=1 i=1

that @;=¢; for i=1 -+*, n, so that F4,.=Al, with A=¢,. In the same way, we
get that F3 =Xl for some A’>0. Moreover, by using the above method to
the commuting square (C), it follows that A = A" and hence the commuting
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square (C’) is periodic.

3. Examples

In this section, we give some examples of periodic commuting squares and
the classification of particular ones.

Proposition 3.1. Let N be a I, factor, G a finite abelian group of outer
automorphism of N and NXIG, NXIGXG be crossed products. Further set
K= (NU{uy: YEGY)”, where ty is the implementing unitary for YEG. Then the
diagram

N C NXG
N n
K © NXGXG

15 a periodic commuting square.

Proof. Put M=NXG, L=NXGXG and n=1|G|. Then the cannonical

conditional expectation E%: L—M, is defined by E¥% ( 2 x,u,) =x., where xr,EM
re6

and ¢ is the unit of G. Since ¢, EN’, any element y of K is uniquely written

in the form y= 2y, where y,€EN. Hence it follows that E% (K) =N so that

=
the diagram is a commuting square. Now, for ¢ €, define the projection

po by pg:—Tél— ZA {9.7) ttr, then the projections {py; 9 EG} are minimal central
TEGC

projections of K and K is the direct sum of Np,(g EG). So we have
TE=A%=(1---1) and hence F§=(|G|™"). On the other hand, since THh= (1)
and Ak = (IG]*?) it holds that Fiy= (|G|™!). Therefore the commuting square
is periodic by Theorem 2.1.

The next example was suggested to me by H. Kosaki and it is
generalization of the above one.

Proposition 3.2. Let N be a I, factor, GDH finite groups, & an outer
action of G to N and denote by A the action of G to I”(G/H) defined by the left
multiplication.

Then the diagram

NXH < (NQI=(G/H)) XNaeiH
N N
NXoG C (NQI*(G/H)) XawiG
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is a periodic commuting square.

Proof. Put L= (NQI* (G/H)) XNa:G, M= (N®I”(G/H)) Na@:H and let pg
be the implementing unitary for @,&@A,. We can easily see that the algebras

NXaH, NX oG and L are all II; factors and that

[L: NX.G] = [NX.G: NXoH] =|G/H|. The canonical conditional expectation
E: L—M is defined by E ( Zxgtty) = 2 xtg, where x, EN®I” (G/H). So it

gec geH
follows that E (WX ,G) C N XH, hence the diagram is a commuting square.
Now put m = [G: H] and n=|H\ G/H|, then there exist ¢, ,"**, 9» €EG such that
G/H=1g:H ,,9,H} and H\G/H={Hg,H ,---, Hg,H}. We define projections
prcpuof M by pi= 2 id®xeum and set (G/H) =g H; 9, EHgH},

9« EHYH
NG)=|(G/H){ for i=1,--,n. By simple calculation we see that the

projections {p;; i=1,-*+,n} are minimal central projections of M. Since
My, = (INQI” ((G/H) 1)) XawiH and (NXoH) 5= N Cids2cm ) NawaH, it

follows that [My: (NXlaIl),] =|(G/H)|=N (i), that is,

A= N1)--*N®)). And by T¥.x=(1--+1), we have that

(F¥qun) ' = (ﬁ:N(i)) = (|G/H|) = (Fix.c) ™. Thercfore, by Theorem 2.1, the
diagram is a ;elriodic commuting square.

Let NCMCL be Il factors with finite indices and K a nonfactor
intermediate von Neumann algebra for NCL. Now suppose that the diagram

N © M
(D) N n
K < L

is a commuting square. Then a necessary and sufficient condition for the
above diagram to be periodic is given by the next proposition.

Proposition 3.3. Let {pi;i=1 -+ n} be minimal central projections of
K and tr a nommalized trace on L. Then the commuting square (D) is periodic if
and only if for any 1

[Kpi: Npd = [L: M]tr (p;) and [Lp;: Kp) = [M: Ntr (p,).

Proof. By a simple calculation it follows that (F&) ~'= (X [K,: Np,]) and
i=1
(Fllil) ‘l:diag (tr (pl) -1 [Lpl: Mpl] [ tr (Pn) ! [Lpn: Mpn] ) .
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Suppose that the commuting square is periodic. By using Theorem 2.1
n

we obtain that 2 [Kp: Np] = [L: M] and [Ly: M,] = [M: N]tr (p;) for any i.
i=1

Now we set Q=<(L, ex), P= (MU {ex})” and q;=Jpy. for i=1,*- n, where J;

is the canonical conjugation on L% (L, tr). Since A§=A¥ and A{= (A%), we

have that [Qg: Ps] = [Kp: Ny and [Qq: Lol = [Ly: K»]. From the equation

[Qq# Pat] [qu': Nq.'] = [qui Lq«‘] [Ltu: Nqi] , it follows that [Kml Nm] = [L3 A/I] tr (px) .
Conversely, suppose that [Kp: Np] = [L: M]tr (p;) and

[Lyi Kp) = [M: N]tr (p;) for any i, then

(Fk) ~*=diag(tr (p1) 7' [Lps: Mp.] o, tr (pn) 7  [Lpw: Mypal) = [M: N1I,.

On the other hand, we have that F¥ = ([M: N]7!). Hence the diagram is

periodic by Theorem 2.1.

We see from the preceding theorem that trace matrices and index
matrices for inclusions in a periodic commuting square as (D) are expressed
by means of indices [L: M], [M: N] and the vector T'= (tr (p1) ==, tr (p,)). In
the following we assume that tr (p;) << tr (p,).

Theorem 3.1. Let NCMCL be I, factors such that indices [L: M] and
[M: N] ave less than 4, and K a nonfactor intermediate von Neumann algebra for
NCL. Suppose that a diagram

N M
N n
K < L

1s a periodic commulting squave. Then
(i) [M:N1=[L:M],
(ii) the pair ([M: N1; T) is one of the following:

' B 1 cost
). (5 () (5 (3 33)) oot (i 252))
4cos® 15 CcOS® 15

Proof. Let {p;; i=1,**,n} be minimal central projcctions of K and
Ai=[K,; Ny.], where n=dimcZ (K). By assumption it holds that

n
2 [Kpi: NpJ = [L: M] <4 so that 4;<4, and =2 or 3. Since
i=1

A, € {dcos? (m/m) m=3,4 ,--+}, we obtain that ([L: M]; A1, Ax) = (2; 1,1),
(3:1,2), (3;1,1,1) or (4cos?(n/10); 1, 4cos?(n/5)). Hence (ii) follows by
Ai=[L: Mltr(p;). Since [M: N]tr (p;) € {dcos®(w/m); m=3.4 -} for all i, we
can easily see [L: M]=[M: N].
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Remark 3.1. The periodic commuting square in Proposition 3.1
corresponds to ([M: N]; F) =(|G|; (ﬁ ﬁ)) and the one in Proposition 3.2

with G=S3; and H=S; corresponds to (3; (% %))

In the rest of this section we consider the classification of periodic
commuting squares

N
(E) N
K

Since NNLDZ(K) =C®Cand [L: N] =4, there exist a II, factor P and
an automorphism a of P such that WC L) = (P, C PQM, (C)), where

0
Py= I :x€Pi. By Theorem 5.4 of [11], we may assume that « is
0 alx)

outer and a?=id. Moreover it follows that
(NCMCL) = (P,CQCP®M,(C)), where

x
Q= v |, yEP]%’PX]ZZ On the other hand, by Remark 5.5 of
aly) alr)

[11] we have that

N c M P, C Q
N n = N N
K C L S C PRM,(C)

P C PX.Z,
n n
(PU{w)" C PXaZsXZs

N

and g is the implementing unitary for &.

x 0
whereS=[( );x,yEP
0y

Therefore the next theorem follows, which asserts that the periodic commuting
square (E) is written in the form of the one in Proposition 3.1.

Theorem 3.2. Let NCMCL be Iy factors such that [L: M] = [M: N] =2,
and K a nonfactor intermediate von Neumann algebva for NCL. Suppose that the
diagram (E) is a periodic commuting square. Then theve exists an outer action of
Zy on N such that
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N C M N C N)qaZ2
n n = N N ,
K C L  (NU{w)” C NXuZ:X.Z

wheve Y is the implementing unitary for A.
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