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Nonexistence of isolated singularities for nonlinear systems of
partial differential equations and some applications

By

P. R. POPIVANOV

T his paper deals w ith the  singularities of solutions of several classes of
nonlinear systems of partia l differential equations appearing in  gas dynamics
and differential geom etry. Our techniques depend principally on  the  method
o f  microlocal a n a ly s is , f o r  exam ple  microlocalized Sobolev spaces
classical theory of the pseudodifferential operators and certainly the theory of
paradifferential operators.

1. Motivation of the considerations

1  The following quasilinear system

s0 ) 0s  0 )( () ) 0

0 1 s

w a s  s tu d ie d  b y  L . B e r s  [1 ]  a n d  i t  w a s  s a id  th a t  (1 .1) expresses some
properties of a Meyer flow of a Tricomi gas for nozzle  problem . The symbols
s, 0 , gr and  0  mean the  speed, the inclination of velocity, the  stream function
and the velocity potential respectively. W e shall rew rite  (1 .1) in the form

(u )x =  (  0  1\" u
 1 4 — u  y ), y — y  y)

 
(1.2)

W hen investigating th e  e x is te n c e  o f  shock  w aves, Oleinik considered the
system

0 1 u
(1.3)

( 1 — u  0  )(
X

w hich is hyperbolic for u <1 and elliptic for u >  1 .  In  th e ir  p a p e r  [7 ] Tay
Ping Liu and Xin studied the system

( u  ) , + (a uou  b  ) (  )  = 0 ,

a = co n s t> 0 , b=cxonst>0

(1.4)
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arising in theory of overcompressive shock waves.
The study of the following system was proposed by B. Kheifitz

( i(0 )))x +  (g (w)) y =0, (1 .5)

where f =  (11, 12), g= (g 1 , g 2) , w = (u, , i. e.

A (w) axw+B (w) a y w= 0, A (w) =cif, B  (w ) = dg.

Monge Ampere equation with Gaussian curvature K

K (x, y) (1+14+4) 2( 1 . 6 )

belongs to the same class of hyperbolo - elliptic systems if for each point
(xo, go) for which K (xo, Yo) =0 we have that dK (x., yo) O .

Our main goal is to  study all the systems mentioned above from the point
o f view of the m icrolocal analysis and  to  find sufficient conditions for non-
existence of isolated singularities.

To begin with, we shall consider the  linearization (the f irs t variation) of
(1 . 2) , namely

0 1 )(u i(  0 0 )(141+ f,
1.11 )x  (14 0 V1 uy 0 V1

(1 .7)

i. e. we shall obtain a  system with the symbol

=  ( t i )
0 1 0 1

u ( x ,  y )  0 )
( 0 7 ) —

( u y ( x ,  y )  0 ) .

For simplicity, we assume u EC 2. Thus we have for the principal symbol

—ip?= —77) ( 0  o) ( 1  o)
and —ipo= , 12=

uy o 0 1

From technical reasons we suppose that our operator has the symbol
e.

P?+Po= —un
/ \ u y  O

e —\ o
(1.8)

charpi= {detp?-= - I t  (x, y) 7) 2 = 0}.

The Hamiltonian vactor field of detp? is given by:

H detp?=20x - 27)u (x, y) ay+ux(x, y)77 2 ,90 - 74,y(x, Y)772 a.

According to Bony's nonlinear microlocal theory if
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a) u (xo, yo) <0, then p°
-= (xo, yo, o , n o )  is  an elliptic point for each

H O  >0 and the microlocal smoothness of at p° is well known from [3].

b) u (xo, yo) > 0, p° C h a rp i , then p° i s  a  hyperbolic point and w e have
propagation of singularities along the integral curve Y  of Hdetm passing through
p° (see [3 ]).

c) u (xo, yo) =0, t h e n  cr=0, 77° 0 if pECharPi.
no\Assume ux(xo, Y o ) * 0 . Then Hdctp? (p 0 )  =  

( 0) 2 (ux (To, yo) a ,+ u y (ro, yo)
is not parallel to  E (p°) , where E (p

°
) =,A +72 0 a,= no, is  the radial vector

field at p°. In that case the singularities again propagate along Y.
Suppose now
d) ux (xo, yo) = 0 bu t uy (xo, yo) 0. Then Hdeo(p.) IIE (p

°
) . T h i s  is  the

case to be studied here.
T h e  c a s e  w here  u (xo, yo) = Fx,y u (ro, Y o ) =  0  is ra ther com plicated

because of the  appearance of double characteristics and  it rem ains out of our
investigations.

Let us now multiply

) ( —77co p? • A )= _  (V_un2)/2. (1 .9 )
1714— 1 1 1 7

So we have  a  reduction to the  scalar case but our operators (their sym bols)
are not C

-
 smooth with respect to  (x, y ) .  They are only C' smooth.

2. A s we shall see, some of the properties of the linearized operator will
remain true for the nonlinear operator under consideration.

Let

0<2<1, d id,, d i ER 1 ,( 1 . 1 0 )

i. e. L (x, D) =  Â x D x

—
 yDy +d =-i (2.rax+yay +di) , as is the  symbol of the

operator Dx =
A s it is know n from  [2 ], we can construct a distribution y and such that

Lv EC -  w hile  it has a  fixed singularity along the conic  ray  (0, 1), i. e . WF (v)
=  (0, 0, 0, 1) =p °. In the case 2=1 there exists a  function y such that Lv EC` *,

WF (v) = (0, 0, r5) where F  {IQ  e> 0} and yo is the polar angle in

the plane C*7.

Definition. 1. W e shall say that u EHW iff uEH o c , V  t<s and
14 'S a w .

There are no difficulties to verify that there exists a solution y of the equation
L v= fE C

-
 w ith  the properties y E ig n °W F  ( v )  =  (0, 0, 0, 1),

Po= (0, 0, 0, 1), so=  2 +2 1 d l ,  0 < 2  < 1 .  In the case  A 1 we have so= 1 —di
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and we have an isolated singularity but in an angle: (0, 0, 11).
L et u s  remark that so = — ImL'o and L'o is  the  subprincipal symbol of L.

The definition of L'o is given below in  (2.3).
In all the cases 0 < A 1  w e  have that the Hamiltonian vector field

HL(po ) =- S' (po).
More precisely, if 0 < 2<1 then

lizmo,,,7) II E(0, 0, 77) if f  either 0, 17 = ± 1  o r ±1, 17=0;

1-11.(o,o,,n) II EA 0 , 17) y 17) if 2 = 1 .

R em ark also that th e  la rg e r  —  dl> 0 i s  the  m ore  regu la r in  Ck sp a c e s  the
solution v is.

It is  easy  to  deduce  from  th e  example i n  [4] , p.80 th a t th e re  ex is ts  a
solution w of the semilinear equation with analytic coefficients

x a.rw ± y 00)± 2tiw =2f . , =1, (1.11)

and such that

w so > 2 , w E ig r" - °  (0, 0, 0, 1),

where w (0, 0) >0, the analytic function f  (0, 0) ±0, 1iER 1.
Thus starting w ith s 0

- 0 smooth solution w e have an optim al microlocal

regularity 2,30
- 1 i ,  so >1+ 1, n 2.

S o  i n  t h e  n o n lin e a r  c a s e  a  n a tu r a l  r e s t r ic t io n  o n  th e  microlocal

smoothness appears and it is of the type t <2s — frz .
It is w orth studying the  properties of the opera tor (1 .10) from the point

of view of nonexistence of singularities. Thus consider the operator

P=E7=1 AJXaX, in  Rn and L =P +a, a=c o n s t . ER', 2J >0.
By the method of characteristics one can prove that
a ). w e  have a unique classical solution u EC 1 (Q ), Q B  0 if a > 0  and  0  is

the origin in R .  M o reo v e r,

O  n singsupp Lu -=-0 f l  singsupp u, Cl (S2) ;

b) . we have uniqueness in C 1 (Q) modulo a constant if a = 0  and
f (0 )  =0; u EC I (D)O  n singsupp L u-=0 n singsupp u;

c) .  w e  h av e  nonuniqueness in  C1 ( Q )  i f  a  < 0 .  Moreover, uGC 1 (S2)
implies that u (0) =0.

W e have mentioned above that a solution of Lv =fE  C°' w ith  an  isolated
1+2 singularity at a  ray exists if so =  2 a ,  0 < 2 < 1 , a  > O . T h u s  w e  have

s0 < 1 .  The function v  Cl  (S2) , Q O ,  as if v EC 1 (9) , f E (S2) then
vEC – (Q ) near O.
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2 .  Statement of the problem and formulation of the main results

Let D be a domain in Rn and assume that the real - valued function

u E Hioc , s >  + m 1, i s  a  so lu tion  o f the  nonlinear system  of partial

differential equation (PDE):

(x, u (x) a su (x) ,...) I/311m
=  0, 1 (2.1)

where P, (x, u ,..., us,...) keism are real - valued C" functions of their arguments
(x, UR,•••) aB=ag,i ••• afnn if /3 ( S i t • • • ,  R.), u —  ( v i  , • • • ,  U N )  7

asu= (a'sui asuN ) , UR —  ( 14 1,5,•.., UN,B)

T h e  linearization ( th e  f ir s t  v a r ia t io n )  o f  (2 .1 ) contains th e  next tw o
symbols:

aP.im [ E 1  
 ( i ,  a d3U ( X ) )  11316m a  —

Ial=m a i l k,a
a p  •   (x, aBu(x)) I5ismM  L ik=11 ' ,.. '' ....i E J  

la I =m-1 aUtx,a

Its principal symbol is real - valued,

aP •
Pm (i, = asu (x)) IBIsm E  C 1 + 6

lal =m ,a

for some s>0, while

a p  •  
Pm-i = E (x)) o s .V E C I ± E

(-114 k,a

is purely imaginary.
This is the standard definition of the subprincipal symbol:

(x, = p m -i (x ' + (x 2

Consider the point p ° = (xo, E T*  (,(2)\0. It is proved in  [3 ] that

det pm  (p
°
) ±0 im plies that u (e) .

So we suppose
(i) det P m  (p 0

)  =0.
Assume tha t the re  ex ists  a  Nx/V square sym bol fil-m (x, , positively

homogeneous of o r d e r  (1 — in )  w ith  respect to a n d  C-  sm oo th  for 0,
Cà- s m o o th  w ith  r e s p e c t  t o  x, 1 a n d  s u c h  t h a t  i n  some conical
neighbourhood of p° the following identity is valid:

(ii) /51-m • Pm = 91IN (IN  is  the  identity  m atrix  in  CN, 91 i s  a  first order
rea l-v a lu ed  sca la r  sy m b o l) . T h e  n o ta tio n  ordo i =  1  m e a n s  th a t qi  i s  a
positively homogeneous symbol of order 1 with respect to

(2.2)

(2.3)
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The matrix j51_„, is assumed to be real - valued, qi EC rn in (1 ± E 'i n  w ith  respect
t o  x. F u r t h e r  o n  w e  d e n o te  b y  Epm (Q )  t h e  s e t  o f  symbols positively
homogeneous of order m w ith respect to 0, C

-
 w ith  respect t o  * 0  and

belonging to C" with respect to x C  p>0 is not an  in teger. O p (Epm ) stands
f o r  th e  s e t  o f  corresponding properly supported paradifferential operators
(see [3]).

Denote b y
 p o,  ( x0 , cl),1,-el =1 such a characteristic point

(i. e. det pm  (p°) =0) for which:
(iii) 11,, (0 ) ±  c  ( e )  = 0 fo r  some constant c<0.

B y H„ ( 0 )  = E7=1 (aql_kP )   ax, (e) 
ax, a e,) w e denote  th e  Hamiltonian

vector field of the scalar function qi a t  p° a n d  (p°) = z7=,va6  i s  the radial
vector field at p

°. Note that det pm  (p°) =0 implies that q 1 (p°) =0.
In  [5] Dencker supposed qi to  be  a symbol of real principal type,

11,1 (p°)  is not parallel to ,E'(p°).
Unlike him we assum e in (iii) that Hq 1 and  E are colinear at

p° EChar P = (p: det pm  (p) = 0). The subprincipal symbol of is given
by:

n a24;

P-„,= i - m  
2

Introduce now the matrix valued symbol

= ) fi +15' p2  r i-m, Pm ) , 1 - m  m - 1 - m  m

w ith H older coefficients in x  a n d  ordje = 0. A s  usua l, 1.,.) i s  the Poisson
bracket.

If A is a square N X N  matrix in CN and A *  is  i t s  adjoint then

=  
A — A *  

I m  A  2i •

(iv) Suppose tha t the re  ex is ts  a  conical neighbourhood F 3  p° w ith  the

next property: u E  H 1  (r\p°),
the microlocalized Sobolev space at Ap°.

This is our main result.

Theorem 1. A ssum e th at the solution u EH O C  ( Q ), s>  + m  + 1  of  the

system (2.1) satisfies (i) - (iv) and
(v) — cs (Im (to

°
) z, z) >0.

Then u c Trma (11

EEZ and W nic1 is

Thus the  singularity  at p° u n d e r  the condition ( y )  is not isolated, i. e. it can
be removed.
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The restriction t <2 s — — can  be  om itted  if P  is  a  classical scalar

linear differential operator with C-  coe ffic ien ts . So if PuEC - ,

P=Pm+Pm-i+ • - •, uEHloc, — CS + 1M i i (p°) >0, then u, e i g n a (r\p ° )  implies
that u E H CI  (F ) for each t> s .  Therefore if u — cs+Im  fo1 (0 >  0,
Pu E C-  WF (u) (1 (14\0  =  0  then to° WF (u) .

T h e  p ro o f o f  T h l  is  r e d u c e d  to  a  theo rem  from  t h e  th e o ry  o f the

paradifferential o p e ra to r s . Our assertion is non trivial if s< t<2s — m - 1- - 1.

W e shall verify T h l applying Th3 from  [3] with d =m,

0 < E « 1 ,  = p — m . Thus, there exists a  paradifferential operator
YE op (Ea

m ) , a > l, o , $ Z  with the symbol (2 .2) and such that

E a o
-
c" P = W ;c6 - 1 + ( i - m ) , U E (S2) CCP, p>m +1,

p  Z, 1,t Htmc/ (r\P° ). A s t < s +  a —  1 w e have tha t 3) u E Hic7cm + 1 . Without
loss of generality we assume E _ m .  SO Y u = fE l-ii,Tcm+1 , u E l-170c,
u E li tnici(r\p ° )  and therefore f iY u=f iEH ,oc, 153°Eop (Z0.1 )  .

The paradifferential calculus gives us:

afil -m 
1, 1=1 Ox;

where R  i s  ( - 1 + a )  smoothing operator in each Sobolev space
(i. e. R: R  is continuous for each s).

According to (ii)

(J
m (J2pm  ,

a x ia  (P i_ m p ,n )—

afii-m a -m a 2 q i  
• a x ; a x ;  •

So

13Y = ( q 1 { f i l — m  P r n }

+fii_mp;n_i+f)'_,,, Pm +R.

Let us put

R=PY=q1IN a2q1 IN +RH2 Ox.O ;1-1
(2.4)

R E o p (E l
o )

Obviously, the subprincipal symbol fe'o =R'.
Using standard  bootstrap arguments w e can  see  tha t T h l is  a  corollary

from the following
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Theorem 2. Let the Paradifferential operator R E op (E 10) ,
a>l, a=l++, 1EN, 1> 1  be given by (2 .4 ). Suppose that u EHcoZ IP (S2),

RU E W W 1  (F) E i l trn a  ( 14\P° )
and

—ct+minw=i R'0 (p
°
)  z) >0. (2. 5)

Then u E Mna (r).

/minkl1=1 (1m Iro ((A z , z ) is the smallest eigenvalue of the Hermitian matrix
Irnfro(p° )  and maxkl=i(Im R'o(P°)z, z ) is its largest one/.

(A) In many cases we multiply pm by 13mi Z o r  a l$ Z  and then
fimiPm=qm+miiN, det p m  (e) =  0. So qm , (p ° ) =  0; Hq „,+,„(p.) +c,E7 (p° ) =0, c <0.

Replacing (v ) b y  (v)',

(v ) '— c (s  
m  + m 1 - 1 )

, +minkl=i R'2 0  ( p °) z, z) >0,

where

{ ) +/-5 1± tig2  m i ,  m m- mi- m,

we get the same conclusion that uEH1ma (r) if uE1-110c, s> 7i+m +1 ,

More specially, if j5„,1=09 p m  E  E V N -1 ) ,  e. m1 =m (N —1) , det pm E
we can reformulate our main result for the systems of the type (1.2), (1.3).

(B) If c > 0  Thl rem ains true w ith (0 "  instead o f  (v) ' , namely

m+m i
- 1 )(v) c(s 2 maxkl=i R'o(po) z, >0.

In the scalar case fimi =1 and then  (v ) is replaced by

(v)"' — c(s ni — 1 ) +Im pM- 1 (po
2

) >0.

Let us consider now the opera tor (1.10) with Lu e. m=1, c=  — 1,
uElifoc , s+Im L'o > 0. The last inequality is equivalent to s>s o .

Then uemna (r\p°) , p°= (0, 0, 0, 1), 19°ET implies u E l/ 1mo (r), t>s.
(C ) H e re  is  a  slight generalization o f  Theorem  1 f o r  quasilinear and

semilinear systems.

(a) u EHs, s> lj t - i- m +1, 1<2s - 1— 'i — m for fully nonlinear systems

(b) s> 11+m, t <2s —1 —m in the quasilinear system case
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(e ) s > - Fm —1, t <2s —m  1 in the semilinear case.

The conclusion is that u EMncr (r) •

3. Some applications of the previous result

1. Let us consider at first the case c ) . for the system  (1.2).
Having in  m ind that the principal symbol det p? = -2 u (x, y) 172 w e  have

that if u  (xo, yo) =0 then v)_0 ,  n o= ±1 i f  (xo, Yo, 17°) EChar detPi.
L et us consider now the  curve r: u = 0, u (xo, yo) = 0. According to the

implicit function theorem (say ux(xo, yo) ± 0) we find x = x  (y )  C 3 ,
x0=x (y

The corresponding to det p? Hamiltonian system is

x (0) =x o

= 2 u î ,  y (0) = yo
— u 1 172 , (0) =0

rj = — u v 172 , 17 (0) = ± 1

O b v io u sly , (0 ) = 0, (0 ) = 0,

Y (0) = — 2/4x (ro, yo) ±0,
V= 2 (u,,,,i +u y V ) ± 2u4 V (0) -= 0,

= 2 (u 2+ u 2 )  i +
2 (uxi, +u,  ) n +2 (ui ,i+ u ,fi) -F2uij-F2vir,

ij (0) = — 424 (xo, yo),

i. e. the characteristic curve in the plane

x  (t) = zo — ux (xo, yo) t2 ± 0 (t 3 )
o

y  (t) = yo—
*vd (xo, yo) 0+0 (0)

has a cusp point a t  (xo, yo) and it is located in the domain where u>0.

Conclusion. Let us consider the system  (1 .2) in the case
c ). ux(xo, I/o) ±0 and suppose that the solution u E l l s (Q ) ,  s >4, Q D  (ro , yo ) is

such that u E C
-  (S2+ ). A s usual S2+ = {(x, y): u (x, y) > 01. Then ( u  )E

in a full neighbourhood of the point (xo, Yo).
If the curve r: u (x, y) =0, u  (xo, Yo) =0, V u (xo, yo) 0  has one and only

one horizontal tangent passing through the point (xo, yo) then u e H s ,  s >4,

(uQ D  (xo, yo) , u E C—  (Q + ) implies E C —  (Q ) according to  th e  previous
v
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remark and Theorem 1. Bellow we give the details.
W e shall apply now Thl to the system  (1.2).

Assume tha t (
u

EM oc, s > 2  (i. e. u EC H- E, e > 0) and u
v

u x  (xo, yo) = 0, uy (xo, yo) 0, = 0, 1 7 0 =  ±1 . So c = —

1 0
M oreover, R' (0 = 0 1 , i ,  (xo, yo) 

( ) 
. T h u s , f o r  2

0 —1
solutions of (1 .2 ) with isolated II' singularities at (xo, y o ; 0,

Sim ilar result is true fo r  (1 .3) with u (x o , yo) =1 instea

2. Let us consider now a  slight generalization o f  (1.6):

det
U x x  Uxy

=K (x, y ) f(x , y, u, u ) ,

   

where K (x 0, yo) =0, K(r 0, yo) *0, K C°' , f
f (x , y, u, p, q) > 0 everywhere, (p=ux, q=u y ). Certainly, u
to  be  rea l - valued. L et u Hio c , s> 4 , (i. e . u  E  C 3 + 6  (S2))
suppose that

(3.2) The curve r =  (x , y) E  Q: K y) =01 is  ch
point (xo, Yo) for the linearized on u of equation (3.1).

It is easy to see that at each poin t (x, y) E  r at least on
and normal vectors is non characteristic for the linearized e

Proposition. Let u E C ° ( Q\ (Xe, yo)) a n d  (3.2) be f
Then u E  (D ) .

By a rotation of coordinates leaving the equation (3.1)
assume that

K (x ,  y )= y - 1- 0 (x 2 ±y 2),

i. e. (,xo, yo) =0, V K(0) = (0, 1), the tangential vector to r a
The linearized on u of equation (3 .1) has the following

p=u y y V — 2u,,y 07 - Fu„)7 2 - FiKfp +i,Iff,7) — Kfu ,

where

fp=fp(x, y, u, u 1 , uy ).

According to (3.2): uxx (0, 0) =0, u yy (0, 0) *0 and therefore
ux „ (0, 0) =0. The point p°=  (0, 0, o ,  no) is non - characteri
if ,3,± 0 .  Then u EMV (P ° ). So let p°=  (0, 0, 0, 170), 170±0

Thus p  (p
°
) =- 0, Hpg(e) =  7702 (uxxx (0, 0) -F u ix y  (0 , 0 ) a,

Differentiating (3 .1 ) with respect to x, y  we find that:
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uxxx(0, 0) =0, i .e .  0 *Hp2(0) IIE (to') , 77 = 1.
T he  subprincipal symbol P'2 (p°) 0 and  therefore the  conditions (y)'",

(y)" are satisfied. Let F be sufficiently small conic neighbourhood of
p° = (0, 0, 0, 770 ). T h e n  w e  k n o w  th a t u E p°)1 a n d  therefore
uE H 2,L 4 (p ° )  which implies u  He 2s-4 (0) (•. e. (p EC°, („0 1 near 0,
(pu H 2s-4) . T h is  w a y  w e  ra ise  th e  smoothness o f u  a t  0 w ith  s — 4> 0.
Repeating the same procedure we arrive at u E C °  n e a r  (0, 0).

Corollary. Consider the equation (3 .1 ) and assum e that the curve r  is
non characteristic for the linearized on u  of equation (3 .1 ) w ith the exception of
the point (xo, yo) E T. T h e n  u EC -  (D4, S2_= 1(x, y): K (x , y) <0), im p lis  that
u EC -  in  a full neighbourhood of  (xo, yo).

4 .  Proof of Theorem 2

Let us consider the symbol

ici (x) Ti ( ) (1+ 2I 2)5 = c o n s t > 0 ,  p e  (0, 1]

(tt—q) further on, i. e. </t<1), E Co* , 1 near xo, o r d e n = r , r i l l - r = - 1  in
a conic neighbourhood of conesupp c i EF i c c r .

A simple calculation shows that

fqi, = (1+112 1V) - 6  A r, where Ar =  tql, Kin) +25rciri x
E 7  t te 2 +1121d2) - 1 . B ut (1 +112 1d2 )

0

is a  bounded family in  EA,

V  >0  and 
- -1

1+ ,121v  is  a bounded family in  EA , V Ii>0, Ile (0 , 1 ] . Thus

A r e  Eur _i uniformly with respect to ,tt and conesupp A r E T i c  cr.
Let us define the cutoff symbol n, n -=1 in a conic neighbourhood of p ° ,

conesupp E{ (x, (x) n () *o}.
Thus

{qi, ci} = A rn 2ci +
 (1 _ 2 )  (1 +#2 112 ) - 6 Ar=

= 772Cd30+ (1 —  772 ) + p 2 1d2) - 5 A r

and BoE Va_i uniformly with respect to tt, conesupp Boc CF.
So

Bo = D0+26 (1 ±tiql 2) i l q k ti2 j

1 H ere  w e use the fact that u  E  C  (Q\ ye)).
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and Do (P) K i n ) f— 191, Kin } assum ing p .= (x , 1 in  a  tiny conic
ICi Ti

neighbourhood of p°.
But

B o (p°) = <Preqi(p°) ,  Vx (K in ) (p°) > — < Viqi(p°), Pi (K in) (p°) >
+25 (1 - I- p2 ) - 1 /22 ‹ 17x9i (e) , °> = — c < G in n  > +

+25c 1
/ 1 2 =  c (r— 2 5 1 1 2  =  —c (r+ 0 (Ii 2 ) ) , p— >0.
+,u21  ± , u 2

(Here we have used Euler's identity for the homogeneous function
ordgi=r) .

Let us consider now the symbol

C 20 =  (X )  r2 ( ) I V2t (1 +112 1 d2)

where K, r, orc4 r=0 have the same properties as and Ti, i. e. 6=2,
r=2 t( C ,E  E t

a
- 2  fo r each fixed p>0).

Then we get

{qi, c }= 172 c 2d30 + (1— 772) + 2 I 2 )  2A21,( 4 . 1 )

where Bo EES-1-1 uniform ly w ith  respect to  p, A 2t C Eô-t- i  uniformly with
respect to II, conesupP Bo and conesupp A21 C C '  and

Bo (p°) = — 2c (t+ 0  (p2 )), p—q). (4 . 2)

We point out that uel-Emc i (conesupp (1 - 722 )A 21)  and that t >s  a n d  (v )  imply

1
—

2  
Bo (p°) (Im R'o (p°) z, z) >0.( 4 . 3 )

(GIs = CaNu, R q i .IN+R o +  ) .

The bilinear form  (Cji, Cuu),fi = Ru is well defined in H
°
 a s  Coll EMmp,

C0 u EH 0 (conesupp CC C f', v tt> 0) .
Thus,

C,u) -=Im(C„qiINu, C,u) +( 4 . 4 )
Tm (C, Rou, GIs) +K,

u

where the constant C does not depend on p.
In  fa c t , G C E `, u n ifo rm ly  w ith  respec t to i  a n d  R  i s  a  smoothing

operator of o rder — (a - 1), i. e. I  (C0 14t, C„u)1<li CIuIkiIl Gully

cil u U
2
1

'  

a -

2

1  ,  

2

1

/.

T he left - hand side of (4 .4 ) can  be  estim ated  very  easy  as f i  E ( f l ,

conesupp C HEF imply
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(Cuu, C pf 1)1 Eli Cauliô,mcl(r) C (E)ii f ,mc I (r),
V E >0 and C(E) does not depend on p.

The identity Cf iu=r)C„u+ (1 — r))C„u, ( i - 1)CE E t, uniformly with respect
to p, the relations u E l-Pmci(r\p °)  and conesuppn is concentrated near p°,
.r) 1 near p° show  that II nCgullo + dill u p° f ' .

So

1 (c„fi, c0u)1 E1177c0u116+c(E) 11./1.ancl(n+ (4 .5 )

C1(E)llull,m ci(r"), V  E>0.

Obviously, Im(C fiqi hru, Cu u.) =Im (q i Cu u, ± Im ([C ,, u, .
P u t  y  = Cuu. T h e n  (qv), y) = (y, qi*  v ), q i= qi/N a n d  accord ing  to  [3] the
symbol of the L 2  adjoint o p e ra to r  q  of qi  is given by the formula:

• E  qiiar) )+R ,
la 1=1

being a smoothing continuous operator of order —  (a - 1) . So

(91Y, y) — (v, q i v) +i (v, e a)  )) +0 (Iiu
2

1 )
1a1=1

21m (qiv, v) = (y, q (

ty y ) +0 (11u P-0) .2la1=1

Having in  mind the fact that qit)c Eg_i is real - valued we get, applying again
Theorem 3.3 from  [3]:

21m (qiy, v) = (qitrv, v) +0 (li u 2 •

Thus,

Im(q1C0 u, C l l u) = -1 (qic1Cuu, C f i u )  +0  (11u U—)
11

and the remainder 0 (•) is independent of tt.
In a similar way

Im (Cu Ro u, Cu u) =Im (Ro C„u, Cu u) +0 (ii u 114 ) .

In fa c t, [Cm, Ro] E Ef7-'2, fo r  a >  2 a s  Ro e Eg_i a n d  [CO3 Ro] is — t a —  1
regularizing operator, uniformly with respect to i, in  the  case  1 <a<2. Then

Im (Ro Cu u, Cu u) = (ImRoCu u, Cu u) +0 (II u 114 ) (4.7)

a n d  O ( • )  is independent o f te, Im Ro = R0 —  Ro * 
2 i i s  a  Herm itian self - adjoint

matrix,
W e  know  tha t [Cm, c E t0-1 uniform ly with respect to  p  and  has the

2
1a1=1

(4.6)
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principal symbol ÷{C„, q1). So

Im ( [Ca, qi.]u, Co) = —Re ({G, qi}u, C,u) I u
i.e .

Im ([C,, C,u) ({qi, C}u, u) +ON u (4 .8)

Combining (4.4)- (4.8) we get

suir)Cmull6+c (6) Ilfilli,ma(r) +ci (6)11u P,„,,i(r") (4. 9)

1 -1:Ze C}u, u) + (ImkoC„u, C„u) +Oil u 2t

The identity (4.1) shows that

Re ({qi, C}u, u) =Re (nC,Bou, r/Cu u) +0 (11 u 114 ) ±
Re ( (1 —

7 7 2 )  ( i  + / 1 2 1  D  1 2 )  — 2  A  2 t  
U,

where conesupp A2tcr,  A 2 1  E uniformly with respect to p.
According to Bony ([3], Corollary 3 .5  a) ., b).)

(Iu, u) I d2 U 11 + II U R ,m cl(r")) •2 (4.10)

Having in mind that

(Im4C,u, Gu) = (772 ImYoGu, Ca u) (4.11)
(C,* (1-77 2) ImR'oC„ u, u),

J1 E _1 un ifo rm ly  w ith  re spec t to  ,u, conesupp LOEF, ,J1 0  n e a r  p° w e
conclude that

(Jiu, n) I c13 (II u II ci + lu2 (4 . 12)

with d2, d3 independent of p .  Obviously,

(n 2 ImR'oCuu, G u ) = (ImR'onC,u, riCuu) +0 (Du ii--(7
2
- 1 )

a s  [17, ImR] is smoothing operator o f  order — (a — 1) a n d  0  (•)  does not
depend on p.

So

Im (R'0C,u, c,u) = (im ko nc,u, 72c ,u )  + (4.13)
(II u +11u II ,mcur"))
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According to (v) : 1) . Bo+ImR'oE zg_i, and 2) . 1B0(0 / N + Im 4  (e )  is

Hermitian and positively definite matrix which implies that
1B0 (p)IN + Im R (p ) is Hermitian and positively definite matrix near p

°
.

Combining (4 .9 )- (4 .13 ) and having in mind that

(r)C,Bou, r)C,u) = (Bo r)C,u, r)Cau) +0 (Ou

w e get that V e>0

nCgU llfi+C (5) +d 4.11U 11.mc1(.1"") >- (4.14)
1Re(( -

2
/30+ImR'0))7Cgu, )7C,u)+d511u

The constants C(e), d4, d 5 i n  (4 .14) are independent of ft.

Taking co n esu p p  c  fp: B (p) + ImR'0 (p) > 0 ) w e can apply Garding's
inequality for positive paradifferential operators [3 ] and obtain:

Re((
1

-
2
/30 +Im R) (77C,u), 7)Cu) d 611 C 116 (4.15)

+o (II 77Gul12-6)

for some O=const>0 and d6 =const>0, 00 are independent of tt.
The standard interpolation inequality in Sobolev spaces gives us that

II 17C,uIo^const,

j .  e. for sufficiently small s> 0

u E Micupo) u  E M n c i  (T).

Thus everything is proved.
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