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Nonexistence of isolated singularities for nonlinear systems of
partial differential equations and some applications

By

P. R. PorivaNov

This paper deals with the singularities of solutions of several classes of
nonlinear systems of partial differential equations appearing in gas dynamics
and differential geometry. Our techniques depend principally on the method

of microlocal analysis, for example microlocalized Sobolev spaces Hier,
classical theory of the pseudodifferential operators and certainly the theory of
paradifferential operators.

1. Motivation of the considerations

1 The following quasilinear system

<0)=<0 é)(@) (1.1)

was studied by L. Bers [1] and it was said that (1.1) expresses some
properties of a Meyer flow of a Tricomi gas for nozzle problem. The symbols
s, 6, ¥ and @ mean the speed, the inclination of velocity, the stream function
and the velocity potential respectively. We shall rewrite (1.1) in the form

<Z) =<2 é)(j),u=u(x.y).v=v(x, y) (1.2)

When investigating the existence of shock waves, Oleinik considered the

system
w) [0 1\ u
()G,

which is hyperbolic for u <1 and elliptic for #>1. In their paper [7] Tay
Ping Liu and Xin studied the system

(o))

a=const>0, b=const>0
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arising in theory of overcompressive shock waves.
The study of the following system was proposed by B. Kheifitz

(f())z+ @ (w),=0, (1.5)
where f= (1, f2), 9= (91, 92), = (u, v), i. e.
A(w) 0;w+B(w) 0,w=0, A (w) =df, B(w) =dg.
Monge Ampere equation with Gaussian curvature K
uazttyy —uzy =K (x, y) (1 +ui+u)? (1.6)

belongs to the same class of hyperbolo-elliptic systems if for each point
(o, yo) for which K (xo, yo) =0 we have that dK (xo, yo) #0.

Our main goal is to study all the systems mentioned above from the point
of view of the microlocal analysis and to find sufficient conditions for non-
existence of isolated singularities.

To begin with, we shall consider the linearization (the first variation) of

(1.2), namely
uiy _ 01 U1 00 U1
<vl >I_<u 0)(1)1 >y+<uy 0)(1)1 >+f' (1-7)

i. e. we shall obtain a system with the symbol

o (0 1\, o 0o 1
A=hLG0 <u(x.y) 0>(”7) (u,,(x,y) 0)'

For simplicity, we assume » €C% Thus we have for the principal symbol p$:

3 n 00 10
—ip¥= d —ipo=1 , [,= i
1p1 ( £ an 1ho=—1 uy 0 2 01

From technical reasons we suppose that our operator has the symbol

—1iP,, 1. e.
- 00
N+po= ¢ T4 ) (1.8)
—un & uy 0

Charp;={detp?=E2—u (x, y) n?=0}.
The Hamiltonian vactor field of detp! is given by:

Hdelp?zzéa.l’_zr]u (x' y) ay"‘“x (‘rv y) 7]205_'_“11 (1:, y) nzaﬂ'

~ According to Bony’s nonlinear microlocal theory if
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a) u (xo, yo) <O, then p°= (o, yo, & 7o) is an elliptic point for each |€°

u
+|n°>0 and the microlocal smoothness of at 0° is well known from [3].
v

b) u (xo, yo) >0, 0° € Charp,, then o° is a hyperbolic point and we have
propagation of singularities along the integral curve £ of Huuy passing through
0° (see [3]).

¢) u(xo, yo) =0, then £°=0, n°#0 if pECharp.

Assume uz (xo, yo) #0. Then Huton = (7°) 2 (uz (o, yo) e +uy (o, yo) 0y)
is not parallel to & (0°), where 5(0°) = &0+ 100, = 100, is the radial vector
field at o°. In that case the singularities again propagate along £.

Suppose now

d) uz (e, yo) =0 but u, (xe, yo) 0. Then Hawys o)
case to be studied here.

The case where u(xo, yo) = V z4u(xo, yo) = 0 is rather complicated
because of the appearance of double characteristics and it remains out of our
investigations.

Let us now multiply

co p} - p&’:(fu Z >< _in _&" )= (E2—un?)I,, (1.9)

|Z (0°). This is the

So we have a reduction to the scalar case but our operators (their symbols)
are not C™ smooth with respect to (x, y). They are only C' smooth.

2. As we shall see, some of the properties of the linearized operator will
remain true for the nonlinear operator under consideration.

Let
L=—Axé—yn+d, 0<A<1, d=idy, d,ER, (1.10)
i.e. L(x, D)=—AxD,—yD,+d=i(Ax0,+y0,+d,), as £ is the symbol of the
operator D;= —i0;.

As it is known from [2], we can construct a distribution v and such that
Lv €C* while it has a fixed singularity along the conic ray (0, 1), i. e. WF (v)
=1(0,0,0, 1) =0° In the case A=1 there exists a function v such that Lv EC>,

WF (v) = (0, 0, I':) where I'.= {|QD—%|S%. €¢>0} and ¢ is the polar angle in
the plane O&n.

Definition. 1. We shall say that u € H5, iff u € Hlye, Vt<s and
u & Hipe.

There are no difficulties to verify that there exists a solution v of the equation

Lv=fE€C"” with the properties vEHj:" (0°), WF (v) = (0, 0, 0, 1),

00=1(0,0,0, 1), so=]——2t1-—d1, 0<A<1. In the case A=1 we have so=1—d,
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and we have an isolated singularity but in an angle: (0, 0, I'.).

Let us remark that so= — ImLj and Ly is the subprincipal symbol of L.
The definition of Lj is given below in (2.3).

In all the cases 0<A<1 we have that the Hamiltonian vector field
Hroo=E(00).
More precisely, if 0<A<1 then

Hrooem " E(0,0, & n) if f either £=0, n==%10or E=%1, n=0;
Hiooem | 20,0, n) V (€ n) if A=1.

Remark also that the larger —d;> 0 is the more regular in C* spaces the
solution v is.

It is easy to deduce from the example in [4], p.80 that there exists a
solution w of the semilinear equation with analytic coefficients

x0w+yow+2pm=2fJw, y1=1, (1.11)
and such that
wEH;S®, so>2, wEHZS° (0,0,0,1),
where w (0, 0) >0, the analytic function (0, 0) #0, uER™.
Thus starting with so—0 smooth solution we have an optimal microlocal
regularity 230—%, so>%+1, n=2.
So in the nonlinear case a natural restriction on the microlocal

smoothness appears and it is of the type t<23—%.

It is worth studying the properties of the operator (1.10) from the point
of view of nonexistence of singularities. Thus consider the operator
P=3}_, Ajx;0z in R" and L=P+a, a=const. €R', 2;>0.

By the method of characteristics one can prove that

a). we have a unique classical solution x €C' (), 220 if >0 and O is
the origin in R”. Moreover,

O N singsupp Lu=0 N singsupp u, Yu EC(Q);

b). we have uniqueness in C'(£) modulo a constant if a=0 and
£(0)=0; uE€C' () = 0 N singsupp Lu=0 N singsupp u;

¢) . we have nonuniqueness in C' () if a <0. Moreover, uE€C'(RQ)
implies that » (O) =0.

We have mentioned above that a solution of Lv =f€ C” with an isolated

singularity at a ray exists if so=yz-—'l—a, 0<A<1,a>0. Thus we have

so0<1. The function v&EC (), 220, as if vEC'(Q), FEC™ () then
vEC™(Q) near O.
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2. Statement of the problem and formulation of the main results

Let £ be a domain in R” and assume that the real-valued function
uE Hy (82), s> % +m + 1, is a solution of the nonlinear system of partial
differential equation (PDE):

Pi(x, u(x),.., 0% (x),.) 15sm=0, 1< <N, (2.1)

where P;(x, u.,..., us....) |51sm are real-valued C* functions of their arguments
(T, .., up,...) 1815m, 0P=081 .. 087 if B= By ..., Bn), u= (1 ..., un),
0%u= (0%u, ..., 0°un), ug= (U1,p,...., ung).
The linearization (the first variation) of (2.1) contains the next two
symbols:

L2 A (r, 0% (x)) siamb (2.2)

lal=m

P2 B o) e Y

lal=m-1

Its principal symbol is real-valued,

Pulx, &= 2 %}L(x. 0%u (x)) 1p1smEXECE
k,a

lal=m

for some €>0, while

. OP;
Puoa(x, §)=—1i X a—L(x 0%u (x)) |51smEFECHE
lal=m—1 OUk.a
is purely imaginary.
This is the standard definition of the subprincipal symbol:

p;tt—l(-r. S) =pm- l(-r §)+ Za as (1' S) (2.3)

Consider the point p°= (x, £%) €T* (2)\0. It is proved in [3] that

det pm (0°) #0 implies that u € HE7"" 2 (0°).

So we suppose

(i) det pm (0°) =0.

Assume that there exists a N X N square symbol pi—» (x, &), positively
homogeneous of order (1 —m) with respect to & and C™ smooth for & # 0,
C? smooth with respect to x, 6> 1 and such that in some conical
neighbourhood of p° the following identity is valid:

(ii) pr-m * pm=quIy (Iy is the identity matrix in Cu, q; is a first order
real-valued scalar symbol). The notation ordeg; = 1 means that ¢, is a
positively homogeneous symbol of order 1 with respect to &.
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The matrix pi-m is assumed to be real-valued, g; € C™"**&9 with respect

to . Further on we denote by X, (£) the set of symbols positively
homogeneous of order m with respect to & £#0, C* with respect to §#0 and
belonging to C* with respect to x €8, >0 is not an integer. Op(X,) stands
for the set of corresponding properly supported paradifferential operators
(see [3]).

Denote by p°= (xo, £°),|6°=1 such a characteristic point
(i. e. det pm (0°) =0) for which:

(iii) Hgeo+ ¢Z(0°) =0 for some constant ¢ <0.

0 0
By Hgn = 27=1 (Qﬂaﬁé&)- Oz — M 05,) we denote the Hamiltonian
J Zj .
vector field of the scalar function ¢ at 0° and 5 (%) = 2-,600, is the radial
vector field at o°. Note that det p,, (0°) =0 implies that ¢, (0°) =0.
In [5] Dencker supposed ¢; to be a symbol of real principal type, i. e.
H,, (0% is not parallel to = (o°).
Unlike him we assume in (iii) that H,, and & are colinear at
0° € Char P={p: det p, (0) =0}. The subprincipal symbol of p;_, is given
by:
G _L & azé’l—m
Pm =% 25,08,

Introduce now the matrix valued symbol
R'= _%{ﬁl—m, pm} +51—mp,m—1+f;’—m Pm

with Holder coefficients in x and ordeR = 0. As usual, {..} is the Poisson
bracket.

If A is a square N XN matrix in Cy and A ™ is its adjoint then

_A—A*
Im A="——

1
(iv) Suppose that there exists a conical neighbourhood I'® p° with the

next property: u € Hye (I'\0°) . t<23—1—%—m, s—l—m—%GEZ and Hby is

the microlocalized Sobolev space at '\’
This is our main result.

Theorem 1. Assume that the solution u € H3oe (), s>%+m+1 of the

system (2.1) satisfies (i) - (iv) and
(v) —es+minp=) (Im R (0% 2z, 2z) >0.
Then wu€H,, (IN).

Thus the singularity at ©°® under the condition (v) is not isolated, i. e. it can
be removed.
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The restriction ¢ <23—%—1—m can be omitted if P is a classical scalar
linear differential operator with C” coefficients. So if Pu €C~,
P=pm~+pm+ -, u €Hfs, —cs+1Im prm_y (0% >0, then u € H5ey (IM\p°) implies
that u € Hy,ey (I for each t>s. Therefore if u € Hfe, —cs+1Im pm_y (0°) >0,
PuE€C™, WF(u) N (M\p° = @ then p°& WF (u).

The proof of Thl is reduced to a theorem from the theory of the

paradifferential operators. Our assertion is non trivial if‘s<t<23—m—1—%.

We shall verify Thl applying Th3 from [3] with d=m, p=s—s—%,
0<e<1, 0=p—m. Thus, there exists a paradifferential operator
Pe0p(2y), 0>1, 0€Z with the symbol (2.2) and such that

PuEHI ™ =Hiy? 7™, u€Hioe (2) CCP, p>m 1,

O0EZ, uEHy (N'\p®. Ast<s+o—1 we have that Pu € Hj;;"*'. Without
loss of generality we assume p;_,€ 2.5 So Pu=fEH|,"*!, u € Hi,,

u € Hlyer (M\p°) and therefore pPu=f,E Hioe, PPEO0p (Zy).
The paradifferential calculus gives us:

0pr-m Opm
Pg) Pl mpm+ﬁl um 1+ ,Zl a&] axj"_R

where R is (—1+0) smoothmg operator in each Sobolev space

(i. e. R: H—H*'*°, R is continuous for each s).
According to (11)

62 = — azél-m E L
axjasj (pl—-m Pm) axjaE m+pl ma aE

_|__aﬂl_..m_ @; __E___a 1-m  Opm _ _‘L_
0§; al'/ Ox; * 0§ al'fa&f

So
p@:( - Z ,a&,) {pl m, pm}+
+ PrompmrF P m pmt R
Let us put
REOP(Zy).

Obviously, the subprincipal symbol Ro=R’.
Using standard bootstrap arguments we can see that Thl is a corollary
from the following
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Theorem 2.  Let the paradifferential operator REOp (Z),
_1
o>1, 0=1+ll, IEN, 1>1 be given by (2.4). Suppose that uGH:o,ﬁfo (2,

Ru€HYy (I, u€Hbyy (P\0°)
and

—ct+minp=, (Im Ry (0°) 2, z) >0. (2.5)
Then w € He ().

/ming=; (Im R (0% 2, z) is the smallest eigenvalue of the Hermitian matrix
ImR,(0°) and maxp=1 (Im Ry (0°) 2, 2) is its largest one/.
(A) In many cases we multiply pp by pm € 25, 0€Z and then

Dmibm=qmmidn, det pm (po) =0. So gm+m (po) =0; Hamom (0 +C‘E(po) =0, ¢<0.
Replacing (v) by (v)’,

(v)’—C(s—ﬂrgl———l)-l-minuznﬂ (Im Ro(p%) 2, 2) >0,

where
R6= _%{ﬁmu pm} +§m1 plm—l +l;,m1—1pm.

we get the same conclusion that u € Hbe) (I if u € Hioe, s>5+m+1,
t<2s—5—m—1L

More specially, if pm =% pn € 22NV i e. my=m (N—1), det pp € 20V
we can reformulate our main result for the systems of the type (1.2), (1.3).
(B) If ¢>0 Thl remains true with (v)” instead of (v)’, namely

(v)” c(s-%) —maxpi=; (Im R'6(0% 2, z) >0.

In the scalar case pm =1 and then (v) is replaced by

Let us consider now the operator (1.10) with Lu EC*, i.e. m=1,c=—1,
uE€ Hjpe, s+Im Ly>0. The last inequality is equivalent to s> so.

Then u €Hle, (M%), 0°= (0, 0, 0, 1), o°E T implies u €EHbyey (I, t>s.

(C) Here is a slight generalization of Theorem 1 for quasilinear and
semilinear systems.

(a) uEH, s>%+m+1, t<25—1—%—m for fully nonlinear systems

(b) s>%+m, t<23—%—m in the quasilinear system case
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(c) s>%+m—1, t<23—%—m+1 in the semilinear case.

The conclusion is that u € H,e, ().
3. Some applications of the previous result

1. Let us consider at first the case c¢). for the system (1.2).
Having in mind that the principal symbol det p}=&%2—u (x, y) n® we have
that if u (xo, yo) =0 then £°=0, n°==+1 if (xo, yo, £° 1°) EChar detp,.
Let us consider now the curve 7: u =0, u (xo, yo) =0. According to the
implicit function theorem (say uz(xo, yo) #0) we find xr=2x (y) €C?,
xo=x (yo).
The corresponding to det p} Hamiltonian system is
.i‘=25, I(O) =Xo
y=2un, y (0) =y,
E=—uwm? £(0)=0
n=—um% n0)==+1
Obviously, x (0) =0, g (0) =0,
Z(0) = —2uz (xo, yo) #0,
=2 (usr +uyyj) n+2urj =1 (0) =0,
y= 2 (uux'z‘f—ZMI,,i‘zj +uwy2) n +
2 (uat Fuyy) n+2 (und +uyy) +2uif+2un =
y (0) = _4142-(1'0. yo) ,

1. e. the characteristic curve in the plane
x (t) =xo—uz(xo, yo) ¥ +0 (%)

y (1) =yo—2ut (xo, yo) 0 (12)

has a cusp point at (xo, yo) and it is located in the domain where u>0.

Conclusion. Let us consider the system (1.2) in the case
¢). uz(xo, yo) #0 and suppose that the solution u €EH*(Q), s>4, 23 (xy, yo) is

such that u€C*(24). As usual 2,={(x, y): u(x, y) >0}. Then (M >€C°°

v
in a full neighbourhood of the point (xo, yo).
If the curve 7: u (x, y) =0, u (xo, yo) =0, Vu (xo, yo) #0 has one and only
one horizontal tangent passing through the point (x¢, yo) then u €EH®, s >4,

u
23 (2o, yo), u €C™ (2,) implies < )E C” () according to the previous
v
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remark and Theorem 1. Bellow we give the details.
We shall apply now Thl to the system (1.2).

"
Assume that ( )EH%C, s>2 (i.e.u€C'™, £>0) and u

v

uz (xo, yo) =0, uy (xo, yo) #0, £°= +1 —

Moreover, R’ (0°) =nCu, (xo, yo) ( ) Thus, for 2

solutions of (1.2) with isolated H' singularities at (xo, yo; 0,
Similar result is true for (1.3) with u (xo, yo) =1 instea

2. Let us consider now a slight generalization of (1.6):

Uzx Uzy

det =K (x,y) flx,y. u, Vu),

Uzy Uyy

where K (xo, yo) =0, VK (o, yo) #0, KEC™, fEC™,
fx, y, u, p, q) >0 everywhere, (p=ur, g=u,). Certainly, u
to be real-valued. Let u € Hjpe, s> 4, (i. e. u € C¥*¢ (Q))
suppose that

(3.2) The curve y={(x, y) €EQ: K(x, y) =0} is ch
point (xo, yo) for the linearized on u of equation (3.1).

It is easy to see that at each point (x, y) €7 at least on
and normal vectors is non characteristic for the linearized e

Proposition.  Let u€C (£2\ (xo, yo)) and (3.2)be f
Then n€C* ().

By a rotation of coordinates leaving the equation (3.1)
assume that

K(x,y)=yt+t0xity?),

i. e. (xo, yo) =0, VK (0)=1(0, 1), the tangential vector to 7 a
The linearized on u of equation (3.1) has the following

pzuwéz - 2”11/&77 +“117]2+in#€+in¢7] —Kfu,

where

fo=Fo(x, y. u, uz, uy).
According to (3.2): uzz(0, 0) =0, u,, (0, 0) #0 and therefore
1z (0, 0)=0. The point p°= (0, 0, &, 7o) is non-characteri
if £+#0. Then u€HE;(0°. So let 0°= (0, 0, 0, n°), Ne#0
Thus p3 (0% =0, Hyen = — 0% (22 (0, 0) O¢ 142 (0, 0) 3y
Differentiating (3.1) with respect to x, y we find that:
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Uzzx (0, 0) =0, i. e Or'erﬁ(p“)) “E(po)y 770:1

The subprincipal symbol p5 (0°) =0 and therefore the conditions (v)”,
(v)" are satisfied. Let I" be sufficiently small conic neighbourhood of
0°= (0, 0, 0, n°. Then we know that u € HZ;® (I'\ p°)! and therefore
u € Ho* (0°) which implies u €EH*™* (0) (i. e. 39ECT, ¢=1 near 0,
ou € H*™*). This way we raise the smoothness of u at 0 with s —4> 0.
Repeating the same procedure we arrive at u €C* near (0, 0).

Corollary. Consider the equation (3.1) and assume that the curve 7 is
non characteristic for the linearized on u of equation (3.1) with the exception of
the point (xo, yo) €E7. Then u€C™(02-), 2-={(x, y): K (x, y) <O}, implis that
wEC™ in a full neighbourhood of (xo, yo).

4. Proof of Theorem 2

Let us consider the symbol
1=k (@) 71 (&) A+ 12 E») ~2, d=const>0, p< (0, 1]

(t—0 further on, i. e. 0<u<1), K, ECT, £1=1 near xo, ordery=r,71l€/""=1 in
a conic neighbourhood of &°, conesupp c;€EINC CIT.
A simple calculation shows that

{qy, c1 = (1+2/E?) 2 A,, where A,={qy, k171) +20K171 X
S %%,uz&(l-kuﬂélz)". But (1+42|€?) ! is a bounded family in 2y,

¥ A>0 and is a bounded family in 2;', VA>0, € (0,1]. Thus

M
142l
A,€ 2;_; uniformly with respect to g and conesupp A,€ENCCT.

Let us define the cutoff symbol 1, =1 in a conic neighbourhood of p°,
NESYe conesupp NE {(x, &): £1(x) 71 (&) #0}.

Thus

2o (1) (L g2lel) 2, =
1

=n%1Bot+ (1— 7% (1+42€) %4,

{(]1, Cl} = 7]2(,‘1

and Bo€ 22_1 uniformly with respect to g, conesupp BoC C 1.
So
. .
Bo=Do+25 (1+42°18") " Z o1 g
j=1 J

j=

! Here we use the fact that u€C™ (2\ (zo. yo)).



488 P. R. Popivanov

and Do (0) = { l;clxrll :

neighbourhood of o°.
But

Bo(0°) = < Veg1 (0°), Va(k1im1) (0°) > — < Vo1 (0, Ve (k171) (0°) >
+26 (1+p2) W< Vg1 (0°), 9> =—c<E° Vin&%) >+

+25cTi—t_——2_ —c<r—%> —c(r+0(?)), 0.

={q1, K171} assuming o= (x, £), |€|=1 in a tiny conic

(Here we have used Euler’s identity for the homogeneous function

71, orde71=7).
Let us consider now the symbol

Ci=k%(x) 72 (&) |E* (1 +p2lE[») 2
where &, 7, orde =0 have the same properties as k1 and 7, i. e. =2,

r=2t(= C,E€ 2572 for each fixed £>0).
Then we get

{q1, C2} =n2CiBo+ (1—1%) (1+ %€ ~2As, (4.1)

where By € 9., uniformly with respect to g, Ay € 2221, unfformly with
respect to ¢, conesupp By and conesupp A< C I and

Bo(0°) = —2¢ (t+0 (¢?)), p—0. (4.2)

We point out that u € Hye (conesupp (1—n%) Az) and that ¢t>s and (v) imply

% By (0°) +minp=; (Im R, (0°) 2, 2) >0. (4.3)

(Cau=Culyu, R=q:iIy+Ro+ R).

The bilinear form (Cufi, Cat), fi=Ru is well defined in H® as Cufi € Hzoms,

_1
Cain GHZa,ﬁf, (conesupp C,CCI, ¥V u>0).
Thus,

m (Cyf1, Cat) =1Im (Cugrlyu, Cuu) + (4.4)
Im(C, R, C,u) +K,

KI<C llu -1,

where the constant C does not depend on .
In fact, C,€ > uniformly with respect to ¢ and R is a smoothing
operator of order — (6—1), i. e. | (C,Ru, Cat) | <] Cﬂﬁu”ff_gin Cuu||1_;£ <

o—1_1
C” u ”%—6—_— 2 o

The left-hand side of (4.4) can be estimated very easy as fi1 € Hpe (I),
conesupp C, €I imply
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| (Cant, Cuf) | Zell CatlBmercry + C (&) Al mercr,

Ve>0 and C(e) does not depend on g.
The identity Cau=nCau+ (1—n)Cuu, (n—1)C,E 2% uniformly with respect
to 4, the relations u € Hb,e; (I\0°) and conesupp? is concentrated near o°,

n=1 near 0° show that || C o<l nCutlly + dillue lomcicrnr, 0° €T
So

| (Cufl. Ca“) | S5" UCuM||%+C(5) ”fl"?,mcl(]‘)-'_ (4.5)
Ci(e) ” u "%.mcl(l‘”). Ve>0.
Obviously, Im (Cugiinu, Cu) =Im (q:Cuu, Cou) +1m ([C,, q1]u, Cout) .

Put v =Cumu. Then (g, v) = (v, ¢i'v), g1 = quly and according to [3] the
symbol of the L, adjoint operator ql* of g, is given by the formula:

g =q1—i X qila+R,

lal=1
R being a smoothing continuous operator of order— (6—1). So

(g, v) = (v, q) +i 2 O, g1%0) +0 (| u ||2-"2;1) =

lal=1

2Im (g, v) = X (v, qifaw) +O (|u "2‘0T_1)

lal=1

Having in mind the fact that q(l‘fc)oE 2.9 1 is real-valued we get, applying again

Theorem 3.3 from [3]:

2Im (g, v) = 2 (gifww, v)+0(||u||?-%).
la =1
Thus,

Im (g:Cyat, Coat) =% 2 (gt Can, Can) +0 (I -1, (4.6)

lal=1

and the remainder O (*) is independent of .
In a similar way

Im (CuRou, Cy) =Im (RoCat, Ct) +0 (| [F-2).
In fact, [Cu Ro] € 2675, for 6>2 as Ro€ 251 and [Cu Ro) is—t+o0—1
regularizing operator, uniformly with respect to g, in the case 1<0<2. Then

Im (RoCyat, Cyat) = (ImRoCoat, Coat) +0 (e [F-1) (4.7)

_p %
and O(+) is independent of g, Im RO=% is a Hermitian self-adjoint

matrix,

We know that [C,, ¢1] € 26-1 uniformly with respect to g and has the
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principal symbol %{Cu, q1}. So
Im ([C,, ¢1]u, Cun) = —Re ({C, g}, Cat) +0 (e [F-2),
Im ([Cy, q1)u, Cunt) =—%-Re (g, C2u, u) +0 (| u ||?_%). (4.8)
Combining (4.4)-(4.8) we get
el nCulls+C (@) | Aillmercry +Cr (&)l [ mercrny 2 (4.9)
IRe ({gr, Cohu, u) + (ImRCy, Cooe) +0] u [1p)
The identity (4.1) shows that

Re ({g1, C2}u, u) =Re (nCuBot, nC.at) +0 (lu [F-1) +
Re((1—n%) (1 +2 D?) 245 u, u),
J

where conesupp AxCT, Ay € 255 uniformly with respect to g.
According to Bony ([3], Corollary 3.5 a)., b).)

| e, ) | < do(|u "2—‘77‘1"'"14 I mcrcrny) . (4.10)

Having in mind that

(ImRoCunt, Cu) = (nImRC,u, Cou) + (4.11)
+(CF Q—9)ImRCy 1, u),
Ji

JL€Z¥ | uniformly with respect to g, conesupp i€, J1=0 near o° we
conclude that

| (/1%, 14) | Sds(” u ||2—”T‘1+"M ”?,mcl(l"")) (4. 12)
with d2, d3 independent of . Obviously,
(PPImRCyat, Ct) = (ImRonCyt, nC,u) +0 ([ [F-251)

as [n, ImR5] is smoothing operator of order — (6 — 1) and O(:) does not
depend on u.
So

Im (RoCuu, Cuu) = (ImRonCuu, nCuu) + (4.13)
O (lu "2—"2;1+ ot 1 e icrm)
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According to (v): 1). %Bo-l-ImR'oE 25—y, and 2). %Bo (0°) In+ImR5 (0% is

Hermitian and positively definite matrix which implies that

%Bo (o) In+ImR,(p) is Hermitian and positively definite matrix near o°.
Combining (4.9)-(4.13) and having in mind that

(nCuBou, nCun) = (BonCuat, nCit) +0 (|u [f-251)
we get that Ve>0

el nCauli+C (@) | Al merers +dall s 1 mercrm = (4.14)
Re((%BO*‘ ImR'o)nCuu, nCuu) +dslulf-2.

The constants C(g), d4, ds in (4.14) are independent of .
Taking conesupp 1 C {p: %B (o) +1ImR5 (0) >0} we can apply Garding’s
inequality for positive paradifferential operators [3] and obtain:

Re(( %BoﬂmRé) (nC), ncuu) >df Coul (4.15)

for some @=const>0 and d¢=const >0, O(.) are independent of .
The standard interpolation inequality in Sobolev spaces gives us that

[ nCallo <comst,

i. e. for sufficiently small e>0

1€ Hcion = u € Hypet (IN).
Thus everything is proved.
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