A remark on perturbation of hyperbounded semigroups for vector valued functions

By

Masanori HINO

1. Introduction

Perturbation theory of hyperbounded semigroups has been usually developed in the framework of L^2 space. To obtain essential self-adjointness of perturbed infinitesimal generator, potential terms are often imposed on the condition that their exponentials have every (or large enough) moment.

On the other hand, Shigekawa [12] treated L^{p} semigroups for vector valued functions. He also discussed essential self-adjointness of a perturbed generator under the formulation applicable to L^{p} sense.

In this note, we discuss perturbation theory for (non-symmetric) semigroups for vector valued functions which are controlled by scalar valued hyperbounded semigroups, slightly modifying the setting in [12]. We give an explicit constant of moment sufficient for the stability of operator cores in L^p sense. This constant is expressed by p and the logarithmic Sobolev constant of the dominating semigroup.

2. Semigroups on L^p

We mainly refer to [12] to set up a framework. Let (Ω, \mathcal{B}, m) be a probability space. Assume we are given a symmetric, strongly continuous, positivity-preserving semigroup $\{T_i\}$ on $L^2(\Omega, m)$. We denote its infinitesimal generator and resolvents by A and G_{ν} , respectively. Let K be a real or complex separable Hilbert space. We represent its inner product and norm by $(\cdot|\cdot)$ and $|\cdot|$, respectively. Suppose we are also given a strongly continuous semigroup $\{\vec{T}_i\}$ on $L^2(K) = L^2(\Omega, m; K)$. Its generator and resolvents are denoted by \vec{A} and \vec{G}_{ν} , respectively.

Theorem 2.1. The following three conditions are mutually equivalent. (C.1) $|\vec{T}_t u| \le e^{\lambda t} T_t |u|$ m-a.e. for t > 0, $u \in L^2(K)$. (C.2) $|\vec{G}_{\nu+\lambda} u| \le G_{\nu} |u|$ m-a.e. for sufficiently large ν , $u \in L^2(K)$. (C.3) $A|u| \ge \Re((\vec{A} - \lambda)u|\operatorname{sgn} u)$, $u \in \operatorname{Dom}(\vec{A})$,

Received May 29, 1996

Supported by JSPS Research Fellowships for Young Scientists.

where

$$\operatorname{sgn} u = \begin{cases} u/|u|, & u \neq 0 \\ 0, & u = 0. \end{cases}$$

In (C.3), A operates in the weak sense; precisely, (C.3) means

$$\langle |u|, Ag \rangle \geq \langle \Re ((\vec{A} - \lambda)u| \operatorname{sgn} u), g \rangle$$

for any $g \in \text{Dom}(A)$ with $g \ge 0$. Here $\langle fg \rangle = \int_{\mathcal{Q}} f(x)g(x)m(dx)$. Proof. See [13, 14]. See also [12].

Below, we omit 'm-a.e.' when we need not designate it. The coupling $\langle \cdot, \cdot \rangle$ is also used for K-valued functions. We assume one of (hence all of) the conditions in Theorem 2.1 with some $\lambda \ge 0$.

Let $\{\vec{T}_t^*\}$ be the dual semigroup of $\{\vec{T}_t\}$ and its resolvents, $\{\vec{G}_{\nu}^*\}$. Then (C.1) implies

(2.1)
$$|\vec{T}_t^* u| \le e^{\lambda t} T_t |u| \quad \text{for any } t > 0, \ u \in L^2(K).$$

Indeed, for any measurable set S of Ω ,

$$\begin{aligned} \||\vec{T}_{t}^{*}u||_{S}\|_{2} &= \sup_{\|\vec{T}_{t}\leq 1} \langle |\vec{T}_{t}^{*}u||_{Sf} \rangle = \sup_{\|\vec{T}_{t}\leq 1} \langle u, \vec{T}_{t} (1_{S}f \operatorname{sgn}(\vec{T}_{t}^{*}u)) \rangle \\ &\leq \sup_{\|\vec{T}_{t}\leq 1} \langle |u|, |\vec{T}_{t} (1_{S}f \operatorname{sgn}(\vec{T}_{t}^{*}u))| \rangle \leq \sup_{\|\vec{T}_{t}\leq 1} \langle |u|, e^{\lambda t}T_{t}|1_{S}f| \rangle \\ &= \sup_{\|\vec{T}_{t}\leq 1} \langle e^{\lambda t}T_{t}|u|, 1_{S}|f| \rangle \leq \|e^{\lambda t}T_{t}|u||1_{S}\|_{2}, \end{aligned}$$

which implies (2.1). Hence the roles of $\{\vec{T}_t\}$ and $\{\vec{T}_t^*\}$ are equivalent; the claims about $\{\vec{T}_t\}$ as are shown below also hold when replacing $\{\vec{T}_t\}$ with $\{\vec{T}_t^*\}$.

From now on, we also suppose that $\{T_t\}$ is sub-Markovian; that is, for any t > 0,

$$0 \le T_t f \le 1$$
 if $0 \le f \le 1$.

By Riesz-Thorin's interpolation theorem and dual argument, $\{T_i\}$ can be considered as a semigroup on $L^p = L^p(\Omega,m)$ for $p \in [1,\infty]$. Moreover it is strongly continuous if $p \in [1,\infty)$. We denote its infinitesimal generator on L^p by A_p . Since $A_{p_1} \supset A_{p_2}$ if $1 \le p_1 < p_2 < \infty$, we often omit the subscript. Also we have

Proposition 2.2 ([12, Proposition 2.6]). For any $p \in [1,\infty)$, $\{\vec{T}_t\}$ (resp. $\{\vec{T}_t^*\}$) can be seen as a strongly continuous semigroup on $L^p(K) = L^p(\Omega,m;K)$.

So we can define the generator $\vec{A_p}$, $\vec{A_p^*}$ of $\{\vec{T_i}\}$, $\{\vec{T_i}\}$ on $L^p(K)$, $p \in [1,\infty)$, respectively. Also, (C.1) holds for any $u \in L^1(K)$.

We assume furthermore $\{T_t\}$ is hyperbounded in the following sense; for

some $\alpha > 0$, $\beta \ge 0$,

$$\|T_t\|_{p\to q} \le \exp\left\{\beta\left(\frac{1}{p} - \frac{1}{q}\right)\right\}$$

for t > 0, $1 with <math>(q-1) / (p-1) \le e^{4t/\alpha}$. This assumption holds if and only if the defective logarithmic Sobolev inequality holds:

$$\int_{a} f^{2} \log f^{2} / \|f\|_{2}^{2} dm \leq \alpha \mathscr{E}(f,f) + \beta \|f\|_{2}^{2}, \quad f \in \mathrm{Dom}(\mathscr{E}),$$

where \mathscr{E} is the symmetric bilinear form associated with $\{T_t\}$. For the proof, see [2, Theorem 6.1.14] and [5, Lemma 5.5].

Now we state the main theorem in this note. In general, we say an operator A on a Banach space belongs to $G(M,\xi)$ if A is the infinitesimal generator of a strongly continuous semigroup $\{T_t\}$ satisfying $||T_t|| \leq Me^{\xi t}$ for all t > 0. Let $\mathscr{L}(K)$ be the space of bounded linear operators on K, and the norm in $\mathscr{L}(K)$ the operator norm $\|\cdot\|_{op}$.

Theorem 2.3. Let $1 \le p \le \infty$ and let R be an $\mathscr{L}(K)$ -valued measurable function on Ω . Suppose $\exp(\|R\|_{op}) \in L^r$ for some $r > \frac{ap^2}{4(p-1)}$. If $p \ne 2$, we also assume $\{T_t\}$ is conservative: $T_t 1 = 1$ for every $t \ge 0$. Then we have the following.

- (1) Dom $(\vec{A}_{p}) \subset$ Dom (R), where we regard R as an operator on $L^{p}(K)$. Hence $\vec{A}_{p} - R$ can be defined on Dom (\vec{A}_{p}) as an operator sum.
- (2) $(\vec{A}_p R, \text{Dom}(\vec{A}_p))$ is closable and the closure (which is denoted by the same notation) belongs to $G(1,\xi)$ for some ξ . Moreover the semigroup is consistent with respect to p, that is, for $p \wedge q \leq p_1 \leq p_2 \leq p \vee q$, we have $\{\vec{T}_{t,(p_1)}^R | L^{p_2}(K)\} = \{\vec{T}_{t,(p_2)}^R\}$. Here q is the conjugate exponent of p, and $\{\vec{T}_{t,(p_1)}^R\}$ is the semigroup generated by $\vec{A}_{p_1} R$ on $L^{p_1}(K)$.
- (3) If \mathscr{C} is a core of \vec{A}_p , \mathscr{C} is also a core of $\vec{A}_p R$.

We make a comment on (2). The function $f(x) = \frac{\alpha x^2}{4(x-1)}$ is monotone increasing for $x \ge 2$ and satisfies f(p) = f(q) when $p^{-1} + q^{-1} = 1$. Hence when R satisfies the assumption for some p, R also satisfies it for any numbers in $[p \land q, p \lor q]$.

To prove this theorem, we need a little more preparations. The following theorem is originally due to Bakry and Meyer [1].

Theorem 2.4. Assume $\{T_t\}$ is conservative. For any $p \in (1,\infty)$, $r \in \mathbf{R}$, s > 0 and $\nu > \lambda$, $(\nu - \vec{A})^{-s}$ is a bounded operator from $L^p \log^r L(K)$ to $L^p \log^{r+ps} L(K)$.

As for the definition of the Orlicz space $L^{p}\log^{r}L(K)$ and the proof of Theorem 2.4, see [7, Appendix] and [1]. In the following, we only use the fact that \vec{G}_{ν} is bounded from $L^{p}(K)$ to $L^{p}\log^{p}L(K)$; in this case, the conservativeness of $\{T_{t}\}$ is not necessary if p=2, as we see from the proof of the theorem.

Masanori Hino

Proposition 2.5. Suppose we are given a real valued measurable function V on Ω and an $\mathcal{L}(K)$ -valued measurable function R on Ω . Assume both V and R are bounded and satisfy that

(2.2)
$$V(x)|k|^2 \leq \Re(R(x)k|k)$$

for all $k \in K$, m-a.e. x. Let $\{T_t^V\}$, $\{\vec{T}_t^R\}$ be the associated semigroups of A - V and of $\vec{A} - R$, respectively. Then $\{T_t^V\}$ is a positivity preserving semigroup and it holds that

(2.3)
$$\left|\vec{T}_{t}^{R}u\right| \leq e^{\lambda t} T_{t}^{V}|u|.$$

Proof. The proof is seen in [12, Proposition 4.1], but here we give an alternative one. The positivity preserving property of $\{T_i^{\nu}\}$ follows from the Beurling-Deny criterion (see e.g. [11, Theorem XIII.50]). To prove (2.3), first we note that (2.2) is equivalent to

 $V(x)|k| \leq \Re (R(x)k|\operatorname{sgn} k).$

Hence for $u \in \text{Dom}(\vec{A_2})$ and $g \in \text{Dom}(A_2)$ with $g \ge 0$, we have

$$\langle |u|, (A-V)g \rangle = \langle |u|, Ag \rangle - \langle V|u|, g \rangle \ge \langle \Re ((\vec{A}-\lambda)u|\operatorname{sgn} u), g \rangle - \langle \Re (Ru|\operatorname{sgn} u), g \rangle = \langle \Re ((\vec{A}-R-\lambda)u|\operatorname{sgn} u), g \rangle.$$

By Theorem 2.1, we obtain (2.3).

We also quote the following proposition in [12].

Proposition 2.6 ([12, Proposition 4.2]). Let V be a bounded real measurable function. For $p \in (1,\infty)$, the semigroup $\{T_t^V\}$ corresponding to $A_p - V$ satisfies

$$\|T_i^V\|_{p\to p} \leq e^{\zeta t},$$

where $\zeta = \log (\|e^{-v}\|_r) + 4\beta/\alpha$ with $r = \alpha p^2/4 (p-1)$.

As a consequence of Proposition 2.5 and Proposition 2.6, by taking $V(x) = -\|R(x)\|_{op}$, we have a following

Corollary 2.7. Let R be an $\mathscr{L}(K)$ -valued bounded measurable function. For $p \in (1,\infty)$, the semigroup $\{\vec{T}_{l}^{R}\}$ corresponding to $\vec{A}_{p} - R$ satisfies

$$\|\vec{T}_{l}^{R}\|_{p\to p} \leq e^{\xi t},$$

where $\xi = \log \left(\|e^{-R ||_{\text{op}}} \|_r \right) + 4\beta/\alpha + \lambda$ with $r = \alpha p^2/4 (p-1)$. Moreover, $\kappa > \xi$ belongs to the resolvent set of $\vec{A}_p - R$ and it holds that

$$\|(\kappa - \vec{A_p} + R)^{-1}\|_{p \to p} \le (\kappa - \xi)^{-1}.$$

3. Proof of the main theorem

Proof of Theorem 2.3. To prove (1), we need only $\exp(a ||R||_{op}) \in L^1$ for some a > 0. Take $u \in \text{Dom}(\vec{A}_p)$. By Theorem 2.4, $u \in L^p \log^p L(K)$. Using Young's inequality, $st \le e^s - t \log t + t$, $s \in \mathbb{R}$, t > 0, we have for $\varepsilon > 0$,

$$|Ru| \leq \varepsilon^{-1} \varepsilon ||R||_{\mathrm{op}} |u| \leq \varepsilon^{-1} \left(|u| \log |u| - |u| + e^{\varepsilon |R| |_{\mathrm{op}}} \right) \leq \varepsilon^{-1} \left(|u| \log^{+} |u| + e^{\varepsilon ||R| |_{\mathrm{op}}} \right),$$

where $\log^+ t = (\log t) \lor 0$. Hence

$$|Ru|^{p} \leq \varepsilon^{-p} \cdot 2^{p} \left(|u|^{p} \left(\log^{+} |u| \right)^{p} + e^{p\varepsilon ||R| |_{\mathrm{OP}}} \right).$$

Taking $\varepsilon = a/p$, we see $Ru \in L^{p}(K)$ and moreover, R is a bounded operator from $L^{p}\log^{p}L(K)$ to $L^{p}(K)$.

Next we prove (2) and (3). We follow the argument of Wu ([15, Theorem 2.5]). Take $R_n = R \cdot 1_{\{\|R\|_{e_p} \leq n\}}$. We denote the associated semigroup of $\vec{A} - R_n$ by $\{\vec{T}_t^{R_n}\}$. Since $\|R_n(x)\|_{op} \leq \|R(x)\|_{op}$, each $\vec{A} - R_n$ belongs to $G(1,\xi)$, $\xi = \log(\|e^{||R| \circ p}\|_r) + 4\beta/\alpha + \lambda$ by Corollary 2.7. By a version of Trotter-Kato's theorem (see e.g. [9, Chapter 3, Theorem 4.5]), it is enough to verify the following:

- (a) For any $u \in \mathscr{C}$, $(\vec{A} R_n)u$ converges to $(\vec{A} R)u$ in $L^p(K)$,
- (b) For some $\kappa > \xi$, $(\kappa (\vec{A} R))$ (\mathscr{C}) is dense in $L^{p}(K)$.

Take $u \in \mathscr{C}$. We have

$$\|(\vec{A}-R_n)\boldsymbol{u}-(\vec{A}-R)\boldsymbol{u}\|_p = \|R\boldsymbol{u}\cdot\boldsymbol{1}_{\{|R||_{\text{op}}>n\}}\|_p.$$

Since $Ru \in L^{p}(K)$, this converges to 0 as $n \to \infty$. Hence (a) holds. Let us prove (b). Let $v \in L^{q}(K)$ satisfy

$$\langle v, (\xi+1-\vec{A}+R)u \rangle = 0$$
 for every $u \in \mathscr{C}$.

Define R^* by $R^*(x) =$ the dual of R(x). Since R^* sends $(L^p(K))^* = L^q(K)$ to $(L^p \log^p L(K))^*$ by (1), we have $R^* v \in (L^p \log^p L(K))^*$. By Theorem 2.4, $\vec{G}_{\xi+1}^*(R^*v) \in (L^p(K))^* = L^q(K)$. Thus for $u \in \mathscr{C}$, we have

$$\langle v + \vec{G}_{\xi+1}^*(R^*v), (\xi+1-\vec{A})u \rangle = \langle v, (\xi+1-\vec{A})u \rangle + \langle v, Ru \rangle = 0.$$

Since $(\xi+1-\vec{A})(\mathscr{C})$ is dense in $L^{p}(K)$, we conclude $v + \vec{G}_{\xi+1}^{*}(R^{*}v) = 0$; that is, $(\xi+1-\vec{A}^{*}+R^{*}) v = 0$. Now take s < q such that $\frac{\alpha s^{i}}{4(s-1)} \leq r$. Since $v \in L^{q}(K) \subset L^{s}(K)$,

$$\begin{aligned} \|v\|_{s} &= \|(\xi + 1 - \vec{A^{*}} + R_{n}^{*})^{-1} (R_{n}^{*} - R^{*}) v\|_{s} \leq \|(\xi + 1 - \vec{A^{*}} + R_{n}^{*})^{-1}\|_{s \to s} \|(R_{n}^{*} - R^{*}) v\|_{s} \\ &\leq \|R^{*} v \cdot 1_{\{||R^{*}||_{op} > n\}}\|_{s} \qquad \text{(By Corollary 2.7)} \\ &\to 0 \quad \text{as } n \to \infty. \end{aligned}$$

Therefore v=0, which implies (b). We have proved the first half of (2), and

(3). To show the latter half of (2), it is enough to notice that $\vec{T}_t^{R_n}$ converges to $\vec{T}_{t_t(p)}^{R}$ in strong sense in $L^p(K)$.

Remark 3.1. We proved that $\vec{A} - R_n$ converges to $\vec{A} - R$ in strong resolvent sense. In the same way of [12, Proposition 4.6], we see the convergence is in fact the norm resolvent sense.

Acknowledgement. The author would like to thank Professor I. Shigekawa for his encouragement and suggestion of using Orlicz spaces for the proof.

DEPARTMENT OF MATHEMATICS KYOTO UNIVERSITY

References

- D. Bakry and P. A. Meyer, Sur les inegalites de Sobolev logarithmiques, I, II, Séminaire de Prob. XVI, Lecture Notes in Math., vol.920, 138-150.
- [2] J.-D. Deuschel and D. W. Stroock, Large deviations, Academic Press, San Diego, 1989.
- [3] G. F. Feissner, Hypercontractive semigroups and Sobolev's inequality, Trans. Amer. Math. Soc., 210 (1975), 51-62.
- [4] L. Gross, Logarithmic Sobolev inequalities, Amer. J. Math., 97 (1975), 1061-1083.
- [5] L. Gross, Logarithmic Sobolev inequalities on loop groups, J. Funct. Anal., 102 (1991), 268-313.
- [6] J. Gustavsson and J. Peetre, Interpolation of Orlicz spaces, Studia Math., 60 (1977), 33-59.
- [7] M. Hino, Spectral properties of Laplacians on an abstract Wiener space with a weighted Wiener measure, to appear in J. Funct. Anal.
- [8] P. A. Meyer, Interpolation entre espaces d'Orlicz, Séminaire de Prob. XVI, Lecture Note in Math. vol.920, 153-158.
- [9] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences 44, Springer-Verlag, 1983.
- [10] M. Reed and B. Simon, Methods of Modern Mathematical Physics II: Fourier Analysis, Self-Adjointness, Academic Press, New York, 1975.
- [11] M. Reed and B. Simon, Methods of Modern Mathematical Physics IV: Analysis of Operators, Academic Press, New York, 1978.
- [12] I. Shigekawa, L^{p.} contraction semigroup for vector valued functions, to appear in J. Funct. Anal.
- [13] B. Simon, An abstract Kato's inequality for generators of positivity preserving semigroups, Indiana Univ. Math. J., 26 (1977), 1069-1073.
- [14] B. Simon, Kato's inequality and the comparison of semigroups, J. Funct. Anal., 32 (1979), 97-101.
- [15] L. M. Wu, Feynman-Kac Semigroups, Ground State Diffusions, and Large Deviations, J. Funct. Anal., 123 (1994), 202-231.

156