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Non-relativistic global limits of weak solutions of the
relativistic Euler equation

By

Lu MIN and Seiji Ukal

1. Introduction

The relativistic Euler equation for a perfect fluid in two dimensional
Minkowski space-time has the form ([9], [10])

o [(p+pc?) v? K s 0 _
E{ 2 a_ptf +ax{(p+,0€)c2_02}—0,

(1.1)

0 U d s VP _
5;{0’*'“)m}w{(”/’”cz_vz“’ =0

Here v = v(x, 1) is the classical coordinate velocity, p = p(x,?) is the mass-energy
density of the fluid, p = p(p) is the pressure and ¢ is the speed of light. On the
other hand, the non-relativistic Euler equation is

d 0 :
Pl a(/’v) =0,
(1.2)

d ., 3
E(p””&(”” +p)=0.

For the systems (1.1) and (1.2), the local existence theorems are known for the
smooth solutions (see [4] and [5] for the full-dimensional case). Also, the global
existence theorems are established for the one-dimensional isentropic motions
p=p’,y>1 (1] and [7]). In the case of the isothermal motions p = a%p, where
the sound speed o is assumed to be the constant, the existence theorems with
arbitrary initial data have been obtained both for (1.1) and (1.2), by J. Smoller and
B. Temple [9] and by T. Nishida [6] respectively.

In physics, it is well-known that the classical mechanics reappears as the limit
of the relativistic mechanics when ¢ — oo, and in particular, it is easy to check that
the relativistic Euler equation (1.1) reduces formally to the non-relativistic Euler
equation (1.2) when ¢ — co. However, until now there are only local results for
the limit of smooth solutions of the relativistic Euler equation ([5]). The aim of
this paper is to discuss the convergence of weak solutions of (1.1) as ¢ — oo. Since
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we know their global existence both for (1.1) and (1.2), it is natural to expect that
the convergence is global in time. We will show that this is indeed the case.
For simplicity, we study the systems (1.1) and (1.2) for the case

(1.3) p=0d’p
with common initial data
(1.4) p(x,0) = py(x), v(x,0) = vo(x),

where p,, vp are independent of ¢. It is not hard to see that the same conclusion
holds if

(1.5) (pg,v5) = (po,v0) as ¢ — oo,

strongly in L] .
Our main result is

Theorem 1.1. Let py(x) > 0 and vo(x) satisfy
(1.6) T.V{lnpy} < 0, T.V.{vo} < o0,

where T.V.{f} denotes the total variation of the function f(x), x e R. Then, there
exists a constant ¢y and for any ¢ > c¢o there exists a L® weak solution (p¢,v¢) of

(1.1), (1.4) satisfying
(1.7) TVA{o(,0)} + T.V. {In(p°(-,1))} < M,

Sfor all t>0, where M is a constant depending only on the initial data (p,vo)
but independent of ¢ = cy. Moreover, there exists a subsequence {cx}, cx — o0
(k — o0), such that

(1.8) p* —p, v* —v, stronglyin L} (R x RY),

as k — oo and the limit (p,v) is a weak solution of (1.2) and (1.4).

To prove Theorem 1.1, we use the non-increasing property of the total variation of
In(p¢) in the system (1.1) given by J. Smoller and B. Temple in [9], and find out
that for any fixed initial data (p,,vo) the total variations of the approximate
solutions (p4,,vy,) constructed by Glimm’s scheme are bounded uniformly for
large ¢. In [9] Theorem 1, J. Smoller and B. Temple show that

(1.9) T.VAIn(p(-, 1)} < Vo T.V.{ln(”v—%’t))} <,

c—ve(-,1)
where Vy, V) are constants depending on T.V. In(p,) and T.V. vyp. However, their
proof does not tell us anything about the c-dependency of Vj, and V. Moreover,
even if Vy, V) are independent of large ¢, the second inequality in (1.9) becomes
meaningless when ¢ — oo because

c+v

. 1
(1.10) n——

— 0 asc¢— oo,
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for each fixed v e R. Therefore, in order to obtain uniform estimates for large c,

et Uf). Actually,

we shall evaluate the total variation of v° itself, instead of ln(

we will prove (see Lemma 3.4 below) that
(1.11) T.V. v <4gexp{T.V. Inp}.

Thus, the desired estimate will come if ¥y in (1.9) is found to be bounded
uniformly for large ¢. To show this, then, we need to improve the estimate given
in [9] for the wave strength in the approximate solution (see Lemmas 2.4 and 3.3
below).

2. Riemann problem

In this section we discuss the solution of the Riemann problem for the system
(1.1). The results in this section mostly appear in [9] and our goal is to derive a
sharper estimate of waves in the solution of the Riemann problem (see Lemma
2.4).

The problem of (1.1) and (1.4) is a special case of the general system of the
nonlinear hyperbolic conservation laws in the sense of Lax ([3], [8]),

(2.1) U+ FU), =0,

with initial condition

(2.2) U(x,0) = Up(x).

In our case (1.1),

(2.3) U= (P [(02:; <) o2 0_2 2 + l] , p(e? + ) 2 i vz)»
v v?

(2.4) F(U) = <p(a2 + cz)c2 — p[(a2 + cz)c2 2 + 02])

For the mapping (p,v) — U = (u;,uz), we state the

Lemma 2.1. The mapping (p,v) — U is 1 — 1, and the Jacobian of this
mapping is continuous and non-zero in the region p >0, |v| < c. Moreover, the
convergences

(2.5) U—(p,pv), F(U)— (pv, p(v* +0%)), asc— oo,

are uniform in any bounded region 0 < p < M, |v| < ¢y, where M, ¢y are positive
constants.

The first part of this lemma is given in [9]. The second part is easy to prove and
we omit the proof.

The Riemann problem is the initial value problem when the initial data
Uo(x) = U(py(x),v0(x)) consists of a pair of constant states U; = U(p;,v;) and
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U, = U(p,,v,) separated by a jump discontinuity at x =0,

U, ifx<0,

(26) Uolx) = { U, if x> 0.

Note that, in view of Lemma 2.1, U; and U, of the system (2.1) are uniquely
determined by (p;,v;) and (p,,v/).

This problem can be solved in the class of functions consisting of constant
states, separated by either shock waves or rarefaction waves. Shock waves are
determined by the classical Rankine-Hugoniot condition

(2.7) s|U] = [F],

and the Lax entropy conditions

(2.8) 51 < Ay, A <51 < Ay, on l-shocks,
(2.9) Ay < s <Ay, $2> Ay, on 2-shocks.

Here [f] = f(U)) — f(U,) denotes the jump of the function f(U) between the left
and right hand states along the curve of discontinuity in the xr plane, while
Atls Aty Aag, Aoy tepresent the first and second eigenvalues of (2.1) on the left and
right, and s,s, represent the shock speeds of 1-shock and 2-shock, respectively.
Rarefaction waves are continuous solutions of form U(x/t).

For the system (1.1), the eigenvalues, Riemann invariants, shock waves and
rarefaction waves are given by J. Smoller and B. Temple in [9].

Lemma 2.2 ([9]). The eigenvalues of the system (1.1) are real and distinct, with

v—o0 v+o
(2.10) M=—pp5, Ah=—gp
and the Riemann invariants r and s for the system (1.1) are defined as
1 c+v
. S -1
(2.11) r % ln(c—v) np,
1 c+v
. =—1
(2.12) 5= n(c_v) +Inp,
where
2 2.2
(2.13) k=—"°_.
(62 +¢?)

Here the pair of Riemann invariants r and s defined in (2.11) and (2.12) is a little
different from those of [9], so that the limit of our pair (2.11) and (2.12) makes
sense even when ¢ — co.

Lemma 2.3 ([9]). Suppose that (p;,vi) and (p,v) = (p,,v,) satisfy the jump
conditions (2.7) and Lax entropy conditions (2.8), (2.9) for the system (1.1). Then
the shock waves are
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(2.14) 14mwumw&:§=f4m=1+ﬁ+\m?+m,(p>mw<um
!

(2.15) 2-shock wave S : 5 =/ (B =1+B—-\/B*+28, (p<p,v<uv).
i

The rarefaction waves are

) (/7</71,U>1)1),

1/vV2k
(2.16) 1-rarefaction wave R : ]

2_[letues
o le=o)e+)

(2.17) 2-rarefaction wave R; :5 = [Eij—zggz;‘%

1/V2k
, ]

(p>pp,v>w),

where k is defined in (2.13) and

(az+c2)2 (v— v/)2
262 (2 —v?)(c2—v?)’

(2.18) B =B,u) =

The wave curves are sketched in Figure 1.

Theorem 2.1 ([9]). For any initial value (p;,v;) and (p,,v,) there exist a
solution of the Riemann problem for (1.4) and (2.6) in the case of p;,p, >0, —c < vy,
v, < c. The solution (p,v) satisfies 0 < p(x,t) < 00, —c < v(x,t) < c. Moreover,
the solution is given by a l-wave which is followed by a 2-wave. The solution is
unique in the class of rarefaction waves and admissible shock waves.
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Using Lemma 2.3 and Theorem 2.1 we can obtain the following inequality for
the wave strength. This inequality is an improvement of that of [9], Lemma 6,
and is needed to establish a uniform (in c¢) estimate of the wave strength at 1 = 0+.
See Lemma 3.3.

Lemma 2.4. Let (p,,, vm) be the state which connects with (p;,v;) by 1-wave on
the left and with (p,,v,) by 2-wave on the right. Then we have

(2.19) llnp; —Inp,| + [Inp,, —Inp,|
c+ v 1/V2k ¢+ v, 1/V2k
<|lnp, —Inp,| + |In —In .
c—u c—

Proof. Let 1, II, III and IV be the regions depicted in Figure 1. From
Theorem 2.1 we know that there are four distinct cases for the solutions according
to which region U, lies in. Now we shall discuss each case separately.

(i) The case U,el. In this case, (p,,v,) connects with (p,,v;) by a 1-
rarefaction wave and with (p,,v,) by a 2-rarefaction wave and v; < v, < v,
holds. From (2.16) and (2.17) we then have

(220)  [lnp; —Inp,| +inp, — Inp,

(e w))“m

(¢ = vm)(c+ 1) + ‘ln (W)Wl—k

(c —vr)(c + vm)

il u,>)‘/m |

(¢ —v)(c+v)

(ii) The case U,ell. In this case, (p,, vn) connects with (p,v;) by a
l-shock wave and (p,,v,) by a 2-rarefaction wave and p; <p, <p, holds.
Thus,

(2.21) [lnp, —Inp,| +|Inp, —Inp,| = |Inp, —Inp,|.

(iii) The case U, e lll. In this case, (p,,, vm) connects with (p,,v;) by a I-
shock wave and (p,,v,) by a 2-shock wave and v; > v, > v, holds. From (2.14)
and (2.15) we have

(222) |lnpl - lﬁpml + Ilnpm - lnprl = lnf+(ﬂ(l)], vm)) + Ilnf_(ﬂ(v,,,, Ur))l
= lnf+(ﬂ(l)/, vm)) + lnf+(/3(vm,v,)).

If

(c+o)\VE (et o)\ VE
(c—vn)> "“(@—m) :

(223) I/ (Boru) < \ln(
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then we will have

(224) llnpl - lnpml + |lnpm - lnprl

< lln ((c + vz))l/‘/z_k n (EE%Z:—;)Wﬂ

- (c—u)

i) m(e)

(c — vm) (c—v)

- ‘ln ((C+ v/))l/\/ﬂ . ln<(c N Ur))l/\/z_k ’

(C_ vl) (C- Ur)

since v; > v, > v,. It remains to prove (2.23). Put

(2.25)

1 1 : 1 1 1 ’

Then we find g(0) =0, and
1 1

(2.26) g'(y) = - = —
\/(y+4k) — (4k) \/2k((y+2) —4)
. (c? - a?)’ , :
Since 2k — 1 = —ﬁ < 0, we obtain that g’(y) < 0 for y > 0, which means
cct+o

g(y) <0 for y>0. Let y=(vx—(vXx)"")? x>0, then %y+1:%(x+£)
and
(2.27) Lln1 +1+ ! +12—1 —l|l |

' Ve 27 27 =

Put x = (c+v1)(c—v)(c—v1) ' (c+v2)”" to deduce

LIS B (VU B
ak? T\t

1 ((eHv)(e—v) | (e—vi)(cHua)
_4k((C—vl)(C+vz)+(c+vl)(c—vz) 2)

1 (et ) (e —0) 4 (e~ 1) (e + 02)? = 2(c2 — vd)(? - vd)

-k (2= o])(? = 13)

1 4ck (v, — 1)?

T Ak (2 v¥)(c2 - v2) = Blor,va),
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and

(2.28) ln{%y+l+ (ﬁyﬂ)z—l}=1n<l+ﬂ+,/ﬂ2+2ﬂ>,

which proves (2.23).

(iv) The case U, eIV. In this case, (p,,, vm) connects with (p;,v;) by a I-
rarefaction wave and with (p,,v,) by a 2-shock wave and p;, > p,, > p, holds, so
that we get

(2.29) llnp, —Inp,| +|lnp, —Inp,| = |lnp, —Inp,|.

The proof is now complete.

3. The difference approximation

In this section we use Glimm’s scheme to construct an approximate solution
Uyx(x,t) for the problem (1.1) and (1.4), and derive some estimation on Ugx(x,?)
that will be used in the next section. Let 4x denote a mesh length in x and 4t
a mesh length in ¢, and let x; = jdx, t, = ndt, denote the mesh points for the
approximate solution. Let Up(x) = U(py(x),vo(x)) denote the initial data for
(1.1) satisfying p, >0, —c <vg <c. To start the scheme, define

(3.1) Uygx(x,0) = UjO, for x; < x < xj41,

where Uj°= Up(xj+). For t,_1 <t<t,, let Ug(x,t) be the solution of the
Riemann Problem posed at time ¢ =1,_;. Then, define

(3.2) Uax(x,t,) = U, for x; < x < xj41,

where Uj” = Uyx(xj + an, t,—) for some a, € (0,1), and use this as the initial data
for the Riemann problem posed at 1 =¢,. Thus, Ugx(x,t) can be defined for all
xeR and r>0 by induction, if the waves do not interact within one time
step. In [9], it is stated that the last requirement is fulfilled if

(3.3) — >c.

However, this does not make sense when we consider the limit ¢ — co0. Actually
it suffices to choose 4x/(241) to be larger than the eigenvalues of the system (1.1).

In order to find the bounds of the eigenvalues, first, we state some estimate of
U,x which are given in [9].

Lemma 3.1 ([9]). Let (py,vo) satisfy
(3.4) 0<py<oo, —c<uy<ec,

(3.5) T.V. In(p,) + T.V. vy < o0.
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Then (p 4y, vax) which is given by Glimm’s scheme with (3.3) satisfies
(3.6) 0 < paex,t) <00, —c<vg(x,t)<ec,
(3.7) T.V. In(p, (-, t4)) < T.V. In(p (-, s+)),

whenever 0 < s <'t.

Here (3.3) is assumed but it is evident that the conclusion is true as long as no two
waves interact. For the initial data vy we have the following result:

Lemma 3.2. Let vp e BV(R) and My = sup,gplvo(x)|. If ¢ > Mo, then

1/V2k 2 2
¢t ”0) <)y

(3.8) T.V. ln( <

Cc — g
Proof. Let vy > vy, |v1| <c¢, |v2] <c. Then

‘ln((c + m))l/\/ﬂ B ln(w)l/@? _ )ln ((c +v)(c — vz))l/m

(c—v1) (c—v2) (c—v1)(c+v2)

_ 1 2¢(v) — v2)
V2 ln(l Tle—ole+ vz)>'

)_1/2 _ o2 + 2

Noting that (2k ‘and In(l + x) < x for any x >0 we have

(62 + c®)(v2 — v1)

‘ln((c + u,))”m i ((c + vz))‘/”—" -

3.9 < .
(39) (c =) (¢ —v7) a(c—v1)(c+ )
Then we obtain (3.8) easily from (3.9) and by

(3.10) ! !

c—mct o) ~ (- M)’

Next we use Lemmas 2.4, 3.1 and 3.2 to derive bounds of T.V. In(p,,) and
T.V. vy, independent of large c, still assuming that no waves interact within one
time step.

Lemma 3.3. Let ¢ > 2M,, where My is given in Lemma 3.2. Then
(3.11) T.V.Inp,(-t) <T.V.Inpy + 85 T.V. 0.

Proof. From Lemma 3.1 and (3.7) we know that
(3.12) T.V.Inp, (1) <T.V.Inp,(-,0+).

Using Lemma 2.4 we obtain

¢+ vy
c— 1

Bl

1/V2k
(3.13) T.V.Inp,(-,0+) <T.V.Inpy, + T.V. ln( )
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which, combined with Lemma 3.2, yields

2 2
(3.14) T.V. Inp,(-,04) < T.V. Inp, +‘(’("_+”)

Now, (3.11) comes from (3.12) and (3.14).

Lemma 3.4. Let ¢>2My and M, =T.V.Inpy,+83T.V. vy, where M, is
given by Lemma 3.2. Then

(3.15) T.V. vy < doe™'.

Proof. Let (p;,v;) denote the i-th constant state of (p,,(:,?),vax(-,1)) for
t # ndt. Then

(3.16) T.V. Inpgy (1) = (Z+Z) I0(p,) = In(pya.)
S R

where )¢ and ), are the sums of all shock waves case and all rarefaction waves

case respectively. Since £, (8)f_(B) = 1, f.(B) = 1 + /2p where f,(f) and B are
defined by (2.14), (2.15) and (2.18), we have

(3.17) 3 = 3 I (B i)
S S
(62 +c?) [v; — v
= ;"’(‘ D )

The second term on the right hand side of (3.16) can be estimated by using (2.16),
(2.17) and the inequality (1 +x)* > 1+ yx for y > 1, x>0 as follows:

B (¢ +vi)(c — vig1) ok
(3.18) > =2 |m [(T—T)M]

R R
2c|viyy — vjl
> In|1+
ZR: [ (¢ + [vil) (e + |vit1])
(62 + ¢?) |vj — Vg1 )
> In( 1+ )
ZR: < g (c+ |vil)(c + |vig1])

Then (3.11) and (3.16)—(3.18) yield
(3.19) eM > exp{T.V.Inp,(-,1)}

(@ +¢%) v~ vin
> H (l + = (c+ |vi))(c+ |Ui+l|)>

SUR

:|I/\/2_k

Z (62 + c?) |vi — vig1]

o (c+vil)(c+ |vi])

v

SUR

E —|U — D |
1 i i+1]-
SUR

1\
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Here we used the inequality [](1 +x;) > > x; for x; >0 and |v;] < c. Thus we
get (3.15).

We summarize the results above as a theorem.

Theorem 3.1. Let vy, Inpy,e BV(R) and p, > 0. Then there exists a constant
co and for any ¢ > ¢y we have

(3.20) loax (s Mg + 10 (pgx (s Dl < M,
(3.21) T.V. v4x(-,8) + T.V. Inp . (-, 1) < M,

where M is a constant depending only on initial data (pg,vo).

Proof. The assumption in Theorem 3.1 implies that there exist states p, =
limy_, o0 po(x) and v4 = lim,_, 1o vo(x). From the definition of Glimm’s scheme,
it is easy to see that lim,, 4+o p 4, (X, 7) = p4 and lim,_, +o vax(x, ) = v+ hold good.
This together with (3.21), which is proved in Lemmas 3.3 and 3.4, implies (3.20).

Recall that Lemmas 3.3, 3.4 and Theorem 3.1 were established under the
assumption that no waves interact within any one time step. However, the
constants My, M|, M appearing there are all independent of ¢ > ¢y and depend
only on (py,v9), so that we can proceed as follows. Suppose |vsy] < M and
¢ >co. Then the eigenvalues A;(p,v) of the system (1.1) given in (2.10) satisfy

M+o
(3.22) |41,2] < : R
<
Now we choose
Ax _ 2(M + o)
(3.23) VT > ) oM
4

Thus our choice of Ax/A4t is independent of ¢ for ¢ > ¢y and we see immediately
that Theorem 3.1 holds also with this choice. Moreover, it allows us to show that
the approximate solutions (p,,,v4x) are L; Lipschitz continuous in ¢.

Lemma 3.5. Under the assumption of Theorem 3.1, it holds that for any
0<t<t and ¢ = ¢y, there exist a positive constant M such that

[e]

(3.24) J |0ax(x, 1) = vax (%, )| + [In(p 4 (x, 1)) = In(p g (x, 1)) dx < Mt — 1],
— 0

where ¢ is the constant given in Theorem 3.1 and M is a constant only depending on

the initial data py,vo.

Proof. Let 6 = Ax/At be fixed so that (3.23) holds. Then for any 0 <t < ¢,
we have
x+d(1' 1)

(3.25) |vAx(x,t)—vAX(x,t’)|SJ ) )|d¢vdx(é,t)|.
x=0(t'—t
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Integrating (3.25) over R, we obtain

xX+0(1'—1)
J |devax (&, 0)| | dx

0 e o]
(3.26) J lvax(x, 1) — vax(x, 1) dx < J [
x=o(t'—1)

— 00 —00
< 25(t' — TV, v4n(- 1).

For Inp,, the proof is the same. Thus, we complete the proof.

4. Convergence

We shall complete the proof of Theorem 1.1. First, for any initial data
(po,vo) which satisfies the assumption of Theorem 1.1, there exist positive con-
stants ¢o and M such that for any ¢ > ¢o the approximate solutions (p§,,vS,)
generated by Glimm’s method satisfy the following inequality (Theorem 3.1 and
Lemma 3.5);

(4.1) g ()l <M, (In(pg ()l < M,
(4.2) T.V. 05, () + T.V. In(pg, (-, 1)) < M,
(43) |Iv2x('7tl) _vflx(')tZ)”L‘ SAlltl _12[)
(4.4) n(pg,(, 1)) — In(pge( )l < M|ty — 2],

where M is dependent only on the initial data (vg,p,) and is independent of
¢>c¢p. For each ¢> ¢y we apply Glimm’s Theorem [2] to obtain the weak
solution (p€¢,v¢) of the system (1.1). Let a = {ax} € A denote a (fixed) random
sequence, 0 < a; < 1, 1 < k < oo, where A4 denotes the infinite product of intervals
[0, 1] endowed with Lebesgue measure.

Theorem 4.1 (Glimm, [2]). Assume that the approximate solution (p§,,v5,) of
(1.1) satisfies (4.1)—(4.4). Then there exists a subsequence of mesh lengths Ax; — 0
such that (pf,xi,vf,xl_) — (p¢,v°), where (p¢,v°) also satisfies (4.1), (4.2). The
approximate solutions converge pointwise a.e., and in Lj,.(R) at each time t,
uniformly on bounded x and t sets. Moreover, there exists a set N = A of Lebesque
measure zero such that, if a€ A — N, then (p°,v°) is a weak solution of the initial
value problem (1.1), (1.4).

Using this theorem we have

Lemma 4.1. For any ¢ > ¢¢ (4.1)—(4.4) hold also for the limit (p¢,v°) given in
Theorem 4.1, with the same constant M.

Proof. For any R >0, we have
(4.5) [0°C0) = (o)l orory < N0°C 1) = 05, ot vy
+ ”vc('* t2) - sz,-('v t2)“L'(—R,R)

+ vy, (5 11) = v, 5 02l L1 g R)»
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where {4x;} is as in Theorem 4.1. Using (4.3) and Theorem 4.1 we obtain
(4.6) oGy 1) =0 )l r my < Mt — 12

by taking the limit as Ax; — 0 in (4.5). Then passing to the limit as R — oo in

(4.6) shows that v¢ also satisfies (4.3) with the same M. The proof is similar for

pe.
Lemma 4.2. Let {(p¢,v°)}, ¢ = co be a family of functions satisfying (4.1)-
(4.4). Then there exists a subsequence {c,} such that {(p,v“)} converges strongly
t0 a pair of function (p,v) pointwise a.e., in L} (R) at each time t and in
L} (R x R*Y). Moreover, (p,v) also satisfies (4.1)~(4.4) with the same constant.

The proof is exactly the same as the corresponding result in Chapter 16 in [8] and
we omit the proof. Now it is easy to show that (p,v) is a weak solution of (1.2)
and (1.4) since for any ¢ > 0, it hold that as » — oo,

.7 U0, p%) = (ppv)  in L (R x [0, 00)),
(4.8) F(U(p*,0™)) — (pv,pv* +6%p)  in L}, (R x [0, 0)),

thanks to Lemmas 4.1 and 4.2. This completes the proof of Theorem 1.1.
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