On a property of Nirenberg type operator

By

Haruki NINOMIYA

§ 1. Introduction

Let X be a nowhere-zero C^{∞} complex vector field in \mathbb{R}^n . Let $S^X = \{ f \in C^{\infty}(\mathbb{R}^n); Xu = f \text{ has a } C^1 \text{ solution near the origin.} \}$ and $S_X = \{ f \in C^{\infty}(\mathbb{R}^n); Xu = f \text{ has a } C^1 \text{ solution near the origin such that } du(0) \neq 0 \}.$

The following facts are classically well known:

- (1) $\mathscr{A} \subset S_X$ if X is real-analytic, where \mathscr{A} denotes the set of real-analytic functions in \mathbb{R}^n .
- (2) $S_X = C^{\infty}(R^2)$ if n = 2, and X(0), $\overline{X}(0)$ are C-linearly independent (In this case, X is an elliptic operator).

And we can easily obtain the following fact owing to Hölmander [1] and Treves [4]:

(3) $S_X = C^{\infty}(\mathbb{R}^n)$ if X is a solvable operator at the origin.

Though it is trivial, we also know the following fact:

(4) $\mathscr{A} \subset S_X \subsetneq C^{\infty}(\mathbb{R}^n)$ if X is a non-solvable operator at the origin and real-analytic.

We thus see $S_X = S^X$ in each case of the above. Does there exist a non-solvable vector field X such that $S_X \subseteq S^X$?

This paper aims at showing that the answer is "Yes". We shall give such vector fields L_{α} , which we call Nirenberg type:

Let $\alpha(t,x)$ be a real-valued $C^{\infty}(R^2)$ function satisfying the following conditions:

- (A.1) $\alpha(t,x) \geq 0$ in a neighborhood ω of the origin.
- (A.2) There exist positive constants c, d, and a monotonously increasing sequence $\{p_n\}$ of positive integers such that

$$\iint_{D(p_k)} \alpha(t, x) \, \mathrm{d}t \mathrm{d}x > \frac{9}{(p_k + d)(p_k + c)}$$

for every sufficiently large k, where $D(p_k) = \left(0, \frac{1}{p_k}\right) \times \left(0, \frac{1}{p_k}\right)$.

We shall define L_{α} in the following manner:

$$L_{\alpha} = \partial_t + i(2t + \alpha)\partial_x$$

Then we assert the following

Theorem A.

$$S_{L_{\alpha}} \subsetneq S^{L_{\alpha}}$$
.

Example (This is obtained by modifying an example of Nirenberg [3] (p. 8)). Let $a_{n,p} = \frac{1}{(n+p-1)(n+p)}(n,p=1,2,...)$ and $\{B_{n,p}\}$ the set of non-overlapping open discs in the (t,x) plane satisfying the following conditions:

- (i) The ordinate of the center of $B_{n,p}$ equals $\frac{1}{p+1} + \frac{1}{2p(p+1)}$.
- (ii) The abscissa of the center of $B_{n,p}$ equals $\frac{1}{p} \left(a_{1,p} + a_{2,p} + \cdots + a_{n-1,p} + \frac{a_{n,p}}{2}\right)$.
 - (iii) The radius of $B_{n,p}$ equals $\frac{a_{n,p}}{2}$.

Next let $\{f_{n,p}\}$ be the set of C^{∞} functions having the following properties $(n, p = 1, 2, \ldots)$:

(i)
$$0 \le f_{n,p} \le \frac{64 \cdot 18}{\pi (n+p+1)^2}$$
.

(ii) $f_{n,p}$ vanishes outside of $B_{n,p}$ and equals $\frac{64 \cdot 18}{\pi (n+p+1)^2}$ inside of the closed

disc $C_{n,p}$ with radius $\frac{a_{n,p}}{4}$, where the ordinate of the center of $C_{n,p}$ equals that of $B_{n,p}$ and the abscissa of the center of $C_{n,p}$ equals that of $B_{n,p}$.

Next we define a C^{∞} function r(t,x) as follows:

- (i) r(-t,x) = r(t,x).
- (ii) $r(t,x) = f_{n,p}$ in $B_{n,p}$.
- (iii) r(t,x) vanishes outside of the union of all the $B_{n,p}$.

Finally we define $\alpha(t,x)$ by $\alpha(t,x) = r(t,x)$.

Then we can check that the conditions (A.1) and (A.2) are satisfied. The proof is given in §4.

Now, to prove Theorem A, we first derive a necessary condition on f(t,x) for $\partial_t u + ia\partial_x u = f(t,x)$ to have a C^1 solution near the origin such that $u_x(0) \neq 0$ under the following assumption:

- (a.1) a = a(t, x) is a real-valued $C^{\infty}(\mathbb{R}^2)$ function.
- (a.2) a(0,x) vanishes identically.
- (a.3) There is a neighborhood ω of the origin such that
- (a.3.1) $t\{a(t,x) a(-t,x)\} > 0$ in $\{t \neq 0\} \cap \omega$ and
- (a.3.2) $a(t, x) + a(-t, x) \ge 0$ in ω .

Hereafter for a function F(t,x) we shall denote by F_e and F_o the even part of F(t,x) with respect to t and the odd one.

Now we have the following

Lemma 1 ([2]). Assume (a.1) and (a.3.1). Then there exist a neighborhood Ω_w of the origin and a function $w(t,x) \in C^1(\Omega_w)$ such that

$$\min(\inf_{\Omega_w} \operatorname{Re} w_x, \inf_{\Omega_w} \operatorname{Im} w_x) > 0$$
 and $(\partial_t + ia_o(t, x)\partial_x)w = 0$ in Ω_w .

Hereafter we shall set $m(w, \Omega_w) = \min(\inf_{\Omega_w} \operatorname{Re} w_x, \inf_{\Omega_w} \operatorname{Im} w_x)$. Then, we obtain the following

Theorem B. Assume (a.1), (a.2), and (a.3). Let w and Ω_w be any one of the couples of a function and a neighborhood satisfying Lemma 1. Let a $C^{\infty}(R^2)$ function f(t,x) be given. Assume that

$$L_a u \equiv \partial_t u + i a \partial_x u = f(t, x)$$

has a C^1 solution near the origin such that $u_x(0) \neq 0$. Then, there exist positive constants C_1, N , and T_0 , where T_0 is independent of w and Ω_w , such that, for any simply connected domain D contained in $(0, T_0) \times (-T_0, T_0) \cap \Omega_w$ with piecewise smooth boundary ∂D , the following holds:

(i) In case of $f_e(0) \neq 0$,

$$\begin{split} \iint_D a_e \, \mathrm{d}t \mathrm{d}x + C_1 & \iint_D \left\{ \operatorname{Re} f_e(0) \operatorname{Re} f_e + \operatorname{Im} f_e(0) \operatorname{Im} f_e + \operatorname{Re} f_e(0) \operatorname{Im} f_e \right. \\ & - \operatorname{Im} f_e(0) \operatorname{Re} f_e - \left| f_e(0) \right|^2 + \frac{2}{N} \right\} \mathrm{d}t \mathrm{d}x \leq \frac{\sup_{\partial D} |w| \cdot |\partial D|}{m(w, \Omega_w)}. \end{split}$$

(ii) In case of $f_e(0) = 0$,

$$\iint_{D} a_{e} \, \mathrm{d}t \mathrm{d}x + C_{1} \iint_{D} \left(\frac{2}{N} + \operatorname{Re} f_{e} + \operatorname{Im} f_{e} \right) \, \mathrm{d}t \mathrm{d}x \leq \frac{\sup_{\partial D} |w| \cdot |\partial D|}{m(w, \Omega_{w})},$$

where the N can be replaced with ∞ and the T_0 is independent of N when $f \equiv 0$.

This is proved in §2 and by making use of the estimate in Theorem B, Theorem A is proved in §3.

§ 2. Proof of Theorem B

Case $f_e(0) \neq 0$. We shall set $u^I = -\bar{f}_e(0)u$. Multiplying u^I by a suitable constant $e^{i\theta}$, where θ is a real number, we can assume that $\operatorname{Re}(e^{i\theta}u_e^I)_x(0,0)$ and $\operatorname{Im}(e^{i\theta}u_e^I)_x(0,0)$ are positive, so from beginning we can assume that $\operatorname{Re}\partial_x u_e^I(0,0) \equiv \alpha$ and $\operatorname{Im}\partial_x u_e^I(0,0) \equiv \beta$ are positive. Let us set $\delta = \min(\alpha,\beta)$. Let N be a positive constant. Then, since

 $\operatorname{Re} f_e(0) \operatorname{Re} f_e + \operatorname{Im} f_e(0) \operatorname{Im} f_e - |f_e(0)|^2 + \frac{1}{N}, \quad \operatorname{Re} f_e(0) \operatorname{Im} f_e - \operatorname{Im} f_e(0) \operatorname{Re} f_e + \frac{1}{N}$

are positive at the origin, we take a positive constant T_1 small such that

Re
$$f_e(0)$$
Re $f_e + \text{Im } f_e(0)$ Im $f_e - |f_e(0)|^2 + \frac{1}{N}$

and

$$\operatorname{Re} f_e(0) \operatorname{Im} f_e - \operatorname{Im} f_e(0) \operatorname{Re} f_e + \frac{1}{N}$$

are positive in $(-T_1, T_1) \times (-T_1, T_1)$

Next we take a positive constant T_2 such that

$$L_a u^I = -\bar{f}_e(0) f$$
 in $U_{T_2} = (-T_2, T_2) \times (-T_2, T_2),$
 $\text{Re } \partial_x u^I_e > \frac{\delta}{2}, \text{ Im } \partial_x u^I_e > \frac{\delta}{2}$ in $U_{T_2} = (-T_2, T_2) \times (-T_2, T_2).$

Then we take a positive constant T_0 such that $T_0 < \min(T_1, T_2)$. By setting $u^H = u^I + \left(|f_e(0)|^2 - \frac{1+i}{N}\right)t$, it follows that

$$L_a u^{II} = -\bar{f}_e(0)f + |f_e(0)|^2 - \frac{1+i}{N}.$$

Then setting $v = (2u^{II})/\delta$, we see $\inf_{U_{T_0}} \operatorname{Re} \partial_x v_e \ge \frac{\delta}{2} \cdot \frac{2}{\delta} = 1$ and $\inf_{U_{T_0}} \operatorname{Im} \partial_x v_e \ge \frac{\delta}{2} \cdot \frac{2}{\delta} = 1$.

Now we remark $\partial_x v_o(0, x) = 0$. And also, from

$$L_a v = (2/\delta) L_a u^{II} = (2/\delta) \left(-\bar{f}_e(0) f + |f_e(0)|^2 - \frac{1+i}{N} \right),$$

we have

$$(2.1) \qquad (\partial_t + ia_o\partial_x)v_o = -ia_e\partial_x v_e + (2/\delta) \left\{ -\bar{f}_e(0)f_e + |f_e(0)|^2 - \frac{1+i}{N} \right\}.$$

So we see

$$\partial_t v_o(0,x) = \frac{-2(1+i)}{N\delta}.$$

Here taking N sufficiently large and T_0 sufficiently small, we can assume that

$$M = \max \left(\sup_{U_{T_0}} |\partial_t v_o|, \sup_{U_{T_0}} |\partial_x v_o| \right) \le \frac{1}{2}.$$

As it has been remarked,

$$\inf_{U_{T_0}} \operatorname{Re} \partial_x v_e \ge 1, \quad \inf_{U_{T_0}} \operatorname{Im} \partial_x v_e \ge 1.$$

Now we obtain the following

Lemma 2. For any simply connected domain D contained in $(0, T_0) \times (-T_0, T_0) \cap \Omega_w$ with piecewise smooth boundary,

$$(2.2) \qquad i \iint_{D} a_{e} w_{x} \partial_{x} v_{e} \, \mathrm{d}t \mathrm{d}x + \iint_{D} (2/\delta) \left\{ \bar{f}_{e}(0) f_{e} - |f_{e}(0)|^{2} + \frac{1+i}{N} \right\} w_{x} \, \mathrm{d}t \mathrm{d}x$$

$$= \int_{\partial D} w \partial_{t} v_{o} \, \mathrm{d}t + w \partial_{x} v_{o} \, \mathrm{d}x.$$

Proof. From (2.1),

$$-w_{x}\{(\partial_{t}+ia_{o}\partial_{x})v_{o}\}=ia_{e}w_{x}\partial_{x}v_{e}+(2/\delta)\left\{\bar{f}_{e}(0)f_{e}-|f_{e}(0)|^{2}+\frac{1+i}{N}\right\}w_{x}.$$

And hence we have

$$\iint_{D} -w_{x}\{(\partial_{t} + ia_{o}\partial_{x})v_{o}\} dtdx$$

$$= \iint_{D} ia_{e}w_{x}\partial_{x}v_{e} dtdx + \iint_{D} (2/\delta) \left\{ \bar{f}_{e}(0)f_{e} - |f_{e}(0)|^{2} + \frac{1+i}{N} \right\} w_{x} dtdx.$$

The left-hand side above =

$$\iint_{D} -\{w_{x}\partial_{t}v_{o} - w_{t}\partial_{x}v_{o}\} dtdx = \iint_{D} d\{w(t,x) dv_{o}(t,x)\} = \int_{\partial D} w\partial_{t}v_{o} dt + w\partial_{x}v_{o} dx,$$

ending the proof of Lemma 2.

From this lemma we have, by setting $C_1 = 2/\delta$:

$$(2.3) \qquad \iint_{D} \left[a_{e} \left\{ \operatorname{Re} \partial_{x} v_{e} \operatorname{Im} w_{x} + \operatorname{Im} \partial_{x} v_{e} \operatorname{Re} w_{x} \right\} \right] dt dx$$

$$+ C_{1} \iint_{D} \left[\left\{ \operatorname{Re} f_{e}(0) \operatorname{Re} f_{e} + \operatorname{Im} f_{e}(0) \operatorname{Im} f_{e} - |f_{e}(0)|^{2} + \frac{1}{N} \right\} \operatorname{Im} w_{x} \right.$$

$$+ \left\{ \operatorname{Re} f_{e}(0) \operatorname{Im} f_{e} - \operatorname{Im} f_{e}(0) \operatorname{Re} f_{e} + \frac{1}{N} \right\} \operatorname{Re} w_{x} \right] dt dx$$

$$\leq \int_{\partial D} |w \partial_{t} v_{o} dt + w \partial_{x} v_{o} dx|.$$

Denoting min(inf U_{T_0} Re $\partial_x v_e$, inf U_{T_0} Im $\partial_x v_e$) by m_0 , from (2.3) we have

$$(2.4) m(w, \Omega_w) \left[m_0 \iint_D a_e(t, x) \, \mathrm{d}t \mathrm{d}x + C_1 \iint_D \left\{ \operatorname{Re} f_e(0) \operatorname{Re} f_e + \operatorname{Im} f_e(0) \operatorname{Im} f_e + \operatorname{Re} f_e(0) \operatorname{Im} f_e - \operatorname{Im} f_e(0) \operatorname{Re} f_e - |f_e(0)|^2 + \frac{2}{N} \right\} \, \mathrm{d}t \mathrm{d}x \right]$$

$$\leq \int_{\partial D} |w \partial_t v_o \, \mathrm{d}t + w \partial_x v_o \, \mathrm{d}x|.$$

Since $m_0 \ge 1$, and $M = \max(\sup_{U_{T_0}} |\partial_x v_0|, \sup_{U_{T_0}} |\partial_x v_0|) \le \frac{1}{2}$, we obtain the following inequality:

$$\begin{split} \iint_{D} a_{e} \, \mathrm{d}t \mathrm{d}x + C_{1} \iint_{D} \left\{ \operatorname{Re} f_{e}(0) \operatorname{Re} f_{e} + \operatorname{Im} f_{e}(0) \operatorname{Im} f_{e} \right. \\ &+ \operatorname{Re} f_{e}(0) \operatorname{Im} f_{e} - \operatorname{Im} f_{e}(0) \operatorname{Re} f_{e} - |f_{e}(0)|^{2} + \frac{2}{N} \right\} \mathrm{d}t \mathrm{d}x \\ &\leq \frac{\sup_{\partial D} |w| \cdot |\partial D|}{m(w, \Omega_{w})}, \end{split}$$

which gives the assertion (i).

Case $f_e(0)=0$. The reasoning is nearly same: First we may assume that $\operatorname{Re} \partial_x u_e(0,0) \equiv \alpha>0 \quad \operatorname{Im} \partial_x u_e(0,0) \equiv \beta>0.$

Let us set $\delta = \min(\alpha, \beta)$. Let N be a positive constant. Since

$$\frac{1}{N} + \operatorname{Re} f_e$$
, $\frac{1}{N} + \operatorname{Im} f_e$

are positive at the origin, we take a positive constant T_1 small such that $\frac{1}{N} + \operatorname{Re} f_e$ and $\frac{1}{N} + \operatorname{Im} f_e$ are positive in $(-T_1, T_1) \times (-T_1, T_1)$. We shall set $u^* = -u - \frac{(1+i)t}{N}$. Then we take a positive constant T_2 such that

$$L_a u^* = -f - rac{1+i}{N}$$
 in $U_{T_2} = (-T_2, T_2) \times (-T_2, T_2),$
 $\operatorname{Re} \partial_x u_e^* > rac{\delta}{2}$, $\operatorname{Im} \partial_x u_e^* > rac{\delta}{2}$ in $U_{T_2} = (-T_2, T_2) \times (-T_2, T_2).$

Setting $v = \frac{2u^*}{\delta}$, we have

$$(\partial_t + ia_o\partial_x)v_o = -ia_e\partial_x v_e + (2/\delta)\left(-f_e - \frac{1+i}{N}\right).$$

So,

$$\partial_t v_o(0,x) = \frac{-2(1+i)}{N\delta}.$$

Then we take a positive constant T_0 such that $T_0 < \min(T_1, T_2)$. By the same reasoning as in the preceding proof, we find the following:

We can take positive constants T_0 (which is independent of w and Ω_w), and N such that

$$\begin{split} M &= \max \left(\sup_{U_{T_0}} |\partial_{\iota} v_o|, \sup_{U_{T_0}} |\partial_{x} v_0| \right) \leq \frac{1}{2}, \\ &\inf_{U_{T_0}} \operatorname{Re} \partial_{x} v_e \geq 1, \quad \inf_{U_{T_0}} \operatorname{Im} \partial_{x} v_e \geq 1, \end{split}$$

and for any simply connected domain D contained in $(0, T_0) \times (-T_0, T_0) \cap \Omega_w$ with piecewise smooth boundary,

$$i \iint_{D} a_{e} w_{x} \partial_{x} v_{e} \, dt dx + \iint_{D} (2/\delta) \left(f_{e} + \frac{1+i}{N} \right) w_{x} \, dt dx = \int_{\partial D} w \partial_{t} v_{o} \, dt + w \partial_{x} v_{o} \, dx.$$

Thus we obtain the asserion (ii). When $f \equiv 0$, the conclusion stated in the last part of the assertion (ii) is easily obtained, completing the proof.

§3. Proof of Theorem A

Assume

$$S_{L_{\alpha}}=S^{L_{\alpha}}.$$

Since $S^{L_x} \ni 0$, $L_{\alpha}u = 0$ has a C^1 solution near the origin such that $u_x(0) \neq 0$. Setting $a_0(t,x) = 2t$, we easily find that

$$w = (1 - i)(t^2 + ix)$$
 and $\Omega_w = R^2$

satisfy Lemma 1; in this case we see $|w| = \{2(t^4 + x^2)\}^{1/2}$ and $m(w, \Omega_w) = 1$. Taking a positive integer N_0 such that $N_0^{-1} < T_0$, for every integer p such that $p > N_0$, from Theorem B we get the following:

$$\iint_D \alpha(t, x) \, \mathrm{d}t \mathrm{d}x \le 8 \, p^{-2},$$

by taking $D = \left(0, \frac{1}{p}\right) \times \left(0, \frac{1}{p}\right)$. But this contradicts our assumption (A.2), ending the proof of Theorem A.

§ 4. Proof of Example

We have only to prove that the $\alpha(t, x)$ satisfies the condition (A.2). First we shall set c = 1, d = 2, and $p_k = 1, 2, \ldots$ By putting $p_k = p$, the left-hand side of

the inequality of (A.2)

$$\geq \sum_{n=1}^{\infty} \iint_{C_{n,p}} \alpha \, dt dx + \sum_{k=p+1}^{\infty} \iint_{C_{1,k}} \alpha \, dt dx$$

$$= \sum_{n=1}^{\infty} \frac{\pi a_{n,p}^2}{16} \cdot \frac{64 \cdot 18}{\pi (n+p+1)^2} + \sum_{k=p+1}^{\infty} \frac{\pi a_{1,k}^2}{16} \cdot \frac{64 \cdot 18}{\pi (k+2)^2}$$

$$= \sum_{n=1}^{\infty} 18 \cdot \left[\frac{2}{(n+p-1)(n+p)(n+p+1)} \right]^2 + \sum_{k=p+1}^{\infty} 18 \cdot \left[\frac{2}{k(k+1)(k+2)} \right]^2.$$

Since

$$\frac{2}{(n+p-1)(n+p)(n+p+1)} = \frac{1}{(n+p-1)(n+p)} - \frac{1}{(n+p+1)(n+p)}$$
$$= \frac{1}{n+p-1} - \frac{1}{n+p} - \left\{ \frac{1}{n+p} - \frac{1}{n+p+1} \right\}$$
$$= \frac{1}{n+p-1} - \frac{2}{n+p} + \frac{1}{n+p+1}$$

and

$$\frac{2}{k(k+1)(k+2)} = \frac{1}{k} - \frac{2}{k+1} + \frac{1}{k+2},$$

we have

$$\sum_{n=1}^{\infty} 18 \cdot \left[\frac{2}{(n+p-1)(n+p)(n+p+1)} \right]^2 + \sum_{k=p+1}^{\infty} 18 \cdot \left[\frac{2}{k(k+1)(k+2)} \right]^2$$

$$= 18 \sum_{n=1}^{\infty} \left[\frac{1}{(n+p-1)^2} + \frac{4}{(n+p)^2} + \frac{1}{(n+p+1)^2} - 4 \left\{ \frac{1}{n+p-1} - \frac{1}{n+p} \right\} \right]$$

$$+ \left\{ \frac{1}{n+p-1} - \frac{1}{n+p+1} \right\} - 4 \left\{ \frac{1}{n+p} - \frac{1}{n+p+1} \right\}$$

$$+ 18 \sum_{k=p+1}^{\infty} \left[\frac{1}{k^2} + \frac{4}{(k+1)^2} + \frac{1}{(k+2)^2} - 4 \left\{ \frac{1}{k} - \frac{1}{k+1} \right\} \right]$$

$$- 4 \left\{ \frac{1}{k+1} - \frac{1}{k+2} \right\} + \left\{ \frac{1}{k} - \frac{1}{k+2} \right\}$$

$$= 18 \left[\sum_{n=1}^{\infty} \left\{ \frac{1}{(n+p-1)^2} + \frac{4}{(n+p)^2} + \frac{1}{(n+p+1)^2} \right\} \right.$$

$$\left. - \frac{4}{p} + \left\{ \frac{1}{p} + \frac{1}{p+1} \right\} - \frac{4}{p+1} \right]$$

$$+ 18 \left[\sum_{k=p+1}^{\infty} \left\{ \frac{1}{k^2} + \frac{4}{(k+1)^2} + \frac{1}{(k+2)^2} \right\} - \frac{4}{p+1} - \frac{4}{p+2} + \frac{1}{p+1} + \frac{1}{p+2} \right]$$

$$= 18 \left[\sum_{n=1}^{\infty} \left[\left\{ \frac{1}{(n+p-1)^2} + \frac{4}{(n+p)^2} + \frac{1}{(n+p+1)^2} \right\} - \frac{3}{p} - \frac{3}{p+1} \right]$$

$$+ 18 \left[\sum_{k=p+1}^{\infty} \left\{ \frac{1}{k^2} + \frac{4}{(k+1)^2} + \frac{1}{(k+2)^2} \right\} - \frac{3}{p+1} - \frac{3}{p+2} \right]$$

$$= 18 \left[12 \sum_{k=p+2}^{\infty} \frac{1}{n^2} + \frac{1}{p^2} + \frac{6}{(p+1)^2} - \frac{1}{(p+2)^2} - \frac{3}{p} - \frac{6}{p+1} - \frac{3}{p+2} \right] .$$

So we have only to prove that, for sufficiently large p,

$$12\sum_{n=p+2}^{\infty} \frac{1}{n^2} + \frac{1}{p^2} + \frac{6}{(p+1)^2} - \frac{1}{(p+2)^2} - \frac{3}{p} - \frac{6}{p+1} - \frac{3}{p+2}$$

$$\equiv S(p)$$

$$\geq \frac{1}{2(p+1)(p+2)}.$$

Now we see the following Lemma 3 holds, which shows that the above statement is valid, ending the proof.

Lemma 3. For every positive integer p,

$$S(p) > \frac{1}{2(p+1)(p+2)}$$

Proof. We shall show this by mathematical induction. First,

$$S(1) = 12(3^{-2} + 4^{-2} + 5^{-2} + \dots) + 1 + \frac{3}{2} - \frac{1}{9} - 3 - 3 - 1$$

$$= 2[6\{(1^{-2} + 2^{-2} + 3^{-2} + 4^{-2} + \dots) - 1^{-2} - 2^{-2}\}] - \frac{9}{2} - \frac{1}{9}$$

$$= 2\left[6\left(\frac{\pi^2}{6} - 1 - \frac{1}{4}\right)\right] - \frac{9}{2} - \frac{1}{9}$$

$$= 2\left(\pi^2 - 6 - \frac{3}{2} - \frac{9}{4}\right) - \frac{1}{9}$$

$$= 2(9.86960440 \dots - 9.75) - 0.1111 \dots$$

$$= 0.1196 \dots$$

On the otherhand $\frac{1}{12} = 0.083...$ And so surely,

$$S(1) > \frac{1}{2 \cdot 2 \cdot 3}.$$

Next assume $S(p) > \frac{1}{2(p+1)(p+2)}$. Then

$$S(p+1) - \frac{1}{2(p+2)(p+3)} = 12 \sum_{n=p+3}^{\infty} \frac{1}{n^2} + \frac{1}{(p+1)^2} + \frac{6}{(p+2)^2} - \frac{1}{(p+3)^2}$$

$$- \frac{3}{p+1} - \frac{6}{p+2} - \frac{3}{p+3} - \frac{1}{2(p+2)(p+3)}$$

$$= 12 \left[\sum_{n=p+2}^{\infty} \frac{1}{n^2} - \frac{1}{(p+3)^2} \right] + \frac{1}{(p+1)^2} + \frac{6}{(p+2)^2}$$

$$- \frac{1}{(p+3)^2} - \frac{3}{p+1} - \frac{6}{p+2} - \frac{3}{p+3} - \frac{1}{2(p+2)(p+3)}$$

$$> \frac{1}{2(p+1)(p+2)} + \frac{3}{p} + \frac{6}{p+1} + \frac{3}{p+2} + \frac{1}{(p+2)^2}$$

$$- \frac{6}{(p+1)^2} - \frac{1}{p^2} - \frac{12}{(p+3)^2} + \frac{1}{(p+1)^2}$$

$$+ \frac{6}{(p+2)^2} - \frac{1}{(p+3)^2} - \frac{3}{p+1} - \frac{6}{p+2}$$

$$- \frac{3}{p+3} - \frac{1}{2(p+2)(p+3)}$$

$$= \frac{1}{(p+1)(p+2)(p+3)} + \frac{3}{p(p+1)} + \frac{6}{(p+1)(p+2)}$$

$$+ \frac{3}{(p+2)(p+3)} + \frac{7}{(p+2)^2} - \frac{5}{(p+1)^2} - \frac{13}{p^2} - \frac{13}{(p+3)^2}$$

$$= \frac{A_1}{p(p+1)(p+2)(p+3)} + \frac{A_2}{[p(p+1)(p+2)(p+3)]^2}$$

$$\equiv S,$$

where

$$A_1 \equiv p + 3(p+2)(p+3) + 6p(p+3) + 3p(p+1) = 12p^2 + 37p + 18$$

and

$$A_{2} = 7\{p(p+1)(p+3)\}^{2} - 5\{p(p+2)(p+3)\}^{2}$$

$$-\{(p+1)(p+2)(p+3)\}^{2} - 13\{p(p+1)(p+2)\}^{2}$$

$$= 7p^{2}(p^{2} + 4p + 3)^{2} - 5p^{2}(p^{2} + 5p + 6)^{2}$$

$$- 13p^{2}(p^{2} + 3p + 2)^{2} - (p^{3} + 6p^{2} + 11p + 6)^{2}$$

$$= 7p^{2}(p^{4} + 8p^{3} + 22p^{2} + 24p + 9)$$

$$- 5p^{2}(p^{4} + 10p^{3} + 37p^{2} + 60p + 36)$$

$$- 13p^{2}(p^{4} + 6p^{3} + 13p^{2} + 12p + 4)$$

$$- (p^{6} + 12p^{5} + 58p^{4} + 144p^{3} + 193p^{2} + 132p + 36)$$

$$= (7p^{6} + 56p^{5} + 154p^{4} + 168p^{3} + 63p^{2})$$

$$- (5p^{6} + 50p^{5} + 185p^{4} + 300p^{3} + 180p^{2})$$

$$- (13p^{6} + 78p^{5} + 169p^{4} + 156p^{3} + 52p^{2})$$

$$- (p^{6} + 12p^{5} + 58p^{4} + 144p^{3} + 193p^{2} + 132p + 36)$$

$$= -(12p^{6} + 84p^{5} + 258p^{4} + 442p^{3} + 193p^{2} + 132p + 36).$$

And so

$$S = [(12p^{2} + 37p + 18)p(p+1)(p+2)(p+3)$$

$$- (12p^{6} + 84p^{5} + 258p^{4} + 432p^{3} + 362p^{2}$$

$$+ 132p + 36)]/[p(p+1)(p+2)(p+3)]^{2}.$$

And the numerator

$$= [(12p^{2} + 37p + 18)p(p^{3} + 6p^{2} + 11p + 6)$$

$$- (12p^{6} + 84p^{5} + 258p^{4} + 432p^{3} + 362p^{2} + 132p + 36)$$

$$= p(12p^{5} + 72p^{4} + 132p^{3} + 72p^{2} + 37p^{4} + 222p^{3} + 407p^{2} + 222p$$

$$+ 18p^{3} + 108p^{2} + 198p + 108)$$

$$- (12p^{6} + 84p^{5} + 258p^{4} + 432p^{3} + 362p^{2} + 132p + 36)$$

$$= 25p^{5} + 114p^{4} + 155p^{3} + 58p^{2} - 24p - 36$$

$$\geq 292,$$

completing the proof.

DEPARTMENT OF MATHEMATICS
OSAKA INSTITUTE OF TECHNOLOGY

References

- [1] L. Hölmander, On the existence and the regularity of solutions of linear pseudo-differential equations, L'Enseignement mathém., 17-2 (1972), 99-163.
- [2] H. Ninomiya, On local integrability conditions for nowhere-zero complex vector fields, J. Math. Kyoto Univ., 33-4 (1993), 899-908.
- [3] L. Nirenberg, Lectures on linear parrial differential equations, Reg. Con. Series in Math., 17 1973.
- [4] F. Treves, Approximation and representation of functions and distributions annihilated by a system of complex vector fields, École Polytechnique Centre de Mathématiques, 1981.