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On a property of Nirenberg type operator
By

Haruki NiNoMIYA

§1. Introduction

Let X be a nowhere-zero C® complex vector field in R". Let
S¥ = {feC®(R"); Xu=f has a C! solution near the origin.} and Sy =
{f e C®(R"); Xu= f has a C' solution near the origin such that du(0) # 0}.

The following facts are classically well known:
(1) o < Sy if X is real-analytic, where &/ denotes the set of real-analytic
functions in R".
(2) Sy =C®(R?) if n=2, and X(0), X(0) are C-linearly independent (In this
case, X is an elliptic operator).

And we can easily obtain the following fact owing to Hoélmander [1] and
Treves (4]:
(3) Sy = C®(R") if X is a solvable operator at the origin.

Though it is trivial, we also know the following fact:
(4) o =Sy < C®(R") if X is a non-solvable operator at the origin and real-
analytic.

We thus see Sy = S¥ in each case of the above. Does there exist a non-
solvable vector field X such that Sy ¢ S¥?

This paper aims at showing that the answer is “Yes”. We shall give such
vector fields L,, which we call Nirenberg type:

Let o(f,x) be a real-valued C®(R?) function satisfying the following
conditions:

(A1) a(t,x) >0 in a neighborhood w of the origin.
(A.2) There exist positive constants ¢, d, and a monotonously increasing
sequence {p,} of positive integers such that

9
J JDW ) Ay > O D e )

for every sufficiently large k, where D(p,) = (0,%) X (0,%—).
k k

We shall define L, in the following manner:
Ly, =0, +i(2t + o)0x.

Then we assert the following
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Theorem A.
Sp, < St

Example (This is obtained by modifying an example of Nirenberg [3] (p. 8)).
1
(n+p-1)(n+p)
open discs in the (t,x) plane satisfying the following conditions:

1

P11 1)

Let ay p = (n,p=1,2,....) and {B,} the set of non-overlapping

(i) The ordinate of the center of B, , equals

(i) The abscissa of  the center of B, , equals l —
p

an,p
(al,p +a2,p + - +an—l,p +T)

(i) The radius of B, , equals fl—'ilﬁ.

Next let {f, ,} be the set of C® functions having the following properties
(n,p=1,2,....):

. 64 -18
i) 0<fpp<——m—-
nn+p+1)
.. . . 64 -18 o
(i)  f, , vanishes outside of By, and equals 5 inside of the closed
nn+p+1)

an,p
4
and the abscissa of the center of C, , equals that of B .
Next we define a C* function r(t,x) as follows:
(1) r(=t,x) =r(t,x).
(ii) r(t,x) =fup in Byp.
(iii) r(t,x) vanishes outside of the union of all the B, .
Finally we define o(t,x) by a(t,x) = r(t,x).

disc C, p with radius , where the ordinate of the center of C, , equals that of B, ,

Then we can check that the conditions (A.1) and (A.2) are satisfied. The
proof is given in §4.

Now, to prove Theorem A, we first derive a necessary condition on f(¢,x) for
du + iadu = f(t,x) to have a C! solution near the origin such that u,(0) # 0
under the following assumption:

(a.1) a=a(t,x) is a real-valued C*(R?) function.

(a.2) a(0,x) vanishes identically.

(a.3) There is a neighborhood w of the origin such that
(@.3.1) Ha(t,x) —a(-t,x)} >0 in {t #0}Now

and

(a.3.2) a(t,x)+a(—t,x) =0 in w.

Hereafter for a function F(z.x) we shall denote by F, and F, the even part of
F(1,x) with respect to ¢t and the odd one.
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Now we have the following

Lemma 1 (/2]). Assume (a.l) and (a.3.1). Then there exist a neighborhood
Q,, of the origin and a function w(t,x) e C'(,) such that

min(info, Rewy, info, Imw,) >0 and (0, + ia,(t,x)0x)w =0 in Q,.

Hereafter we shall set m(w, 2,,) = min(infg, Rewy, info, Imw,). Then, we obtain
the following

Theorem B. Assume (a.1), (a.2), and (a.3). Let w and Q,, be any one of the
couples of a function and a neighborhood satisfying Lemma 1. Let a C®(R?)
function f(t,x) be given. Assume that

Lou=0u+iadu= f(t,x)

has a C' solution near the origin such that u,(0) #0. Then, there exist positive
constants Cy,N, and Ty, where T, is independent of w and Q,,, such that, for any
simply connected domain D contained in (0,T,) x (—To, To) N Q,, with piecewise
smooth boundary 0D, the following holds:

(i) In case of f,(0) #0,

”D a,drdx + C, “D {Reﬁ,(O) Re f, + Im £,(0) Im £, + Re £,(0) Im f,

] s 2 Y auge < upanhil 1501
Imf;(O) Ref; |f;(0)| + N } drdx < m(W, Qw) ‘

(i) In case of f,(0) =0,

” aodidx + C ” 2 Res+1my.) didx < Pop 11 19D
D p\N m(w, Q)

where the N can be replaced with oo and the Ty is independent of N when f = 0.

This is proved in §2 and by making use of the estimate in Theorem B,
Theorem A is proved in §3.

§2. Proof of Theorem B

Case £,(0) #0. We shall set u’ = —f,(0)u. Multiplying u/ by a suitable
constant e, where 6 is a real number, we can assume that Re(e”u!) (0,0)
and Im(e?u!) (0,0) are positive, so from beginning we can assume that
Red,u!(0,0) =« and Imau!(0,0) =p are positive. Let us set § = min(a,p).
Let N be a positive constant. Then, since
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1

Re £,(0) Re £, + Im £,(0)Im £, — |£,(0)|? +%, Re £,(0)Im f, — Im f,(O)Re f, + N

are positive at the origin, we take a positive constant 7, small such that

Re £,(0)Re £, + Im £,(0)Im £, — |£,(0)]? + N

and
Re £,(0) Im f, — Im f,(0)Re f, + 1

are positive in (=7,Ty) x (-=Ty, T})
Next we take a positive constant T, such that

u'=—f,(0)f in Up=(-Ty,T1) x (~T,T),

o J .
Reaxu: > E, Im 6_\.14! > E n UT2 = (—Tz, Tz) X (—Tz, Tz).
Then we take a positive constant Ty such that To < min(T}, T;). By setting u'/ =

(| £y -1 +’) t, it follows that
1 +i
FOf + 11O -
I 5 2 .
Then setting v = (2u'")/J, we see meT Re 050, 5 5_1 and me,OIm Oxe >
s2_ .
20
=0. And also, from

Now we remark d,v,(0,x) =

Lo = (2/6)Lad" (2/6)( L0)f + 14,(0)2 —‘*’),

we have

(2.1) (0 + ia,0x)v, = —ia,0xv, + (2/J) { —7,0) £, + | £,(0)]2 _i}.

So we see

=2(1+1)

0(0,X) = ——=.
a,v( Y) No

Here taking N sufficiently large and Ty sufficiently small, we can assume that

N —

Ur, Uz,

M = max <sup|6,v(,|, sup|6xv,,|> <
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As it has been remarked,

inf Redyv, > 1, inf Imdv, > 1.

Uz, Ur,

Now we obtain the following

Lemma 2. For any simply connected domain D contained in (0, Tp) x
(=To, To) N Q,, with piecewise smooth boundary,

(2.2) 1“ 0,0, drdx + J J (2/5){f‘,(0)/;, — 140 + l%{}wx drdx
D D
= J wo,v, dt + wo,v, dx.
oD

Proof.  From (2.1),

_W,\'{(al + f(lod\')“o} = iat’w.\'a.\'ve + (2/5){/_4»(0)];' - lfc(o)lz + 1;/-_ I}W.\'~
And hence we have
JJ —wy{(0; + ia,0y)v, } drdx
D

|4
; ! } w, drdx.

=[] faomteearax+ | (2/(5){f_c(0)ff O+
D D
The left-hand side above =

” —{wy0v, — w0y, } dedx = JJ d{w(t, x)do, (1, x)} = J wo,v, df + wo v, dx,
D D

éD
ending the proof of Lemma 2.

From this lemma we have, by setting C; = 2/6:

(2.3) JJD [a.{Re d v, Imw, + Im 8,0, Rew,}] drdx
+ C J] [{Refo(o) Re f, + Im f,(0) Im f, — |f¢(0)|2 _’_7]\]_} Imw,
JD

+ {Re/;,(O) Im £, — Im £,(0) Re f, + %} Rew, | drdx

< [ [wo,v, dt + wo, v, dx]|.
Jap
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Denoting min(infUTO Re axve,infurn Imd,v,) by myg, from (2.3) we have

(2.4) m(w,Q,)|mg JJD a.(t,x)drdx + C JJD {Refe(O) Re f, + Im f,(0) Im f,

+Re £,(0)Im £, — Im £,(0) Re £, — | £,(0) +%}dtdx]

< J |wd,v, dt + wdyv, dx|.
ap

Since mg > 1, and M = max(supy, {00l supUT0|6xvo|) < 1, we obtain the fol-
lowing inequality:

JJD a,drdx + C) JJD {Re £.(0)Re £, + Im £,(0) Im f,

+Re £,(0) Im £, — Im £,(0) Re £, — | £,(0)]? +%}dtdx
_ supgplw| - [0D)]
- omw, Q)
which gives the assertion (i).
Cast f,(0) = 0. The reasoning is nearly same: First we may assume that
Re d,u4,(0,0) =a >0 Ima.u(0,0) =p>0.
Let us set 6 = min(a, ). Let N be a positive constant. Since

1 1
— +Ref,. — )
v FRefe Imy

.. . . 1
are positive at the origin, we take a positive constant 7 small such that i +Ref,

and %+Imfe are positive in (=T7,.7)) x (=Ty,T)). We shall set u* = —u

_ ( ;z)r‘ Then we take a positive constant 7> such that
" 14+ .
L‘,u = —f— N n UT2 = (—Tz, Tz) X (—Tg, Tz),

0 o .
Redyu; > 7 Imdu, > 7 in Up=(-TTh) x (-T2, Th).

*

. 2
Setting v :%, we have

L
(8, + ia,d\)v, = —idedyv. + (2/3) (—/;, - ; ’).
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So,
=2(1+41i)
N6

Then we take a positive constant Ty such that Ty < min(7},7T2). By the same
reasoning as in the preceding proof, we find the foliowing:

We can take positive constants Ty (which is independent of w and £,,), and N
such that

0,0,(0,x) =

1
M = max(sup|6,vg|,suplaxvo|> < 3

Ur, To

inf Redv, > 1, inf Imad,v, > 1,

T Ur,

and for any simply connected domain D contained in (0, To) x (—To, To) N £, with
piecewise smooth boundary,

IJJ a,w,0x0, dtdx + JJ (2/9) (fe + m) w,drdx = J wo,v, dt + wo,v, dx.
D D N D

Thus we obtain the asserion (ii). When f =0, the conclusion stated in the last
part of the assertion (ii) is easily obtained, completing the proof.

§3. Proof of Theorem A
Assume
Sp, = St

Since S%+30, L,u=0 has a C! solution near the origin such that u(0) # 0.
Setting a, (¢, x) = 2¢t, we easily find that

w=(1-i)(+ix) and Q,=R>

satisfy Lemma 1; in this case we see |w| = {2(* + x*)}'/? and m(w,Q,) = I.
Taking a positive integer Ny such that Ny' < T, for every integer p such that
p > Ny, from Theorem B we get the following:

JJ a(t, x)drdx < 8p~2,
D

. 1 1 . . .
by taking D = (0,;) X (0,;). But this contradicts our assumption (A.2),

ending the proof of Theorem A.

§4. Proof of Example

We have only to prove that the a(t, x) satisfies the condition (A.2). First we
shall set c=1,d =2, and p, =1,2,.... By putting p, = p, the left-hand side of
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the inequality of (A.2)

> iJJCMadtdx+ Z ” adrdx

n=1 k=p+1 Cik
_i ay, 6418 + i mai, 64-18
e an+p+1)° 57, 16 a(k+2)?

© 2 2 @ 2 2
=218'[(n+p_1)(n+p)(n+p+l)] +k_Z: 18 [m}

=p+1

2 1 ]
(n+p-Dn+p)n+p+1) (n+p-1Dn+p) (n+p+1)(n+p)

1 1 1 1
_n+p—1_n+p_{n+p_n+p+l}
| 2 1
= = +
n+p—-1 n+p n+p+1

and

2 btz T
kk+ D)(k+2) k k+1 k+2

we have

2
«© 2
* ; 18- [k(k+1)(k+2)

n=1

X 2
D 18- [(n+p—l)(n+p)(n+p+l)

2 1 4 1 1 1
=18 s+ 7+ > —4 — -
m+p-—1° (mn+p) (m+p+1) n+p n+p

n=|\

{ 1 1 } { 1 1 }
+ - -4 -
n+p—1 n+p+1 n+p n+p+1

I 1o
I Z [kz (k+ 1) +(k+2)2_4{E_m}

k=p+1

7Y PRI N G L R
k41 k+2 k k+2
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= (1 4 I 4 4 I 1
k§l{p+(k+l)2+(k+2)2}_p+l_p+2+p+1+p+2
:lSliH . SR 2}_§_L]

= [ Lntp=1)7" (n+p)” (n+p+1) p p+l

<R 4 1 3 3

kg;rl{p+(k+l)2+(k+2)z}_p+l_p+2

<A 6 1 36 3
:18[12;’1—2+—+ —————p“].

<] | 6 1 3 6 3
12) S +—+ - e
,;;2"2 Pro(p+1)Y (p+2?® p pF1 p+2
= S(p)

—_—

TN+

Now we see the following Lemma 3 holds, which shows that the above
statement is valid, ending the proof.

Lemma 3. For every positive integer p,
1
2(p+)(p+2)
Proof.  We shall show this by mathematical induction. First,
3 1

S(1)=1232+42 452 4...... JHl+5-5-3-3-1

S(p) >

=2[6{(172+272 432 +472 4. )—1-2—2—2}]_2_1

9
n? 1 9 1
—2[6(€““z)] 27%
1

3 9
_ 2 _ - 7Y _ 2
_2(” 6-3 4) 9

= 2(9.86960440.. . ... —-9.75) - 0.1111......
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On the otherhand {5;=10.083....... And so surely,
S(1) > 1
2.2-3
Next assume S(p) > . Then
20p+D(p+2)
1 “1 1 6 1
Sp+l)—— =12 —+ + -
(+1) 2(p+2)(p+3) ;,,;; n(p+1)? (p+2)?° (p+3)°
3 6 3 1

o+l p+2 p+3 2(p+2)(p+3)

0] 1 1 6
=12[Z — - 2} + s+ >
I1=p+2n (P + 3) (P + 1) (p +2)

3 6 3 1
(p+3)2 p+1 p+2 p+3 20p+2)(p+3)

1 36 3 1
>+ 4 + +
2p+1)(p+2) p p+l p+2 (p+2)°

6 1 12 1

L6 136
(p+2? (p+3)?* p+1 p+2

3 1
T p+3 20p+2)(p+3)

1 3 6
TrD DY st D) D +2)

Loy 1 s 1B
(P+2)(p+3)  (p+2)? (p+1)°

Pt (p+3)?

A| + A2
pp+D)(p+2)(P+3) [plp+(p+2(p+3)°

=S,

where

Ay Ep+3(p+2)(p+3)+6p(p+3)+3p(p+l)=12p2+37p+18
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and
Ay =T{p(p+ 1)(p+3)} = 5{p(p+2)(p +3)}*
—{(p+D(P+2)(p+3)} - 13{p(p+ )(p+2)}*
=Tp*(p* +4p+3)> = 5p*(p* + 5p +6)°
—13p2(p2+3p+2) = (PP +6p> + 11p +6)°
=Tp*(p* +8p> +22p* + 24p +9)
— 5p*(p* + 10p* + 37p* + 60p + 36)
—13p2(p* + 6p> + 13p* +12p + 4)
— (p® +12p° + 58p* + 144p> + 193p2 + 132p + 36)
= (7p® + 56p° + 154p* + 168p> + 63p?)
— (5p% + 50p° + 185p* + 300p> + 180p?)
— (13p® 4+ 78p° + 169p* + 156 p* + 52p?)
— (pS + 12p° + 58p* + 144p> +193p2 + 132p + 36)
= —(12p® + 84p> + 258p* + 432p3 + 362p* + 132p + 36).
And so
S=[(12p* +37p+18)p(p+ 1)(p+ 2)(p + 3)
— (12p° + 84p> + 258 p* + 432p3 + 362p?
+132p+36))/[p(p + D(p +2)(p + 3)]*.
And the numerator
= [(12p* +37p + 18)p(p* + 6p* + 11p + 6)
— (12p% + 84p> 4+ 258p* + 432p3 + 362p* + 132p + 36)
= p(12p° + 72p* + 132p% 4+ 72p* + 37p* + 222p% + 407p% + 222p
+ 18p* + 108 p? + 198 p + 108)
— (12p% + 84p° 4 258 p* 4 432p3 + 362p% + 132p + 36)
=25p° + 114p* + 155p® + 58p2 — 24p — 36
> 292,
completing the proof.
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