On explicit constructions of rational elliptic surfaces with multiple fibers

By

Yoshio Fujimoto

This note is a supplement to our previous paper [F], where I studied the basic property of rational elliptic surfaces with multiple fibers S through the logarithmic transformations. It is also a nine-points-blowing-up of \mathbf{P}^2 , but any (-1)-curve is a multi-section of its elliptic fibering over \mathbf{P}^1 . If the nine points P_i $(1 \le i \le 9)$ on \mathbf{P}^2 , which are the center of blowing-ups, are mutually distinct and the multiple fiber is of type ${}_{m}I_{0}$, it is obtained from the pencil generated by *m*-fold cubic which passes through p_i 's and an irreducible curve of degree 3m which has an ordinary singularity of multiplicity m at each p_i and is non-singular outside them. And the anti-pluricanonical map $\Phi_{|-mK_S|}: S \to \mathbf{P}^1$ gives the unique structure of an elliptic fibration. Such a pencil (called Halphen pencil) already appeared in [Nag], §4, Theorem (1), case (\uparrow) , when Nagata constructed a rational surface with infinitely many (-1)-curves. Also Hironaka and Matsumura [H-M] applied it to construct examples of a curve C in a smooth projective surface F, where C satisfies G1 conditions in F, but not G2 conditions. On the other hand, when part of the nine points p_i 's on \mathbf{P}^2 are infinitely near, the Halphen pencil degenerates into a more complicated one. Any (-1)-curve e on S is an m-sheeted covering of the base curve \mathbf{P}^1 , branching over the point where the multiple fiber lie with the ramification index m. Hence, it is not at all easy to find nine (-1)-curves on S, see how they intersect the irreducible components of each singular fiber and repeat blowingdowns to \mathbf{P}^2 .

Here, we shall describe an *explicit* construction of rational elliptic surfaces with multiple fibers through the 'Halphen transform' in the sense of [H-L], which is some kind of *birational transformations*.

We recall the following result.

Theorem (A) ([F], [H-L]). Let C be a non-singular cubic (resp. a nodal cubic) in \mathbf{P}^2 with the fixed inflexion point Q on C such that C should be given the natural group structure with Q as the identity. Take nine points p_i ($1 \le i \le 9$) on C (which may be infinitely near) and let S be the surface obtained by blowing up \mathbf{P}^2 at p_i 's ($1 \le i \le 9$). Then S has the structure of an elliptic surface with one multiple fiber of multiplicity m if and only if $\sum_{i=1}^{9} p_i$ is of order m in the elliptic curve (resp.

Communicated by K. Ueno, September 22, 1997

multiplicative group \mathbf{C}^*), where \pm means the additive (resp. multiplicative) group law in C.

Now, we shall apply this theorem to the following situation. Let $f: S \to \mathbf{P}^1$ be a rational elliptic surface with ${}_mI_0$ (resp. ${}_mI_1$)-type multiple fiber mE, where $m \ge 1$ and E is a non-singular elliptic curve (resp. a rational curve with one node). By Kodaira, $D := N_{E/S} \in \operatorname{Pic}^0(S)$ is of finite order m. Suppose that there exist mutually distinct (-1)-curves e_1, \ldots, e_{2t} $(1 \le t \le 4)$, such that $\Delta :=$ $\sum_{i=1}^t p_i - \sum_{j=t+1}^{2t} p_j \in \operatorname{Pic}^0(E) \simeq E$ (resp. \mathbf{C}^*) is of finite order, where $p_i := e_i \cap E_i$. Then $D + \Delta \in \operatorname{Pic}^0(E) \simeq E$ (resp. \mathbf{C}^*) is of finite order $l (\ge 1)$.

Proposition. Under the above assumption, if we blow down (-1)-curves e_{t+1}, \ldots, e_{2t} on S and blow up at t points p_1, \ldots, p_t , we obtain a new surface X. Then X has the structure of an elliptic surface $g : X \to \mathbf{P}^1$ with $_II_0$ -type multiple fiber lE', where E' is the strict transform of E.

Remark (1). This birational transformation is some kind of Halphen transform in the sense of [H-L]. Under the above transformation, the general fiber of f is mapped to the g-horizontal curve, the strict transform \bar{e}_i $(1 \le i \le t)$ of e_i are contained in the fibers of g and the types of singular fibers of X are quite different from that of the original S.

Proof. Let $h: S \to S_1 \to \cdots \to S_t$ be a succession of blowing-downs of (-1)curves e_{t+1}, \ldots, e_{2t} on S. By [F], Proposition (1.1), the relatively minimal model of S is isomorphic to either \mathbf{P}^2 , $\mathbf{P}^1 \times \mathbf{P}^1$ or \sum_2 . Since $C_1(S_t)^2 = t \le 4$, S_t is not relatively minimal. By the same method as in the proof of [F] (ibid), we can further contract (9 - t) (-1)-curves $\Delta_1, \ldots, \Delta_{9-t}$ on S_t to get \mathbf{P}^2 . Let $\mu: S_t \to \mathbf{P}^2$ be a contraction morphism and put $Q_j := \mu(\Delta_j)$ $(1 \le j \le 9 - t)$, $P'_i := \mu \circ h(P_i)$ $(1 \le i \le 9)$, $\overline{E} := \mu \circ h(E)$. From the construction, X (resp. S) can be obtained by blowing up \mathbf{P}^2 at nine points Q_1, \ldots, Q_{9-t} and $P'_{t+1}, \ldots, P'_{2t}$ (resp. P'_1, \ldots, P'_t). Under the canonical identification $E \simeq \overline{E} \simeq E'$, we have $[Q_1 + \cdots + Q_{9-t} + P'_{t+1} + \cdots + P'_{2t} - 9o] \simeq D + \Delta$ in Pic⁰(\overline{E}) $\simeq \overline{E}$ (resp. \mathbf{C}^*), where o is an inflexion point of \overline{E} . Hence by Theorem (A), $g := \Phi_{|IE'|} : X \to \mathbf{P}^1$ gives the unique structure of an elliptic surface with I_0 (resp. I_1)-type multiple fiber IE'.

In this note, we are mainly concerned with the simplest case where S is a rational elliptic surface with many *torsion sections*. To be more precise, we treat the case where S is a rational elliptic surface with sections, m = 1, t = 1 and $e_1 - e_2$ is a torsion section of order l in the above situation. Then X has the structure of an elliptic surface with ${}_{l}I_0$ (resp. ${}_{l}I_1$)-type multiple fiber lE'.

Note that two torsion sections never intersect.

Remark (2). With the method of torsion sections, one cannot obtain any multiple fiber ${}_{m}I_{0}$ ($m \ge 7$) by Miranda and Persson's results (Persson: Math.Z.205, 1–47 (1990) and Miranda: Math.Z.205, 191–211 (1990), by which we know the list of configuration of singular fibers as well as torsions of the Mordell-Weil groups.

Fig. 1

The author wishes to express sincere thanks to the referee for many suggestions.

Example 1. Step 1. Take a nodal cubic D on \mathbf{P}^2 : (X : Y : Z) and fix an inflexion point P_0 on D. The regular locus $D^* := D \setminus \{\text{node}\}$ should be given the natural group structure \mathbf{C}^* with P_0 as the identity. Fix such an isomorphism $\varepsilon : D^* \simeq \mathbf{C}^*$.

Now, take the point P with $\varepsilon(P) = t$, where $t^3 = -1$. (Note that P is not an inflexion point of D.) Then there exists a smooth conic \mathbf{Q} which is tangent to D at P with the full multiplicity 6. The pencil \mathbf{L} generated by 2D and $3\mathbf{Q}$ has the unique base point P of multiplicity 36 and the generic member of \mathbf{L} has infinitely near 9-fold double point. By blowing up \mathbf{P}^2 9 times over P, all members of \mathbf{L} can be separated and the rational map $\Phi_{|\mathbf{L}|}: \mathbf{P}^2 \cdots \rightarrow \mathbf{P}^1$ extends to a morphism $f: X \rightarrow \mathbf{P}^1$ which gives X the structure of an elliptic surface with one multiple fiber of type ${}_2I_1$, II^* and two I_1 -singular fibers. By this process, we obtain eight (-2)-curves, which form an A_8 -configuration, and one (-1)-curve. See the figure 1.

The strict transform of \overline{D} (resp. $\overline{\mathbf{Q}}$) of D (resp. \mathbf{Q}) is the support of the double fiber (resp. the irreducible component of the II^* -singular fiber with multiplicity 3.)

Step 2. Take a tangent line *l* at *P*, which intersects *D* transversally at another point *R*. For the three intersection points of *D* and a line, their product in the group C^* is equal to the identity. So we have $\varepsilon(R) = -t$ and *R* is another inflexion point of *D*.

Let L' be the pencil generated by the two cubics D and $\mathbf{Q} + l$. The rational elliptic surface S with sections can be obtained by separating the member of L' by blowing up 8 times over P and once over R. S has two I_1 singular fibers and one I_4^* -singular fiber and the Mordell-Weil group of S is isomorphic to $\mathbf{Z}/_{2\mathbf{Z}}$ and consists of e_1 and e_2 .

Step 3. If we blow up S at P'' and blow down the (-1)-curve e_2 , we obtain the surface X in Step 1.

Remark (3). Let Y be a rational elliptic surface obtained from the pencil of the cubics $[D, 3l_0]$, where l_0 is the inflexion line of D at R. Y has one II^* -singular fiber and two I_1 -singular fibers and the Mordell-Weil group of Y is trivial. (See [N], 2.1.) If we perform logarithmic transformations of multiplicity two at one point on the base curve \mathbf{P}^1 , we obtain X.

Example 2. Let S be the minimal resolution of the quotient of $\mathbf{P}^1 \times E$ under the involution $(t, \zeta) \rightarrow (-t, -\zeta)$, where E is a non-singular elliptic curve. The natural projection $\mathbf{P}^1 \times E \rightarrow \mathbf{P}^1$ induces on S the structure of an elliptic surface over \mathbf{P}^1 with two I_0^* -singular fibers. The 2-torsion points of E induces on S four sections e_i $(1 \le i \le 4)$. S is rational and the Mordell-Weil group of S is isomorphic to $\mathbf{Z}_{/2z} \oplus \mathbf{Z}_{/2z}$ and consists of e_i 's. Let f be an arbitrary regular fiber and put $P'_i := f \cap e_i$. By blowing up S at P'_2 and blowing down e_1 , we obtain a new surface X. By the morphism $\Phi_{|2\bar{I}|} : S \rightarrow \mathbf{P}^1$, S is an elliptic surface over \mathbf{P}^1 which has $2\bar{\mathbf{f}}$ as $_2I_0$ -muptiple fiber and I_4^* -singular fiber. (See thick curves which do not intersect $\bar{\mathbf{f}}$.) The image of $\bar{\mathbf{f}}$ by the blowing-down to \mathbf{P}^2 is a non-singular cubic E in \mathbf{P}^2 , P_1 is an inflexion point of E and P_2 , P_3 , P_4 are two torsion points of E. G_1 (resp. H_j) is the tangent line of E at P_1 (resp. P_j), three lines H_j $(1 \le j \le 3)$ intersect at one point P_1 and P_2 , P_3 , P_4 are on the same line Δ_2 . (E can be endowed with the natural group structure with P_1 as the identity.)

Let L (resp. L') be the pencil of cubic (resp. sextic) curves in \mathbf{P}^2 generated by $H_2 + H_3 + H_4$ and $2\varDelta_2 + G_1$ (resp. $2H_2 + H_3 + H_4 + 2\varDelta_2$ and 2E).

S (resp. X) can be obtained by blowing up P^2 nine times until all the members of the pencil will be separated.

Example 3. Let *E* be a non-singular elliptic curve with the period $(1, \tau)$, Im $(\tau) > 0$ and consider a finite automorphism group *G* of $\mathbf{P}^1 \times E$ generated by $f: (s, [\zeta]) \to (-s, [\zeta + 1/2])$ and $g: (s, [\zeta]) \to (1/s, [-\zeta])$. Let *Y* be the minimal resolution of the quotient $Z := \mathbf{P}^1 \times E/G$. The natural projection $\mathbf{P}^1 \times E \to \mathbf{P}^1$ gives rise to an elliptic fibration $Y \to \mathbf{P}^1/G \simeq \mathbf{P}^1$.

On $\mathbf{P}^1 \times E$, the curve $0 \times E$ (resp. $1 \times E$) is mapped to $\infty \times E$ (resp. $-1 \times E$) by g (resp. f) and they give a support F of a mutiple fiber of type ${}_2I_0$ (resp. an irreducible curve $l_1 \simeq \mathbf{P}^1$) on Y. On $\mathbf{P}^1 \times E$, $(1,0), (1,1/2), (1,\tau/2), (1,1/2 + \tau/2)$

Fig. 2

 $\in 1 \times E$, which are the fixed points by g, are mapped respectively to |(-1, 1/2), (-1, 0), $(-1/, \tau/2)$, $(-1, \tau/2) \in -1 \times E$, which are also the fixed points of g. They give four A_1 -singularity on Z and let G_1 , G_2 , G_3 and G_4 be the exceptional (-2)-curves of the resolution $Y \to Z$. Then $2l_1 + G_1 + G_2 + G_3 + G_4$ form a I_0^* -type singular fiber on Y.

The four disjoint sections on $\mathbf{P}^1 \times E$ defined by $[\zeta] = 0$, $\tau/2$, 1/4, $1/4 + \tau/2$ are mapped to the four disjoint 2-sections e_j $(1 \le j \le 4)$, which are all (-1) curves.

Proof. Since $e_1 \simeq \mathbf{P}^1$ intersects transversally at one point with G_1 and G_2 , we have $(e_1, 2F) = 2$. By the canonical bundle formula of Kodaira, we have $K_Y \sim -F$ and hence $(K_Y, e_1) = -1$. The rest are the same.

Another configurations of double sections and I_0^* -singular fibers are in Figure 3. If we consider each e_j as the double cover over the base curve \mathbf{P}^1 , e_1 and e_2 (resp. e_3, e_4) are branched over Q_1 and Q_2 (resp. Q_1 and Q_3). Let $\tilde{\mathbf{P}}^1$ (resp. $\tilde{\mathbf{P}}^1$) be a double covering of \mathbf{P}^1 branched at Q_1 , Q_3 (resp. Q_1, Q_2). If we take the normalization of the pull-back $Y \times_{\mathbf{P}^1} \tilde{\mathbf{P}}^1$ (resp. $Y \times_{\mathbf{P}^1} \tilde{\mathbf{P}}^1$) and blow down (-1)curves in fibers, we obtain a rational elliptic surface S_1 (resp. S_2) with sections which are isomorphic to S in Example 2. Y and S_i are isogenous (i.e. there exists a finite rational map of degree two between X and S_i) and the four sections on S_1 (resp. S_2) are mapped to e_1, e_2 (resp. e_3, e_4) on Y under the quotient map.

By contracting eight (-1)-curves $e_1, G_1, e_2, G_3, e_3, e_4, H_1$ and H_3 in order, Y can be blown down to $\mathbf{P}^1 \times \mathbf{P}^1$. Let $\mu : Y \to \mathbf{P}^1 \times \mathbf{P}^1$ be the contraction mor-

Fig. 3

phism. F (resp. l_1, G_2, G_4) are mapped to (2, 2) (resp. (2,1), (0,1), (0,1)) curves on $\mathbf{P}^1 \times \mathbf{P}^1$ (where $\operatorname{Pic}(\mathbf{P}^1 \times \mathbf{P}^1) \simeq \mathbf{Z} \oplus \mathbf{Z}$).

If we blow up Y at P_2 (resp. P_3 and P_4) and blow down e_1 (resp. e_1 and e_2), we obtain a new rational elliptic surface Z (resp. W) with sections and I_4 (resp. I_2^* and $_2I_0$ -multiple) singular fiber. Z (resp. W) can be obtained as the minimal resolution of the pencil

$$[\mu(F), \mu(l_1) + \mu(G_4)]$$

(resp. $[2\mu(F), 2\mu(l_1) + \mu(G_2) + \mu(G_4)])$ on $\mathbf{P}^1 \times \mathbf{P}^1$.

Example 4. Take a non singular cubic E and 2 inflexion points P_1 , P_3 on E. Let C_3 be the unique line passing through P_1 and P_3 . C_3 intersects E transversally at another point (say, P_2). Let C_7 (resp. C_8) be the tangent line at P_3 (resp. P_1). Let L be the pencil generated by two cubics E and $C_3 + C_7 + C_8$. The rational elliptic surface S with sections can be obtained by blowing up P^2 four times over P_1 , P_3 and once at P_2 until all members of L will be separated. S has three I_1 -singular fibers and one I_9 -singular fiber. The Mordell-Weil group of S is isomorphic to $\mathbb{Z}/_3$ and e_i ($1 \le i \le 3$) are all the sections.

If we blow up S at P_2 and blow down e_1 , we obtain a new surface X and $\Phi_{|3\bar{E}|}: X \to \mathbf{P}^1$ gives a new elliptic fibration with $3\bar{E}$ as a $_3I_0$ -multiple fiber, one II^* -singular fiber and three I_1 -singular fibers. X can be obtained from the pencil L

generated by 3E and $6C_3 + 2C_7 + C_8$). The strict transform of C_3 (resp. C_7, C_8) is the irreducible component of the II^* -singular fiber with multiplicity 6 (resp. 2, 1.)

Remark (4). S can be endowed with the unique group scheme structure over \mathbf{P}^1 with the zero section e_1 . Let G be the automorphism group of S generated by the translations (in the group law of the fibers) by the torsion section e_2 . The only fixed points of G are the nodes of three I_1 -singular fibers. The quotient space $S/_G$ has three A_2 -singularity and the minimal resolution W of $S/_G$ is isomorphic to the elliptic modular surface $B_{\Gamma(3)}$ of level three structure in the sense of [S]. By the same way, it is easy to see that S and $B_{\Gamma(3)}$ are isogenous, i.e. there exist finite rational maps of degree three between S and $B_{\Gamma(3)}$.

DEPARTMENT OF MATHEMATICS FACULTY OF EDUCATION GIFU UNIVERSITY

References

- [F] Y. Fujimoto, On rational elliptic surfaces with multiple fibers, Publ. RIMS. Kyoto Univ., 26-1 (1990), 1-13.
- [H-L] B. Harbourne and W. Lang, Multiple fibers on rational elliptic surfaces, Trans. Amer Math Soc., 307-1 (1988).
- [N] I. Naruki, Configurations related to maximal rational elliptic surfaces, Advanced Studies in Pure Math. 8, Kinokuniya, 1986, 314–340.
- [Nag] M. Nagata, On Rational surfaces I, II, Memories of the College of Science, University of Kyoto, Series A, 1960.
- [S] T. Shioda, On elliptic modular surfaces, J. Math. Soc. Japan, 24 (1972), 20-59.
- [H-M] H. Hironaka and H. Matsumura, Formal functions and formal embeddings, J. Math. Soc. Japan, 20-1, 2 (1968).
- [Hal] M. Halphen, Sur les courbes planes du sixieme degre a neuf points doubles, Bull. Soc. Math. France, 10 (1981), 162-172.