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A remark on perturbation of hyperbounded
semigroups for vector valued functions

By

Masanori HINO

1. Introduction

Perturbation theory of hyperbounded semigroups has been usually
developed in the framework of L? space. To obtain essential self-adjointness
of perturbed infinitesimal generator, potential terms are often imposed on the
condition that their exponentials have every (or large enough) moment.

On the other hand, Shigekawa [12] treated L? semigroups for vector
valued functions. He also discussed essential self-adjointness of a perturbed
generator under the formulation applicable to L? sense.

In this note, we discuss perturbation theory for (non-symmetric)
semigroups for vector valued functions which are controlled by scalar valued
hyperbounded semigroups, slightly modifying the setting in [12]. We give an
explicit constant of moment sufficient for the stability of operator cores in L”
sense. This constant is expressed by p and the logarithmic Sobolev constant
of the dominating semigroup.

2. Semigroups on L?

We mainly refer to [12] to set up a framework. Let (Q,8m) be a
probability space. Assume we are given a symmetric, strongly continuous,
positivity -preserving semigroup {7} on LZ(Qm). We denote its infinitesimal
generator and resolvents by A and G,, respectively. Let K be a real or
complex separable Hilbert space. We represent its inner product and norm
by (+]) and || respectively. Suppose we are also given a strongly
continuous semigroup {T:} on L* (K) = L? (QmK). Its generator and

resolvents are denoted by fTand C_};, respectively.

Theorem 2.1. The following three conditions are mutually equivalent.
(C1) |Twl<eMTlul m-ae. fort>0, u€L?(K).
(€2) |Gl <GJul m-ae. for sufficiently large v, u€L?(K).
(C3) Alul=R( (X—R)u|sgnu) . u€Dom(A),
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where

w/lul, w#0

Seme= [0, u=0.

In (C.3), A operates in the weak sense; precisely, (C.3) means

ul,Ag> = <R (A=) ulsgnu) g>

for any g EDom (A) with §=0. Here {fg>= Jof (x)g (x)m (dx).
Proof. See [13, 14]. See also [12].

Below, we omit ‘m-a.e.” when we need not designate it. The coupling {+,*) is
also used for K-valued functions. We assume one of (hence all of) the
conditions in Theorem 2.1 with some A=0.

Let {T#} be the dual semigroup of {T) and its resolvents, {G¥}. Then
(C.1) implies

(2.1) | T#u <eM'T/lul  for any t>0, uELE(K).
Indeed, for any measurable set S of Q,
N 7#ul1sle= sup < TFul1s,> = sup . T: (Lsfsgn (TFu) )
I.<1 IA.<1
<sup (lqu, (1sfsgn (TE)) > < Eup ul T 151>
[l

<1 <1

= sup M T lul LslA> <[ Tolul 1],

I.<1

which implies (2.1). Hence the roles of {T;} and {T¥} are equivalent; the
claims about {7_:,} as are shown below also hold when replacing (f,} with
(7%
From now on, we also suppose that {T,} is sub-Markovian; that is, for
any >0,
0<Ts<1 if 0<f<1.

By Riesz-Thorin’s interpolation theorem and dual argument, {T,} can be
considered as a semigroup on L? =L? (Qm) for p € [1,90]. Moreover it is
strongly continuous if p€ [1,90). We denote its infinitesimal generator on L?
by Ap. Since A, DAy, if 1<p; <p, <0, we often omit the subscript. Also
we have

Proposition 2.2 ([12, Proposition 2.6]).  For any p€ [1,90), {T\} (resp.
{T#}) can be seen as a strongly continuous semigroup on L* (K) =L (Qm:K) .

So we can define the generator Ap, AF of {T:}, {T#} on L? (K), p€ [1,0),
respectively. Also, (C.1) holds for any u €L (K).
We assume furthermore {T;} is hyperbounded in the following sense; for
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some >0, =0,

[Tl <esp{o(2-1))

for t>0, 1<p<g<oo with (g—1)/(p—1) <e** This assumption holds if
and only if the defective logarithmic Sobolev inequality holds:

[ frog#/1s lam <8 (1) + Bl 5, r=Dom (8),

where & is the symmetric bilinear form associated with {T,}. For the proof,
see [2, Theorem 6.1.14] and [5, Lemma 5.5].

Now we state the main theorem in this note. In general, we say an
operator A on a Banach space belongs to G (M,£) if A is the infinitesimal

generator of a strongly continuous semigroup {7} satisfying [[T,|<Me*' for all
t>0. Let £(K) be the space of bounded linear operators on K, and the norm
in £(K) the operator norm || [lop.

Theorem 2.3. Let 1<p <00 gnd let R be an ¥ (K) -valued measurable
function on Q. Suppose exp (R |op) € L7 for some r> zr,j'li—ﬁ If pF 2, we also
assume {T} is conservative: T,1=1 for every t>0. Then we have the following.

(1) Dom (A,) € Dom (R), where we regard R as an operator on L? (K).

Hence A, »—R can be defined on Dom (X,,) as an opevator sum.

(2) (A,—RDom(A,)) is closable and the closure (which is denoted by the
same notation) belongs to G (1,E) for some &  Moreover the semigroup
is consistent with rvespect to p, that is, for pAq<p1<p2<pVgq. we have

{TRonlL?? (K)} = {TR ). Here q is the conjugate exponent of p, and
{TR 0} is the semigroup generated by Ap—R on L (K).
(3) If G is a core of Ay, € is also a core of Ap—R.

We make a comment on (2). The function f (x) = %% is monotone

increasing for x =2 and satisfies f(p) =f(¢) when p~*4+¢ '=1. Hence when R
satisfies the assumption for some p, R also satisfies it for any numbers in
[bAgpVal.

To prove this theorem, we need a little more preparations. The following
theorem is originally due to Bakry and Meyer [1].

Theorem 2.4. Assume (T} is conservative. For any p< (1,00), rER,
s>0 and v> 2, (v—A) = is a bounded operator from Llog’L (K) to L?log’***L (K).

As for the definition of the Orlicz space L?log’L (K) and the proof of Theorem
24, see [7, Appendix] and [1]. In the following, we only use the fact that Gy

is bounded from L? (K) to L’log’L (K); in this case, the conservativeness of
{T,} is not necessary if p=2, as we see from the proof of the theorem.
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Proposition 2.5. Suppose we are given a real valued measurable function
Von Qand an ¥ (K) -valued measurable function R on Q. Assume both V and
R are bounded and satisfy that

(2.2) V () |P<R (R (x) klk)

for all kEK, m-a.e. x. Let {TV}, {T%} be the associated semigroups of A—V and
of A—R, respectively. Then {TV} is a positivity preserving semigroup and it holds
that

(2.3) |ffu| <HMTV|ul.

Proof. The proof is seen in [12, Proposition 4.1], but here we give an

alternative one. The positivity preserving property of {7/} follows from the
Beurling-Deny criterion (see e.g. [11, Theorem XIIL.50]). To prove (2.3),
first we note that (2.2) is equivalent to

V() [B| <R (R () k|sgnk) .
Hence for u €Dom (A4,) and ¢ EDom (4,) with ¢ >0, we have
ul (4 —=1)g> = ul.ag) — V]l gd = R (A=A ulsgnu) 9> — R (Rulsgnu) 9>

=R((A—R—A)ulsgnu) g>.
By Theorem 2.1, we obtain (2.3).

We also quote the following proposition in [12].

Proposition 2.6 ([12, Proposition 4.2]). Let 'V be a bounded real

measurable function. For pE€ (1,00) the semigroup {TY} corresponding to Ay—V
satisfies

where {=log (le~"Il,) +48/a with r=ap?/4(p—1).

As a consequence of Proposition 2.5 and Proposition 2.6, by taking
V(x) =—|R (x) |op, we have a following

Corollary 2.7. Let R be an € (K) -valued bounded measurable function.
For p€ (1,00) , the semigroup (TR} corresponding to Ap—R satisfies
1785 <e,

where &=1log (e ®'or|,) +4B/a+ A with = ap?/4 (p —1). Moreover, k> &
belongs to the resolvent set of XP—R and it holds that

[ (/C_Zp +R) Ypp < (k—8) 7L



Perturbation of hyperbounded semigroups 155

3. Proof of the main theorem

Proof of Theorem 2.3. To prove (1), we need only exp (a|R o) € L' for

some a>0. Take u € Dom (A,). By Theorem 2.4, u € L?log’L (K). Using
Young's inequality, st <e*—tlogt+t, sER, t>0, we have for €>0,

IRul <e 'e|Rlloplue] et (lu|loglu] = |u| +e5' Bilor) <e=!(|ullog*|u| 4-e5!1R!Top)
where log*t= (logt) V0. Hence
[Rul? < e+ 22 (Jul® (log*|u]) ? +¢?¢!1% lov)

Taking € =a/p, we see Ru € L’ (K) and moreover, R is a bounded operator
from L’log’L (K) to L* (K). :

Next we prove (2) and (3). We follow the argument of Wu ([15,
Theorem 2.5]). Take Rn=R'1("R"WS",. We denote the associated semigroup of

A—R, by {TF}. Since IR, ) llop IR () lop, each A — R, belongs to G (1,€),

E=log([le"®" °¢|,) +4B8/a+ A by Corollary 2.7. By a version of Trotter-Kato's
theorem (see e.g. [9, Chapter 3, Theorem 4.5]), it is enough to verify the
following:

(a) For any u€%. (A—R,)u converges to (A—R)u in L? (K),

(b) For some k>& (k— (A—R)) (€) is dense in L (K).
Take u€¥. We have

1A —Rp)u— (X—R)u||p=||Ru “1¢ R11opsnily.
Since Ru € L? (K), this converges to 0 as n—=00. Hence (a) holds. Let us
prove (b). Let v€ELY(K) satisfy

o, (E+1—A+R)ud>=0 for every u<®.
Define R* by R*(x) = the dual of R(x). Since R* sends (L? (K))*=L%(K) to
(L”10g’L (K)) * by (1), we have R*» € (L”log’L (K)) *. By Theorem 2.4,
G (R*) € (L? (K))*=L%(K). Thus for u €%, we have

w+GEL(R*) , (E+1—A)ud = <o, (E+1—A)ud) + w.Ru) =0.

Since (E4+1—A4) (®) is dense in L? (K), we conclude v+ G, (R*») =0; that is,
(E4+1—A*+R* v =0 Now take s <q such that ;7 <r. Since
vELU(K)CLS(K),

bls=[1(e+1—A*+Rr) " RE—R*) vl I (E+1—A*+RE) “smsll (RE—R*) 05
<[R*v - 1411k 10pomills (By Corollary 2.7)
—(0 aswn—00,

Therefore v=0, which implies (b). We have proved the first half of (2), and
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(3). To show the latter half of (2), it is enough to notice that 7% converges

to ’I_‘?,(p) in strong sense in L? (K).

Remark 3.1. We proved that A—R, converges to A—R in strong
" resolvent sense. In the same way of [12, Proposition 4.6], we see the
convergence is in fact the norm resolvent sense.
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