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BGG-resolution for o-stratified modules over
simply-laced finite-dimensional Lie algebras

By

V. Futorny* and V. Mazorchuk

1. Introduction

This paper is a sequel of [6] where the submodule structure of a-stratified (i.e.
torsion free with respect to the subalgebra corresponding to a root ) generalized
Verma modules was studied. The results obtained there generalize the classical
theorem of Bernstein-Gelfand-Gelfand on Verma module inclusions. The crucial
role in the study is played by the generalized Weyl group W, that acts on the space
of parameters of generalized Verma modules.

Let G be a simple finite-dimensional Lie algebra over the complex numbers with
a simply-laced Coxeter-Dynkin diagram (i.e. there are no multiple arrows). In the
present paper for any such algebra we construct a strong BGG-resolution for
a-stratified irreducible modules in the spirit of [1,10]. The non-simply-laced case is
more complicated (cf. [6]). In particular, the proof of the crucial Theorem 4 is
based on the fact that the diagram is simply-laced.

The structure of the paper is the following. In Section 2 we collect the notation
and preliminary results. A weak generalized BGG-resolution is constructed in
Section 3. Here we follow closely [1]. Section 4 contains an extension lemma for
a-stratified modules which generalizes a well-known result of Rocha-Caridi for
Verma modules [10].  Our proof is analogous to the one of Humphreys for Verma
modules [8]. In Section 5 we study the maximal submodule of the generalized
Verma module and construct a strong generalized BGG-resolution for a-stratified
irreducible modules in Section 6. Finally, in Section 7 we give a character formula
for certain a-stratified irreducible modules.

2. Notation and preliminary results

Let C denote the complex numbers, Z all integers, N all positive integers and
Z,=Nu{0}.

Let H be a Cartan subalgebra of G and A the root system of G.

Let m be a basis of A containing o, A, =A,(n) the set of positive (negative)
roots with respect to n. For any S < n let A,(S) be a subset generated by S (it
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consists of all the roots in A, which are linear combinations of elements from

1
S). Also let p=3 Y. y. Forld peH*wewillsay that 1> puif l—p=ko+ Y kp,
YEA Pen\{a)
k,eZ kyeZ,. Further (-,-) will denote the standard form on H* 1If feA, then

2(4.B)

spe W will denote a corresponding reflection in H*: s,,(,l)=/l—m .

Fix a basis {h;,fen} of H normalized by the condition fi(h;)=2 and a non-zero
element X, in each root subspace G,, yeA such that [X,,X_ ]=h;, fen.
Denote Ny = Y, G.,, Ni= ) Gy,, H*={he H|a(h)=0}. Then we have

yeA + yeA + \{a}
G=N_®OH®ON,=G*®&N*DQH*®N%

where G* is generated by G,,. Also let H,=G*nH and thus G*=G,®H,®G_,.

For a Lie algebra 4 we will denote by U(A4) the universal enveloping algebra
of A and by Z(A) the centre of U(A).

For me Z, denote by U(G)™ the subspace in U(G) spanned by the elements
of degree m (with respect to the fixed PBW-basis above).

Consider a linear space Q=H*x C. For (4,p) and (ir,q) in Q we say that

(Lp)>(uq) if A—p=Y, ngP, ngeZ, and A#pu
Pen\{a}

Let reC. Consider a linear space B,= ), Cf+ro with a fixed point ra, a
Pen\{x}
Z-module B,=B,®Zx and let Q,=B,xC, §,=B,xC.
In [6] we introduced the generalized Weyl grop W, acting on the space €}, in
the following way.
Consider a partition of n: n=n,uUn, where n,={yen|a+yeA}, n,={yen
la+y¢A}. For (Lp)eQ, and fen, denote

1
ng(A,p)= 5 (Ah, + 2hy) £ p)

and define (4;,p5)€Q,. where 4;=24—ng (2,p)p, pp=ng(4p).
For each fen consider /;€ GL(Q,) such that

()'» _I’), /3= od
lp('l’[’) = (Sﬁ/l’[’)» ﬂ € nZ\ {(X} (*)
('1/1 ,Pp)» Ben,.

Then W,=(l;, fen).

It is easy to see that W, is isomorphic to the Weyl group W. Morcover, there
exists a root system A, , in Q, with respect to which W, is the Weyl group [6]. We
denote by o, the reflection in Q, corresponding to a root BeA,,. Alsolet (-,-),
denote a corresponding nondegenerate form on Q, and {={,,:A — A,, be a natural
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bijection.

Let pr;, i=1,2 be a natural projection on the i-th component of Q,.

For a G-module V with a Jordan-Holder series let # H(V) denote the set of
all irreducible subquotients of V. A G-module V is called weight module if

V= @ V,
AeH *

where all V,={ve V|hv=Ah)v for all he H} are finite-dimensional. If V/,#0 then
A is called a weight of V. Denote by supp V the set of all weights of V. A weight
Ais called a highest weight if V,,,=0 for all feA,. A weight G-module V' is said
to be a-stratified if X, and X_, act injectively on V.

Let V be a weight G-module. A non-zero element ve V is said to be a-primitive
(with respect to G) if ve V, for some Ae H* and N4 v=0.

It is known that c=(h,+ 1) +4X__X, generates Z(G®). Leta,beC. Any such
pair defines a unique indecomposable weight G*-module Fla,b) on which X_, acts
injectively and where a is an eigenvalue of 4, and b is an eigenvalue of ¢. The
module Fa,b) has a Z-basis {v;} such that X_,v,=v;_,, hou;=(a+2i)v; and
X, =4b—(a+2i+1))v;4 .

One can easily check (see [6, Lemma 2.2]) that the module F(a,b) is torsion
free if and only if b#(a+2/+ 1) for all [e Z.

Set ={(LpeQ|p#+(Ah)+2) for all [eZ}, X=0,nD, FE=0,nQ"
Hence, if (A,p)eQ° then F((A— p)(h,),p?) is irreducible and torsion free.

Since H=H,®H*, any element e H* can be written uniquely as 1=41,+ 4%
where 1, e H} and A*e(I{1*)* Let a,beC and A€ H * such that (1—p)(h,)=(1,— p)h,)
=a. Define an H-module structure on Fla,b) by letting hv=A%h)v for any he H*
and any ve F(a,b). Thus HFa,b) becomes a G*+ H-module. Moreover. we can
consider Fla,b) as D=H+ G*+ N%-module with a trivial action of N%.

The generalized Verma module associated with «, 4, b is defined as follows:

M, (Ab)=UG) ® Fa,b).

U(D)

Set M(4,b)= M (A.b).

It will be more convenient to use a slightly different parametrization of generalized
Verma modules replacing M(A,b) by M(A,p) where p>=b. Thus we always have
M(A.p)=M(Z, —p).

Note that module M(4,p) has a unique maximal submodule and it is x-stratified
if and only if (4,p)eQ".

We will denote by Z*G) the set of all homomorphisms from Z(G) to C. It
follows from [3, Corollary 1.11] that module M(A,p) admits a central character
02.n€ZMG), ie. zv=0; ,(z)v for any ze Z(G) and ve M(4,p).

Denote by L(4,p) the unique irreducible quotient of M(A,p).
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Lemma 1. ([3, Corollary 3.4]). L(4p)~L(A+kap) fo all keZ.

The following order on Q, was introduced in [6]: Let (4,p), (u.g)eQ, and

BeA,,. We will write (4,p) f»(y,q) if (1,g)=04(4,p) and (B,(A,p)),eN for B#{(x).

Then (i)« (4,p) will mean that there exists a sequence f3,,f,,---,f in A,, such that
Bt B2 pr-1 P
() = 0y (1q) = - = 0y, - 0p,(1,9) = (Ap).

The main result of [6, Theorem 7.6] is the following theorem which describes
the structure of a-stratified generalized Verma module with respect to the order on Q, .

Theorem 1. Let (Lp) and (u,q)e$¥. The following statements are equivalent:
1. M(u,q) € M(.p),
2. L(wq)e fHM(p)):
3. There exists ke Z such that (u+ka,q)<(A.p).
Let
P ={(Ap)e Q| w(Ap)<(dp) for all we W,}.

In this paper we discuss the construction of analogues of the weak and the
strong BGG-resolutions for irreducible modules L(A,p) with (A,p)e P* ™.
3. Cohomological part of the weak BGG-resolution

Let P=A ,(n\{a}) and let B be a subalgebra of G generated by all root subspaces
G_g. feP.
An element (4,p) will be called minimal if
pri((Ap)—aydp)=p

holds for every fen\{a}. In this section we fix a minimal element (4,p). This
clement plays a role of the trivial highest weight in the case of Verma modules.

Consider the subalgebra B as a module over a subalgebra A=N?% + H under
the following action:

h-a=[hal]+ Aha
for any he H and ae B, and

{[b,a], [b,a]e B;
b-a=
0, [b,a]¢ B.

for all hbe N2 and ae B. Clearly, this action can be naturally extended to the action
k

on the exterior powers /\ B for all ke N.
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Let ¢ be the unique eigenvalue on M(4,p) of a quadratic Casimir operator

—ata
aeA +

where A, is a certain fixed element in S(H). Note that this eigenvalue is determined
uniquely by (A,p) via a generalized Harish-Chandra homomorphism [5].
Define U,= U(G)/(C—¢) and consider the following G-modules:

k
D=U,® /\B,

U(4)

where ke Z, .
Following [1], for ke N define the homomorphisms d,: D, — D,_, as follows:

d(X® X AXy A NX)=

k
Y (=DM XX,QX, A~ AX; A - AX,

i=1

+ Y (= TXRLXL XIAX A AKA - AKGA AKX

1<i<j<k
Since d, o d,,, =0 we immediately obtain that the sequence
n dy dz di
0« Dy/Imd, « Dy—=D; Dy« -
is a complex. Here 7 is a natural projection. We will denote this complex by V,(4,¢).

Theorem 2. The complex V(A,¢) is exact.

Proof. The algebra U, inherits the natural gradation on U(G) by the degree
of the monomials. Using that we can define a gradation on D,. For />k let D
be a subspace spanned by the elements x®y where x is an element in U, of degree

k
less than or equal to /—k and ye /\ B. It is clear that d,(D{") = D{, and thus
d, induces a homomorphism

n.phpi-t I 1-1
d: D/ D™V - DL /D).

Denote DP=D{®/D{~V . Also set M"=D¥/Imd{" and let ™ be a corresponding
induced homomorphism.
It is sufficient to show for every / the exactness of the complex

nt d(ln d<2” )
0 MY DOU)*— D](’) - DZU)‘_ (1)
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By the PBW theorem for every ke Z, one can write:

Dk=<U(N-)®/k\B>@( S XPUND®A B)

m>1

and hence

m=

k -k k
ﬁa":<U(N_)<'-k’®AB>@< ) X;"U(Ni)“‘*-'"@/\B)'
1

We will denote by 5,N_ a subalgebra generated by N* and X,. Let N8 (s,NB
resp.) be a subalgebra generated by X_;, feA,, f¢A,(n\{o}) (Bes,A,,
pés,A(n\{a}) resp.) and let S{B) be a set of all homogeneous elements of degree
j in the symmetric algebra of B. Then

1—k k 1
15;:):( Y, UNEY=i=bsB)y® A\ B)@(
= ,

J

—k k
Y, Us,NBYi=hsB® A\ B).
ji=0

For any homogeneous element ue UN?Z) (ue U(s,N®) resp.) of degree /—j—k
we have that d(uS(B)® A* B) < uS;, (B)J®A*~' B. Therefore it induces a complex
which is in fact the Koszul complex [2] and hence is exact. Using the PBW
theorem we conclude that the complex (1) decomposes into a direct sum of exact
complexes and therefore is exact. The theorem is proved.

For a weight G-module V consider a formal character

chV=3 (dimV)e".

neH*

Corollary 1.
chDy/Imd, =) (—1)ch D,.

i20

4. Extension lemma

In this section we prove an analogue of the extension lemma ([8, 10]) for
a-stratified generalized Verma modules.

Recall that a-stratified generalized Verma modules are the important objects
in the category O° which was studied in [3, 7). This category has properties similar
to those of the classical category O. It was shown, in particular, that O* has
enough projective objects.

Theorem 3. Let (L.p), (u.q)eQ. If

Exto.(M(p,q), M(4,p))#0
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then (1,q)<(4,p).

Proof. The proof is based on the properties of the category O* [7] and is
analogous to the proof of the extension lemma in [8].

Consider a subgroup W, < W, generated by all /;, fen\{a}. Since W, is
a Coxeter group we have a well-defined notion of the length /[(w) for any we W' .

Corollary 2. For (A,p)e P** and w,, w,e W5 with [(w,)=Iw,) holds

Exto(M(w,(4,p)), M(w,(4,p)))=0.

5. The structure of the maximal submodule of M((4,p)

The main result of this section is the following
Theorem 4. The module Dy/Imd, is irreducible.

To prove Theorem 4 we will need several lemmas.

Let K=A_(n)\(—P) and K(G) be a subalgebra of U(G) generated by X,. feK.

Let M be a G-module. A non-zero weight vector ve M will be said to be
quasi-primitive if there exists a proper submodule F < M such that v becomes
a-primitive in the quotient M/F.

Lemma 2. Let (1,q)€Q;, F is a proper submodule of M(11,q), 0#ve M(u,q), -, and
0#£0'eK(GWwnF is a weight vector with weight v. Then K(G)v contains a
quasi-primitive vector of weight A with p—p>,A> v.

Proof. Since module F is a-stratified and finitely generated one can choose
a set of quasi-primitive generators w, ,---,w, of F'such that w,e U(N _)v for all i and

X v eY UN_yw,

for sufficiently large k>0. It immediately follows from the PBW theorem that
there exists i such that w,e K(G)v. Also note that if 4, is a weight of w; then
A;>,v. This completes the proof of lemma.

Lemma 3. Let (,q)eQ} and 0#ve M(jq),-,. Then K(G)v has no quasi-
primitive elements except CX* v, k>0.

Proof. A direct calculation shows that for any e H * the existence of a non-zero
a-primitive element in K(G)v of weight u—1 is equivalent to the system of linear
equations on pu(hy), f € n, and does not depend on g. But this contradicts Theorem 1.
It implies that the only a-primitive elements in K(G)v are CX* v, k>0.

Now suppose that v e(K(G)v), is quasi-primitive and (K(G)v); has no
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quasi-primitive elements if ¢>,v. Consider a basis T in A,\{a} containing
n\{a}. Then X,v'=0 for all yen\{a}, by Lemma 2. If ye T\ = then (y,0)#0. Let
Q~sl(2,C) be a subalgebra generated by X,, and F be a Q-module generated by
v'. Suppose that X,v'#0. Since v is quasi-primitive it implies that v"e F’, where
F’is a Q-module generated by X,v". Then F; contains a non-zero element v” such
that X,v”"=0 and hence F’ has a finite-dimensional quotient. Since M(u,q) is
a-stratified then v,=X* v is quasi-primitive for al k>0. Note that X,v,=0 for all
k. Indeed, if X,v,#0 for some k>0 then we can apply to v, the same arguments
as above and conclude that a Q-module generated by X, v, also has a finite-dimensional
quotient of the same dimension. But (a,7)#0 and hence these finite-dimensional
modules have different highest weights which is a contradiction from the
sl(2)-theory. Therefore, X,v,=0 for all k>0. Using the fact that the root system
A is finite we find m>0 such that Xv, =0 for all BeT. Hence, v, is a-primitive
and thus belongs to CX* v for some k>0. We conclude that v' is a-primitive and
belongs to CX* v for some k>0.

Lemma 4. Let V be a quotient of M(i1,q), 0#ve M(1,q), -, and ve H* a weight
of V. Then dimV,>dim(K(G)v), where (K(G)v),=K(GwM(u,q),. Moreover, if
dim V,=dim(K(G)v), for all v such that dim(K(G)v),#0, then module V is irreducible.

Proof. It follows immediately from Lemma 3 that dim V, >dim(K(G)v), for all
v. Suppose that dim ¥, >dim(K(G)v), for all v such that dim(K(G)v),#0. Now let
v be such that V,#0 and 0#we V,. Since V is a-stratified, v—kaesupp V for all
k>0. Clearly, there exists m>0 for which v—maesupp K(G)v. Applying Lemmas
2 and 3 we conclude that X™ w, and hence w, generates V. 1t follows that V is
irreducible.

Proof of Theorem 4. Let 0#ve M(A,p),_,. It follows from Corollary 1 that
dim(Dy/Imd,), =dim(K(G)vn M(4,p),)

for all weights vesupp K(G)v. Using Lemma 4 we conclude that D,/Imd, is
irreducible which completes the proof.
6. Strong BGG-resolution

In this section we follow [1, 10] to construct the strong BGG-resolution for
irreducible a-stratified module L(4,p) with (A,p)e P**.
Let (A,p)e P**. For k>0 denote

(WHr={we W} lw)=k}

and set

Cy= Z M(w(4,p)).

we(W )k
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Define a map é,:C; > C;_, using the matrix (d},,), w,€(W,'), wye(W, ) ~!
where dj, ,,,=s(w,,w,) if w;>w, (with respect to the Bruhat order) and zero
otherwise. Here the numbers s(w,,w,) are defined as in [1, Lemma 10.4]. Set

m=|A (m\{a})|.

Theorem 5. Let n: M(A.p) > L(4,p) be a natural projection. Then the sequence

n L2 a2 Om

OLAp)Cye=Ci -« C,«0

is exact.

Proof. Tt follows from the construction that this sequence is a complex.

To show the exactness in each term we will follow the proof of [ 10, Corollary 10.6].

Let R be the category of all weight G-modules having central character. Clearly
every module Ve R has a decomposition

V=% V.
xeZ*(G)
where V(y) is a component with central character y. Let 0e Z*(G) be a central
character of M(4,p) and let Fy: R > R be a functor such that Fe(V)= V(0) for all VeR.

Obviously, there exists a minimal element (1,q)e P** and a finite-dimensional
G-module U such that Y=Fy(L(1,q)® U) contains an o-primitive element with
parameters (4,p). Moreover, the dimension of Y,_, equals 1.

We will show that in fact Y~L(A,p). Suppose that Y is not irreducible and
F is some non-trivial submodule of Y. Then it follows from Lemma 4 that the
dimension growth of Y/F is strictly less than the dimension growth of any irreducible
module L(A,p’) in R. The obtained contradiction implies that Y~ L(4,p).

Let ¢ be an eigenvalue of C on L(u,g). Consider an exact complex
V(we). Applying the functor Fy(- ®U) to V,(u,e) we obtain the following exact
complex:

0 dy d2 ds

0« L(Ap) By« By « By « -

where B,=FyD;®U), i=0.
Using [1, Proposition 9.6] and Theorem 3 we coclude that

B~C;, i>0.

Following [10, Lemmas 10.2, 10.5] there exists a sequence of isomorphisms v': B; = C;
which makes the following diagram commutative:

dy dy n
== By(A4p) = By(4p) = Bo(dp) - L(Ap) =0
vzl vll \-01 1 l
42 2 n
o= Cy(dp) = Cy(dp) = Co(dp) - L(A,p) —0.

This completes the proof of the theorem.
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Corollary 3. If (A,p)e P** and M is the maximal submodule of M().p) then

M= Y Mi(o,Ap).

vem\{a}
Proof. Follows immediately from Theorem 3.

7. Character formula

In this section we use the strong BGG-resolution to obtain a character formula
for a G-module L(A,p) with (A,p)e P**.
For ve H* let
Hw)=v+ Y Zp.
pem\(a)
Set for any vesupp V
ch*' ()=} (dim ¥V, )e".

neH(v)

Lemma 5. Let V be an wa-stratified G-module and vesupp V then
+

ch(V)=< Y ei“> ch*(V).

i=—-m
Proof. Follows from the fact that X ., act injectively on V.

Let ¢: H* — H(0) be a natural projection along the root a. Set A'={¢p(f)|fe
A,}. Tt is easy to see (see for example [9]) that for any (u,q)eQ

ch**“"(M(uq)=e""* [] (1 —e™/)""

PeA’
and thus
+
chiM(ug)=e""" ] (1—e P! ( Y e“‘)
PeA + \{a} i=—-o0
by Lemma 5.
Set ,o’=1 > B
2pcp

Theorem 6. Let (A,p)e P**. Then there exists an element a(A,p)e H* such that

ch(L(l,p))=< )f e"")( 11 (l—e“’)")

i=—-ow pe— K\{a}

-1
X( Z (_l)l(w)ew(/l+a(l.n)+p’)—a(/\.p)>< z (__l)t(w)ew(p')>

weW } weW !
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Proof. It follows from Theorem 5, that the character ch L(4,p) satisfies the
following alternating formula:

chLGA.p)=Y (-1 Y, chMwip)).

i20 we(W )

Thus using the character formula for M(u,q) above we obtain

chL(/l,p)=< +Zm e‘“)( I (l—e"’)“'>

i=—wo Pe — K\{a}

x Z (—l)‘ Z PPN —p l—[(l—e_”)_l.
i20 we(W })th BeP
Since the group W,' is an affine reflection group in every Q, the result follows
from the classical Weyl character formula for finite-dimensional modules [4, Theorem
7.5.9].

Note that the element a(4,p) in Theorem 6 is determined uniquely by the element
in Q, with respect to which the group W,' is linear.
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