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Adjoint actions on the modulo 5 homology

groups of E; and QF,
By

Hiroaki HAMANAKA, Shin-ichiro HARA and Akira KONO

1. Introduction

Borel proved in [2] that the integral homology group of the exceptional
Lie group Es is not 5-torsion free and

H(EZ/5) = Alxsxixis023027.235.239.247) ®Z/5[r12) / (15°) . with |ari =1,

as algebra.

Araki showed the non-commutativity of the Pontrjagin ring Hx (EsZ/5)
in [1]. The whole Hopf algebra structure and the cohomology operations
were determined by Kono in [6]. But it was due to the partial computation
of Cotor” ®#® (7/57/5), which was rather complicated. In [5], using
secondary cohomology operations, Kane gave a general theorem to determine
the Pontrjagin ring which is non-commutative and determined Hx (Eg;Z/5) as a
Hopf algebra over 5.

Also, for a compact, connected Lie group G, the free loop group of G
denoted by LG (G) is the space of free loops on G equiped with multiplication
as

- p)=¢(t)-¢),
and has QG as its normal subgroup. Thus
LG(G)/QG=G,

and identifying elements of G with constant maps from S! to G, LG (G) is
equal to the semi-direct product of G and Q2G. This means that the homology
of LG (G) is determined by the homology of G and QG as module and the
algebra structure of Hx (LG (G);Z/p) depends on Hx(Ad;Z/p) where

Ad:G X QG—QG

is the adjoint map. Since the next diagram commutes where A,A" and g are
the multiplication maps of QG, LG (G) and G respectively and o is the
composition
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(1ge X T X 1) ° (1gexa X Ad X 1) * (1gg X Ag X 1gexa)

w AXu
QGXGXQAGXG—QCXQGXGXG—QCXG
l=x= bl l=
LG (G) XLG (G) LG (G)

we can determine directly the algebra structure of Hx (LG (G):Z/p) by the
knowledge of the Hopf algebra structure of Hx (G;Z/p), Hx (QG;Z/p) and
induced homology map Hx (Ad;Z/p). See Theorem 6.12 of [4] for detail.
Moreover, in [8], it is showed that provided G is simply connected,
H*(Ad;Z/p) is equal to the induced homology map of second projection if and
only if Hx (G;Z) is p-torsion free. Thus the case of (Gp) = (Esb) is
non-trivial.

In this paper we determine Hx (Ad;Z/5) for G =Ejs and at the same time,
we offer a more simple method for the determination of the coproduct and the
cohomology operations on H* (EgZ/5) using the adjoint actions of Es on QFs.
We also determine Hx (QEg7/5) as a Hopf algebra over #s.

This paper is organized as follows. In the next section we breifly see the
algebra structures of H* (E:Z/5) and Hx (QE;Z/5) using the Serre spectral
sequences. In the third section we determine the adjoint action of Hx (Eg:Z/5)
on Hy (QEgZ/5) which was introduced in [8]. It gives an easy computation
of the Hopf algebra structures and the cohomology operations on them.

2. Algebra structures
Let n(j), (1<;<8), be the exponent of Eg, i.e.
n()} g <=1{1.7,11,13, 17, 19, 23, 29).

First we see H* (QEgZ/5) for low dimensions. Let R be the algebra
7/5[amp1<;<8] with la;J= i. By Bott ([3]), the Hopf algebra
H*(QFEgsZ/5) is ‘isomorphic to R as a vector space. There is a map g¢:
SU(9)—Ejs which induces an isomorphism of w3 Then, Qg QSU (9)— QFs
induces an isomorhpism of 7 and, as showed in [7], (Qg)* a; €
H*(QSU(9):2/5) is nontrivial and ((Qq)* az) ° # 0 for the generator
a;EH?(QEgZ/5). Thus we have a.® # 0. It follows that H* (QEgZ/5) is
isomorphic to R for % <50 as algebra. Next there is two possibilities (I):
a2*#0 and (I1): a,®*=0. That is, we can assume it is isomorphic to (I): R or
(1) : R/ (a,%) ®Z/5[aso], for % <10-n(2) =70, where |aso| =50.

Consider the following Serre fibre sequences:

-k ¢
Ee——Es—K (Z.3), (1)
- Rk
K(Z1)—QEq——QE;, (2)

QE~3_’ * '—’Eg, (3)
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where ¢ induces an isomorphism of 3.

Let R =2/5 [T |2 <i <8] with |a;|=1i. Computing the Serre spectral
sequence associated to (2), we can see that, for * <70, H* (QF 5Z/5) is
isomorphic to (I): R or (II): R ® A (d4) ® Z/5 ase] according to the case:
a2#0 or a;2=0. Let S=A (x2n+1]2<j <8) with |51 =i. Again computing
the spectral sequence associated to (3), we have, for * <71, H* (EgZ/5) is
isomorphic to (I): S or (II): S®Z/5[£s0] ®A (F51) where |Tso| =50, | 7| =51.

Recall the fact:

H* (K (Z.3) 2Z/5) =A (143,1411,1451,"‘) ®Z/5 [Mlz,usz.'”], |Mz| =1, (4)

where 'l/tuzg)lu;;, lhz:B‘uu, u51=97’5u11 and u52=,3u51.

Let x;=¢*(u;), for i=11, 12, 51 and 52, in H* (EgZ/5). By the spectral
sequence associated to (1), we obtain, for * <58, H* (Egz/5) = (I):
S ® A (xuas) ® Z/5 [xpxs] or (ID): S ® A (xy) ® Z/5 [r1,], where
S=A(xony+1l1 <5 <7) with | =i.

As dimEs = 248, we can conclude that the possible case is (II) and
11.°=0. Moreover, the generators {r;} are enough to generate H* (EgZ/5).
We have determined the algebra structure.

Theorem 1. There is an algebra isomorphism:
a* (EB;Z/S) =A (IZn(jH-l‘ 1 Sf 37) ®A (Iu) ®Z/5 [In] / (17125) .
In H* (EZ/5), we can chose s and £s such that /s = us; and

T'Ts1 =usz, where 7’ is the transgression. Then 7/P'Ts1 = Puss = PBP%u., =
PPu=P%1,=u’. So we can chose Tsg as P'rs;.  Thus we have

Proposition 2. Theve is an isomorphism for * <71:
H* (E5Z/5) = A (Tanp+112 <7 <8) ®Z/5 [F50] ®A(Fs1),
and
P! (551) =Is0.
Because that @; is transgressed to Zi+1 and (QFk) *a; =a; for 1 =50,58, the
next proposition is obtained.

Proposition 3. There are isomorphisms for * <70:

H*(QE;Z/5) =7/5 [Gpm|2<j <8) ® A (G4e) ®Z/5 [aso],
H*(QEgZ/5) = Z/5[azmp|2 <5 <81/ (%) ®Z/5[as),

with P (as0) =ass and P (aso) =ass (modulo decomposable) .

By the use of a Rothenberg-Steenrod spectral sequence ([10]):

EZEH** (1’1* (QES,Z/S) ) EEXtH*(QEﬁ:Z/S) (Z/S.Z/S):szyr (H* (Es,Z/S) ) ’
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it 1s easily seen that
Theorem 4. There is an algebra isomorphism:

Hs (QEZ/5) =Z/5[tamn|1 <7 <81/ (%) ®Z/5[t1o] .

Remark. The algebra was determined first in [9].

Let ¢ denote the homology suspension. Examining the spectral sequence,
we have the following proposition.

Proposition 5. 0 (taniiy), (155 <7), and o (tw) are nontirivial primitive
elements in Hx (EgZ/5).

3. Coproducts, cohomology operations and adjoint actions

Let ( )* denote the dual as to the monomial basis of {r;} and put y;= (x;) *.

We recall the adjoint action which was mentioned in [8]. Let ad:G X G—
G and Ad:G X QG— QG be the adjoint actions for the Lie group G. Consider
the induced maps of homlogy groups:

adx: Hx(G) ®H«(G)—H«(G),
Adx: H«(G) ®Hx (QG)—H« (QG).

Put y *y =ad«(y ®y’) and y-1=yt=Ad«(y ®t).
Our result is the following.

Theorem 6. In Hx (EgZ/5), there are yamir+, (1 <7 <7), yu and y1
satisfying that

Yi lys Y11 Y12 Y15 Y23 Yo7 Ys3s Y39 Ya7
yizkyi|lyis yas 0 yar yss yse yar O O
g)ll‘yi 0 ys 0 0 yis 0 yzx 0 Y39
,B*y,' 0 0 Ynu 0 0 0 0 0 0

All y; ave primitive and Y2 ¥ yi= [ylz,yi] =ynyYi—YiYle
Remark. This result coincides with that of §46-2 of [5].

From now on, we prove this theorem combining the adjoint actions on

H*(EgZ/5) and H* (QEgZ/5).
Dualizing the properties of ad* and Ad* stated in [8], we have

Proposition 7.  For yy'y"€H«(G) and tt t"€EHx(QG)

(1) 1xy=y, 1-t=¢t

(2) y*1=0and y-1=0, if [y|>0.

3) wy)t=y D).

4) y@)=2(=1) v 1" (yt) (y't), where Awy = 2y’ ® y" is the
coproduct.
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(5) dy-t)=Ax(y) @ (t), where ¢ is the coproduct and
(y/ ®y”) . (t/ ®t//> — (_1) |1!”||f’| (y't/ ®y”t’/).
(6) oy t)=y*o(t), where o is the homology suspension.
(7)  If y is primitive then y %y = [y.y'],
where [yy'l=yy — (=1)"¥ ¥Iy'y.
(8) If t is primitive then y -t is also primitive.
(9) Prly*y)=2ZP% 'y *Phy and P4 (y-t) = 2,94 'y - Pit.
Remark. In our case, [t| and |t'| are always even.
SO y (tt’) - Z (y/t) (yut/) and (y/ ®y//) . (t/ ®t”) — (y/t/ ®yntu) .
To state the non-commutativity of Hx (Es;Z/5), we need only the fact:
Lemma 8. [ylz,yg] *0.

Proof. Suppose that [yizys] = 0. Then Hx (EgZ/5) = A (ysynyis) ®
Z/5[y12) for * <23. Let {E,} be the Rothenberg-Steenrod spectral sequece
conversing to H* (BEg;Z/5). Then we have

EZ/EZ/S [S (ys) N (yu) ,$ (yls)] ®A (S (ylz))

for total degree <24. Since E,” = E.’ in these degrees, there are
indecomposable elements zs, z12, 215 and z;3 in H* (BEgZ/5) corresponding to
s(ys), s (y1), s (y1s) and s (y15), respectively. Especially, zszi3# 0. It is a
contradiction. (For detail, see Lemma 5.3 and 5.4 of [6].)

Therefore [y12y3) is the nontrivial primitive element. So we may define
Y15 by that.

Proposition 9. [Y12.y3] =415

Since 0 (yiata) =y12% 0 (t2) =yr12% ys= [y12.y3] =15 Y12tz is the indecomposable
element. Thus we may assume that

tia=Yota. (5)

Then ty4 is primitive and o (t13) =y1s.

Let ¢ be the coproduct of Hx (QEgZ/5) and ¢ (t) = ¢ (t) —t ®1—1 ®¢.
( ) * denotes the dual as to the monomial basis of {t;;}. Multiplying a; and ¢;
by nonzero scalars or moving them modulo decomposable if we need, we may
assume that az.g) = (tami) ¥, (1<57<8), a.’= (t1o) * and aso= (£1°) *.  As tyo is
dual to ay®, it is easily verified that

a(tlo) =41, @ty + 33 @12+ 31,2 1,2+ 41, @t (6)

g)laz = a25 imp]ies @lktlo = t,. Define tzz/ by ylztlo - t24t14. Then by (6)
and Proposition 7, a(tzzl) =A¥* (ylz) ¢ (tlo) '—¢ (tz) 4¢ (t14) ztzzl ®1+1 ®l’22,. On

the other hand, since Pkyi2 and Pit1q are trivial, Pktay’ = y12Pkt10=y12ts = t14.
So 32’ is nontrivial and primitive. Put t2=t". Now we obtain the following
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equations.

Yiztio =tz — b2 t1a, . (7)
Phtrr =t (8)

Using Proposition 7 and y1,°=0, we can compute y,2*s,, that is,

Y2t =y12* (Yiztiott2*tie) =yt tyie® (t2't) =yio® (t2*h)

Here, since y1ot; (j = 14,26,38) is primitive, there exists 0; € Z/5 such that
Y12t;= pjti+12, Where tso=t1°. Note that yiz2 (t10°) =0. Therefore modulo the
ideal (taetsstio’), we have

Y12t (t2*t) =4y (1°047) =12y (17104°) =24y 12 (Ba014*) = — 1145,

5

But, since yi2*ty is primitive, we obtain yiz*2 = — tis°. This means that

ylz"tzz, (1<4<4), are nontrivial primitive elements. Therefore we can define
the generators so that

tarrizi = Yi2'tee, (1<0<3). 9)

Next we will observe yi2'tis, (1<i<3). Since Pktss is primitive, there is
€ € 7Z/5 such that Pktss = et1’. On the other hand, from Proposition 3,
Plase=ass (up to non zero coefficient and modulo decomposable). Dualize it,
then we can see €¢#0. Re-define tss by € 'y1°t2. We have

Proposition 10.

Y12°t20 = €tss, (10)
Pltss=t1o"- (11)

From thiS, y123t14=y123@§kt22:@}k (y123t22) =,@£k (ftsg) = thos. So we can fix
hurizi=yi2the, (1Si<2). (12)

By Pk (y12'tar) =y12'Pltar, Pk is determined on all ta.
We summarize the results.

Theorem 11. In Thevem 4, we can chose the genmerators satisfying the
followtng table:

t2j | ts t1o tia 22 lae t3a  l3s tae tss
Yislyi |t t—la*t e tas tas les  €h®  €tss  —€ 't
Pty | O to 0 ta Ot 0 I38 t’

All tor, (k#5) are primitive and
@ (t10) =4t Oty + 3t ®1,24 31,2 O 1,3+ 41, Oty*.
Proof of Theorem 6. Put yangy+1 =0 (tznn), (3<j<7). Theorem 6 is an
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immediate consequence of Theorem 1, Theorem 4 and Proposition 5 with
Proposition 7.

Fix the basis of Hx(EgZ/5):
(M= onp 412y 1y 12l 0< 6, < 1, 0<e <5).

Let ( )* be the dual with respect to the above basis. We may assume that
Zantrer = Waniy+r) ¥, (2<j <7). Let ¢ be the coproduct of H* (EgZ/5) and
§x)=¢) —xr®1—1®x. Then the following theorem is easily obtained by
dualizing Theorem 6.

Theorem 12. In Theorem 1, we can chose the generators satisfying
following tables:

X l X3 X1 X2 Xis X'23 27 I35 X39 T4z
g)ll'i X111 0 0 X23 0 X35 0 X 47 0
B.I‘j 0 X112 0 0 1‘122/2 0 1123/3! O 1‘124/4I

Xi ox;

X5 212 Q13

23 I ®xyy

La7 T2 ®Ils+1122/2 ®x;

X35 L2 ®1’23+1‘122/2 ®uxy

Z39 T12®xy+ 1122 /2®x15+x1°/3 ®xs
L7 12 ®x3st1122/2 @xp3+x1,°/3 ®xyy

Remark. In [6], x2nire1, (4<j<7), are chosen as our 2xa;, 2r3s 3lrse
and 3lxy; respectively.
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