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Computations of moments for discounted Brownian
additive functionals

By

Sadao SATO and Marc YOR

1. Introduction

L et (Be)  be the one dimensional standard Brownian m otion and (e ) be its
local time at x. Then the  discounted local tim e at x  is defined by

0 3

L ' = ds(sx

A nd we also define the  discounted time spent above x:

= e-s 1(13,> x ) ds. (1.2)

In [BW1], M. Baxter and D. Williams study the law of the functional A  = A
°
. I n

their approach, the following symmetry property is fundamental.

lawA  = 1 —  A under P o .

Moreover, with the help of the differentiability in x of the Laplace transform of
AX , they obtained a double recurrence formula for the moments and its asymptotic
law . In  [B W 2], they extended their considerations to a  large  class o f diffusion
processes.

In [Y11, the author studied the joint moments of L  (= L ° )  and A , explaining
the differentiability property obtained in [BW1] as a consequence of the following
formulae:

A x = d y r cis ei; = dy LY (1.4)
x o

A nd the symmetry property may also be extended in the joint form:

(L, A) t v (L ,1 — A )  under P o .( 1 . 5 )

Then, with the help of the right and left derivatives at x  = 0  of the joint Laplace
transform o f  I , '  a n d  A ',  he obtained a  d o u b le  recurrence formula for joint
moments.

Communicated by S . W atanabe, September I, 1997

(1.3)
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Let ,u(dx) be any Radon measure on R and define (the terminal value  o f)  a
general discounted Brownian additive functional:

F(Ii) P(dx) ds(sx (1.6)
0

as well as its moments function:

Mn (x, =  Ex [F(P)"].( 1 . 7 )

In this paper, we show a general recurrence formula for this sequence. Although
our method is very simple, it may be applied to a general diffusion process. Here,
w e study only B row nian functionals. U sing this, w e can easily  get the joint
moments of A and L .  We also obtain some direct induction formulas. Moreover,
w e are also led to discuss certain integral equations, which are satisfied by the
characteristic functions. W e would like to mention some related papers which
deal w ith  the laws, or moments, of additive functionals of M arkov processes,
including Meyer [M], Pitman-Yor [PY1], [PY2].

2. A  general formula for moments

First, we define

'—(k)
0 e—ks d s (sx . (2.1)

W e  om it the index ( k )  w hen k  = 1 and  x  w h e n  x  =  O . T h u s  w e  use the
abbreviations L  = L °

0' = L
(0' and so  o n .  Define the stopping time( 
T a = infft; B t = al. (2.2)

W e recall the following fundamental facts.

Lemma I.

Ex[e-kT,,i e -N/Yix-y1 .

EA L Y
(10 ] = .

1 x - Y1.
2k -

This  latter quantity  is the resolvent density  o f B row nian motion.

P r o o f  The first formula is elem entary. W e show the second. Let O be an
independent exponential time with parameter k. It is well-known that t(o) is also
an exponential variable with parameter va (see [Y2, Prop. 3.2]). Therefore, we
have

1
Eo[L°A.) ] = EV0 ] =

V2k
(2.5)

(2.3)

(2.4)
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By the Markov property, we get

Ex [L?k ) ] = Eo[L (
(
)
k ) ].Ex [e- k n ] — (2.6)

We introduce the notation

co
F(k)(t, p) = it(dx) dsesx (2.7)

 JR J
and we write

F(k)Cu) = F(k)( 0 , p), (2.8)

which is a  so-called discounted additive functional. In particular, we have

L (
x
k ) =  F(k)(6x(dY)). (2.9)

We consider the moments (1.7). Since e'tx  is jointly continuous and using the
Markov property, we have

M „(x,p) = — Ex [f  d IF(t,,u ) n }]

= nEx [f
R

 p(dy) F (t , p) i

0

Go
= nE x [f  ,u(dy) Mn-i( B , ,  P)e - n i

R 0

On the support set of dt ii  ,  we have 131 = y. Therefore we get

Mn(x,P) = nEx [st  p(dy) f c ° A 1 n_1(Y, P)e - n i  cited
R 0

nEx [f  p(dy )M n_i (y, p)L Y(n )]

= n  p ( d y ) M n _i(y , p)Ex [LY
(„) ]

= n p(dy )M n-i(Y  • ti)
JR2 n

We now introduce the integral operators:

H ' ( x )  = tt(dY)0(Y)

(by Lemma 1).

We suppress p  when the measure with respect to which it is related is obvious.
Thus we proved
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Theorem 1.

Mn (x , p) = nH ( n ) M„_1(x, p) = n!H (") I P " )H ( 1 ) 1.

M ore generally, we have

Theorem 2. L et p(dx) and v(dx) be any pair of positive Radon measures on R.
T hen w e have

Ex [F(p) n F(v) m ] = n p ( d y ) E y [F(p) n - 1  F(v) m ]Ex [L5
( n ± n ) i

+ m J v(dy)Ey [F(p) n  F(v)'
i n -

i ]Ex [LY( n + m ) ].

P r o o f  The proof is almost the  same a s  above, because

Ex [F(p) n  F(v) n ] —Ex [f  d{ F(t„ u) n  F(t,v) m }]

= nEx[
0

f  p(dy ) F (t, ,u) n - 1  F(t, y) ." dted
R 

CO

m E,[f  v (dy ) F (t, p) n  F (t, v) m -  e - 1  di ed.
R 0

Remark 1. The above discussion clearly holds for a diffusion process, which
has local tim es . In the most abstract sense, this is an application of the optional
pro jec tion  and  the  fo rm ula  o f integration by p a rts  w ith respect to optional
increasing processes (see [DM]). I n  a  restricted sense, it can be understood in
terms of Markov potential theory. Under some conditions, there exists a bijective
correspondance between th e  A F  (A ,) an d  th e  associated measure VA  (so-called
Revuz measure, see [R]):

Ex LI0 0

e- ca  clA t i  =  U oe (x, AvA(dY ).

Then we can easily obtain

Ex [F n ] = n fU"(x , y )E y [F n ]v A (dy),

where

F =

Exam ple 1. (C f. [Y1, Prop. 1]). We consider L  and  its m om ents. Since
,u(dy) = bo (dy ), we have

1-P") 0(x) = 0(0) Ex [Lgo ]. (2.10)
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Therefore

E[L n ] = nE[Eg ijE [L n - 1 ]

-
n

E [L '
i

I =
2

Example 2. Let 12(dy) = 10, > cod y .  Then

11 (x ) = 0(y)  1   e -- V x ---Y1

o V 2n

Therefore, we have

E [A n] =
00

0(n-1)1v2- dyn e -
n!—  dy id y 2  e -

2" o

And we can get for x >  0,

1 , 5
Ex [A ] = 1 - -

2
e'

Ex [A 2 ] = 1 — e —Vf x  +   1   e
- 2x

20

3 ,F,
E x 0

3
1  =  1  -  - + 3 -

2x ±
e

3  

2 2 0 e 40 /

Ex [A4 ] = 1 - 2e + 3
0 •e -2x e -J -6 ( 1

3 3
• \ /  

2 0 ) 4 4 8  ) .

Clearly there exists a  recurrence rule for this sequence, which will be established
in the next section. Moreover, for x < 0, from the above or from the Markov
property, we deduce the simple formula

Ex [A l  = 6,07;ix E o [A n] . (2.11)

Example 3. Let ,u(dy ) = 6,(dy ) and v (dy ) = 6b(dy ). By Theorem 2, we have

Eo[La(L")"] = Ea[(L 1')"]Eo[i +1)1 + nEb[L a (L b )"  ]Eo[Ltn+1)]

n! e-V2(n+1)1" e- /2(n+1)1b1
=    11E0[La—

b 
(

4 —  

2 ( n  +  1 )-\/ 2(n + 1)

Then we can get

Eo [L"L b ] =  1   e - `/I lb - "(e -2 a1+
20

E0[L a (0 2 ] =
1 e  N ah_al ( e _ V g A  e - 4 k  ±  e -21n-a1 ) ) .

20

n!
2n •
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3. Moments of L and A

It will be quite convenient to consider the moments of linear combinations of
A  and L , for which we introduce the notation:

M „(x) = Ex [(ocA + 131.)1 Mn M n (0) =  EoRŒA + fi L r

I14; = EOR — OtA fiL) n }

By Theorem 1, we have

(3.1)

where

M n (x) =  n f,u(dy)e„(x - y )M „_ (y), (3.2)

11(dY ) = 11 (y>o) dY + fi(50(dY),

1
= — e-

(3.3)

en(Y) (3.4)

Thus, we get

00
M (x ) _N/T„Ix1dy en (x  - y )M n_1(y) + fl -

2  
M n_  e (3.5)

By the symmetry o f A , noting that y  > 0 , we obtain

M„_ 1 (y ) = Ey [( u A  + A r i ] = E [( ( 1  -  A - ) + fiL) n - l ]

E y R _ otA - f i l yc]

= (11 k i )k=0

k=0 ( n  ; 1)
E y re -kTo iE0R - otA -  + fiL) k i

( n  - k 1 )  n-1— k e - N/5y m -(X
k=0

This formula shows tha t M n (y ) has a simple form and coefficients of e - `5 4  are
associated to the moments. This relation is used in [Y11 or [BW1] as one of their
recurrence formulae. By substituting this to (3.5), we obtain

dy en (x  - y )e - V 5 YM n (x ) = an E
n - 1  (

n -

k

l ) a n  1 -k  11/1
k =0 0

fi M n— le 2n1xl. (3.6)

Thus we have
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Proposition 1.

071  -
M (x ) = mn(x) + )6' (3.7)

where

n-1
CX M

k

e -N lx e-V-27cx — e - f 2 7 'x

m n ( x )  =  kn
E
=- 01 ( n  i l )  n - k  -  ( Vii + fk. ± Vii — ifc )1

E  (n  k l ) a n-k w
k

e x

=0 k fh + N/Tc
( x < 0 ) .

(3.8)

Moreover, the function Mn is  C 1 , and we also have the direct induction formula
on the moments:

m n  •V T I ( n  - 1 ) cxn_k+  )6,
2 k Vri +k=0

n
n- -i•2

(3.9)

P ro o f  It suffices to prove the differentiability of A-  in  a t  0 , which follows
from:

-V 2k N /7 \ / / N/h + V ï l  —  
Vh+14 1 -V h + O - C VT.1 - " 4  ±

j 1 — N 4

Define

0(a, fl; x) = Ex [e"A + 4 ]. (3.10)

Then we have

Proposition 2. T he joint L aplace transform o f  (A, L ) is given by:

-N/nx m n-

n=-0 n!
0(a, f l; x) = 1 + (e" -

ox_2‘ o o k e -V2(n+k)x

2 E k!n=0 • k=1

fi c o  e - V2(n+1)x mn
—  E  
o n_o n!N/n± 1

co A l t ;  G‘2_,9  a ke -V2(n+k)s
0(oc,f l;x ) = 1 + E k!n=0 • k=1

(1 + i n  k )

\/ +n n k )

(x  > 0) (3.11)

fi eo(n-roxmn+4 E
„ = 0  n !V n  +1

< 0) (3.12)
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Corollary 1.

dM , dM ,
(+0)dx dx ( 0) =  —2finMn_i.

dO dO
—
d x  

(+0) — —
d x

(-0 ) — 2130(0).

P ro o f  The first relation is obtained from Proposition 1 and the second is
immediately deduced from the first.

Moreover, we can obtain a general relation on the differentiability of moment
functions. We use the notation in the previous section.

Proposition 3. Suppose that M „(x ) = M n (x, ,u) is finite. T hen  w e  hav e

dM , dM,
( a + )  (a  ) —2n,u({a})M,_1(a).
dx dx

Generally, let f  (x ) be a C l -fUnction and suppose that 0(x ) = E x [f (F(,u))] is finite.
Then we have

dO dO
6- 7T,  (a+) — (a— ) = — 2,u(fal)Ea [f  (F (p))].

P ro o f  We decompose the measure

it(dY ) = + W an  (5a (dY)

Then, by Theorem 1, we have

=  n  Pi(dY )en(x —  Y)Mn - l (Y ) +  n Ii2(dY )en(x — Y )Mn-i(Y )

= n til(dY )en(x —  Y )Mn-i (y) + nii(lanen(x —  a) Mn - t(a),

where e ,  is defined by (3.4). For h  <  e, it is easy to see

en (x + h — y) — en (x Y )  < Nnne e e„(x — y), (3.17)
h

by the Lebesgue dominated convergence theorem, we get the differentiability of
the first term . A nd then, the second term gives the first assertion. The second
assertion is also proved similarly.

Rem ark 2. (a) The relation (3.16) is found in [Y1, formula (10)] and is used
there to get the joint moments. Moreover, a  further extension of this relation is
also given there.

(b) Suppose that ,u(dy) is  of the form n(y) dy  for a continuous function
in  a  neighbourhood of x. Then E ,[f  (F)] is twice differentiable near x  and we

(3.13)

(3.14)

(3.15)

(3.16)

M„(x)
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can obtain

(Ex[f (F)])" = 2E[F f (F)] - 217(x)E,[f (F)] •

W e om it the p ro o f . The complete discussion will appear elsewhere.

4 .  Integral equations

We define a n  integral operator by

K Ø () = I I ds(log ! )  1 / 2 0(scx).
o

(4.1)

We denote the differential operator by 
D  ( = - ) .

.
da

Lemma 2. The following properties hold:
( i ) K1 = 1.

oc"(ii) K [Œ } = .
n + 1

(iii) K 2 0 = -1d t  ( =  H ) ,
o

where H  is  the so-called Hardy  operator.
(iv) KO = 0 = O.
(y) a K 2 DO = -  0 ( 0 ) .
(vi) K1JocK0 = DaK 2 0 = 0.

P ro o f  The proofs are almost direct and elementary. W e only show (iv) and
(vi). We look a t (iv) first. If KO = 0, then K 2 =  O. B y  (iii), we conclude (iv).
To see (vi), w e set u = K DaK  0. Then we have

aKu = aK 2 D(aK 0) = aK  0 (by (v)). (4.2)

By (iv), we obtain u 0 .  The equality DaK 2 =  0  is  direct b y  (iii).

Remark 3. The property (iii) is interesting. More generally, we can define
the family o f integral operators:

1)P - 1

K ) = F ( p )  t  ds (log 0(sa), (4.3)

where p  is  a positive param eter. Then it is easy to see

K ( P) [e ] = (n  + ) p (4.4)

Therefore we have

K ( P ) K ( q ) 1 0 + 1 ) . (4.5)
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In particular, we have:

Ko2K(112) Ko) (4.6)

Now we deduce the  integral equations. W e note the integration

—
1 .11 

ds ( l o g  -

1 - 1 / 2

e " s
k
 =

V 7  0 S In ! V n  +  k  +  1

In Proposition 2, setting x  =  0 , we have

(by Lemma 2 (ii)). (4.7)

-1/21 D t Mk' V I  {  1 esa s k-1 1
0(0c,#) = 1 +-

2
(e" -1)E0( e r  ) - - .1 ds (log =10) -VT(2  

k=1

1/2E 0 ( e s n
±  I ds (log

o

1 _ 1 1 -1/2
=  1 +-

2  
(e" -1)E0(e F  ) - -  d s  (log -

1

)
- 1 / 2

esœ dt (log 7) Eo [F - es̀ F

27r 0s

±  -
2  

(E0(e F  ) - 1 ) +   f l d s  (log 7s-.) Eo(e3 F )
V27r o

where

F = f i L  a n d  F -  =

O n the  other hand, w e have

a + F _ law  F . (4.8)

Therefore we can obtain

1 1 1 - 1 / 2

0(a, fl) = 1 + ds dt (log -  log - ) es"- stŒE0[ es F̀ ]
o . o s t

1 f -1/2

--
- ds dt (log  -

s  
log -

t
es'E o [F e s 1 F 1

o o

+ )61-  d s  (log - )  E 0 (e )
o s

We define

t/i(fi) = Eo[efiL j, 0 (a ) =  E o [e"A ], 0(a) = Eo [e" ( A + vn ] .
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Then by the above formula, we have the following integral equations

tp(fi) = 1 +—
o

fiK111(fi)

0(a) = 1 + aK(eOEK(e'(0 — 0')))

0(a) =1+ aK(eOEK(e'(0 —  V )))  + avN/2K0.

By Example 1 in section 2 , we know
on

tp(s)
n=0 N/12!2n'

which agrees with (4.9).

Proposition 4 .  Under the condition 0 (0 )=1  and 0 ( 0 ) =1 , the following are
respectively equivalent to (4.10) and (4.11):

e'K 0' = — K ((e -Œ 6fi)'), (4.13)

e- "K0' = — K((e - œ 0)')+ (4.14)

P ro o f  We only show the first equation, since the second can be shown in the
same w a y . By Lemma 2(v), we can write (4.10) as

aK 2 D0 aK(eOEK(e'(0 —

n —1 ( n

= E   P

Thus we get

KDO = e"K(e - "(0—  0')))= — e OEK (D (e'0)).

These equations have a unique solution in the space of analytic functions. In fact,
by expanding these with respect to the parameter, we again get the direct induction
formulas for the moments. For example, from (4.14), we get

(4.9)

(4.10)

(4.11)

(4.12)

M n —
k=

1)n-l-k ( 1 + N/TC + 0(n—  k )v )
N/h

Mk,( 4 . 1 5 )

where Mn =  ERA + vL) n ]•
We note that the equation (4.14) is an extension of the Baxter and Williams

characterization of A .  Define

1h(a) = aK(e")= N/7tœ Jo ds (lo g  _1 1/2) esa. (4.16)

Using the symmetry property, we see that (4.14) can be written

e'E[h(aA  + fiL)[= — E[h(— aA  + fiL)]+ N/2fle - c t E [ e c c A + B L ] ,
(4.17)

where fi = a v .  When fi is equal to zero, this is just the formula given in [BW1].
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Finally, we point out tha t the symmetry property of A  is implied by (4.14),
since this is invariant under the transformation:

— > 0, a — > — a.
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