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Non-relativistic global limits of weak solutions of the
relativistic Euler equation

By

Lu MIN and S6ji thcm

1. Introduction

The relativistic Euler equation f o r  a  perfect fluid in  two dimensional
Minkowski space-time has the form ([9], [10])

a pc2) y2
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Here y = y(x, t )  is the classical coordinate velocity, p  = p (x ,t)  is the mass-energy
density of the fluid, p  = p (p )  is the pressure and c  is the speed of light. On the
other hand, the non-relativistic Euler equation is

(1.2)

a
— p+— (pv) = 0,
Ot

0 a
( P V )( P V 2  ±  13)

 =0.

For the systems (1.1) and (1.2), the local existence theorems are known for the
smooth solutions (see [4] and [5] for the full-dimensional case). Also, the global
existence theorems are established for the one-dimensional isentropic motions
p = pY  , y >  1  ([11 and [7]). In the case of the isothermal motions p = 0 -

2 p, where
the sound speed c  is assumed to be the constant, the existence theorems with
arbitrary initial data have been obtained both for (1.1) and (1.2), by J. Smoller and
B. Temple [9] and by T. Nishida [6] respectively.

In physics, it is well-known that the classical mechanics reappears as the limit
of the relativistic mechanics when c —> oo , and in particular, it is easy to check that
the relativistic Euler equation (1.1) reduces formally to the non-relativistic Euler
equation (1.2) when c cc. However, until now there are only local results for
the limit of smooth solutions of the relativistic Euler equation ([5]). The aim of
this paper is to discuss the convergence of weak solutions of (1.1) as c —> c o . Since
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we know their global existence both for (1.1) and (1.2), it is natural to expect that
the convergence is  global in  tim e. We will show that this is indeed the case.

For simplicity, we study the systems (1.1) and (1.2) for the case

(1.3) p = 6.2 p

with common initial data

(1.4) p(x ,0) = p o (x), v(x,0) = vo(x),

where po , v o are independent of c. It is not hard to see that the same conclusion
holds if

(1.5) (1 ) ,v ) (po , vo) as c oo,

strongly in  Ljoe .
Our main result is

Theorem 1.1. L et p o (x ) > 0 and vo(x) satisfy

(1.6) T.V.{1np0} < oo, T.V.{v o } < co,

where T.V.{f} denotes the total variation of the function f (x ), x  e R .  Then, there
exists a constant co and for any  c > co there ex ists a  L  weak solution (pc, V C )  o f
(1.1), (1.4) satisfying

(1.7) T.V.{ve(-, t)} + T.V. {1n(pc(•, t))1 < M,

f o r all t > 0, w here M  is a constant depending only  on the in itial data (pa , vo )
b u t independent of  c > co . M oreov er, there ex ists a  subsequence {ck}, ck —> 00
(k —+ oo), such that

(1.8) pek p, v c k y, strongly in L i
l
oc (R  x R± ),

as k co and the lim it (p ,v ) is a  weak solution of  (1.2) and (1.4).

To prove Theorem 1.1, we use the non-increasing property of the total variation of
ln(pc) in the system (1.1) given by J. Smoller and B. Temple in [9], and find out
that for any fixed initial d ata  (po , vo) the total variations of the approximate
solutions (pc;lx , vIc)  constructed by Glimm's scheme are bounded uniformly for
large c. In [9] Theorem 1, J .  Smoller and B. Temple show that

(1.9) T.V.{1n(pc(-, Vo, T.V.{1n( c v e (• ' t ) ) }  <
c — ve(•,t)

where Vo, V1 are constants depending on T.V. ln(po ) and T.V. vo. However, their
proof does not tell us anything about the c-dependency of Vo and V I .  Moreover,
even if  Vo, V1 are independent of large c, the second inequality in (1.9) becomes
meaningless when c —> oo because

+ v
l n 0  a s  —4 co,

c — v
(1.10)
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for each fixed y E R .  Therefore, in  order to obtain uniform estimates for large c,
(c + v  

I.?
e)

. A c t u a l l y ,we shall evaluate the total variation of '  itself, instead of ln
c — vc

we will prove (see Lemma 3.4 below) that

(1.11) T.V. ye < 4a exp{T.V. ln pc }.

Thus, th e  desired estimate will come if  V o  in  (1 .9 )  is found to be bounded
uniformly for large c. To show this, then, we need to improve the estimate given
in [9] for the wave strength in the approximate solution (see Lemmas 2.4 and 3.3
below).

2. Riemann problem

In this section we discuss the solution of the Riemann problem for the system
(1.1). The results in this section mostly appear in [9] and our goal is to derive a
sharper estimate of waves in the solution of the Riem ann problem (see Lemma
2.4).

The problem of (1.1) and (1.4) is a  special case of the general system of the
nonlinear hyperbolic conservation laws in  the  sense o f Lax ([31, [8 1),

(2.1) Ut + F(U), = 0,

with initial condition

(2.2) u(x, o) = uo(x).

In  our case (1.1),

(2.3) U (p
[( 0 .2  ±  e2)y 2

i ]  p ( 0 .2 V 

C2e 2  — V
2

+ y2)
 C 2  —  V 2 )

,2
p (yr 2 y 2) V  n  ( 0 .2  +  y 2)  a2(2.4) F(U) — c2 y 2 k c2 v2 •

For the mapping (p, v) U = (u 1 , u2 ) , we state the

Lemma 2.1. T he mapping (p, u) U  is  1  — 1 , an d  th e  Jacobian o f  this
mapping is continuous and non-z ero in the region p > 0, I v  <  c. M o re o v e r, the
convergences

(2.5) U (p,pv), F ( U ) (pv, p(v 2 + a 2 )), as c co,

are uniform in any  bounded region 0 < p  < M , v  < c o , w here M , c o are  positive
constants.

The first part of this lemma is given in [9]. T he  second  part is easy to prove and
we om it the proof.

The R iem ann problem is the  in itia l value problem when the initial data
Uo(x) U (p0 (x), v o (x )) consists of a  pa ir o f constan t states 111 U v1) and
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Ur  U  (Pr, vr) separated by a jump discontinuity at x  0 ,

U i  if x < 0,
(2.6) Uo (x)

U r  if x >  O.

Note that, in view of Lemma 2 .1 , U1 and Ur  of the system (2.1) are uniquely
determined by (p 1 , v i) and (Pr , vr) •

This problem can be solved in the class of functions consisting of constant
states, separated by either shock waves or rarefaction waves. Shock waves are
determined by the classical Rankine-Hugoniot condition

(2.7) s[U] =  [F],

and the Lax entropy conditions

(2.8)S i  <  Alt, Air <  Si < A 2r, on 1-shocks,

(2.9) Alt < S2 < A21, S 2  >  A 2 r ,  on 2-shocks.

Here [f] f  (U 1) —  f  ( Ur )  denotes the jump of the function f ( U )  between the left
and right hand states along the curve of discontinuity in the x t  plane, while
Au, Air, A21, A2r represent the first and second eigenvalues of (2.1) on the left and
right, and si , s2 represent the shock speeds of 1-shock and 2-shock, respectively.
Rarefaction waves are continuous solutions of form U(x /t).

For the system (1.1), the eigenvalues, Riemann invariants, shock waves and
rarefaction waves are given by J. Smoller and B. Temple in [9].

Lemma 2.2 ([9]). The eigenvalues of the system  (1.1) are real and distinct, with

(2.10)
V —= , '
1 —

V + (5
A 2 = CV

1 + —
c 2

and the R iem ann invariants r  and s f o r the sy stem  (1.1) are  defined as

r = ln ( c v) l n  p,
kc — vi

s ln
( c
 + ln p,

— v

20 2 c2

(0 .2 c 2) 2

Here the pair of Riemann invariants r and s defined in (2
different from those of [9], so that the limit of our pair
sense even when c o o .

(2.11)

(2.12)

where

(2.13) k  =

.11) and (2.12) is a little
(2.11) and (2.12) makes

Lemma 2.3 ([9]). Suppose that (p i , v i) and (p, y )( p r , vr )  satisf y  the jum p
conditions (2.7) and L ax  entropy  conditions (2.8), (2.9) f o r the system  (1.1). Then
the shock  w aves are
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Fig. 1

(2.14) 1-shock wave Si : — = f +( 6)  =1  + + /6 2 + 213, ( P  > P i) V < l l i) ,
P/

(2.15) 2-shock wave S2 : 212- = f -  (1-3) = 1 + fi \ / 62  2 )6,< <

The rarefaction waves are

p [(c + v i)(c — v)
] ] / N

(2.16) 1-rarefaction wave RI — = (p < >
Pi (c — vi)(c + y)

p
=  

[(c + v )(c — vi)
11/
‘•

(2.17) 2-rarefaction wave R2 (p > v>
Pi (c — v)(c + vi)

where k  is defined in  (2.13) and

( 0 .2 + c2)2 (y — vi) 2

(2.18) = )6(v,v1)= 26 2 (c 2 _ v 2)( c 2 _

The wave curves are sketched in Figure 1.

Theorem 2.1 ([9]). Fo r an y  initial value (Pi, Vi) a n d  (p r ,v r )  there ex ist a
solution of  the Riemann problem f or (1.4) and (2.6) in the case of p 1, Pr > 0, —c < vi,
vr < c. T he  so lu tion  (p, y ) satisf ies 0 < p(x ,t) <  c o , —c < v(x, t) < c .  Moreover,
the solution is given by  a  1-wave which is followed by a  2 -w av e . The solution is
unique in the class o f  rarefaction waves and admissible shock waves.
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Using Lemma 2.3 and Theorem 2.1 we can obtain the following inequality for
the w ave strength. This inequality is an  improvement o f tha t o f [9], Lemma 6,
and is needed to establish a uniform (in c )  estimate of the wave strength at t = 0+.
See Lemma 3.3.

Lemma 2.4. L et ( p , , v )  be the state which connects w ith 
( p

 v i) by  1-w av e on
the le f t and w ith ( p , ,v r )  by  2-w av e on the right. T h e n  w e  h av e

(2.19) I In — In Pni + I In Pm —  Prl

 

)1/,./gc+  vi 
l n

((
)

/c + v , )
11-V a

ln (
 — vi c  — Vr )

1ln — ln pr i +

 

P r o o f  L e t  I , II, III an d  IV  b e  th e  regions depicted in  F igure  1. From
Theorem 2.1 we know that there are four distinct cases for the solutions according
to which region U r l ie s  in. N ow  w e shall d iscuss each case separately.

(i) T he  case  Ur E I. I n  this case, (p,„ v,n )  connects with (p i , v1 ) b y  a  1-
rarefaction wave a n d  w ith  (p r ,v r ) b y  a  2-rarefaction wave a n d  vi < v„, < v r

h o ld s . F ro m  (2.16) and  (2.17) we then have

(2.20)i n  P i  — lnpni ( +11np,, — lnpr l

l n  \
( t e  v m ) ( c  v i ) \ i/va

( c  — v,)(c + vi))
+  ln

ln (
(c+  v r ) ( c  — v i ) )

1
N a

( c  — v r ) ( c  +  vi) )

(ii) T h e  c a se  Ur e H .  I n  th is  case , (pm , v ,n ) connects w ith (p i , v i )  b y  a
1-shock wave a n d  (pr , vr ) b y  a  2-rarefaction wave a n d  p i < p„, p r  ho lds.
Thus,

(2.21) 1ln — ln iln — ln = lnp 1 —

(iii) The case Ur E / H .  In  this case, (pm , um )  connects with (p i , v i )  by a  1-
shock wave and (p r , vr )  by a  2-shock wave and vi v m v r h o ld s . F ro m  (2.14)
and  (2.15) we have

(2.22) lnp, — lnp,„1+ Ilnpm — lnpr l = in f+ ( f l ( v  yin)) +  i ln  f - ( f i ( v . , vr))I

= f+(fl (vi, v. )) + In f+ (13 (vin, vr)).

If

 

In Re + v 2 mi/f27,

ln ( ( c +  v i ) Y /
vi ) ) — v2))

(2.23) lnf+(fi(vt, v2))

  

((c  + vr )(c — v„,)
1 / V a

(c — vr ) (c +
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then we will have

(2.24) Ilnpi - lnp m l + Iln p m  -  lflPrI

In ( (
(
c.
c  +_ vv70))1/V-Tc

(( c  v o l / J a
<  l n  

(c -  vi))

In ( ( c  l n  ( ( c  v r) ) 1/ 7(

(c — v„,) (c — vi) )

in ( (c+ vi)) 1 /vT'  I n ( ( c + v r ) y `
(c — vi ) ( c  —  v r )

since v1 > m  >  v r . I t  re m a in s  to  p ro v e  (2 .2 3 ) . Put

(2.25)
2

g(y) = ln{
4
-

1

k
y +1 +

21

(4—k Y +  1 )  - 1

} 1 1
ln 1 (-21 y  +  1 ) - 1 } .- y  +  +

V2k 2
{

Then we find g(0) = 0, and

\/(y + 4k) 2 - (4k) 2 \12k((y + 2) 2
 -  4)

(c 2 a 212
S in c e  2 k  -  1  =  2  <  0, we obtain that g'(y) < O for y  >  0 , which means

(c 2 + 0.2)

g(y) 0  f o r  y  O. L e t y  = - (V.i) -1 )2 ,  x  >  0 , then  -
2

y  +  1  -  2
1  ( x +

1
x )

and

1{ 1 (1 \ 2 1
(2.27) _  In  -y  +  1  + -2 y + 1 )  - 1  = y d n x I .

V2k 2

Put x  =  (c + vi )(c - v2)(c - vi ) 1(c + v2) 1 to  deduce

11 7
4k y  4 k  ±  x 1 2 )

1  ( ( c +  ) (c  -  y2) vi)(c + v2) 2 )
4k (c  - v i)(c+  v2) + vi)(c - v2)

1 (c + vi) 2 (c -  v2) 2 + (c -  vi ) 2 (c + 112 )

2 — 2(C 2 —  q ) (C 2 —  

4k (c2 - v?)(c 2 -  q)
4c2(v, —  v2)2 

(2.26) g r /(y )

4 k  ( c
2
 -  v ? ) ( c

2
 -  t q )  

= fi(vi, v2),
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and

(2.28) 14 -
4

1

k

y  +1 +
2
( vc

i y  + 1) — 1}  = ln (1 + fl + \462 +  2)6) ,

which proves (2.23).
(iv) T he case Ur  e  I V . In this case, (pn „ yi n )  connects with (p i , vi) b y  a  1-

rarefaction wave and with (p r , v ,) by a  2-shock wave and p i  p r  holds, so
that we get

(2.29) 1ln — ln 1n p, ' Pr  =  Iln —

The proof is now complete.

3. The difference approximation

In this section we use Glimm's scheme to construct an approximate solution
UA.„(x, t)  for the problem (1.1) and (1.4), and derive some estimation on Uj x (x, t)
that will be used in the next section. Let A x denote a mesh length in x  and At
a  mesh length in  t ,  and let xf  =  jA x , t n  =  nA t, denote the mesh points for the
approximate solution. Let U0(x) =  U(p0 (x ),v o(x )) denote the initial data for
(1.1) satisfying po >  0 ,  —c < vo < c. To start the scheme, define

(3.1) Ujx(x, 0) U1/ , f o r  x 1x  <  x j + i ,

where Uj

°
 =  U 0 (x j+). For tn_i <  t <  tn ,  le t  Uj x (x , t)  b e  the solution of the

Riemann Problem posed at time t = tn_i. Then, define

(3.2) U4x(x, t„) = Uj
n , for xf  < x < xj+i,

where Ui "  =  U4x (x1 + an , t„—) for some an  e  (0,1), and use this as the initial data
for the Riemann problem posed at t = t„. Thus, UAx (x, t)  can be defined for all
x  e  R  and t > 0  b y  induction, if the waves do not interact within one time
step. I n  [9], it is stated that the last requirement is fulfilled if

(3.3)
Ax

 >  C.
2At

However, this does not make sense when we consider the limit c cc. Actually
it suffices to choose A x1(2.4t) to be larger than the eigenvalues of the system (1.1).

In order to find the bounds of the eigenvalues, first, we state some estimate of
Uz ix  which are given in [9].

Lemma 3.1 ([9]). Let (Po' vo) satisf y

(3.4) 0 < p o <  co, —c < vo < c,

(3.5) T.V. ln(p 0 ) + T.V. y o <  co.
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Then (p 4 „,vA x ) w hich is given by  Glim m 's schem e w ith (3.3) satisfies

(3.6) 0 < p Ax (x ,t)  < co, — c < v A x (x ,t) < c,

(3.7) T.V. ln(p j x (-, t+)) T.V. ln(p Ax (., s+)),

whenever 0 < s <  t.

Here (3.3) is assumed but it is evident that the conclusion is true as long as no two
waves interact. F o r the in itia l d ata  yo we have the following result:

L em m a 3 .2 . Let vo E B V (R )  an d  M o  s u P x E R I v o ( x ) 1 .  I f  >  M O ,

C•
)1/Vfk

(  Vo a ( C 2 0 ' 2 )  
T.V. vo.(3.8) T.V. ln

c — vo (c— Af0) 2

then

P ro o f  Let v2 > vi, Iv i <  c, 1v 2 1 < c. Then

(( c +  v 2 m i / J -5 -

in
/(c

v i ) \ 1 / l n  
(c — v i )) y — v2) /

 

ln (
(c+ vi)(c — v2)

) 1 / I g

(c — vi)(c + v2)

     

= 14 1  +  2 c (v i —  v 2 )  

V2k (c — vi)(v + y2))
2

Noting that (2k) 2 — 
0. +  c2

 and ln(1 + x) < x for any x  >  0  w e have
2o- c

to \ i/,,/a ( ( c +  v 2 ) y./2Tc (0.2 + c 2)( v2 v i )
l n   I n  

(c — vi)) (c — v2)/ (7(c — vi)(c + v2)

Then we obtain (3.8) easily from (3.9) and by

(3.10)
1 1

(c — vi)(c+ v2) < (c — Mo) 2 .

Next we use Lemmas 2.4, 3.1 and 3.2 to derive bounds of T.V. ln(p 4 )  and
T.V. vAx independent of large c , still assuming that no waves interact within one
tim e step.

L em m a 3 .3 . Let c >  2M 0, w here M o is given in  L em m a 3.2. Then

(3.11) T.V. 111 P4x(•, t) T.V. lnp o + 8o- T.V. vo.

P ro o f  From  Lem m a 3.1 and (3.7) we know that

(3.12) T.V. lnp Ax (., t) T.V. 1np4 ,(•,0+).

Using Lemma 2.4 we obtain

(c, v0 )1 /Va.

(3.13) T.V. lnp A ,(•, 0+) T.V. lnp o +  T .V . ln  
c — vo

(3.9)
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which, combined with Lemma 3.2, yields
0.(c2 + 0.2)

(3.14) T.V. 1np4 „(•,0+) T.V. lnp o + T.V. vo.
(v M 0 ) 2

Now, (3.11) comes from (3.12) and (3.14).

Lemma 3.4. Let c >  2M 0 and M 1 T .V .  ln po + 8a T.V. v o ,  where M o  is
given by Lemma 3.2. Then

(3.15) T.V. vA x  < 4ae 1141 .

P r o o f  Let (p„ v ,) denote the i-th  constant state  o f (p A  x (. , t), v4(., t ) )  for
t //At. Then

(3.16) T.V. 1np4 x (• ,t)  =  ( E + E ) I l n ( p , )  -  l n ( p  1)1

where E s and ER  are the sums of all shock waves case and all rarefaction waves
case respectively. Since  f ( f i ) f - (fi) = 1 ,  f + (13) 1  +  ,V2fi where f + (6) an d  a re
defined by (2.14), (2.15) and (2.18), we have

(3.17) E = E lincf±u3(v„ v,+,»)1
s s

E ln (1 +  (6
2  +  c 2 )

I ll, — V,±11

(c +lvil)(v + lvi+1D)

The second term on the right hand side of (3.16) can be estimated by using (2.16),
(2.17) and the inequality (1 + x)" 1 y x  for y 1, x 0  as follows:

(3.18) = In 
[(c + v,)( c - v , + i)

R R (c - v,)(c + v, + i )

> in [1 ±
2 cv i -  vi I

NYcl i+
(c, 1Vi+11)

(9.2 +  c ,2)
E  1 4 1  +

Then (3.11) and (3.16)-(3.18) yield

(3.19) exp{T.V. 1np 4.„(•, t)}

lVi Vi+11 

lVi+11)) •

0 .2  ±  c 2)
>  1 1 ( 1 - k k

S UR
+  c 2)

lVivi-FIl 
(c + lvd)(c +

Iv; -

SUR a + lv iN v  +
1

—
4  

Iv; -
SUR

a

S R
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Here we used the inequality 11(1 + x i ) >x  fo r x, > 0 and < c. Thus we
get (3.15).

We summarize the results above as  a  theorem.

Theorem 3.1. L et vo, lnpo e BV(R ) and po > 0. Then there exists a constant
and for any  c> c o w e hav e

(3.20) ± Ilin(Pzix(*c))11L. M,

(3.21) T.V. vA x e, t) + T.V. In pA x (., t) M,

where M  is a constant depending only  on initial data (po , vo).

P ro o f  The assumption in Theorem 3.1 implies that there exist states p +  =
po (x ) and v ±  =  l im ,  v o ( x ) .  From the definition of Glimm's scheme,

it is easy to see that lim„ + c ,„ pA x (x, t) = p + and lim x _, + ,0 vA x (x, t) = v ±  hold good.
This together with (3.21), which is proved in Lemmas 3.3 and 3.4, implies (3.20).

Recall that Lemmas 3.3, 3.4 and Theorem 3.1 were established under the
assumption that n o  waves interact within any one tim e step. However, the
constants Mo, MI, M  appearing there are all independent of c > co and depend
only on  (po , yo), so that we can proceed a s  fo llow s. Suppose I vAx  M  and
c co. Then the eigenvalues 2,(p , v) of the system (1.1) given in (2.10) satisfy

M  + o-

(3.22) 121,21 um  •
1 —

Now we choose
A x  2(M + a) (3.23)
At , aM

co
2

Thus our choice of Ax/At is independent of c for c >  co and we see immediately
that Theorem 3.1 holds also with this choice. Moreover, it allows us to show that
the approximate solutions ( p ,  v 4 ) a re  L I Lipschitz continuous in  t.

Lemma 3.5. Under the  assumption o f  Theorem  3.1, it ho lds that f o r any
0 < t < t ' and c > co , there ex ist a positive constant M  such that

(3.24) E0 ,,,,x(x, t) — vA x (x, t')1 + lin(Pex(x, t)) — ln(pA x (x, t'))1 dx — t'l,

where co  is  the constant given in Theorem 3.1 and M  is a constant only depending on
the initial data po, vo •

P ro o f  Let ô = Ax/ At be fixed so that (3.23) holds. Then for any 0 < t < t',
we have

fx+6(t' —t)

(3.25) IvAx(x, t) — vA x (x, t')I < IckvAxr,

Co2
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Integrating (3.25) over R, we obtain
fx + f i(t ' - t )

(3.26) Ivex(x, t) - vAx (x, ti)1 dx< A y /1,g, t)lidx
-co Li x-(5 (1 ' -t)

< 26(t' - t)T.V. v A x (., t).

For lnp z ix  the proof is the same. Thus, we complete the proof.

4. Convergence

W e shall complete the proof of T heorem  1 .1 . F irst, for any  initial data
(po , vo )  which satisfies the assumption of Theorem 1.1, there exist positive con-
stants co and M  such that for any c  > co the approximate solutions (p5i x , vfi x )
generated by Glimm's method satisfy the following inequality (Theorem 3.1 and
Lemma 3.5);

(4.1) 111'fix(,*)11L, M, 11111 (Péx(c)11/.., M ,

(4.2) T.V. v,c4 x (•, t) + T.V. ln(pfi x (•, t)) M,

(4.3) tt)  - t2)11L1 MIti - 121,

(4.4) 111n(Pfix(., ti)) - In(Péx( . , t2))11LI M1tt t21,

where M  is dependent only on the initial data (vo, Po )  and is independent of
C > c o. For each e > c o  w e apply G lim m 's Theorem  [2] to  obtain the weak
solution (pe, vc) of the system  (1.1). Let a {ak } e A  denote a  (fixed) random
sequence, 0 < ak <1, 1 < k  <  a), where A  denotes the infinite product of intervals
[0, 1] endowed with Lebesgue measure.

Theorem 4.1 (Glimm, [21). Assume that the approximate solution (pfi x ,vf;x )  of
(1.1) satisfies (4.1)-(4.4). Then there exists a subsequence of  mesh lengths Ax i —> 0
su c h  th at  (pfix , ,v ) ( p c , v e ) ,  w here (p e ,v ` )  also satisf ies (4 .1), (4 .2). The
approx im ate solutions converge poin tw ise  a.e ., and in  L 1 0 (R )  at e ac h  tim e  t,
uniformly on bounded x  and t sets. Moreover, there exists a set N  c  A  of Lebesgue
measure zero such that, if  a e  A -  N ,  then (pc,v e) is a  weak solution of the initial
value problem (1.1), (1.4).

Using this theorem we have

Lemma 4.1. For any  c  > co (4.1)-(4.4) hold also for the limit (pc, ye) given in
Theorem 4.1, w ith the sam e constant M.

P ro o f  For any R  > 0, w e have

(4.5) 11vc(., ti) - v c (-, t2 )4 1(-R,R) P c (- , ti) véxi e, t1)11Li(-R,R)

+ 11vc ( . ,  12) - t2) 41(-R,R)

+ 111'z̀ix( . , ti) vèx,(•,12)11n(-R,R),
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where {Ax} is as  in  Theorem 4.1. Using (4 .3) and Theorem 4 .1  we obtain

(4.6) 11vc(., ti) - v c ( . , t2 )11L1(-R,R) < /0 1 t21

by taking the lim it as Ax i —> 0  in  (4.5). Then passing to the lim it a s  R —> co in
(4.6) shows that ve also satisfies (4.3) with the same M .  The proof is similar for
Pe

•

Lemma 4.2. L et {(P c ,v c )}, c  co be a fam ily  of  functions satisfy ing (4.1)-
(4.4). Then there exists a subsequence {cn } such that { (p ,v e . )}  converges strongly
to  a  p a ir  of  function (p, y ) pointwise a.e., in  L L (R ) at e ac h  t im e  t  and in
Lio c (R  x  R + ) .  M oreover, (p, y) also satisf ies (4 .1 )-(4 .4 ) w ith th e  same constant.

The proof is exactly the same as the corresponding result in Chapter 16 in [8] and
we omit the proof. N ow it is easy to show that (p, v) is a  weak solution of (1.2)
and (1 .4) since for an y  t > 0 ,  it ho ld that as n —> oo,

(4.7) U ( v e ',  pc") - 4  (p, pv) in 4 1
0 ,(R  x [0, co)),

(4.8) F(LIc'' (p c", v c")) —> (pv, pv2 + (72 p) in 4 ,(R  x  [0 , o o ) ) ,

thanks to Lemmas 4 .1  and 4.2. This completes the proof of Theorem 1.1.
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