K3 surfaces with order five automorphisms

By
K. Oguiso and D.-Q. Zhang

Introduction

Let T be a normal projective algebraic surface over \mathbf{C} with at worst quotient singular points ($=$ Kawamata \log terminal singular points in the sense of $[\mathrm{Ka}$, Ko]). $\quad T$ is called a \log Enriques surface if the irregularity $h^{1}\left(T, \Theta_{T}\right)=0$ and if a positive multiple $I K_{T}$ of the canononial Weil divisor K_{T} is linearly equivalent to zero. Without loss of generality, we always assume from now on that a log Enriques surface has no Du Val singular points (see the comments after [Z1, Proposition 1.3]).

The smallest integer $I>0$ satisfying $I K_{T} \sim 0$ is called the (global) index of T. It can be proved that $I \leq 66$ (cf. [Z1]). Recently, R. Blache [B1] has shown that $I \leq 21$. He also studied the "generalized" \log Enriques surfaces where \log canonical singular points are allowed.

Rational \log Enriques surfaces T can be regarded as degenerations of K3 or Enriques surfaces, which in turn played important roles in Enriques-Kodaira's classification theory for surfaces. In $[\mathrm{A}]$, A. Alexeev $[\mathrm{A}]$ has proved the boundedness of families of these T. In 3-dimensional case, the base surfaces W of elliptically fibred Calabi-Yau threefolds $\Phi_{|D|}: X \rightarrow W$ with $D . c_{2}(X)=0$ are rational \log Enriques surfaces (cf. [O1-O4]).

Let T be a \log Enriques surface of index I. The Galois $\mathbf{Z} / I \mathbf{Z}$-cover

$$
\pi: Y:=\operatorname{Spec}_{U_{T} T} \oplus_{i=0}^{I-1} \mathcal{O}_{T}\left(-i K_{T}\right) \rightarrow T
$$

is called the (global) canonical covering. Clearly, Y is either an abelian surface or a K3 surface with at worst Du Val singular points. We note also that π is unramified over the smooth part T-Sing T.

We say that T is of Type A_{m} or D_{n} if Y has a singular point of Dynkin type A_{m} or $D_{n} ; T$ is of actual Type $\left(\oplus A_{m}\right) \oplus\left(\oplus D_{n}\right) \oplus\left(\oplus E_{k}\right)$ if Sing Y is of type $\left(\oplus A_{m}\right) \oplus\left(\oplus D_{n}\right) \oplus\left(\oplus E_{k}\right)$.

Around 1989, M. Reid and I. Naruki asked the second author about the uniqueness of rational \log Enriques surface to Type D_{19}. The determinations of all isomorphism classes of rational \log Enriques surfaces T of Type A_{19}, D_{19}, A_{18} and D_{18} have been done in [OZ1, 2] (see also [R1]). As a corrolary, the minimal
resolutions X_{d} of the canonical covers of such T are isomorphic to the unique K3 surface of Picard number 20 and discriminant d for $d=3$ or 4 . So there are only two such X_{d}.

Here we consider the cases A_{17} and D_{17}. We will get some new K3 surface other than X_{d} above (cf. Main Theorem 3). Our main results are as follows:

Theorem 1. (1) There is no rational log Enriques surface of Type D_{17}.
(2) Each rational log Enriques surface of Type A_{17} has index 2, 3, 4 or 5.

Remark 2. The isomorphism classes of rational log Enriques surfaces of Type A_{17} and index 2, 3 or 4 are determined in [$\left.\mathrm{Z} 3, \mathrm{Z} 4\right]$.

Main Theorem 3. (1) There are, up to isomorphisms, exactly two rational log Enriques surfaces of index 5 and Type A_{17}. These two are given as $T(9), T(14)$ in Example 2.1, and both of them are of actual Type A_{17}.
(2) Let $Y(i) \rightarrow T(i)$ be the canonical Galois Z/5Z-cover, $g(i): X(i) \rightarrow Y(i)$ the minimal resolution and $\Delta(i):=g(i)^{-1}(\operatorname{Sing} Y(i))$ the exceptional divisor, which is of Dynkin type A_{17}. Write $\operatorname{Gal}(Y(i) / T(i))=\langle\sigma(i)\rangle$.

Then the pairs $(X(i),\langle\sigma(i)\rangle)$ are equivariantly isomorphic to each other and the fixed locus (point wise) $X(i)^{\sigma(i)}$ is a disjoint union of 3 smooth rational curves, which are contained in $\Delta(i)$, and 13 points. Moreover, rank Pic $X(i)=18$ and $\left|\operatorname{det}\left(\operatorname{Pic} X_{i}\right)\right|=5$.

The pair $(X(i),\langle\sigma(i)\rangle)$ above is characterised in the following result, which is sort of the generalisation of Shioda-Inose's pairs in [OZ1].

Main Theorem 4. There is, up to isomorphisms, only one pair $(X,\langle\sigma\rangle)$ of $K 3$ surface X and an order 5 subgroup $\langle\sigma\rangle$ of $\operatorname{Aut}(X)$ satisfying:
σ^{*} acts non-trivially on non-zero holomorphic 2-forms, the fixed locus X^{σ} contains no curves of genus ≥ 2, but contains at least 3 rational curves.

Moreover, $(X,\langle\sigma\rangle)$ is equivariantly isomorphic to $(X(i),\langle\sigma(i)\rangle)$ in Main Theorem 3.

Remark 5. In [$\mathrm{OZ4}, \mathrm{Z} 5$], we have proved similar results on K 3 automorphisms of quite arbitrary order. In particular, we proved that for each of $p=13,17$ and 19 , there is, up to equivariant isomorphisms, only one pair $(X,\langle\sigma\rangle)$ of K3 surface X and an order p subgroup $\langle\sigma\rangle$ of $\operatorname{Aut}(X)$ (with no any other conditions on X).

Main Theorems 3 and 4 imply that on the surface X (with the automorphism $\sigma)$ in Main Theorem 4, there are 2 divisors $\Delta(i)(i=1,2)$ of the same Dynkin type A_{17} such that the triplets $(X,\langle\sigma\rangle, \Delta(i))$ are not equivariantly isomorphic to each other. By virtue of this phenomenon, we pose the following:

Question 6. Is it true that there exists only one K3 surface X with rank Pic $X=18$ and $|\operatorname{det}(\operatorname{Pic} X)|=5$, which can be contracted to a normal K3 surface Y with a type $A_{17} \mathrm{Du}$ Val singular point?

Remark 7. (1) In Theorem 3.1 of $\S 3$, we shall determine the isomorphism class of Pic X, as an abstract lattice for the surface X in Question 6 (see the proof of Theorem 3.1). It turns out that there are two ways of contractions $h_{i}: X \rightarrow Y_{i}$ of type A_{17} divisors Δ_{i} such that $\operatorname{Pic} Y_{i}=\mathbf{Z} H_{i}$ and $H_{1}^{2}=10, H_{2}^{2}=90$.
(2) The phenomenon of coexistence of these two h_{i} or Δ_{i} occurs because there are two different embeddings of type A_{17} lattice into Pic X : one is primitive and the other is not (see the proof of Theorem 3.1).

The organisation of the paper is as follows. In § 1, we consider automorphisms σ of order 5 on K3 surfaces, and describe in detail the action of σ around points lying on linear chains of smooth rational curves. A precise relation between the numbers of σ-fixed isolated points and curves is obtained in Lemma 1.4 by applying the fixed point theorem for holomorphic bundle, which was proved by Atiyah, Segal and Singer in [AS1, 2].

In §2, we construct precisely two rational \log Enriques surfaces $T(9), T(14)$ of index 5 and actual Type A_{17}, starting from a nodal cubic curve and adopting the so called Campedelli's approach in the terminology of [R1].

In the proof of Theorem 3.1, we determine Pic X for X in Question 6 and also construct 5 Jacobian elliptic fibrations on X (non-isomorphic to each other). To construct a Jacobian elliptic fibration, we define a divisor η_{1} in Pic X who behaves, from the viewpoint of intersection with other divisors, just like an elliptic fiber, and prove the nefness of η_{1}, which is one of the hardest part and possibly a "new technique" applicable to quite a lot of general situations. Another technique in proving the equivalence of the existence of any 2 of the 5 elliptic fibrations is to fully apply T. Shioda's theory on Mordell Weil lattices [Sh].
$\S 4$ is devoted to the proofs of the theorems.

Acknowledgement. The present version of this paper was completed during the first author's visit to Singapore. The authors would like to express their gratitude to the JSPS programme and the National University of Singapore for the financial support. The authors would also like to thank the referee for very careful reading.

1. Preliminaries

In this section, we shall fix the following notation:
T is a rational \log Enriques surface of index I and $\pi: Y \rightarrow T$ the (global) canonical covering. $g: X \rightarrow Y$ is a minimal resolution and $\Gamma:=g^{-1}(\operatorname{Sing} Y)$, the exeptional locus.

Note that π is a Galois covering such that $\operatorname{Gal}(Y / T)=\mathbf{Z} / I \mathbf{Z}$ and $Y /(\mathbf{Z} / I \mathbf{Z})=T$. Clearly, there is a natural action of $\mathbf{Z} / I \mathbf{Z}$ on X such that the minimal resolution $g: X \rightarrow Y$ is $(\mathbf{Z} / I \mathbf{Z})$-equivariant. We need the following lemmas for the later use.

Lemma 1.1. Let T be a rational \log Enriques surface of index I with Y the canonical cover. Then $\sigma^{*} \omega=\zeta_{I} \omega$ for exactly one generator σ of $\mathbf{Z} / I \mathbf{Z}$, where $\zeta_{I}=\exp (2 \pi \sqrt{-1} / I)$ and ω is a non-zero holomorphic 2 -form on Y or on X.

Proof. The result follows from the definition of I.
Lemma 1.2. With the notations and assumptions in Lemma 1.1, we have:
(1) The g-exceptional divisor Γ is σ-stable.
(2) Every singular point on Y has a non-trivial stabilizer subgroup of $\langle\sigma\rangle=\mathbf{Z} / I \mathbf{Z}$. In particular, every connected component of Γ is σ-stable provided that I is prime.
(3) Every σ^{i}-fixed curve on X where $\sigma^{i} \neq i d$, is contained in Γ and hence a rational curve.

Proof. (1) is true because the singular locus Sing Y is σ-stable.
(2) follows from our additional assumption that $T=Y / \sigma$ has no Du Val singular points. (3) is true because $\pi: Y \rightarrow T$ is unramified outside the finite set Sing T.

Lemma 1.3. With the assumption and notation in Lemma 1.1, assume further that $I=p q$ for positive integers p, q. Then $Y_{1}:=Y /\left\langle\sigma^{q}\right\rangle$ is a rational log Enriques surface of index p with the quotient morphism $Y \rightarrow Y_{1}$ as the canonical cover.

Proof. Ths follows from the fact that the (global) canonical index is equal to the l.c.m. of local canonical indices.

Lemma 1.4. Let X be a $K 3$ surface with an order five automorphism σ such that $\sigma^{*} \omega=\zeta_{5} \omega$ (see Lemma 1.1 for notation). Let $N_{i}(i=0,1,2, \ldots)$ be the number of σ-fixed curves of genus i, let $N:=N_{0}-\sum_{i \geq 2}(i-1) N_{i}$, and let $M_{i}(i=1,2)$ be the number of σ-fixed points at which σ can be diagonalized as $\sigma^{*}=\left(\zeta^{-i}, \zeta^{i+1}\right)$.

Then the 1-dimensional part of X^{σ} is a nonsingular divisor. We have $M_{1}=$ $3+2 N, M_{2}=1+N$.

Proof. Since $\sigma^{*} \omega=\zeta \omega$, one has the diagonalization $\sigma^{*}=\operatorname{diag}\left(\zeta^{-i}, \zeta^{i+1}\right)$ for $i=0,1$ or 2 , around a σ-fixed point P with suitable local coordinates (x, y). If $i=1,2, P$ is isolated in X^{σ}; if $i=0$ then X^{σ} is equal to $\{y=0\}$ and hence smooth.

We now calculate the holomorphic Lefschetz number $L(\sigma)$ in two ways as in [AS1, 2, pages 542 and 567]:

$$
\begin{aligned}
& L(\sigma)=\sum_{i=0}^{2}(-1)^{i} \operatorname{Tr}\left(\sigma^{*} \mid H^{i}\left(X, \mathcal{O}_{X}\right)\right) \\
& L(\sigma)=\sum_{i} a\left(P_{i}\right)+\sum_{j} b\left(C_{j}\right)
\end{aligned}
$$

Here

$$
\begin{aligned}
& a\left(P_{i}\right)=1 / \operatorname{det}\left(1-\sigma^{*} \mid T_{P_{i}}\right)=1 /\left(1-\zeta^{-k}\right)\left(1-\zeta^{k+1}\right) \\
& b\left(C_{j}\right)=\left(1-g\left(C_{j}\right)\right) /\left(1-\zeta^{-4}\right)-\left(\zeta^{-4} C_{j}^{2}\right) /\left(1-\zeta^{-4}\right)^{2}
\end{aligned}
$$

where P_{i} is an isolated σ-fixed point with $\sigma^{*} \mid P_{i}=\left(\zeta^{-k}, \zeta^{k+1}\right), T_{P_{i}}$ is the tangent space to X at $P_{i}, g\left(C_{j}\right)$ the genus of C_{j} and ζ^{4} the eigenvalue of the action σ_{*} on the normal bundle of C_{j}.

The first formula yields $L(\sigma)=1+\zeta^{-1}$ by the Serre duality $H^{0}\left(X, \mathcal{O}\left(K_{X}\right)\right)^{\vee} \cong$ $H^{2}\left(X, \mathcal{O}_{X}\right)$. Plugging this into the second formula for $L(\sigma)$, we get:

$$
1+\zeta^{-1}=M_{1} /\left(1-\zeta^{-1}\right)\left(1-\zeta^{2}\right)+M_{2} /\left(1-\zeta^{-2}\right)^{2}+N(1+\zeta) /(1-\zeta)^{2} .
$$

Multiplying this equality by denominators we obtain the following one after simplification:

$$
-\zeta-\zeta^{2}+2 \zeta^{-1}=M_{1} \zeta^{-1}+M_{2}\left(1+\zeta^{-2}\right)+N\left(\zeta+\zeta^{2}-\zeta^{-1}\right)
$$

Using the relation $\sum_{i=0}^{4} \zeta^{i}=0$ we can transform the above equality into the following:

$$
\begin{aligned}
& \left(-M_{1}+M_{2}+N+2\right)+\left(-M_{1}+2 N+3\right) \zeta+\left(-M_{1}+2 N+3\right) \zeta^{2} \\
& \quad+\left(-M_{1}+M_{2}+N+2\right) \zeta^{3}=0 .
\end{aligned}
$$

Since $1, \zeta, \zeta^{2}, \zeta^{3}$ are linearly independent over \mathbf{Q}, the coefficients in the above equality all vanish, and hence Lemma 1.4 follows.

Lemma 1.5. Let X, σ, N be as in Lemma 1.4. Then we have:
(1) There are integers (s, t) with $s \geq 0, t \geq 1$ and $s+t \leq 5$ such that $N=4-(s+t), \rho(X)=22-4 t$ and σ^{*} has the following diagonalizations, where T_{X} is the transcendental lattice of $X[B P V, p .238]$:

$$
\begin{aligned}
\sigma^{*} \mid(\operatorname{Pic} X \otimes \mathbf{C}) & =\operatorname{diag}\left[I_{22-4(s+t)}, \operatorname{diag}\left[\zeta_{5}, \zeta_{5}^{2}, \zeta_{5}^{3}, \zeta_{5}^{4}\right]^{\oplus s}\right], \\
\sigma^{*} \mid\left(T_{X} \otimes \mathbf{C}\right) & =\operatorname{diag}\left[\zeta_{5}, \zeta_{5}^{2}, \zeta_{5}^{3}, \zeta_{5}^{4}\right]^{\oplus t} .
\end{aligned}
$$

(2) $N=3$ if and only if $\rho(X)=18$ and $\sigma^{*} \mid \operatorname{Pic} X=\mathrm{id}$.
(3) Suppose $N=3$. Then $|\operatorname{det}(\operatorname{Pic} X)|=\operatorname{discr}(X)=5$.

Proof. (1) We only need to show $N=4-(s+t)$ and for the rest, we refer to [N1, Theorem 3.1] and the fact that $B_{2}(X)=22$. Consider the topological Euler number:

$$
\chi_{\text {top }}\left(X^{\sigma}\right)=\sum_{i=0}^{4}(-1)^{i} \operatorname{Tr}\left(\sigma^{*} \mid H^{i}(X, \mathbf{C})\right) .
$$

On the one hand, $\chi_{\text {top }}\left(X^{\sigma}\right)=M_{1}+M_{2}+2 N_{0}+\sum_{i \geq 2} N_{i}(2-2 i)=M_{1}+M_{2}+$ $2 N=4+5 N$ (cf. Lemma 1.4). On the other hand, $\operatorname{Tr}\left(\sigma^{*} \mid(\operatorname{Pic} X) \otimes \mathbf{C}\right)=$ $(22-4 s-4 t)-s$, and $\operatorname{Tr}\left(\sigma^{*} \mid T_{X} \otimes \mathbf{C}\right)=-t$. Thus $4+5 N=2+(22-5 s-4 t)-t$, and $N=4-(s+t)$.
(2) follows from $N=4-(s+t), t \geq 1$ and $\rho(X)=22-4 t$.
(3) Suppose $N=3$. Then $s=0, t=1$. Note that T_{X} is a $\mathbf{Z}\left[\left\langle\sigma^{*}\right\rangle\right]$-module. The diagonalization of $\sigma^{*} \mid\left(T_{X} \otimes \mathbf{C}\right)$ and the fact that $\Phi_{4}(X)=\sum_{i=0}^{4} X^{i}$ is the minimal polynomial of ζ_{5} over \mathbf{Q}, imply:

Claim 1. $g \in \mathbf{Z}\left[\left\langle\sigma^{*}\right\rangle\right]$ annihilates $t \in T_{X}-\{0\}$ if and only if $g=a \Phi\left(\sigma^{*}\right)$ for some $a \in \mathbf{Z}$. Hence T_{X} is a free $\mathbf{Z}\left[\left\langle\bar{\sigma}^{*}\right\rangle\right]$-module, where $\bar{\sigma}^{*}=\sigma^{*}+\left\langle\Phi_{4}\left(\sigma^{*}\right)\right\rangle$.

By Claim 1, $T_{X} \cong\left(\mathbf{Z}\left[\left\langle\bar{\sigma}^{*}\right\rangle\right]\right)^{\oplus r}$ for some $r \geq 1$ because $\mathbf{Z}\left[\left\langle\bar{\sigma}^{*}\right\rangle\right]$ is a P.I.D. Since $4=\operatorname{rank} T_{X}=4 r$, one has $r=1$. So there is a $\mathbf{Z}\left[\left\langle\bar{\sigma}^{*}\right\rangle\right]$-module isomorphism: $\tau: \mathbf{Z}\left[\left\langle\bar{\sigma}^{*}\right\rangle\right] \rightarrow T_{X}$. Hence we have:

Claim 2. $e_{i}=\tau\left(\bar{\sigma}^{i *}\right)(i=1,2,3,4)$ form a Z-basis of T_{X} so that $\sigma^{*} e_{i}=$ $e_{i+1}(i=1,2,3)$ and $\sigma^{*} e_{4}=-\left(e_{1}+e_{2}+e_{3}+e_{4}\right)$.

Since $\quad \sigma^{*} \mid \operatorname{Pic} X=\mathrm{id}$, the natural isomorphism $T_{X}^{\vee} / T_{X} \cong H^{2}(X, \mathbf{Z}) /$ $\left(\operatorname{Pic} X \oplus T_{X}\right) \cong(\operatorname{Pic} X)^{\vee} / \operatorname{Pic} X \quad[B P V, \quad$ Lemma 2.5, p. 13] implies that $\sigma^{*} \mid\left(T_{X}^{\vee} / T_{X}\right)=$ id. Now for any $x+T_{X} \in T_{X}^{\vee} / T_{X}$, one has $x \equiv \sigma^{i *} x\left(\bmod T_{X}\right)$ for all i. Hence $5 x \equiv \Phi_{4}\left(\sigma^{*}\right) x \equiv 0\left(\bmod T_{X}\right)$. So, $T_{X}^{\vee} / T_{X} \cong(\mathbf{Z} / 5 \mathbf{Z})^{\oplus r}$ for some $1 \leq r \leq 4$ by noting that rk $T_{X}=4$ and by $[K o$, Theorem in $\S 0]$ for $\langle\sigma\rangle \leq H_{X}$ now (cf. (2)).

We assert that $T_{X}^{\vee} / T_{X}=\left\langle\sum_{i=1}^{4} i e_{i} / 5\right\rangle \cong \mathbf{Z} / 5 \mathbf{Z}$. Indeed, for any $x \in T_{X}^{\vee}-$ T_{X}, one can write $x=\sum_{i=1}^{4} a_{i} e_{i} / 5$, where $a_{i} \in \mathbf{Z}$. Since $\sigma^{*} x-x \equiv 0\left(\bmod T_{X}\right)$, we see that

$$
a_{1}+a_{4}, \quad a_{1}-a_{2}-a_{4}, \quad a_{2}-a_{3}-a_{4}, \quad a_{3}-2 a_{4}
$$

are all $0(\bmod 5)$. Hence $a_{i} \equiv i a_{1}(\bmod 5)$ for all $i=1,2,3,4$. Thus $x \equiv$ $a_{1} \sum_{i=1}^{4} i e_{i} / 5\left(\bmod T_{X}\right)$. Since x is not in T_{X}, g.c.d. $\left(5, a_{1}\right)=1$ and hence $s x \equiv \sum_{i=1}^{4} i e_{i} / 5\left(\bmod T_{X}\right)$ for some $s \in \mathbf{Z}$. This proves the assertion.

Now (3) follows from this assertion and the fact that $\operatorname{discr}(X)=\left|\operatorname{det}\left(T_{X}\right)\right|=$ $\left|T_{X}^{\vee} / T_{X}\right|$. This completes the proof of Lemma 1.5.

Lemma 1.6 (5-Go Lemma). Let X, σ be as in Lemma 1.4. Assume that $\sum_{i=1}^{n} C_{i}$ is a linear chain of σ-stable smooth rational curves C_{i} with $C_{i} . C_{i+1}=1$. Set $P_{i}:=C_{i} \cap C_{i+1}$.

If $n=3$, there is a σ-fixed curve D with $D .\left(C_{1}+C_{3}\right)=1$. If $n=5$, exactly one of C_{i} is σ-fixed, say C_{r}, and the quadruplet $\sigma^{*}\left|P_{1}, \sigma^{*}\right| P_{2}, \sigma^{*}\left|P_{3}, \sigma^{*}\right| P_{4}$ of diagonalized local σ^{*}-actions, is equal to the unique portion of the following recursive sequence such that $\sigma^{*} \mid P_{r}=(1, \zeta)$:

$$
\begin{aligned}
& (\zeta, 1),(1, \zeta),\left(\zeta^{-1}, \zeta^{2}\right),\left(\zeta^{-2}, \zeta^{-2}\right),\left(\zeta^{2}, \zeta^{-1}\right), \\
& (\zeta, 1),(1, \zeta),\left(\zeta^{-1}, \zeta^{2}\right),\left(\zeta^{-2}, \zeta^{-2}\right),\left(\zeta^{2}, \zeta^{-1}\right), \ldots
\end{aligned}
$$

Proof. We use the observation at the first paragraph of the proof of Lemma 1.4 and the fact that if $\sigma^{*} \mid P_{i-1}=\left(\zeta_{5}^{1-s}, \zeta_{5}^{s}\right)$ so that ζ_{5}^{s} is the eigenvalue of σ w.r.t. the tangent to C_{i} at P_{i-1} then $\sigma^{*} \mid P_{i}=\left(\zeta_{5}^{-s}, \zeta_{5}^{s+1}\right)$.

Lemma 1.7. Let X, σ be as in Lemma 1.4. Assume that $\Phi: X \rightarrow \mathbf{P}^{1}$ is an elliptic fibration and η is a singular fiber consisting of σ-stable curves. Then η fits one of the following 5 cases:
(1) $\eta=\sum_{i=1}^{5 n} C_{i}$, where $C_{i} \cdot C_{i+1}=C_{5 n} \cdot C_{1}=1$, is of Kodaira type $I_{5 n}$ for some $1 \leq n \leq 3$. Moreover, $C_{1}, C_{6}, \ldots, C_{5 n-4}$ are only σ-fixed curves in η, after relabelling.
(2) $\eta=C_{1}+C_{2}+2\left(C_{3}+C_{4}+\cdots+C_{5 n+3}\right)+C_{5 n+4}+C_{5 n+5}$, where $C_{1} \cdot C_{3}=$ $C_{5 n+3} . C_{5 n+5}=C_{i} . C_{i+1}=1(i=2,3, \ldots, 5 n+3)$, is of Kodaira type $I_{5 n}^{*}$ for some $n=0,1,2$. Moreover, $C_{3}, C_{8}, \ldots, C_{5 n+3}$ are only σ-fixed curves in η.
(3) η is of Kodaira type $I V^{*}, I I I^{*}$ (resp. $I I^{*}$). The branch component R (resp. the branch component R and the tip component furthest away from R) is σ-fixed.
(4) $\eta=C_{1}+C_{2}+C_{3}$ is of Kodaira type $I V$. Each C_{j} is σ-stable but not σ-fixed. σ can be diagonalized as $\sigma^{*} \mid P_{0}=\left(\zeta^{-2}, \zeta^{-2}\right)$ at the common point P_{0} : $C_{1} \cap C_{2} \cap C_{3}$, and as $\sigma^{*} \mid P_{j}=(1, \zeta)$ at the second σ - fixed point P_{j} on C_{j}.
(5) $\eta=C_{1}+C_{2}$ is of Kodaira type III. Each C_{j} is σ-stable but not σ-fixed. σ can be diagonalized as $\sigma^{*} \mid P_{0}=\left(\zeta^{-1}, \zeta^{2}\right)$ at the common point $P_{0}:=C_{1} \cap C_{2}$, and as $\sigma^{*} \mid P_{j}=\left(\zeta^{-2}, \zeta^{-2}\right)$ at the second σ-fixed point P_{j} on C_{j}.

Proof. This follows from the analysis of σ^{*}-action at points in X^{σ} as in Lemma 1.6.

§ 2. Examples of index 5 and Type A_{17}

In the present section, we shall construct two isomorphism classes $T(9), T(14)$ of rational \log Enriques surfaces of index 5 and actual Type A_{17} (cf. Main Theorem 3).

Example 2.1. Let Σ_{4}^{\prime} be a nodal cubic curve in \mathbf{P}^{2} with P_{1} as a inflexion point and P_{2} as its node. Denote by Π_{6}^{\prime} (resp. Π_{7}^{\prime}) the tangent (resp. one of two tangents) to Σ_{4}^{\prime} at P_{1} (resp. P_{2}). We prove the following lemma. This lemma and the precise construction of $T(i)$ below will also be used in proving Main Theorem 3(1).

Lemma 2.2. After a change of coordinates, the data above can be specified as follows: Σ_{4}^{\prime} is given by $Y^{2} Z=X^{2}(X+Z), P_{1}=[0: 1: 0], P_{2}=[0: 0: 1], \Pi_{6}^{\prime}=$ $\{Z=0\}$, and $\Pi_{7}^{\prime}=\{Y-X=0\}$.

Proof. First, we may assume that $P_{1}=[0: 1: 0]$ and $\Pi_{6}^{\prime}=\{Z=0\}$ after changing coordinates. Now Σ_{4}^{\prime} is given by $Y^{2} Z=X^{3}+a X^{2} Z+b X Z^{2}+c Z^{3}$ [R2, Ex. 2.10, p. 41]. May assume that the node $P_{2}=[0: 0: 1]$. Hence $b=$ $c=0$ and $a \neq 0$. Now one of the projective transformations $(X, Y, Z)=$ $\left(X^{\prime}, \pm \sqrt{a} Y^{\prime}, Z^{\prime} / a\right)$ will change the data to those in Lemma 2.2.

We now take the set of data $\Sigma_{4}^{\prime}: Y^{2} Z=X^{2}(X+Z)$, etc. as in Lemma 2.2. Let $v: V \rightarrow \mathbf{P}^{2}$ be the unique blowing-up of P_{1}, P_{2} and 7 their infinitely near points, such that $v^{-1}\left(\Sigma_{4}^{\prime}+\Pi_{6}^{\prime}+\Pi_{7}^{\prime}\right)$ is given in Figure 1, where $\Sigma_{4}=v^{\prime}\left(\Sigma_{4}^{\prime}\right)$, etc.,

Fig. 1
where $E^{2}=\Sigma_{3}^{2}=-1$ and all other curves have intersection -2 . The relation $\Sigma_{4}^{\prime} \sim 2 \Pi_{6}^{\prime}+\Pi_{7}^{\prime}$ induces:

$$
\begin{equation*}
\xi_{1}:=3 \Pi_{3}+2\left(\Pi_{2}+\Pi_{4}+\Pi_{6}\right)+\Pi_{1}+\Pi_{5}+\Pi_{7} \sim \xi_{2}:=\Sigma_{4}+\Sigma_{a}+\Sigma_{b} \tag{2.1.1}
\end{equation*}
$$

So ξ_{i} are fibers of an elliptic fibration $\varphi: V \rightarrow \mathbf{P}^{1}$ and E, Σ_{3} are cross-sections of φ with $E . \Sigma_{a}=E . \Pi_{7}=1$. By the way, the only remaining third singular fiber ξ_{3} of φ is of Kodaira type I_{1}.

Consider the relation

$$
\begin{equation*}
\mathcal{O}_{V}\left(\xi_{1}+4 \xi_{2}\right) \cong \mathcal{O}_{V}\left(\xi_{1}\right)^{\otimes 5} \tag{2.1.2}
\end{equation*}
$$

Consider the Galois $\mathbf{Z} / 5 \mathbf{Z}$-covering:

$$
\pi: W=\operatorname{Spec}_{\mathcal{C}_{v}} \oplus_{i=0}^{4} \mathcal{O}\left(-i \xi_{1}\right) \rightarrow V
$$

This W has 3 Du Val points of type $\langle 5,4\rangle$ (resp. or $\langle 5,1\rangle$, or $\langle 5,2\rangle$) over the 3 intersection points in ξ_{2} (resp. the 3 points $\Pi_{3} \cap \Pi_{i}$ for $i=2,4,6$; or the 3 points $\Pi_{i} \cap \Pi_{i+1}$ for $\left.i=1,4,6\right)$. Resolving these singularities and blowing down uniquely and smoothly curves lying over ξ_{1}, we get a K3 surface X with an elliptic fibration $\psi: X \rightarrow \mathbf{P}^{1}$ induced from φ, so that the fibers η_{1}, η_{2} lying over ξ_{1}, ξ_{2} is of Kodaira type $I V, I_{15}$, respectively.

Clearly, we may take a generator $\sigma \in \operatorname{Gal}(W / V) \cong \mathbf{Z} / 5 \mathbf{Z}$ such that $\sigma^{*} \omega=$ $\zeta_{5} \omega$ where ω is a non-zero holomorphic 2 -form on X and $\zeta_{5}=\exp (2 \pi \sqrt{-1} / 5)$. By the way, if one takes one fiber η_{3} of ψ lying over ξ_{3}, then 5 fibers $\sigma^{i} \eta_{3}(i=0,1, \ldots, 4)$ of Kodaira type I_{1} are only fibers lying over ξ_{3}.

Denote by F, Γ_{i} the strict transforms on X of E, Σ_{i} for $i=3,4, a, b$. The graph of $F+\Gamma_{3}+\eta_{1}+\eta_{2}$ is given in Figure 2. To be precise, one can write uniquely $\eta_{1}=F_{1}+\Gamma_{1}+\Gamma_{2}$ so that $F_{1}, \Gamma_{1}, \Gamma_{2}$ lie over the points $\Pi_{3} \cap \Pi_{i}$ for $i=6,2,4$, respectively.

Clearly, each curve in $F+\Gamma_{3}+\eta_{1}+\eta_{2}$ is σ-stable (in fact, $\sigma^{*} \mid \operatorname{Pic} X=$ id, see Lemma 4.1) and the fixed locus

$$
X^{\sigma}=\operatorname{Supp}\left(\Gamma_{4}+\Gamma_{a}+\Gamma_{b}\right) \coprod\left\{P_{i}\right\}_{i=1}^{13},
$$

Fig. 2
where the first $12 P_{i}$'s are intersection points (not on Γ_{k} for all $k=4, a, b$) in $F+\Gamma_{3}+\eta_{1}+\eta_{2}$ and P_{13} is a point lying on Γ_{1}.

Now $\Gamma_{1}+\Gamma_{2}+\Gamma_{3}+\eta_{2}$ contains exactly two divisors $\Gamma(a), \Gamma(b)$ of Dynkin type A_{17} :

$$
\Gamma_{1}-\Gamma_{2}-\Gamma_{3}-\cdots-\Gamma_{16}-\Gamma_{17} .
$$

One is when $(a, b)=(9,14)$ and the other when $(a, b)=(14,9)$. Let $g: X \rightarrow Y(i)$ be the contraction of $\Gamma(i)$ to a point Q_{1}. Then the induced σ-action on $Y(i)$ has Q_{1} and the image of $F \cap F_{1}$ as only fixed points. Clearly, $T(i)=Y(i) / \sigma$ is a rational \log Enriques surface of index 5 and actual Type A_{17}.

Remark 2.3. In [Z2, Example 6.12], we constructed a rational log Enriques surface T of index 5 and Type A_{17}. Instead of T we used (V^{\prime}, D^{\prime}) there. To be precise, D^{\prime} is a union of the following two linear chains on the smooth rational surface V^{\prime} and $V^{\prime} \rightarrow T$ is the contraction of D^{\prime}

$$
(-2)-(-2)-(-2)-(-3)-(-2)-(-3)-(-2)-(-2)-(-2),(-2)-(-3) .
$$

Since the (-1)-curve F_{2}^{\prime} in [Z1, Example 6.12 and Figure (8)] links the only (-2)curve in the second connected component of D^{\prime} to one of two (-3)-curves in the first, the strict transform F on X of F_{2}^{\prime} is a smooth rational curve with $F . \Gamma=F . \Gamma_{14}=1$ in the notations of the proof of Main Theorem 3, after relabelling; hence this $T \cong T(14)$.

§3. A sublattice of type A_{17}

In this section, we shall prove:
Theorem 3.1. Let X be a $K 3$ surface of Picard number 18 and $|\operatorname{det}(\operatorname{Pic} X)|=$ 5. Assume that there is a linear chain Γ of 17 smooth rational curves Γ_{i} 's on X with $\Gamma_{i} \cdot \Gamma_{i+1}=1$. Then we have:
(1) There is an elliptic fibration $\psi: X \rightarrow \mathbf{P}^{1}$ such that ψ has fibers η_{1} and η_{2} of Kodaira types (I_{3} or $I V$) and I_{15}, with Γ_{3} as a cross-section (after relabelling Γ_{i} as Γ_{18-i} if necessary), and $\eta_{1}=F_{1}+\Gamma_{1}+\Gamma_{2}, \eta_{2}=F_{2}+\sum_{i=4}^{17} \Gamma_{i}$ where F_{i} 's are smooth rational curves with $F_{1} \Gamma_{i}=F_{2} \Gamma_{j}=1(i=1,2 ; j=4,17)$.
(2) There is a unique cross-section F of ψ such that $F . F_{1}=F .\left(\Gamma_{9}+\Gamma_{14}\right)=1$.
(3) Let $X \rightarrow Y$ be the contraction of Γ, and let H denote the ample generator of Pic Y and also its pull-back on X.

If $F . \Gamma_{9}=1$, then $H^{2}=10$, and Γ (the one generated by Γ_{i} 's) is an index 3 sublattice of its primitive-closure $\tilde{\Gamma}$ in Pic X, so that $\tilde{\Gamma} \oplus \mathbf{Z} H$ is a sublattice of index 2 in Pic X.

If $F . \Gamma_{14}=1$, then $H^{2}=90$ and Γ is a primitive sublattice of $\operatorname{Pic} X$ such that $\Gamma \oplus \mathbf{Z} H$ is a sublattice of index 18 in Pic X.

Remark 3.2. If $F . \Gamma_{9}=1$, we relabel in the following way: $\Gamma_{i}^{\prime}:=$ $\Gamma_{i}(i=1,2,3,4), \quad \Gamma_{5}^{\prime}:=F_{2}, \quad \Gamma_{j}^{\prime}=\Gamma_{23-j}(j=6,7, \ldots, 17)$. Then $F . \Gamma_{14}^{\prime}=1$. In other words, by replacing Γ by a new Γ^{\prime} of Dynkin type A_{17}, we can always assume that $F . \Gamma_{14}^{\prime}=1$ (or $F . \Gamma_{9}^{\prime}=1$ by a similar argument).

The proof of Theorem 3.1 consists of Lemmas 3.3-3.5 below. Let $X, \Gamma=$ $\sum_{i=1}^{17} \Gamma_{i}, H$ be as in Theorem 3.1. In the sequel, we shall use the same Γ to denote the sublattice in Pic X generated by Γ_{i} 's. Note that $\Gamma^{\perp} \subseteq \operatorname{Pic} X$ is generated by the nef and big divisor H.

Lemma 3.3. Assume that Γ is a primitive sublattice in $\operatorname{Pic} X$. Then we have:
(1) Suppose that $h \in \operatorname{Pic} X$ satisfies $\operatorname{Pic} X=\Gamma+\mathbf{Z} h$ (the existence of such h is from the primitivity of Γ in $\operatorname{Pic} X)$. Then $\pm h \equiv h_{+}:=\frac{1}{18}\left(H+7 \sum_{i=1}^{17} i \Gamma_{i}\right)(\bmod \Gamma)$, after relabelling Γ_{i} as Γ_{18-i} if necessary. Moreover, $H^{2}=90$ and $\mid \operatorname{Pic} X$: $\Gamma \oplus \mathbf{Z} H \mid=18$.
(2) $\left\{\Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{17}, h_{+}\right\}$form a Z-basis of Pic X, and the intersection form of this basis is given by: $h_{+}^{2}=-46, h_{+} \Gamma_{17}=-7, h_{+} . \Gamma_{i}=0(i=1,2, \ldots, 16)$.
(3) There are smooth rational curves F, F_{1}, F_{2} such that $F \sim 2 h_{+}$ $\sum_{i=1}^{17} i \Gamma_{i}+\left(\Gamma_{15}+2 \Gamma_{16}+3 \Gamma_{17}\right), \quad F_{1} \sim 3 h_{+}-\sum_{i=1}^{17}(3+i) \Gamma_{i}+\Gamma_{1}, \quad F_{2} \sim 3 h_{+}-$
$\sum_{i=1}^{17}(4+i) \Gamma_{i}+\left(3 \Gamma_{1}+2 \Gamma_{2}+\Gamma_{3}\right)$.
(4) Theorem 3.1 is true with $F . \Gamma_{14}=1$, by letting F, F_{1}, F_{2} be as in (3) and $\eta_{1}:=F_{1}+\Gamma_{1}+\Gamma_{2}, \eta_{2}:=F_{2}+\sum_{i=4}^{17} \Gamma_{i}, \psi:=\Phi_{\left|\eta_{1}\right|}$.

Proof. (1) Let $h \in \operatorname{Pic} X$ so that $\operatorname{Pic} X=\Gamma+\mathbf{Z} h$. Claim (1.1) below can be similarly proved as in [OZ1].

Claim 1. Set $n=|\operatorname{Pic} X: \Gamma \oplus \mathbf{Z} H|$. Then we have:
(1.1) After replacing h by $-h$ if necessary, $n h \equiv H(\bmod \Gamma)$ and hence $h=$ $\frac{1}{n}\left(H+\sum_{i=1}^{17} a_{i} \Gamma_{i}\right)$ for some integers a_{i}.
(1.2) n divides $|\operatorname{det}(\Gamma)|=18$. Moreover, $5 n^{2}=18 H^{2}$. Hence $n=6,18$.

Note that $\frac{1}{n}\left(a_{1}, a_{2}, \ldots, a_{17}\right)$ is the unique solution of the linear system:

$$
\left(h-\sum_{i=1}^{17} x_{i} \Gamma_{i}\right) \Gamma_{j}=0 \quad(j=1,2, \ldots, 17)
$$

Since $\operatorname{det}\left(\Gamma_{i} . \Gamma_{j}\right)=-18, \quad 18 a_{i} / n \in \mathbf{Z}$. Hence $18 H / n=18 h-\sum_{i=1}^{17} \frac{18 a_{i}}{n} \Gamma_{i}=s H$ for some integer s. So $18 / n=s$ and $n \mid 18$. The second assertion of Claim (1.2) follows from the observation that $|\operatorname{det}(\operatorname{Pic} X)| n^{2}=|\operatorname{det}(\Gamma \oplus \mathbf{Z} H)|$.

Note that $\left(\sum_{i=1}^{17} a_{i} \Gamma_{i}\right) \cdot \Gamma_{j}=n\left(h . \Gamma_{j}\right) \equiv 0(\bmod n)$ for all j. Hence

$$
-2 a_{1}+a_{2}, \quad a_{i-1}-2 a_{i}+a_{i+1}(i=2,3, \ldots, 16), \quad a_{16}-2 a_{17}
$$

are all $0 \quad(\bmod n)$. So $a_{i} \equiv i a_{1} \quad(\bmod n) \quad$ for \quad all $\quad 1 \leq i \leq 17$. Thus $\left(h+\frac{1}{n} \sum_{i=1}^{17}\left(i a_{1}-a_{i}\right) \Gamma_{i}\right)^{2}$ is an integer, which is equal to

$$
\begin{aligned}
\frac{1}{n^{2}}\left(H+a_{1} \sum_{i=1}^{17} i \Gamma_{i}\right)^{2} & =\frac{1}{n^{2}}\left(H^{2}-18 \times 17 a_{1}^{2}\right) \\
& =\frac{5}{18}-\frac{18 \times 17 a_{1}^{2}}{n^{2}} .
\end{aligned}
$$

For the latter to be an integer, $n=18$ and $a_{1}= \pm 7(\bmod 18)(c f$. Claim 1.2)).
The above argument also shows that $h \equiv h_{ \pm}:=\frac{1}{18}\left(H \pm 7 \sum_{i=1}^{17} i \Gamma_{i}\right)(\bmod \Gamma)$. Since $h_{-} \equiv \frac{1}{18}\left(H+7 \sum_{i=1}^{17} \Gamma_{18-i}\right)(\bmod \Gamma)$, the assertion (1) is proved.
(2) follows from the definition of h_{+}and a direct calculation.
(3) Use the same F, F_{1}, F_{2} to denote $2 h_{+}-\sum_{i=1}^{17} i \Gamma_{i}+\left(\Gamma_{15}+2 \Gamma_{16}+3 \Gamma_{17}\right)$, $3 h_{+}-\sum_{i=1}^{17}(3+i) \Gamma_{i}+\Gamma_{1}, \quad 3 h_{+}-\sum_{i=1}^{17}(4+i) \Gamma_{i}+\left(3 \Gamma_{1}+2 \Gamma_{2}+\Gamma_{3}\right)$, respectively. We shall show that each of $|F|,\left|F_{1}\right|$ and $\left|F_{2}\right|$ contains a smooth rational curve as a member.

A direct calculation shows Claims (2.1), (2.2) and (2.3) below.
Claim 2. (2.1) H. $h_{+}=5, \quad F^{2}=F_{1}^{2}=F_{2}^{2}=-2, \quad H . F=10, \quad H . F_{1}=15=$ H. F 2 .
(2.2) The intersection number (0 or 1) between any two distinct divisors of F, $F_{1}, F_{2}, \Gamma_{i}(i=1,2, \ldots, 17)$ are as discribed in Figure 2 with $(a, b)=(14,9)$, if we regard these divisors as irreducible curves, e.g. $F_{2 .} \Gamma_{4}=F_{2 .} \Gamma_{17}=F . F_{1}=F . \Gamma_{14}=1$, $F . F_{2}=F . \Gamma_{i}=0(1 \leq i \leq 17, i \neq 14)$.
(2.3) $F_{1}+\Gamma_{1}+\Gamma_{2} \sim F_{2}+\sum_{i=4}^{17} \Gamma_{i}$.
(2.4) $\quad|F| \neq \varnothing,\left|F_{i}\right| \neq \varnothing(i=1,2)$. Hence we assume $F \geq 0, F_{i} \geq 0$.
$F^{2}=-2$ and the Riemann-Roch theorem imply that $|F| \neq \varnothing$, or $|-F| \neq$ \varnothing. Since F. $H>0$, where H is nef and big, we have $|F| \neq \varnothing$. Similarly, we can finish the proof of Claim (2.4).

Claim 3. Set $G:=F_{1}+\Gamma_{1}+\Gamma_{2}$.
(3.1) $\quad G . \Gamma_{3}=1, G . \Gamma_{i}=0(1 \leq i \leq 17, i \neq 3), \quad G . F=1, \quad G . F_{i}=0(i=1,2)$, $G^{2}=0$.
(3.2) G is a numerically effective divisor.

Claim (3.1) can be verified easily using Claim 2. Suppose the contrary that Claim (3.2) is false. Then there is a smooth rational curve $E_{1}\left(\neq \Gamma_{i}\right.$ for any $\left.i\right)$ such that $G . E_{1} \leq-1$ by noting that $|G| \neq \varnothing$ (Claim (2.4)).

By the proof of Theorem 1(3) in [S, p. 573], there is an effective divisor N, a union of E_{1} and other smooth rational curves, such that $P:=G-N$ is a numerically (non-trivial and) effective divisor with $P^{2}=0$; to be precise, P is the image of G by a composite of reflections of Pic X. By [S, Theorem 1, p. 559], $P \sim m \eta$, where $m \in \mathbf{Z}_{>0}$ and η is an elliptic curve.

Write $N=n h_{+}+\sum_{i=1}^{17} n_{i} \Gamma_{i}, \quad P=p h_{+}+\sum_{i=1}^{17} p_{i} \Gamma_{i}$, where $n, n_{i}, p, p_{i} \in \mathbf{Z}$. Clearly, N, P are positive multiples of H, modulo Γ; in particular, $p \geq 1$ and $n \geq 1$ because $E_{1} \leq N$. On the other hand $(n+p) h_{+} \equiv G \equiv 3 h_{+}(\bmod \Gamma)$. Hence $n+p=3$. Thus $(n, p)=(1,2),(2,1)$.

Set $c_{i}:=P . \Gamma_{i} \in \mathbf{Z}_{\geq 0}$. We have

$$
\begin{gathered}
c_{1}=P . \Gamma_{1}=-2 p_{1}+p_{2} \\
c_{i}=P . \Gamma_{i}=p_{i-1}-2 p_{i}+p_{i+1}, \quad(i=2,3, \ldots, 16), \\
c_{17}=P . \Gamma_{17}=-7 p+p_{16}-2 p_{17} .
\end{gathered}
$$

Solving this linear system, we obtain:

$$
\begin{gathered}
p_{1}=-\frac{1}{18}\left(7 p+\sum_{j=1}^{17}(18-j) c_{j}\right), \quad p_{i}=i p_{1}+\sum_{j=1}^{i-1}(i-j) c_{j}, \quad(2 \leq i \leq 17), \\
7 i p+18 p_{i}=-\sum_{j=1}^{i-1}(18-i) j c_{j}-\sum_{j=i}^{17} i(18-j) c_{j} .
\end{gathered}
$$

We have also P. $h_{+}=P .\left(H+7 \sum_{i=1}^{17} i \Gamma_{i}\right) / 18=\left(5 p+7 \sum_{i=1}^{17} i c_{i}\right) / 18$. Thus we can calculate:

$$
\begin{align*}
5 p^{2} & =5 p^{2}-18 P^{2}=5 p^{2}-18 P \cdot\left(p h_{+}+\sum_{i=1}^{17} p_{i} \Gamma_{i}\right) \tag{*}\\
& =-\sum_{i=1}^{17}\left(7 i p+18 p_{i}\right) c_{i}=\sum_{i=2}^{17} \sum_{j=1}^{i-1}(18-i) j c_{i} c_{j}+\sum_{i=1}^{17} \sum_{j=i}^{17} i(18-j) c_{i} c_{j} \\
& =\sum_{j=1}^{16} \sum_{i=j+1}^{17}(18-i) j c_{i} c_{j}+\sum_{j=1}^{17} \sum_{i=1}^{j} i(18-j) c_{i} c_{j} .
\end{align*}
$$

If $c_{j} \geq 1$, then $20 \geq 5 p^{2} \geq(18-j) c_{j} j c_{j} \geq j(18-j)$, and hence $j=1,17$. Thus $c_{k}=0(2 \leq k \leq 16)$, and $20 \geq 5 p^{2} \geq \sum_{j=1,17} j(18-j) c_{j}^{2}$. Hence either $c_{1}=1$ and $c_{i}=0$ for all $2 \leq i \leq 17$, or $c_{17}=1$ and $c_{i}=0$ for all $1 \leq i \leq 16$. But then the equality $(*)$ implies that $5 p^{2}=17$, a contradiction. Hence Claim (3.2) is true.

The above argument also shows that $G \sim m \eta$ for some $m \in \mathbf{Z}_{>0}$ and an elliptic curve η. Since $G . \Gamma_{3}=1, m \doteq 1$ and Γ_{3} is a cross-section of the elliptic fibra-
tion $\psi:=\Phi_{|\eta|}$. Now $\eta_{1}:=G=F_{1}+\Gamma_{1}+\Gamma_{2}$ and $\eta_{2}:=F_{2}+\sum_{i=4}^{17} \Gamma_{i}$ are singular fibers of ψ.

First $\eta_{1} \neq \eta_{2}$, for otherwise $\eta_{1}=\eta_{2}$ contains 16 curves $\Gamma_{i}(i \neq 3)$ and at least two more curves. This leads to $18=\rho(X) \geq 2+\left(\# \eta_{1}-1\right) \geq 19$, a contradiction [Sh, Cor. 5.3]. The same argument shows that $\# \eta_{1}=3, \# \eta_{2}=15$, each singular fiber $\eta_{i}(i \geq 3)$ is of Kodaira type I_{1} or $I I$, and the Mordell-Weil group of ψ is torsion. Thus η_{2} is of Kodaira type I_{15} and η_{1} is of type I_{3} or $I V$. Hence F_{i} is irreducible and is the unique member in $\left|F_{i}\right|$, which is a smooth rational curve.

To finish (3), it still needs to show that $|F|$ contains an irreducible member. Here we may assume $F \geq 0$. Since $F . G=1$ (Claim 3), $F=F^{\prime}+C$ where F^{\prime} is a cross-section of ψ, and C is contained in fibers.

As in the proof of Claim (3.2), $F=F^{\prime}+C$ does not contain either of F_{i} because $F \equiv 2 h_{+}(\bmod \Gamma)$ while $F_{i} \equiv 3 h_{+}(\bmod \Gamma)$. Now $0=F . F_{2}$ (Claim 2) implies that $F=F^{\prime}+C$ does not contain Γ_{4} or Γ_{17}. Inductively, $F . \Gamma_{i}=F . \Gamma_{j}=$ $F . \Gamma_{k}=0(i=4,5, \ldots, 13 ; j=17,16,15 ; k=4,3,2)$ in Claim 2, implies that F does not contain Γ_{i+1} or Γ_{j-1} or Γ_{k-1}. Hence F does not contain any of $\Gamma_{i}(1 \leq i \leq 17)$. So C is a union of fibers. Since $-2=F^{2}=\left(F^{\prime}+C\right)^{2}=-2+$ $C^{2}+2 C F^{\prime} \geq-2, C=0$ and $F=F^{\prime}$ is an (irreducible) cross-section with $F . \Gamma_{14}=$ $F . F_{1}=1$ (Claim 2). This prove (3). In fact, by the arguments so far (cf. Lemmas 3.4 and 3.5), Theorem 3.1 for the present case is also proved.

Lemma 3.4. Assume that Γ is a not a primitive sublattice in $\operatorname{Pic} X$. Let $\tilde{\Gamma}$ be the primitive closure of Γ in Pic X. Write $\tilde{\Gamma}^{\perp}=\Gamma^{\perp}=\mathbf{Z} H$ with the nef and big H. Then we have:
(1) $|\tilde{\Gamma}: \Gamma|=3$, and $\quad|\operatorname{det}(\tilde{\Gamma})|=2 . \quad$ Moreover, $\quad H^{2}=10 \quad$ and $\quad \mid \operatorname{Pic} X:$ $(\tilde{\Gamma} \oplus \mathbf{Z} H) \mid=2$.
(2) Suppose that $\delta \in \tilde{\Gamma}$ satisfies $\tilde{\Gamma}=\Gamma+\mathbf{Z} \delta$. Then $\pm \delta \equiv \delta_{+}:=\frac{1}{3} \sum_{i=1}^{17} i \Gamma_{i}$ $(\bmod \Gamma)$. Hence $\delta_{+}, \Gamma_{i}(i=2,3, \ldots, 17)$ form a Z-basis of $\tilde{\Gamma}$.
(3) Suppose that $h \in \operatorname{Pic} X$ satisfies Pic $X=\tilde{\Gamma}+\mathbf{Z} h$. Then $h \equiv h_{+}:=$ $\frac{1}{2}\left(H+\delta_{+}\right)(\bmod \tilde{\Gamma})$.
(4) $\left\{\delta_{+}, \Gamma_{2}, \ldots, \Gamma_{17}, h_{+}\right\}$form a Z-basis of $\operatorname{Pic} X$, and the intersection matrix of this basis is given by: $\delta_{+}^{2}=-34, \quad \delta_{+} \Gamma_{i}=0(2 \leq i \leq 16), \quad \delta_{+} . \Gamma_{17}=-6$, $\delta_{+} h_{+}=-17, h_{+}^{2}=-6, h_{+} \Gamma_{i}=0(2 \leq i \leq 16), h_{+} \Gamma_{17}=-3$.
(5) There are smooth rational curves F, F_{1}, F_{2} such that $F \sim-2 \delta_{+}+$ $\sum_{i=10}^{17}(i-9) \Gamma_{i}+h_{+}, \quad F_{1} \sim-6 \delta_{+}+\sum_{i=2}^{17}(2 i-3) \Gamma_{i}+h_{+}, \quad$ and $\quad F_{2} \sim-3 \delta_{+}+$ $\sum_{i=5}^{17}(i-4) \Gamma_{i}+h_{+}$.
(6) Theorem 3.1 is true with $F . \Gamma_{9}=1$, by letting F, F_{1}, F_{2} be as in (5) and $\eta_{1}:=F_{1}+\Gamma_{1}+\Gamma_{2}, \eta_{2}:=F_{2}+\sum_{i=4}^{17} \Gamma_{i}, \psi:=\Phi_{\left|\eta_{1}\right|}$.

Proof. The first part of (1) follows from the fact that $18=|\operatorname{det}(\Gamma)|=$ $|\operatorname{det}(\tilde{\Gamma})||\tilde{\Gamma}: \Gamma|^{2}$.
(2) Let $\delta \in \tilde{\Gamma}$ so that $\tilde{\Gamma}=\Gamma+\mathbf{Z} \delta$. By (1), $\delta=\frac{1}{3} \sum_{i=1}^{17} a_{i} \Gamma_{i}$ for some integers a_{i}. Note that

$$
3 \delta . \Gamma_{1}=-2 a_{1}+a_{2}, \quad 3 \delta . \Gamma_{i}=a_{i-1}-2 a_{i}+a_{i+1}
$$

are all $0(\bmod 3)$. Hence $a_{i} \equiv i a_{1}(\bmod 3)$. Thus $\delta \equiv \frac{a_{1}}{3} \sum_{i=1}^{17} i \Gamma_{i}(\bmod \Gamma)$. Since $\delta \notin \Gamma, a_{1} \equiv \pm 1(\bmod 3)$. Now (2) follows.
(3) Set $n:=|\operatorname{Pic} X:(\tilde{\Gamma} \oplus \mathbf{Z} H)|$. As in Lemma 3.3, we can prove that $h=\frac{1}{n}\left(H+a_{1} \delta_{+}+\sum_{i=2}^{17} a_{i} \Gamma_{i}\right)$ for some integers a_{i}; moreover n divides $|\operatorname{det}(\tilde{\Gamma})|=$ 2. The latter, together with $2 H^{2}=|\operatorname{det}(\tilde{\Gamma} \oplus \mathbf{Z} H)|=n^{2}|\operatorname{det}(\operatorname{Pic} X)|=5 n^{2}$, implies that $n=2$ and $H^{2}=10$. This proves the second part of (1).

We shall use the calculation that $\delta_{+}^{2}=-34, \delta_{+} \Gamma_{17}=-6, \quad \delta_{+}, \Gamma_{i}=0$ $(1 \leq i \leq 16)$. Note that
$2 h . \Gamma_{1}=a_{2}, \quad 2 h . \Gamma_{2}=-2 a_{2}+a_{3}, \quad 2 h . \Gamma_{i}=a_{i-1}-2 a_{i}+a_{i+1}(3 \leq i \leq 16)$
are all $0(\bmod 2)$. Hence $a_{i} \equiv 0(\bmod 2)$ for all $2 \leq i \leq 17$. So $h \equiv$ $\frac{1}{2}\left(H+a_{1} \delta_{+}\right)(\bmod \Gamma)$.

To finish (3), we have only to show that $a_{1} \equiv 1(\bmod 2)$. In fact, if a_{1} is even, then $h \equiv H / 2(\bmod \tilde{\Gamma})$ and hence $H / 2 \in \Gamma^{\perp} \subseteq \operatorname{Pic} X$, a contradiction to the fact that H is a generator of Γ^{\perp}. This also proves (3).
(4) is from a direct calculation.
(5) As in Lemma 3.3, we can prove Claims (1.1)-(1.5) below.

Claim 1. (1.1) $H . F=H . F_{i}=5(i=1,2), \delta_{+} F=3, \delta_{+} . F_{1}=1, \delta_{+}, F_{2}=7$, $h_{+}, F=4, h_{+} . F_{1}=3, h_{+} . F_{2}=6 ; F^{2}=F_{i}^{2}=-2(i=1,2)$.
(1.2) The intersection number (0 or 1) between any two distinct divisors of F, $F_{1}, F_{2}, \Gamma_{i}(i=1,2, \ldots, 17)$ are as discribed in Figure 2 with $(a, b)=(9,14)$, if we regard these divisors as irreducible curves, e.g. $F_{2} \cdot \Gamma_{4}=F_{2} \cdot \Gamma_{17}=F . F_{1}=F . \Gamma_{9}=1$, $F . F_{2}=F . \Gamma_{i}=0(1 \leq i \leq 17, i \neq 9)$.
(1.3) $F_{1}+\Gamma_{1}+\Gamma_{2} \sim F_{2}+\sum_{i=4}^{17} \Gamma_{i}$.
(1.4) $|F| \neq \phi,\left|F_{i}\right| \neq \phi(i=1,2)$.
(1.5) For $G:=F_{1}+\Gamma_{1}+\Gamma_{2}$, one has $G . \Gamma_{3}=1, \quad G . \Gamma_{i}=0(1 \leq i \leq 17$, $i \neq 3), G . F=1, G . F_{i}=0(i=1,2), G^{2}=0$.
(1.6) G is a numerically effective divisor.
(1.7) It is impossible that $F \geq F_{i}$ for $i=1$ or 2.

Suppose the contrary that Claim (1.6) is false. Then, as in Lemma 3.3, $G=P+N$ so that $P \equiv p h_{+}(\bmod \tilde{\Gamma}), N \equiv n h_{+}(\bmod \tilde{\Gamma})$ for some positive integers p, n. Hence $(p+n) h_{+} \equiv G \equiv F_{1} \equiv h_{+}(\bmod \tilde{\Gamma})$, and $p+n=1$, a contradiction. So Claim (1.6) is true.

For $i=1$ (resp. 2), $3\left(F-F_{i}\right)=\sum_{j=1}^{17} b_{j} \Gamma_{j}$ where $b_{j} \in \mathbf{Z}$ and $b_{8}=-7$ (resp. -4). Hence $\left|F-F_{i}\right|=\phi$ for the Kodaira dimension $\kappa(X, \Gamma)=0$. This proves Claim(1.7).

Now (5) and (6) can be proved similarly as in Lemma 3.3. (cf. Lemmas 3.3 and 3.5).

Lemma 3.5. With the assumptions and notations in Theorem 3.1, there is a unique smooth rational curve F such that $F . \Gamma=F .\left(\Gamma_{9}+\Gamma_{14}\right)=1$.

Proof. The existence of such F is proved in Lemmas 3.3 and 3.4. Suppose the contrary that there are two different cross-sections $F^{\prime}, F^{\prime \prime}$ each of them having
intersection 1 with Γ and also with $\Gamma_{9}+\Gamma_{14}$. There are 3 possible cases: $F^{\prime} . \Gamma_{9}=F^{\prime \prime} . \Gamma_{9}=1$, or $F^{\prime} . \Gamma_{14}=F^{\prime \prime} . \Gamma_{14}=1$, or $F^{\prime} . \Gamma_{9}=F^{\prime \prime} . \Gamma_{14}=1$. But then if letting $\Gamma_{18}:=F^{\prime}-F^{\prime \prime}$, we have respectively $\operatorname{det}\left(\Gamma_{i} \cdot \Gamma_{j}\right)=36\left(2+F^{\prime} . F^{\prime \prime}\right)>0$, $36\left(2+F^{\prime} . F^{\prime \prime}\right)>0$, and $7+36\left(F^{\prime} . F^{\prime \prime}\right)>0$, a contradiction to the fact that Pic X has signature (1, 17). This proves Lemma 3.5.

Proposition 3.6. Let X be a K3 surface of Picard number 18 and $|\operatorname{det}(\operatorname{Pic} X)|=5$. Then the existence of a Jacobian elliptic fibration ψ on X with a cross-section P_{0} having two fibers $\left\{\eta_{1}, \eta_{2}\right\}$ of one of 5 Kodaira types (i) $\left\{I I^{*}, I I I^{*}\right\}$, (ii) $\left\{I_{10}, I I I^{*}\right\}$, (iii) $\left\{I_{5}^{*}, I V^{*}\right\}$, (iv) $\left\{I_{10}^{*}, I_{2}\right.$ or III $\}$, (v) $\left\{I_{15}, I_{3}\right.$ or IV $\}$, implies the existence of 4 new Jacobian elliptic fibrations having fibers $\left\{\eta_{1}^{\prime}, \eta_{2}^{\prime}\right\}$ of the remaining 4 types; in other words, the existence of one type will imply the existence of all 5 types.

Moreover, in each of 5 cases, any singular fiber $\left(\neq \eta_{1}, \eta_{2}\right)$ has Kodaira type I_{1} or II.

Proof. We shall proceed in the way " $(v) \Rightarrow(i) \Rightarrow(i i) \Rightarrow(i i i) \Rightarrow(i v) \Rightarrow(v)$. We shall fully apply $[\mathrm{Sh}]$. Let $E=E(\psi)$ denote the Mordell-Weil lattice spanned by all cross-sections of $\psi, E^{0}=E(\psi)^{0}$ the torsion-free and index-finite sublattice $\left\{P \in E \mid P\right.$ and P_{0} meet the same irreducible component in each fiber $\}, T$ the sublattice of $N S(X)$ generated by the zero section P_{0} and all irreducible components in all fibers of ψ.

Claim 1. (1.1) In Cases (i)-(v), we have respectively, $\operatorname{rk}(E)=1, E \cong \mathbf{Z} / 2 \mathbf{Z}$, $\operatorname{rk}(E)=1, \operatorname{rk}(E)=1$ and $E \cong \mathbf{Z} / 3 \mathbf{Z}$.
(1.2) The last assertion of Proposition 3.6 is true.

In Cases (ii) and (v), the calculation $\operatorname{rk}(E)=\rho(X)-\operatorname{rk}(T)=18-\operatorname{rk}(T) \leq$ $16-\left(\# \eta_{1}-1\right)-\left(\# \eta_{2}-1\right)=0$ [Sh, Cor. 5.3], implies Claim (1.2) and $\operatorname{rk}(E)=$ 0 . By [Sh, Th 8.7 and Def 7.3], $|E|^{2}=\operatorname{det}(T) / \operatorname{det}(N S(X))=\operatorname{det}(T) / 5=2^{2}, 3^{2}$ respectively. Hence Claim (1.1) is true.

In Cases (i), (iii), (iv), we have $\mathrm{rk}(E) \leq 1$ as above; and if Claim (1.2) is false, i.e., if $\operatorname{rk}(E)=0$ then ψ has a fiber η_{3} with 2 components and every fiber $\left(\neq \eta_{i}\right.$ for $i=1,2,3)$ is irreducible, which leads to that $|E|^{2}=\operatorname{det}(T) / 5$, a contradiction to an easy calculation that $\operatorname{det}(T)$ is not divisible by 5 [Sh, Def 7.3]. This proves Claim 1.
$"(v) \Rightarrow(i) "$. Assume that $\psi, F, \eta_{1}, \eta_{2}$ fit Case(v). Take a torsion element $P_{1} \in E-\left\{P_{0}\right\}$. Then, by [Sh, Th 8.6, Table(8.16) and the proof of Th 8.4], the height pairing

$$
0=\left\langle P_{1}, P_{1}\right\rangle=2 \chi\left(\mathcal{O}_{X}\right)+2\left(P_{1} \cdot P_{0}\right)-\sum_{v} \operatorname{contr}_{v}\left(P_{1}\right)
$$

Thus, $P_{1} \cdot P_{0}=0, P_{0}$ and P_{1} meet different irreducible components in η_{2}, and η_{1} contains a linear chain of 4 curves linking the irreducible components of η_{1} meeting P_{0} and P_{1}. It is easy to see that there is an elliptic fibration ψ^{\prime} so
that $P_{0}+P_{1}+\eta_{1}+\eta_{2}$ contains a cross-section of ψ^{\prime} and two fibers of ψ^{\prime} fitting Case (i).
" $(i) \Rightarrow(i i) "$. Assume that $\psi, F, \eta_{1}, \eta_{2}$ fit Case (i). By [Sh, Table (8.16)], for any $P_{1} \in E-\left\{P_{0}\right\}$, one has $\left\langle P_{1}, P_{1}\right\rangle=4+2\left(P_{1} P_{0}\right)-(0$ or $3 / 2)>0$, whence P_{1} is not torsion [Sh, proof of Th 8.4]. So E is torsion free of rank 1. Thus we can write $E=\mathbf{Z} P_{1}, E_{0}=n \mathbf{Z} P_{1} . \quad$ By $\left[S h, T h 8.7\right.$ and (8.17)], $n^{2}\left\langle P_{1}, P_{1}\right\rangle=\operatorname{det}\left(E^{0}\right)=$ $\operatorname{det}(N S(X))\left|E: E_{0}\right|^{2} / \operatorname{det}(T)=5 n^{2} / 2$. Thus $\quad 5 / 2=\left\langle P_{1}, P_{1}\right\rangle=4+2\left(P_{1} P_{0}\right)-3 / 2$ (hence P_{1} and P_{0} meet different tip components of η_{2}), and $P_{1 .} P_{0}=0$. Then there is an elliptic fibration ψ^{\prime} so that $P_{0}+P_{1}+\eta_{1}+\eta_{2}$, together with an auxiliary smooth rational curve, contains a cross-section of ψ^{\prime} and two fibers of ψ^{\prime} fitting Case(ii).
" $(i i) \Rightarrow($ iii $)$ ". Assume that $\psi, F, \eta_{1}, \eta_{2}$ fit Case (ii). Take a torsion element $P_{1} \in E-\left\{P_{0}\right\}$. Then $0=\left\langle P_{1}, P_{1}\right\rangle=2 \chi\left(\mathcal{O}_{X}\right)+2\left(P_{1 .} P_{0}\right)-\sum_{v} \operatorname{contr}_{v}\left(P_{1}\right)=4+$ $2\left(P_{1 .} P_{0}\right)-i(10-i) / 10-(0$ or $3 / 2)$ for some $0 \leq i \leq 9$. Hence $\left(P_{1 .} P_{0}\right)=0, i=5$ and we choose $3 / 2$ instead of 0 , whence P_{0} and P_{1} meet different tip components of η_{2}, and η_{1} contains a linear chain of 4 curves linking the irreducible components of η_{1} meeting P_{0} and P_{1}. Now there is an elliptic fibration ψ^{\prime} so that $P_{0}+P_{1}+\eta_{1}+\eta_{2}$ contains a cross-section of ψ^{\prime} and two fibers of ψ^{\prime} fitting Case (iii).
" $(i i i) \Rightarrow(i v)$ ". Assume that $\psi, F, \eta_{1}, \eta_{2}$ fit Case (iii). Clearly, there is an elliptic fibration ψ^{\prime} so that $P_{0}+\eta_{1}+\eta_{2}$ contains a cross-section of ψ^{\prime}, a fiber η_{1}^{\prime} of Kodaira type I_{10}^{*} and a curve F_{2} disjoint from η_{1}^{\prime}. Let η_{2}^{\prime} be the fiber of ψ^{\prime} containing F_{2}. If $\#\left(\eta_{2}^{\prime}\right) \geq 3$, then, as in Claim $1,\left(\# \eta_{2}^{\prime}\right)=3, \operatorname{rk}(E)=0$ and $|E|^{2}=\operatorname{det}(T) / 5=4 \times 3 / 5$, a contradiction. Thus $\#\left(\eta_{2}^{\prime}\right)=2$ and ψ^{\prime} fits Case (iv).
$"(i v) \Rightarrow(v) "$. Assume that $\psi, F, \eta_{1}, \eta_{2}$ fit Case (iv). Let $n:=\left|E: E^{0}\right|$.
CLAIM 2. $\quad E_{\text {tor }} \cong \mathbf{Z} / \mathbf{2 Z}$.
Suppose the contrary that E is torsion free. Then we can write $E=\mathbf{Z} P_{1}$, $E^{0}=n \mathbf{Z} P_{1}$. By [Sh, Th 8.7], $n^{2}\left\langle P_{1}, P_{1}\right\rangle=\operatorname{det}\left(E^{0}\right)=5 n^{2} /(4 \times 2)$. This implies that $5 / 8=\left\langle P_{1}, P_{1}\right\rangle=2 \chi\left(\mathcal{O}_{X}\right)+2\left(P_{1} \cdot P_{0}\right)-\sum_{v} \operatorname{contr}_{v}\left(P_{1}\right)=4+2\left(P_{1} \cdot P_{0}\right)-(0$ or 1 or $7 / 2)-(0$ or $1 / 2)$, which is impossible (by multiplying by 8$)$.

Suppose the contrary that $P_{1} \neq P_{2}$ are two torsion elements in E. Then $0=\left\langle P_{i}, P_{i}\right\rangle=4+2\left(P_{i} . P_{0}\right)-(0$ or 1 or $7 / 2)-(0$ or $1 / 2)$, whence $\quad P_{i} . P_{0}=0$, we choose $7 / 2$ and $1 / 2$, and P_{i} and P_{0} meet different components of η_{2} and P_{i} and P_{0} meet tip components of η_{1} sprouting from different branchs. On the other hand, $0=\left\langle P_{1}, P_{2}\right\rangle=\chi\left(\mathcal{O}_{X}\right)+\left(P_{1} . P_{0}\right)+\left(P_{2} . P_{0}\right)-\left(P_{1} \cdot P_{2}\right)$ $-\sum_{v} \operatorname{contr}_{v}\left(P_{1}, P_{2}\right)=2-\left(P_{1} \cdot P_{2}\right)-(7 / 2$ or 3$)-1 / 2<0$, a contradiciton. This proves Claim 2.

By Claim 2, we can write $E=\mathbf{Z} P_{3} \oplus \mathbf{Z} P_{1}, E^{0}=\frac{n}{2} \mathbf{Z} P_{3}$, where P_{1} is the unique torsion element (of order 2). Now $5 n^{2} / 8=\operatorname{det}\left(E^{0}\right)=\frac{n^{2}}{4}\left\langle P_{3}, P_{3}\right\rangle$ implies that $5 / 2=\left\langle P_{3}, P_{3}\right\rangle=4+2\left(P_{3}, P_{0}\right)-(0$ or 1 or $7 / 2)-(0$ or $1 / 2)$. Hence either

Case (iv-a) $P_{3} P_{0}=0, P_{3}$ and P_{0} meet different components of η_{2} and P_{3} and P_{0} meet two neighbouring tip components of η_{1}, or Case (iv-b) $P_{3} P_{0}=1, P_{3}$ and P_{0} meet the same component in η_{2} and P_{3} and P_{0} meet two tip components of η_{1} sprouting from different branchs.

On the other hand, $0=\left\langle P_{1}, P_{3}\right\rangle=\chi\left(\mathcal{O}_{X}\right)+\left(P_{1} . P_{0}\right)+\left(P_{3} . P_{0}\right)-\left(P_{1} \cdot P_{3}\right)-$ $\sum_{v} \operatorname{contr}_{v}\left(P_{1}, P_{3}\right)=2+\left(P_{3} P_{0}\right)-\left(P_{1} . P_{3}\right)-(1 / 2+1 / 2$ in Case (iv-a); $7 / 2+0$ or $3+0$ in Case (iv-b)). Thus, in Case (iv-a), $P_{1} . P_{3}=1$; in Case (iv-b), $P_{1} . P_{3}=0$ and P_{1} and P_{3} meet two neighbouring tip components of η_{1}. Then there is an elliptic fibration ψ^{\prime} so that $P_{0}+P_{1}+P_{3}+\eta_{1}+\eta_{2}$, together with an auxiliary smooth rational curve, contains a cross-section of ψ^{\prime} and two fibers of ψ^{\prime} fitting Case (v). This proves Proposition 3.6.

Corollary 3.7. Let X be as in Theorem 3.1. Then for each $1 \leq i \leq 5$, there is a Jacobian elliptic fibration having fibers $\left\{\eta_{1}, \eta_{2}\right\}$ fitting Case (i) in Proposition 3.6.

§4. Proofs of Theorems

We first prove Theorem 1. Theorem $1(1)$ is proved in $[\mathrm{Z} 4]$. Now we prove Theorem 1(2). Let T be a rational log Enriques surface of Type A_{17} and index I. By $[\mathrm{Z3}, \mathrm{Z} 4], I=2,3,4,5$ or 10 . Suppose the contrary that $I=10$. We shall use the notations in Lemma 1.1. Now Y / σ^{2} (resp. Y / σ^{5}) is a rational log Enriques surface of Type A_{17} and index 5 (resp. 2), and hence $\rho(X)=18$ (resp. $\rho(X) \geq 19)$ by Lemma 4.1 below and [Z4, Lemma 3.1 and Corollary 3.4]. We reach a contradiction. So Theorem $1(2)$ is true.

Next we prove Main Theorem 3(1). Let T be a rational \log Enriques surface of index 5 and Type A_{17}. We employ the notations at the beginning of $\S 1$ and in Lemma 1.1:

$$
\pi: Y \rightarrow T, \quad g: X \rightarrow Y, \quad \Gamma=g^{-1}(\operatorname{Sing} Y), \quad\langle\sigma\rangle=\operatorname{Gal}(Y / T), \quad \sigma^{*} \omega=\zeta_{5} \omega .
$$

We denote by $\Gamma(1)=\sum_{i=1}^{17} \Gamma_{i}$ where $\Gamma_{i} \cdot \Gamma_{i+1}=1$, the unique connected component of Γ of Dynkin type A_{17}.

Lemma 4.1. Let T be a rational log Enriques surface of index 5 and Type A_{17}. Then we have:
(1) The Picard number $\rho(X)=18$ and $\sigma^{*} \mid \operatorname{Pic} X=\mathrm{id}$.
(2) T is of actual Type A_{17}, i.e., $\Gamma=\Gamma(1)$. The fixed locus X^{σ} is equal to

$$
\begin{gathered}
\operatorname{Supp}\left(\Gamma_{4}+\Gamma_{9}+\Gamma_{14}\right) \coprod \\
\left\{p_{1}, p_{1,2}, p_{2,3}, p_{5,6}, p_{6,7}, p_{7,8}, p_{10,11}, p_{11,12}, p_{12,13}, p_{15,16}, p_{16,17}, p_{17}, q\right\},
\end{gathered}
$$

where $p_{i, i+1}=\Gamma_{i} \cap \Gamma_{i+1}, p_{j} \in \Gamma_{j}$, and q is a point not on Γ.
Moreover, σ^{*} can be expressed as $\left(\zeta_{5}^{-2}, \zeta_{5}^{-2}\right)\left(\right.$ resp. $\left.\left(\zeta_{5}^{2}, \zeta_{5}^{-1}\right)\right)$ around the 4 points $p_{1,2}, p_{6,7}, p_{11,12}, p_{16,17}$ (resp. the 9 other isolated points in X^{σ}), with suitable coordinates.

Proof. By Lemmas 1.1 and 1.2, the hypotheses in Lemma 1.5 are satisfied, and we shall use the notations there. So $4 t=\operatorname{rank} T_{X}=22-\rho(X) \leq 4$ because X contains $\Gamma(1)$ which is of Dynkin type A_{17}. Thus $t=1$ and $\rho(X)=18$.

On the other hand, each component Γ_{i} of $\Gamma(1)$ is σ-stable because $\operatorname{ord}(\sigma)=5$ while the graph-automorphism group of $\Gamma(1)$ has order 2 (cf. Lemma 1.2). So $(22-4 s-4 t) \geq 17$ and hence $s=0$ (cf. Lemma 1.5). This proves (1).
$1+\#(\Gamma) \leq \rho(X)=18$ implies that $\Gamma=\Gamma(1)$. The rest of (2) follows from Lemmas 1.4-1.6.

We now continue the proof of Main Theorem 3(1). In view of Lemmas 4.1 and 1.5 , we can apply Theorem 3.1. We shall use the notations ψ, η_{i}, F, $F_{i}(i=1,2)$, etc. there. Clearly, the isolated σ-fixed point q not on Γ, equals $F \cap F_{1}$, and hence $X^{\sigma} \subseteq \operatorname{Supp}\left(\eta_{1}+\eta_{2}\right)$.

Since $\sigma^{*} \mid \operatorname{Pic} X=\mathrm{id}, \sigma$ permutes fibers of ψ. Since the cross-section F contains only two σ-fixed points $F \cap \eta_{i}(i=1,2), \eta_{i}(i=1,2)$ are only σ-stable fibers of ψ. Now $24=\chi(X)=\sum_{i \geq 1} \chi\left(\eta_{i}\right)$ where η_{i} runs over the set of all singular fibers, implies that η_{1}, η_{2} are of Kodaira type $I V, I_{15}$ (Theorem 3.1), and that if we let η_{3} be any singular fiber other than η_{1}, η_{2} then η_{3} is of Kodaira type I_{1} and only

$$
\eta_{1}, \eta_{2}, \sigma^{j *} \eta_{3}(0 \leq j \leq 4)
$$

are singular fibers of ψ.
Resolving 13 quotient singularities of X / σ (under 13 isolatetd σ-fixed points) and blowing down uniquely and smoothly some curves under $\eta_{i}(i=1,2)$ we get a rational surface S so that ψ induces a relatively minimal elliptic fibration $\varphi: S \rightarrow \mathbf{P}^{1}$ whose only singular fibers $\zeta_{i}(i=1,2,3)$ (under $\left.\eta_{i}\right)$ are of Kodaira type $I V^{*}, I_{3}, I_{1}$.

Let $E, \Sigma_{i}(i=3,4,9,14)$ be the image on S of F, Γ_{i}. Then $E+\Gamma_{3}+\xi_{1}+\xi_{2}$ is given in Figure 1 where $(a, b)=(9,14)$ or $(14,9)$ if $F . \Gamma_{9}=1$ or $F . \Gamma_{14}=1$ accordingly (cf. Theorem 3.1). Now Lemma 2.2 and the uniqueness of the blowing-down $v: S \rightarrow \mathbf{P}^{2}$ there show that the rational \log Enriques surface $T=Y / \sigma$ is isomorphic to $T(9)$ or $T(14)$ in Example 2.1 accordingly. This proves Main Theorem 3(1).

Theorem 3(2) follows the proof of Theorem 3(1), Lemma 4.1 and the construction of $T(i)$ in Example 2.1.

Finally, we prove Theorem 8 below which will imply Main Theorem 4.
Theorem 8. There is, upto isomorphisms, only one pair (X, σ) of $K 3$ surface X and an order 5 subgroup $\langle\sigma\rangle$ of $\operatorname{Aut}(X)$ satisfying:
$\sigma^{*} \omega=\zeta_{5}$ for a non-zero holomorphic 2 -form ω where $\zeta_{5}=\exp (2 \pi \sqrt{-1} / 5)$, and the number $N=N_{0}-\sum_{i \geq 1}(i-1) N_{i}$ defined in Lemma 1.5 satisfies $N \geq 3$.

Proof. By Lemma 1.5, $N=3, \rho(X)=18, \sigma^{*}\left|\operatorname{Pic} X=\operatorname{id},\left|(\operatorname{Pic} X)^{\vee} /(\operatorname{Pic} X)\right|\right.$ $=|\operatorname{det}(\operatorname{Pic} X)|=5$. By [N2, Cor.1.13.5], $\operatorname{Pic} X=U \oplus T$ and hence there is an
elliptic fibration $\psi: X \rightarrow \mathbf{P}^{1}$ with a cross-section F. Note that σ stabilizes F and permutes fibers of ψ because $\sigma^{*} \mid$ Pic $X=\mathrm{id}$.

Since no elliptic curve has an order 5 automorphism with a fixed point, a general fiber η of ψ is not σ-stable for otherwise $\sigma \in \operatorname{Aut}(\eta)$ fixes $F \cap \eta$. Thus the cross-section $\quad F\left(\cong \mathbf{P}^{1}\right)$ is not σ-fixed and hence has exactly two σ-fixed points which lie on fibers η_{1}, η_{2} say. Therefore, we have:

Claim 1. Only η_{1}, η_{2} are σ-stable fibers of ψ. Hence $X^{\sigma} \subseteq \operatorname{Supp}\left(\eta_{1}+\eta_{2}\right)$. In particular, $N_{i}=0$ for all $i \geq 2$ and $N_{0}=N=3$.

Claim 1, Lemma 1.7, $N_{0}=3$ and $\sum_{\alpha} \chi\left(\eta_{\alpha}\right)=\chi(X)=24$, where η_{α} runs over the set of all singular fibers of ψ, imply:

Claim 2. Only $\eta_{1}, \eta_{2}, \sigma^{i *} \eta_{3}(0 \leq i \leq 4)$ are singular fibers of ψ, where η_{3} is of Kodaira type I_{1} and $\left\{\eta_{1}, \eta_{2}\right\}$ has one of the following Kodaira types:
(8-1) $\left\{I I^{*}, I I I^{*}\right\}$, (8-2) $\left\{I_{10}, I I I^{*}\right\},(8-3)\left\{I_{5}^{*}, I V^{*}\right\},(8-4)\left\{I_{10}^{*}, I I I\right\},(8-5)\left\{I_{15}, I V\right\}$.
In view of Proposition 3.6, we may assume that ψ fits Case (8-5). Then $F+\eta_{1}+\eta_{2}$ contains a linear chain of 17 (orderly) smooth rational curves $\Gamma=\sum_{i=1}^{17} \Gamma_{i} . \quad$ By Lemmas 1.4-1.6, X^{σ} is a disjoint union of 3 curves $\Gamma_{4}, \Gamma_{9}, \Gamma_{14}$ and 13 isolated points (12 of them are on Γ). Let $X \rightarrow Y$ be the contraction of Γ. Then Y / σ is clearly a rational \log Enriques surface of index 5 and Type A_{17}. Thus, $(X,\langle\sigma\rangle)$ is equivariantly isomorphic to $(X(9),\langle\sigma(9)\rangle)$ in Theorem 3(2). This proves Theorem 8.

Graduate School of Mathematical Sciences University of Tokyo
e-mail: oguiso@ms.u-tokyo.ac.jp
Department of Mathematics
National University of Singapore
Lower Kent Ridge Road, Singapore
e-mail: matzdq@nus.edu.sg

References

[A] V. A. Alexeev, Boundedness and K^{2} for \log surfaces, Intern. J. Math., 5 (1995), 779-810.
[AS1] M. F. Atiyah and G. B. Segal, The index of ellitpic operators: II, Ann. of Math., 87 (1968), 531-545.
[AS2] M. F. Atiyah and I. M. Singer, The index of ellitpic operators: III, Ann. of Math., 87 (1968), 546-604.
[BPV] W. Barth, C. Peters, and A. Van de Ven, Compact complex surfaces, Springer-Verlag, 1984.
[B1] R. Blache, The structure of 1.c. surfaces of Kodaira dimension zero, I, J. Alg. Geom., 4 (1995), 137-179.
[Ko] S. Kondo, Automorphisms of algebraic K3 surfaces which act trivially on Picard groups, J. Math. Soc. Japan, 44 (1992), 75-98.
[N1] V. V. Nikulin, Finite automorphism groups of Kähler K3 surfaces, Trans. Moscow Math. Soc., 38 (1980), 71-135.
[N2] V. V. Nikulin, Integral symmetric bilinear forms and some of their applications, Math. USSR Izvestija, 14 (1980), 103-167.
[O1] K. Oguiso, On Jacobian fibrations on the Kummer surfaces of the product of non-isogenous elliptic curves, J. Math. Soc. Japan, 41 (1989), 651-680.
[O2] K. Oguiso, On algebraic fiber space structures on a Calabi-Yau 3-fold, Intern. J. Math., 4 (1993), 439-465.
[O3] K. Oguiso, On certain rigid fibered Calabi-Yau threefolds, Math. Z., 22 (1996), 437-448.
[O4] K. Oguiso, Calabi-Yau threefolds of quasi-product type, Docum. Math., 1 (1996), 417-447.
[OZ1] K. Oguiso and D.-Q. Zhang, On the most algebraic K3 surfaces and the most extremal log Enriques surfaces, Amer. J. Math., 118 (1996), 1277-1297.
[OZ2] K. Oguiso and D.-Q. Zhang, On extremal log Enriques surfaces, II, Tohoku Math. J., to appear.
[OZ3] K. Oguiso and D.-Q. Zhang, On the complete classification of extremal log Enriques surfaces, Math. Z., to appear.
[OZ4] K. Oguiso and D.-Q. Zhang, On Vorontsov's Theorem on K3 surfaces with non-symplectic group actions, Proc. Amer. Math. Soc., to appear.
[R1] M. Reid, Campedelli versus Godeaux, in: Problems in the Theory of Surfaces and their Classification, Trento, October 1988, F. Catanese, et al. ed. Academic Press, 1991, pp. 309-365.
[R2] M. Reid, Undergraduate Algebraic Geometry, London Mathematical Society Student Texts 12.
[Se] J.-P. Serre, A Course in Arithmetic, Graduate Texts in Mathematics 7, Springer-Verlag, New York-Heidelberg-Berlin, 1973.
[S] I. Piateckii-Shapiro and I. R. Shafarevichi, A Torelli theorem for algebraic surfaces of type K3, Math. USSR Izvestija, 5 (1971), 547-588.
[Sh] T. Shioda, On the Mordell-Weil lattices, it Comm. Math. Univ. Sancti Pauli, 39 (1990), 211240.
[SI] T. Shioda and H. Inose, On singular K3 surfaces, in: Complex Analysis and Algebraic Geometry, W. L. Baily, Jr. \& T. Shioda eds, Iwanami Shoten, Cambridge Univ. Press 1977, pp. 119-136.
[Z1,2] D.-Q. Zhang, Logarithmic Enriques surfaces I; II, J. Math. Kyoto Univ., 31 (1991), 419466; 33 (1993), 357-397.
[Z3] D.-Q. Zhang, Normal algebraic surfaces with trivial two or four times of the canonical divisor, Intern. J. Math., to appear.
[Z4] D.-Q. Zhang, Normal algebraic surfaces with trivial tricanonical divisors, Publ. RIMS, Kyoto Univ., to appear.
[Z5] D.-Q. Zhang, Automorphisms on K3 surfaces, Proceedings of the Annual Conference on Algebraic Geometry, 1996, Kinosaki, Hyogo, Japan, A. Moriwaki, K. Oguiso and K. Yokogawa eds.

