The mod 3 homology of the space of loops on the exceptional Lie groups and the adjoint action

By

Hiroaki Hamanaka* and Shin-ichiro Hara

1. Introduction

Let \(p \) be a prime number and \(G \) be a compact, connected, simply connected and simple Lie group. Let \(\Omega G \) be the loop space of \(G \). Bott showed \(H_* (\Omega G; \mathbb{Z}/p) \) is a finitely generated bicommutative Hopf algebra concentrated in even degrees, and determined it for classical groups \(G \) ([1]).

Here, let \(G \) be an exceptional Lie group, that is, \(G = G_2, F_4, E_6, E_7, E_8 \). In [2], K. Kozima and A. Kono determined \(H_* (\Omega G; \mathbb{Z}/2) \) as a Hopf algebra over \(\mathcal{A}_2 \), where \(\mathcal{A}_p \) is the mod \(p \) Steenrod Algebra and acts on it dually.

Let \(\text{Ad} : G \times G \to G \) and \(\text{ad} : G \times \Omega G \to \Omega G \) be the adjoint actions of \(G \) on \(G \) and \(\Omega G \) respectively. In [3], the cohomology maps of these adjoint actions are studied and it is shown that \(H^* (\text{ad} : Z/p) = H^* (p_2 : Z/p) \) where \(p_2 \) is the second projection if and only if \(H_* (G; Z) \) is \(p \)-torsion free. For \(p = 2, 3 \) and \(5 \), some exceptional Lie groups have \(p \)-torsions on its homology. Moreover in [8, 9] mod \(p \) homology map of \(\text{ad} \) is determined for \((G, p) = (G_2, 2), (F_4, 2), (E_6, 2), (E_7, 2) \) and \((E_8, 5) \). This result is applied to compute the \(\mathcal{A}_5 \) module structure of \(H_* (\Omega E_6; Z/5) \) and \(H_* (\Omega E_8; Z/5) \) in [9].

For a compact and connected Lie group \(G \), the free loop group of \(G \) is denoted by \(LG (G) \), i.e., the space of free loops on \(G \) equipped with multiplication as

\[
\phi \cdot \phi (t) = \phi (t) \cdot \phi (t),
\]

and has \(\Omega G \) as its normal subgroup. Then

\[
LG (G) / \Omega G \cong G,
\]

and identifying elements of \(G \) with constant maps from \(S^1 \) to \(G \), \(LG (G) \) is equal to the semi-direct product of \(G \) and \(\Omega G \). This means that the homology of \(LG (G) \) is determined by the homology of \(G \) and \(\Omega G \) as module and the algebra structure of \(H_* (LG (G); Z/p) \) depends on \(H_* (\text{ad} : Z/p) \) where

\[
\text{ad} : G \times \Omega G \to \Omega G
\]

Received September 3, 1996

*Partially supported by JSPS Research Fellowships for Young Scientists.
is the adjoint map. Since the next diagram commutes where \(\lambda, \lambda', \) and \(\mu \) are the multiplication maps of \(\Omega G, LG(G) \) and \(G \) respectively and \(\omega \) is the composition

\[
(1_{\Omega G} \times T \times 1_G) \circ (1_{\Omega G \times G} \times ad \times 1_G) \circ (1_{\Omega G} \times \Delta_G \times 1_{\Omega G \times G}),
\]

\[
\Omega G \times G \times \Omega G \times G \xrightarrow{\omega} \Omega G \times \Omega G \times G \xrightarrow{\lambda \times \mu} \Omega G \times G
\]

\[
\downarrow \equiv \times \equiv \downarrow \equiv
\]

\[
LG(G) \times LG(G) \xrightarrow{\lambda'} LG(G)
\]

we can determine directly the algebra structure of \(H_*(LG(G); \mathbb{Z}/p) \) by the knowledge of the Hopf algebra structure of \(H_*(G; \mathbb{Z}/p), H_*(\Omega G; \mathbb{Z}/p) \) and induced homology map \(H_*(ad; \mathbb{Z}/p) \). See Theorem 6.12 of [8] for detail.

In this paper we determined the Hopf algebra structure over \(\mathbb{F}_3 \) of the homology group \(H_* (\Omega G; \mathbb{Z}/3) \) for \(G = F_4, E_6, E_7 \) and \(E_8 \) by using adjoint action and determine the mod 3 homology map of \(\text{ad} \) for them. The result is shown in \(\S 2 \).

This paper is organized as follows. We refer to the results of [4, 5, 6] for the structure of \(H^*(G) \) and compute \(H^*(\Omega G) \) for the lower dimensions and their cohomology operations are partially determined. This is done in \(\S 3 \). In \(\S 4 \) we turn to their homology rings. We determine the algebra structure of \(H_* (\Omega G; \mathbb{Z}/3) \) and we partly determine the Hopf algebra structure and cohomology operations on \(H_* (\Omega G; \mathbb{Z}/3) \). Finally in \(\S 5 \) the homology map of the adjoint action and the rest of the Hopf algebra structure and cohomology operations are determined. The computations are completely algebraic.

2. Results

Let \(G (l) \) be the compact, connected, simply connected and simple exceptional Lie group of rank \(l \) where \(l = 4, 6, 7 \) or 8. The exponents of \(G (l) \) are the integers \(n(1) < n(2) < \cdots n(l) \) which are given by the following table:

<table>
<thead>
<tr>
<th>(l)</th>
<th>(n(1))</th>
<th>(n(2))</th>
<th>(n(3))</th>
<th>(n(4))</th>
<th>(n(5))</th>
<th>(n(6))</th>
<th>(n(7))</th>
<th>(n(8))</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>5</td>
<td>7</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>13</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>7</td>
<td>11</td>
<td>13</td>
<td>17</td>
<td>19</td>
<td>23</td>
<td>29</td>
</tr>
</tbody>
</table>

Put \(E(l) = \{ n(1), \cdots, n(l) \} \) and \(\phi(t) = \Delta_*(t) - (t \otimes 1 + 1 \otimes t) \) where \(\Delta \) is the diagonal map. \(\mathcal{P}^*_k \) is the dual of the Steenrod operation \(\mathcal{P}^*_k \). Then the results are following:
Theorem 1. As a Hopf Algebra over \mathbb{A}_3,

\[H_*(\Omega G(1); \mathbb{Z}/3) \cong \begin{cases}
\mathbb{Z}/3 \left[t_{2j} \in E(1) \cup \{3\} \right] / (t_2^3), & \text{if } 1 = 4, 6, 7 \\
\mathbb{Z}/3 \left[t_{2j} \in E(8) \cup \{3, 9\} \right] / (t_2^3, t_6^3), & \text{if } 1 = 8
\end{cases} \]

where $|t_{2j}| = 2j$.

\[-\phi(t_{2j}) = \begin{cases}
0, & \text{if } j \neq 3, 9, \\
-t_2^2 \otimes t_2 - t_2 \otimes t_2^2, & \text{if } j = 3, \\
t_2 t_6^2 \otimes t_2 + t_2 t_6^2 \otimes t_2^2 - t_6^2 \otimes t_6 - t_2^2 t_6 \otimes t_2 t_6, \\
-t_2 t_6 \otimes t_2^2 t_6 - t_6 \otimes t_6^2 + t_2^2 \otimes t_2 t_6^2 + t_2 \otimes t_2^2 t_6^2, & \text{if } j = 9.
\end{cases} \]

\[\mathcal{P}_{\mathfrak{a}t_{2j}} = 0, \quad \text{if } r \geq 3, \]

\[\mathcal{P}_{\mathfrak{a}t_{2j}} = \begin{cases}
t_{22}, & \text{if } j = 29, \\
0, & \text{otherwise}.
\end{cases} \]

$\mathcal{P}_{\mathfrak{a}t_{2j}}$ and $\mathcal{P}_{\mathfrak{a}t_{2j}}$ are given by the following table:

<table>
<thead>
<tr>
<th>t_{2j}</th>
<th>t_2</th>
<th>t_6</th>
<th>t_{10}</th>
<th>t_{14}</th>
<th>t_{16}</th>
<th>t_{18}</th>
<th>t_{22}</th>
<th>t_{26}</th>
<th>t_{34}</th>
<th>t_{38}</th>
<th>t_{45}</th>
<th>t_{58}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{P}{\mathfrak{a}t{2j}}$</td>
<td>0</td>
<td>t_2</td>
<td>0</td>
<td>0</td>
<td>t_{10}</td>
<td>t_{14}</td>
<td>t_{16}</td>
<td>t_{18}</td>
<td>t_{22}</td>
<td>t_{26}</td>
<td>t_{34}</td>
<td>t_{38}</td>
</tr>
<tr>
<td>$\mathcal{P}{\mathfrak{a}t{2j}}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>t_6</td>
<td>0</td>
<td>t_{14}</td>
<td>t_{22}</td>
<td>t_{26}</td>
<td>t_{34}</td>
<td>0</td>
</tr>
</tbody>
</table>

where ε and κ are 1 or -1.

Remark. In Theorem 1, if t_{2j} does not exist in $H_*(\Omega G(1); \mathbb{Z}/3)$, we regard t_{2j} as 0 for such j.

Let Ad: $G \times G \rightarrow G$ and ad: $G \times \Omega G \rightarrow \Omega G$ be the adjoint actions of a Lie group G defined by $Ad(g, h) = ghg^{-1}$ and $ad(g, l)(t) = gl(t) g^{-1}$ where $g, h \in G$, $l \in \Omega G$ and $t \in [0, 1]$. These induce the homology maps

$Ad_*: H_*(G; \mathbb{Z}/3) \otimes H_*(G; \mathbb{Z}/3) \rightarrow H_*(G; \mathbb{Z}/3)$

$ad_*: H_*(G; \mathbb{Z}/3) \otimes H_*(\Omega G; \mathbb{Z}/3) \rightarrow H_*(\Omega G; \mathbb{Z}/3)$.

Theorem 2. There are generators y_8 in $H_*(G(1); \mathbb{Z}/3)$ for $l = 4, 6, 7$ and y_8 and y_{20} in $H_*(E_6; \mathbb{Z}/3)$. We can choose these generators so that $ad_* (y_i \otimes t_{2j})$ $(i = 8, 20)$ is given by the following table.
where $\delta, \varepsilon \in \mathbb{Z}/3\mathbb{Z}$ and $\varepsilon \neq 0$. For other generators $y_i \in H_*(G(l); \mathbb{Z}/3)$, $ad(y_i \otimes t_{2j}) = 0$ for all j.

3. The mod 3 cohomology groups

We recall the results of [4, 5, 6] for the structure of $H^*(G(l); \mathbb{Z}/3)$ as the Hopf algebra over A_3.

Theorem 3. There is an isomorphism:

$$H^*(G(l); \mathbb{Z}/3) \cong \begin{cases} \Lambda(x_{2l+1}) \otimes \mathbb{Z}/3[x_8] / (x_8^2), & \text{if } l = 4, 6, 7, \\ \Lambda(x_{2l+1}) \otimes \mathbb{Z}/3[x_8, x_{20}] / (x_8^2, x_{20}^3), & \text{if } l = 8, \end{cases}$$

the coproduct is given by:

<table>
<thead>
<tr>
<th>x_i</th>
<th>φx_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_{11}</td>
<td>$x_8 \otimes x_3$</td>
</tr>
<tr>
<td>x_{15}</td>
<td>$x_8 \otimes x_7$</td>
</tr>
<tr>
<td>x_{17}</td>
<td>$x_8 \otimes x_9$</td>
</tr>
<tr>
<td>x_{27}</td>
<td>$x_{20} \otimes x_{19} + x_8 \otimes x_7$</td>
</tr>
<tr>
<td>x_{35}</td>
<td>$x_{20} \otimes x_{19}$</td>
</tr>
<tr>
<td>x_{39}</td>
<td>$x_{20} \otimes x_{19}$</td>
</tr>
<tr>
<td>x_{47}</td>
<td>$-x_8 \otimes x_{39} - x_{20} \otimes x_{27} - x_{20} x_8 \otimes x_{19} + x_8 x_{20} \otimes x_7$</td>
</tr>
<tr>
<td>others</td>
<td>0</td>
</tr>
</tbody>
</table>

and the cohomology operations are determined by the following table:

<table>
<thead>
<tr>
<th>x_i</th>
<th>x_3</th>
<th>x_7</th>
<th>x_9</th>
<th>x_{11}</th>
<th>x_{15}</th>
<th>x_{17}</th>
<th>x_{19}</th>
<th>x_{20}</th>
<th>x_{27}</th>
<th>x_{35}</th>
<th>x_{39}</th>
<th>x_{47}</th>
</tr>
</thead>
<tbody>
<tr>
<td>βx_i</td>
<td>0</td>
<td>x_8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$-x_8$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$-x_8 x_{20}$</td>
<td>$-x_8 x_{20}$</td>
<td>0</td>
</tr>
<tr>
<td>$\mathcal{P}^1 x_i$</td>
<td>x_7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>x_{15}</td>
<td>x_{19}</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>x_{39}</td>
<td>0</td>
</tr>
<tr>
<td>$\mathcal{P}^3 x_i$</td>
<td>0</td>
<td>x_{19}</td>
<td>x_{20}</td>
<td>0</td>
<td>0</td>
<td>x_{27}</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$-x_{39}$</td>
<td>x_{47}</td>
<td>0</td>
</tr>
</tbody>
</table>

where ε is 1 or -1.

If $r > 1$ then $\mathcal{P}^r x_i = 0$.

Remark. We consider x_i in these tables as 0 when $x_i \in H^*$.
Recall a Serre fibration:

\[\Omega G(l) \to \ast \to G(l). \]

First, we compute \(H^*(\Omega G(l); \mathbb{Z}/3) \) by the Serre spectral sequence associated with the fibration (A). This spectral sequence has a Hopf algebra structure. We can proceed to compute it using degree-reason and Kudo’s transgression theorem ([7]) from the previous theorem. For \(j \in E(l) - \{9, 11, 29\} \), there are universally transgressive elements \(a_{2j} \in H^*(\Omega G(l); \mathbb{Z}/3) \), such that \(\tau a_{2j} = x_{2j+1} \). Thus we can show that for \(j = 9, 11, 15, 21, 27 \), there are \(a_{2j} \) such that satisfy

\[
\begin{align*}
 d_7(1 \otimes a_{18}) &= x_7 \otimes a_6^2, & \text{for } l = 4, 6, 7, \\
 d_{11}(1 \otimes a_{36}) &= x_{11} \otimes a_{10}^2, & \text{for } l = 4, 6, 7, \\
 d_{15}(1 \otimes a_{54}) &= x_{15} \otimes a_{14}^2, & \text{for } l = 8, \\
 d_{19}(1 \otimes a_{72}) &= x_{19} \otimes a_{18}^2, & \text{for } l = 4, 6, 7, 8, \\
 d_{19}(1 \otimes a_{90}) &= x_{19} \otimes a_{22}^2, & \text{for } l = 8.
\end{align*}
\]

\(a_{2j} \)'s are generators of the cohomology group in the low dimensions. The results are the following:

Proposition 4. For the dimensions less than \(2n(l) + 2 \), the next isomorphism holds:

\[
H^*(\Omega G(l); \mathbb{Z}/3) \cong \begin{cases}
\mathbb{Z}/3 [a_{2j}] & \text{if } l = 4, 6, \\
\mathbb{Z}/3 [a_{2j}] / (a_2^9), & \text{if } l = 7, \\
\mathbb{Z}/3 [a_{2j}] / (a_2^{27}, a_{14}^3), & \text{if } l = 8.
\end{cases}
\]

Now we start to determine the cohomology operations and the coproducts on \(a_{2j} \).

Theorem 5. For \(j \in E(l) - \{9, 11, 29\} \), \(a_{2j} \in H^*(\Omega G(l); \mathbb{Z}/3) \) is primitive and cohomology operations are determined by

\[
\begin{array}{c|cccccccc}
 a_{2j} & a_2 & a_8 & a_{10} & a_{14} & a_{16} & a_{26} & a_{34} & a_{38} \\
\hline
 \mathcal{P}^1a_{2j} & a_2^3 & 0 & a_{14} & \varepsilon a_2^9 & 0 & 0 & \varepsilon a_{38} & 0 & 0 \\
 \mathcal{P}^2a_{2j} & 0 & 0 & 0 & a_{26} & 0 & -a_{38} & a_{46} & 0 & 0
\end{array}
\]

If \(r > 1 \) then \(\mathcal{P}^{3r}a_{2j} = 0 \).

Proof. For \(j \in E(l) - \{9, 11, 29\} \), \(a_{2j} \) is transgressive, therefore \(\mathcal{P}^1a_{2j} = \mathcal{P}^{1}x_{2j+1} = \sigma \mathcal{P}^{1}x_{2j+1} \). Thus this can be determined by Theorem 3.

For the investigation of \(a_{2j} \) which is not transgressive we start from the
following theorem. In the next theorem, ϕ means the coproduct of $H^*(\Omega G; Z/3)$ and we set $\phi(a) = \phi(a) - (a \otimes 1 + 1 \otimes a)$.

Theorem 6. For $j = 9, 15, 21, 27$, $\tilde{\varphi}_{a_{2j}}$ is given by the following formula:

$$
\tilde{\varphi}_{a_{2j}} =
\begin{cases}
 a_2^3 \otimes a_2^6 + a_2^6 \otimes a_2^3, & \text{if } j = 9, \\
 a_{10} \otimes a_{10}^2 + a_{10}^2 \otimes a_{10}, & \text{if } j = 15, \\
 a_{14} \otimes a_{14}^2 + a_{14}^2 \otimes a_{14}, & \text{if } j = 21, \\
 a_2^9 \otimes a_{2}^{18} + a_2^{18} \otimes a_2^9, & \text{if } j = 27.
\end{cases}
$$

Proof. To begin with, we investigate the element a_{18}. Let a_2' be the generator of $H^2(\Omega F_4; Z)$. $H^*(\Omega F_4; Z)$ has no torsion and is a commutative Hopf algebra over Z. Since $a_2^3 = 0$, there is a_{18}' such that $a_2^9 = 3a_{18}'$ and $\rho a_{18}' \neq 0$, where ρ is modulo 3 reduction. Then we can choose a_{18} as $\rho a_{18}'$. The coproduct of a_{18}' is computed as follows:

$$
\phi a_{18}' = 1/3 \phi a_2^9 = 1/3 (1 \otimes a_2 + a_2 \otimes 1)^9 = a_{18}' \otimes 1 + a_2^3 \otimes a_2^6 + a_2^6 \otimes a_2^3 + 1 \otimes a_{18}' \pmod{3}.
$$

Thus $\tilde{\varphi}_{a_{18}} = a_2^3 \otimes a_2^6 + a_2^6 \otimes a_2^3$ is shown.

Consider the inclusion $c: F_4 \rightarrow E_7$, we chose $a_{18} \in H^*(\Omega E_7; Z/3)$ so as to satisfy $(\Omega c)^* a_{18} = a_{18}$. Because $(\Omega c)^*$ is injective for degrees less than 18, $\tilde{\varphi}_{a_{18}} = a_2^3 \otimes a_2^6 + a_2^6 \otimes a_2^3$ is shown again for this a_{18}. And in the similar way we put $a_{30} = 1/3a_{18}^3$, $a_{42} = 1/3a_{14}^3$ and $a_{54} = 1/3a_2^{27}$ and obtain the coproduct formulas of the statement.

We remark that we can assume that a_{22} and a_{58} are primitive.

Theorem 7. In Proposition 4 we have that $P_1 a_{18} = \pm a_{22}$.

Let $G(l)$ be the 3-connected cover of $G(l)$ and

$$
\Omega \tilde{G}(l) \rightarrow \rightarrow \tilde{G}(l)
$$

be Serre fibrations. To prove Theorem 7 we have to compute $H^*(\Omega \tilde{G}; Z/3)$ and $H^*(\tilde{G}; Z/3)$.

Let \tilde{a}_{2j} be $\Omega(p)^* a_{2j}$, for $j \neq 1$. Using the Serre spectral sequence associated with the fibration (D), one can easily show that there are generators $\tilde{a}_{17} \in H^{17}$ for $l = 4, 6$, and $\tilde{a}_{53} \in H^{53}$ for $l = 8$. We have the
following proposition. Let denote $E(t) - (1)$ as $\tilde{E}(t)$.

Proposition 8. For the dimensions less than $2n(t) + 2$, the next isomorphism holds:

$$H^*(\Omega G(t); Z/3) \cong \begin{cases}
Z/3[\tilde{a}_2] \in \tilde{E}(l) \cup \{9\}] \otimes \Lambda(\tilde{a}_{17}), & \text{if } l = 4, 6, \\
Z/3[\tilde{a}_2] \in \tilde{E}(l) \cup \{15\}] / (\tilde{a}_{10}^3), & \text{if } l = 7, \\
Z/3[\tilde{a}_2] \in \tilde{E}(l) \cup \{21, 27\}] / (\tilde{a}_{14}^3) \otimes \Lambda(\tilde{a}_{53}), & \text{if } l = 8.
\end{cases}$$

By computing the Serre spectral sequence associated with (B), it is easy to see \tilde{a}_{2j}, $(j \neq 15, 21)$ is universally transgressive. Let \tilde{x}_{i+1} be $\tau\tilde{a}_i$. Then we have the following:

Proposition 9. For the dimensions less than $2n(t) + 2$, the next isomorphism holds:

$$H^*(\tilde{G}(l); Z/3) \cong \begin{cases}
\Lambda(\tilde{x}_{2j+1}] \in \tilde{E}(l) \cup \{9\}) \otimes Z/3[\tilde{x}_{18}], & \text{if } l = 4, 6, \\
\Lambda(\tilde{x}_{2j+1}] \in \tilde{E}(7)], & \text{if } l = 7, \\
\Lambda(\tilde{x}_{2j+1}] \in \tilde{E}(8) \cup \{27\}) \otimes Z/3[\tilde{x}_{54}], & \text{if } l = 8.
\end{cases}$$

Proof of Theorem 7. It is possible to show that P^1a_{18} is not zero as follows. Let σ' denotes the cohomology suspension associated to the fibration (C) for $l = 4$. It is easy to see $\tilde{x}_{18} = \sigma' \beta P^1u_3$ and $\tilde{x}_{23} = \sigma'(\beta P^1u_3)^3$, where u_3 is the generator of $H^3(K(Z, 3); Z/3)$. So we get $P^1\tilde{x}_{19} = \sigma' P^1\beta P^1u_3 = \sigma' P^1\beta P^1u_3 = \sigma'(\beta P^1u_3)^3 = \tilde{x}_{23}$, and from this, we have $(\Omega p)^*P^1a_{18} = P^1(\Omega p)^*a_{18} = P^1\sigma \tilde{x}_{19} = \sigma P^1\tilde{x}_{19} = \sigma \tilde{x}_{23} = a_{22}$, where σ is the cohomology suspension associated to (B). Thus $P^1a_{18} \neq 0$. We fix a_{22} as P^1a_{18}.

4. **Homology groups**

Theorem 10. The homology ring of $\Omega G(l)$ is

$$H_*(\Omega G(l); Z/3) \cong \begin{cases}
Z/3[t_2] \in E(l) \cup \{3\}] / (t_2^3), & \text{if } l = 4, 6, 7, \\
Z/3[t_2] \in E(8) \cup \{3, 9\}] / (t_2^3, t_6^3), & \text{if } l = 8.
\end{cases}$$

where $|t_2| = 2j$. The coproduct is given by

$$\bar{\phi}(t_2) = \begin{cases}
0, & \text{if } j \neq 3, 9, 11, 29, \\
-t_2^2 \otimes t_2 - t_2 \otimes t_2^2, & \text{if } j = 3, \\
t_2 t_6 \otimes t_2 + t_2 t_6^2 \otimes t_2^2 - t_6^2 \otimes t_6 - t_2^2 t_6 \otimes t_6^2 - t_2 t_6 \otimes t_6^2 - t_2 \otimes t_2^2 t_6^2, & \text{if } j = 9.
\end{cases}$$
Proof. Let t_{2j} be the dual element of $a_{2j} \in H_* (\Omega G; \mathbb{Z}/3)$ as to the monomial basis for $j \in E (l) - \{9\}$ and t_6, t_{18} be the dual element of a_3, a_9, respectively. It is easy to see $t_3^3 = t_6^3 = 0$ and to show the coproduct formula for t_6 and t_{18}. Thus we can say that statement (1) is true for $\ast < 2n (l) + 2$.

Now it is possible to show that there is no truncation in $H_* (\Omega G (l); \mathbb{Z}/3)$ other than the parts generated by t_2 and t_6 and that (1) holds for all dimensions. Since $H_* (\Omega G (l); \mathbb{Z}/3)$ is the even degree concentrated commutative Hopf algebra, we may suppose

$$H_* (\Omega G (l); \mathbb{Z}/3) = \mathbb{Z}/3 [u_i | i \in E] \otimes \mathbb{Z}/3 [v_j | j \in E] / (v_j^{3^{|l|}} | j \in E).$$

Consider an Eilenberg-Moore spectral sequence:

$$E_2 = \text{Ext}_{H_* (\Omega G (l); \mathbb{Z}/3)} (\mathbb{Z}/3, \mathbb{Z}/3) \Rightarrow E_\infty = \mathcal{G} (H^* (G (l); \mathbb{Z}/3)).$$

Since $E_2 = \Lambda (su_i | i \in E') \otimes \Lambda (sv_j | j \in E) \otimes \mathbb{Z}/3 [\theta v_j | j \in E]$, where $\deg su_i = (1, |u_i|)$, $\deg sv_j = (1, |v_j|)$, and $\deg \theta v_j = (2, 3^{|v_j|})$, the essential differentials have the forms:

$$d_{su_i} = (\theta v_j)^{3^{v_j}} (k_j \geq 1) \text{ and } d_{sv_j} = (\theta v_j)^{3^{v_j}} (l_j \geq 1).$$

Because $H^* (G (l); \mathbb{Z}/3)$ is a finite dimensional vector space, one can easily show

$$E_\infty = \Lambda (su_i | i \in E') \otimes \Lambda (sv_j | j \in E) \otimes \mathbb{Z}/3 [\theta v_j | j \in E] / ((\theta v_j)^{3^{|v_j|}} | j \in E), \quad (I' \subseteq I, f' \subseteq f)$$

and $|I'| + |f'| = |I|$. Here the total dimension of E_∞ is $2^{|v_j| + |f| + \sum_m (m_j \geq 1)}$ and the total dimension of $H^* (G (l); \mathbb{Z}/3)$ is $2^{E (l) + |f|}$ where $E (l) = 1$ for $l = 4, 6, 7$ and $f (l) = 2$ for $l = 8$. Thus the indices f of the truncation part satisfy that $|f| \leq f (l)$ and $|I| = |E (l)|$. This means that the truncation parts of $H_* (\Omega G; \mathbb{Z}/3)$ is generated by only t_2 and t_6.

Therefore $H_* (\Omega G (l); \mathbb{Z}/3)$ has the form

$$\mathbb{Z}/3 [u_i | i \in E] \otimes \mathbb{Z}/3 [t_2] / (t_2^3) \quad \text{for } l = 4, 6, 7 \text{ and }$$

$$\mathbb{Z}/3 [u_i | i \in E] \otimes \mathbb{Z}/3 [t_2, t_6] / (t_2^3, t_6^3) \quad \text{for } l = 8.$$

Also Theorem 5 means that for $j \in E (l) - \{9\}$, t_{2j} is primitive and indecomposable and t_6, t_{18} are indecomposable. Thus

$$\{t_{2j} | j \in E (l)\} \cup \{t_6\} \subset \{u_i | i \in E\} \quad \text{for } l = 4, 6, 7 \text{ and }$$

$$\{t_{2j} | j \in E (l)\} \cup \{t_{18}\} \subset \{u_i | i \in E\} \quad \text{for } l = 8.$$

Since $|E| = |E (l)|$, the theorem is proved.

Dualizing the result of Theorem 5 and Theorem 7, we obtain the statement of Theorem 1 except for $P_{4t_{26}}, P_{4t_{34}}, P_{5t_{34}}, P_{4t_{46}}, P_{4t_{58}}$ and $P_{5t_{58}}$. To determine these operations, we use the adjoint action of $H_* (G (l); \mathbb{Z}/3)$ on $H_* (\Omega G (l); \mathbb{Z}/3)$ which is introduced in the next section.

Remark. The computation of dualizing the result of Theorem 5 and Theorem 7 is not difficult except for $P_{4t_{18}}$, because P_{4t} is primitive if t is
primitive. Moreover, it is easily shown
\[\tilde{\phi}(p_1^t_{18}) = P^t_1 \implies \phi(-t_2t_6^2) \]
and this shows \(P^t_1 t_{18} = -t_2t_6^2 \) modulo primitive elements. By Theorem 5 we can see \(P^t_{a_{14}} = e_{a_2}^9 \) and this shows that \(P^t_{18 t_{18}} = e_{t_{14}} - t_2t_6^2. \)

5. Adjoint action

Put \(y * y' = \text{Ad}_*(y \otimes y') \) and \(y * t = \text{ad}_*(y \otimes t) \) where \(y, y' \in H_*(G; \mathbb{Z}/3) \) and \(t \in H_*(\Omega G; \mathbb{Z}/3). \) The following theorem is the dual result of [3]. Also see [9].

Theorem 11. For, \(y, y', y'' \in H_*(G; \mathbb{Z}/3) \) and \(t, t' \in H_*(\Omega G; \mathbb{Z}/3) \)

(i) \(1 * y = y, 1 * t = t. \)

(ii) \(y * 1 = 0, \) if \(|y| > 0, \) whether \(1 \in H_*(G; \mathbb{Z}/3) \) or \(1 \in H_*(\Omega G; \mathbb{Z}/3). \)

(iii) \((y y') * t = y * (y' * t). \)

(iv) \(y * (t t') = \sum (-1)^{w' * |t|} (y' * t) (y'' * t') \) where \(\Delta_{\ast y} = \sum y' \otimes y''. \)

(v) \(\sigma(y * t) = y * \sigma(t) \) where \(\sigma \) is the homology suspension.

(vi) \(P_{*}^n (y * t) = \sum (P_{*}^t y) * (P_{*}^n - t). \)

(vii) \(P_{*}^n (y * y') = \sum (P_{*}^t y') * (P_{*}^n - t'). \)

And \(\Delta_{* y} (y * t) = (\Delta_{* y} *) \ast (\Delta_{* t}). \)

(viii) \(\Delta_{* y} (y * t) = (\Delta_{* y} \ast (\Delta_{* t}). \)

If \(t \) is primitive then \(y * t \) is primitive.

Also the result of [3] implies the following theorem. See [8].

Theorem 12. We set a submodule \(A \) of \(H_*(G; \mathbb{Z}/3) \) as
\[A = \mathbb{Z}/3[y_8]/(y_8^3) \]
for \(G = F_4, E_6, E_7 \) and
\[A = \mathbb{Z}/3[y_8, y_{20}]/(y_8^3, y_{20}^3) \]
for \(G = E_8 \)

where \(y_{2i} \) is the dual of \(x_{2i} \) with respect to the monomial basis. Then there exists a retraction \(p: H_*(G; \mathbb{Z}/3) \to A \) and the following diagram commutes.

\[
\begin{array}{ccc}
H_*(G; \mathbb{Z}/3) \otimes H_*(\Omega G; \mathbb{Z}/3) & \xrightarrow{\text{ad}_*} & H_*(\Omega G; \mathbb{Z}/3) \\
\downarrow p \otimes 1 & & \downarrow \text{ad}_* \\
A \otimes H_*(\Omega G; \mathbb{Z}/3) & \xrightarrow{\text{ad}_*} & A \otimes H_*(\Omega G; \mathbb{Z}/3)
\end{array}
\]

Remark. By Theorem 3 we can see \(P_{*}^t y_{20} = y_8. \)
Since A_{d+} is agreed with the composition $\mu_\ast (1 \otimes \mu_\ast) \ast (1 \otimes 1 \otimes \iota_\ast) \ast (1 \otimes \iota)$ where μ is the multiplication of $G(l)$ and ι is the inverse map, the next theorem follows. See [9].

Theorem 13. Let $y, y' \in H_\ast(G)$. If y is primitive,

$$ y \ast y' = [y, y'] $$

where $[y, y'] = yy' - (-1)^{\nu(y) \nu(y')} y' y$.

Now we give the proof of Theorem 2 and finish the proof of Theorem 1. Let y_i be the dual element of $x_i \in H^\ast(G(l))$ as to the monomial basis. By Theorem 3 and Theorem 13 we see that for $j \in E(l) \cup \{3, 9\} - \{11, 29\}$

$$ y_i \ast y_{2j+1} = \begin{cases}
 y_{2j+9} & \text{for } j = 1, 3, 4, 9, 13, \\
 -y_{2j+9} & \text{for } j = 19, \\
 0 & \text{others}
\end{cases} $$

and

$$ y_{20} \ast y_{2j+1} = \begin{cases}
 y_{2j+21} & \text{for } j = 3, 7, 9, \\
 -y_{2j+21} & \text{for } j = 13, \\
 0 & \text{others.}
\end{cases} $$

Since $\sigma y_i = y_{2j+1}$ for $j \in E(l) \cup \{3, 9\} - \{11, 29\}$, Theorem 11 (v) implies

$$ \sigma (y_i \ast t_{2j}) \neq 0 \quad \text{for } j = 1, 3, 4, 9, 13, 19, $$

$$ \sigma (y_i \ast t_{2j}) \neq 0 \quad \text{for } j = 3, 7, 9, 13. \quad (2) $$

Then the equations

$$ y_i \ast t_{2} = t_{10} \quad (3) $$
$$ y_i \ast t_{8} = t_{16} \quad (4) $$
$$ y_i \ast t_{26} = t_{34} \quad (5) $$
$$ y_i \ast t_{38} = -t_{46} \quad (6) $$
$$ y_{20} \ast t_{14} = t_{34} \quad (7) $$
$$ y_{20} \ast t_{26} = -t_{46} \quad (8) $$

are shown by Theorem 11 (viii). Moreover (2) implies

$$ y_i \ast t_{6} = t_{14} \quad (9) $$
$$ y_i \ast t_{18} = t_{26} \quad (10) $$
$$ y_{20} \ast t_{6} = t_{26} \quad (11) $$
$$ y_{20} \ast t_{18} = t_{38} \quad (12) $$

modulo decomposable elements. Since

$$ \overline{\phi}(y_i \ast t_6) = - (y_i \ast t_2) \otimes t_2 - (y_i \ast t_2) \otimes t_2 - t_2 \otimes (y_i \ast t_2) - t_2 \otimes (y_i \ast t_2) $$

$$ = \overline{\phi}(-t_{10}t_2^2), $$
one can see that \(y_8 \ast t_6 = -t_{10}t_2^2 \) mod primitive elements. By this and (9), we have

\[
y_8 \ast t_6 = t_{14} - t_{10}t_2^2. \quad (13)
\]

The equations

\[
\begin{align*}
y_8 \ast t_{18} &= t_{26} + t_{10}t_2^2t_6^2 - t_{14}t_6^2, \\
y_20 \ast t_6 &= t_{26} - (y_20 \ast t_2)t_2^2, \\
y_20 \ast t_{18} &= t_{38} - (y_20 \ast t_6)t_6^2
\end{align*}
\]

are shown in the similar way.

By the equation (13), we can compute \(y_8 \ast t_{26} \) as

\[
y_8^3 \ast t_6 = y_8^2 \ast (t_{14} - t_{10}t_2^2) = y_8^2 \ast t_{14} + t_{10}^3.
\]

Since \(y_8^3 = 0 \), \(y_8^2 \ast t_{14} = -t_{10}^3 \) and this means \(y_8 \ast t_{14} \) is a non-zero primitive indecomposable element. We redefine \(t_{22} \) as

\[t_{22} = y_8 \ast t_{14}. \quad (17) \]

Then we have

\[
y_8 \ast t_{22} = -t_{10}^3.
\]

By Theorem 7 we can set \(P^1_{\ast}t_{22} = \kappa t_6^3 \) where \(\kappa = \pm 1 \). Since \(P^1_{\ast}t_{22} = P^1_{\ast}(y_8 \ast t_{14}) = y_8 \ast t_{10} \), we have

\[
y_8 \ast t_{10} = \kappa t_6^3.
\]

By the similar manner, we can compute \(y_8^3 \ast t_{18} \) and obtain \(y_8^2 \ast t_{26} = -t_{14}^3 \). Therefore

\[
y_8 \ast t_{34} = y_8^2 \ast t_{26} = -t_{14}^3. \quad (18)
\]

Because \(t_{16} \) and \(t_{46} \) are primitive, we can set

\[
\begin{align*}
y_8 \ast t_{16} &= \rho_3t_8^3, \\
y_8 \ast t_{46} &= \rho_3t_{18}^3.
\end{align*}
\]

Operate \(P^3_{\ast} \) to (20) to obtain

\[
y_8 \ast t_{34} = P^3_{\ast}(y_8 \ast t_{46}) = \rho_3P^3_{\ast}(t_{18}^3) = \rho_3\varepsilon t_{14}^3.
\]

Thus by (18), we conclude that \(\rho_3 = -\varepsilon \). \(y_8 \ast t_{58} \) will be determined after the determination of \(y_{20} \ast t_{58} \).

Here we apply \(P^1_{\ast} \) on (5), (6) and (14), \(P^3_{\ast} \) on (5) to see

\[
\begin{align*}
P^1_{\ast}t_{26} &= P^1_{\ast}(y_8 \ast t_{18} - t_{10}t_2^2t_2^2 + t_{14}t_6^2) \\
&= \varepsilon y_8 \ast t_{14} = \varepsilon t_{22}, \\
P^1_{\ast}t_{34} &= P^1_{\ast}(y_8 \ast t_{26}) = \varepsilon y_8 \ast t_{22} = -\varepsilon t_{10}^3.
\end{align*}
\]
Next we compute $y_{20} \ast t_{26}$. First we apply \mathcal{P}_k to (15) to obtain

$$y_{20} \ast t_2 = \mathcal{P}_k(y_{20} \ast t_6) = \mathcal{P}_k(t_{26} - (y_{20} \ast t_2)^2) = \varepsilon t_{22}.$$

From this, (15) and (16) imply that

$$y_{20} \ast t_6 = t_{26} - \varepsilon t_{22} t_2^2,$$
$$y_{20} \ast t_{18} = t_{38} + \varepsilon t_{22} t_6 t_2^2 - t_{26} t_6^2.$$

$y_{20}^3 \ast t_6$ is computed as

$$0 = y_{20}^3 \ast t_6 = y_{20}^2 \ast (y_{20} \ast t_6) = y_{20}^2 \ast (t_{26} - \varepsilon t_{22} t_2^2) = y_{20}^2 \ast t_{26} + \varepsilon t_{22}^3.$$

Thus $y_{20} \ast t_{46} = -y_{20}^2 \ast t_{26} = \varepsilon t_{22}^3$.

The similar computation of $y_{20}^3 \ast t_{18}$ implies

$$y_{20}^2 \ast t_{38} = -t_{26}^3.$$

Thus $y_{20} \ast t_{38}$ is a non zero primitive indecomposable element and we redefine t_{58} as $y_{20} \ast t_{38}$. Hence

$$y_{20} \ast t_{38} = t_{58},$$
$$y_{20} \ast t_{58} = -t_{26}^3.$$

By applying \mathcal{P}_k^3 to (22), we have

$$y_{8} \ast t_{58} = \mathcal{P}_k^3(y_{20} \ast t_{58}) = -\mathcal{P}_k^3(t_{26}^3) = -\varepsilon t_{22}^3.$$

We obtain also

$$y_{20} \ast t_{22} = \varepsilon \mathcal{P}_k^1(y_{20} \ast t_{26}) = -\mathcal{P}_k^1 t_{46} = -t_{14}^3$$

by applying \mathcal{P}_k^1 to (8).

Since t_{34} is primitive, we can set $y_{20} \ast t_{34} = \rho_{418}^3 (\rho_4 \in \mathbb{Z}/3)$. Operating \mathcal{P}_k^3 to the both sides of this equation, $\rho_4 \varepsilon t_{14}^3$ is computed as follows:

$$\rho_4 \varepsilon t_{14}^3 = \rho_{4} \mathcal{P}_k^3(t_{18}^3) = \mathcal{P}_k^3(y_{20} \ast t_{34}) = y_{8} \ast t_{34} + y_{20} \ast t_{22} = t_{14}^3.$$

So $y_{20} \ast t_{34} = \varepsilon t_{18}^3$ is shown. Now $a_d \ast$ is determined except for $y_{8} \ast t_{16}$.

Finally we operate \mathcal{P}_k^1 to (21) and \mathcal{P}_k^2 to (22) and see

$$\mathcal{P}_k^1 t_{58} = \mathcal{P}_k^1(y_{20} \ast t_{38}) = y_{20} \ast (\mathcal{P}_k^1 t_{38}) = \varepsilon y_{20} \ast t_{34} = t_{18}^3.$$
These equations imply that
\[y_{20} \star (\overline{P}_* t_{58}) = \overline{P}_* (y_{20} \star t_{58}) = - \overline{P}_* (t_{26}^3) = - t_{14}^3. \]

This completes the proof of Theorem 1.

References