Topological realization of the integer ring of local field

By

Takeshi Toru

1. Introduction

In the stable homotopy theory the complex cobordism theory MU and its p-local wedge summand BP are very important. The Morava K-theories $K(n)^*()$ were invented by J. Morava in the early 1970s to understand the complex cobordism theory. In the present, however, from the work of Devinatz, Hopkins and Smith [2], [3], it becomes clear that Morava K-theories themselves play a very important and fundamental role in the stable homotopy theory.

Let p be a prime number. We consider in the p-local stable homotopy category. Morava K-theory $K(n)^*()$ is a periodic cohomology of period $2(p^n-1)$. The coefficient ring is given by

$$K(n)_* = F_p[v_n, v_n^{-1}], |v_n| = 2(p^n - 1)$$

where v_n is the Hazewinkel generator. Let $\widehat{K(n)}$ be the p-adic Morava K-theory spectrum whose coefficient ring satisfies

$$\widehat{K(n)}_{\star} = \mathcal{O}_{K}[u, u^{-1}], |u| = 2$$

where K is the degree n unramified extension of the p-adic number field Q_p and \mathcal{O}_K is its integer ring. To simplify gradings, we use a formal (p^n-1) -th root u of v_n . It is known that the associated formal group law is the Lubin-Tate one [4]. Therefore $\widehat{K(n)}$ has intimate relation with the local class field theory. For example, the homotopy group of the Tate spectrum $t_{\mathbf{Z}/p}\widehat{K(n)}$ is the degree p^n-1 totally ramified abelian extension of K.

In this paper, as one aspect of this relation, we shall topologically realize the totally ramified abelian extensions of \mathcal{O}_K which appear in the local class field theory by the method of Lubin-Tate formal group law. The main result (Theorem 3.3) is saying that we can construct a sequence of ring spectra and ring spectrum maps

$$\widehat{K(n)}(0) \stackrel{F_0}{\to} \widehat{K(n)}(1) \stackrel{F_1}{\to} \widehat{K(n)}(2) \stackrel{F_2}{\to} \cdots$$

Supported by JSPS Research Fellowships for Young Scientists. Received Feburuary 13, 1998.

whose homotopy group is isomorphic to the tower of totally ramified abelian extensions of \mathcal{O}_K , by using the classifying spaces of cyclic groups and the stable transfer maps. Then we shall show that there is a similarity between the ring spectrum automorphisms of the spectra constructed above and the Galois theory.

Now we consider the ring spectrum maps from BZ/p_+^r to $\widehat{K(n)} \otimes \mathcal{O}_L$ where L is a finite extension of the quotient field of $\widehat{K(n)}_0$ and \mathcal{O}_L is its integer ring. Kordzaya and Nishida [5] proved that the group of such ring spectrum maps is isomorphic to $(Z/p^r)^n$ if L is sufficiently large. Since the quotient field L_r of $\widehat{K(n)}(r)_0$ contains the primitive p^r -th roots of unity, it is the minimum splitting field of $\widehat{K(n)}(^0BZ/p^r)$ in the sense of [5]. Hence, by the result of [5], we see that the grouplike elements of $\widehat{K(n)}(^0BZ/p^r)$ induce the ring spectrum maps from BZ/p_+^r to $\widehat{K(n)} \otimes \mathcal{O}_L$.

I would like to thank Professor Goro Nishida for suggestion of this work and many helpful conversations.

2. Totally ramified extension of \mathcal{O}_K

Let $\widehat{K(n)}^*$ () be the *p*-adic Morava *K*-theory. Using periodicity, we can consider that $\widehat{K(n)}^*$ () is graded by $\mathbb{Z}/2$. Then we obtain a formal group law over $\widehat{K(n)}_0 = \mathcal{O}_K$. By the Lubin-Tate theory [4], we can choose an orientation class $x \in \widehat{K(n)}^0(\mathbb{C}P^\infty)$ such that

$$\lceil p \rceil (x) = px + x^{p^n}$$
.

We recall that

$$\widehat{K(n)}^{0}(BZ/p^{r}) \cong \mathcal{O}_{K}[[x]]/([p^{r}](x)).$$

Hence $\widehat{K(n)}^0(BZ/p^r)$ is a finitely generated free module over \mathcal{O}_K . We consider the following decomposition of $[p^r](x)$:

$$[p^r](x) = x \cdot \frac{[p](x)}{x} \cdots \frac{[p^r](x)}{[p^{r-1}](x)}$$

where $\frac{[p^{i+1}](x)}{[p^i](x)}$ are so called Eisenstein polynomials. Let

$$L_i = K[x] / \left(\frac{[p^i](x)}{[p^{i-1}](x)} \right)$$

and

$$\mathcal{O}_{L_i} = \mathcal{O}_K[x] / \left(\frac{[p^i](x)}{[p^{i-1}](x)} \right).$$

By the local class field theory, L_i is the degree $p^{n(i-1)}(p^n-1)$ totally ramified abelian extension of K and \mathcal{O}_{L_i} is its integer ring. Then we have an epimorphism:

$$\widehat{K(n)}^0(BZ/p^r)\to \mathcal{O}_{L_r}.$$

In this section we shall topologically realize this epimorphism.

First we recall the well-known fact about the multiplicative property of transfer (cf.[1]). Let $\pi: E \to B$ be a finite covering and let $\tau: B_+ \to E_+$ be the corresponding transfer where ()₊ denote the suspension spectrum of the pointed space with disjoint base point.

Lemma 2.1. Let h be a multiplicative cohomology theory. Then $\tau^*(y \cup \pi^*(x)) = \tau^*(y) \cup x$ for all $x \in h^*(B)$, $y \in h^*(E)$.

Let $\tau_r: BZ/p^r_+ \to BZ/p^{r-1}_+$ be the transfer associated with the inclusion Z/p^{r-1} $\subset Z/p^r$. We consider the homomorphism

$$\tau_r^* : \widehat{K(n)}^0(B\mathbf{Z}/p^{r-1}) \to \widehat{K(n)}^0(B\mathbf{Z}/p^r).$$

Lemma 2.2.
$$\tau_r^*(1) = \frac{[p^r](x)}{[p^{r-1}](x)}$$
.

Proof. We prove this by induction on r. For r = 1, let $t(x) \in \widehat{K(n)}_*[[x]]$ be a power series such that $t(x) \equiv \tau_1^*(1) \mod ([p^r](x))$. Then it is easy to see that t(0) = p. By Lemma 2.1,

$$0 = \tau_1^*(x) = \tau_1^*(1) \cdot x.$$

Therefore there is a power series $v(x) \in \widehat{K(n)}_{*}[[x]]$ such that

$$x \cdot t(x) = \lceil p \rceil (x) \cdot v(x)$$
.

Since $\widehat{K(n)}_{*}[[x]]$ is a domain, we see that

$$t(x) = v(x) \cdot \frac{[p](x)}{x}$$
 and $\tau_1^*(1) = v(0) \cdot \frac{[p](x)}{x}$.

From the fact that the constant term of $\frac{[p](x)}{x}$ is p, we obtain

$$\tau_1^*(1) = \frac{[p](x)}{x}.$$

Next we assume that the lemma is true for r-1. There is a commutative diagram of exact sequences:

$$0 \to \mathbb{Z}/p^{r-1} \to \mathbb{Z}/p^r \to \mathbb{Z}/p \to 0$$

$$\downarrow \qquad \qquad \parallel$$

$$0 \to \mathbb{Z}/p^{r-2} \to \mathbb{Z}/p^{r-1} \to \mathbb{Z}/p \to 0.$$

Hence we obtain a covering map:

$$BZ/p^{r-1} \xrightarrow{\pi_{r-1}} BZ/p^{r-2}$$

$$\downarrow \qquad \qquad \downarrow$$

$$BZ/p^r \xrightarrow{\pi_r} BZ/p^{r-1}$$

where π_{r-1} and π_r are the maps induced by the projection. By the naturality of the transfer, we obtain a commutative diagram:

$$BZ/p^{r-1}_{+} \stackrel{\pi_{r-1}}{\to} BZ/p^{r-2}_{+}$$

$$\uparrow \tau_{r} \qquad \uparrow \tau_{r-1} \qquad (1)$$

$$BZ/p^{r}_{+} \stackrel{\pi_{r}}{\to} BZ/p^{r-1}_{+}.$$

Then
$$\tau_r^*(1) = \tau_r^* \pi_{r-1}^*(1) = \pi_r^* \tau_{r-1}^*(1) = \pi_r^* \left(\frac{[p^{r-1}](x)}{[p^{r-2}](x)} \right) = \frac{[p^r](x)}{[p^{r-1}](x)}.$$

Remark 2.3. The fact that $\tau^*_1(1) = \frac{[p](x)}{x}$ appears in Kriz's paper [6].

Let $F(p^r) \to BZ/p^{r_+} \to BZ/p^{r-1}_+$ be a cofibre sequence.

Lemma 2.4. There is an exact sequence:

$$0 \to \widehat{K(n)}^0(B\mathbb{Z}/p^{r-1}) \overset{\tau_*^*}{\to} \widehat{K(n)}^0(B\mathbb{Z}/p^r) \to \widehat{K(n)}^0(F(p^r)) \to 0.$$

Proof. It is enough to prove that τ_r^* is injective. Let $a \in \text{Ker } \tau_r^*$. There is a power series $t(x) \in \mathcal{O}_K[[x]]$ such that $t(x) \equiv a \mod([p^{r-1}](x))$. Let $b \in \widehat{K(n)}^0(B\mathbb{Z}/p^r)$ be the reduction of t(x). By Lemma 2.1 and Lemma 2.2, $0 = \tau_r^* a = \tau_r^*(1) \cdot b$ $= b \cdot \frac{[p^r](x)}{[p^{r-1}](x)}.$ Hence there is a power series $v(x) \in \mathcal{O}_K[[x]]$ such that

$$t(x) \cdot \frac{[p^r](x)}{[p^{r-1}](x)} = v(x) \cdot [p^r](x).$$

This implies $t(x) = v(x) \cdot [p^{r-1}](x)$ and a = 0. This completes the proof.

Using this lemma, we can regard $\widehat{K(n)}^0(BZ/p^{r-1})$ as a submodule of $\widehat{K(n)}^0(BZ/p^r)$. By Lemma 2.1, we see that $\widehat{K(n)}^0(BZ/p^{r-1})$ is an ideal of $\widehat{K(n)}^0(BZ/p^r)$. Therefore $\widehat{K(n)}^0(F(p^r))$ has the induced ring structure.

Theorem 2.5. $\widehat{K(n)}^0(F(p^r)) \cong \mathcal{O}_{L_r}$.

Proof. This follows from Lemma 2.2 and Lemma 2.4.

Remark 2.6. Let $E^*()$ be a complex oriented cohomology theory. We consider the transfer $\tau_r^* : E^*(BZ/p^{r-1}) \to E^*(BZ/p^r)$. Then in the same way we can show that $\tau_r^*(1) = \frac{[p^r](x)}{[p^{r-1}](x)}$. Furthermore, if $E^*(BZ/p^r) \cong E_*[[x]]/([p^r](x))$, then

$$E *(F(p^r)) \cong E_*[[x]] / \left(\frac{[p^r](x)}{[p^{r-1}](x)}\right).$$

Now we consider the relation between $\widehat{K(n)}^0(F(p^r))$ and $\widehat{K(n)}^0(F(p^{r+1}))$. From the commutative diagram (1), we obtain a spectrum map $f_r: F(p^{r+1}) \to F(p^r)$ which commutes the following diagram:

$$F(p^{r+1}) \to BZ/p^{r+1} + \stackrel{\tau_{r+1}}{\to} BZ/p^r +$$

$$\downarrow f_r \qquad \downarrow \pi_r \qquad \qquad \downarrow \pi_r$$

$$F(p^r) \to BZ/p^r + \stackrel{\tau_r}{\to} BZ/p^{r-1} + .$$

Proposition 2.7. The induced homomorphism

$$f_r^*:\widehat{K(n)}^0(F(p^r))\to\widehat{K(n)}^0(F(p^{r+1}))$$

is the degree p^n totally ramified abelian extension.

Proof. We consider the homomorphism

$$\pi_{r+1}^*:\widehat{K(n)}^0(B\mathbb{Z}/p^r)\to\widehat{K(n)}^0(B\mathbb{Z}/p^{r+1}).$$

Then $\pi_{r+1}^*(x) = [p](x)$. Hence $f_r^*(x) = [p](x)$. The proposition thus follows from the local class field theory.

3. Cohomology theory $\widehat{K(n)}(r)^*(\)$

Let K(n)(r) be the function spectrum $F(F(p^r), K(n))$. In particular we define K(n)(0) = K(n). We recall that there are spectrum maps

$$f_r: F(p^{r+1}) \to F(p^r).$$

We define

$$f_0: F(p) \to B\mathbb{Z}/p_+ \xrightarrow{j} S^0$$

where j is the pinch map. Let F_r be the spectrum map

$$F(f_r, id): \widehat{K(n)}(r) \to \widehat{K(n)}(r+1).$$

In this section we show that $\widehat{K(n)}(r)$ are ring spectra and F_r ring spectrum maps. Then we show that there is a similarity between the ring spectrum automorphism of $\widehat{K(n)}(r)$ and the Galois theory.

Let $\widehat{K(n)}(r)^*$ () be the cohomology theory represented by $\widehat{K(n)}(r)$. We recall that $\widehat{K(n)}(r)(F(p^r))$ is a finitely generated free module over $\widehat{K(n)}_*$. Hence if X is a CW complex, then there is an isomorphism:

$$\widehat{K(n)}(r)^*(X) \cong \widehat{K(n)}^*(X) \otimes_{\widehat{K(n)}_*} \widehat{K(n)}^*(F(p^r))$$

$$\cong \widehat{K(n)}^*(X) \otimes_{\mathscr{O}_K} \mathscr{O}_{L_r}.$$

Using this isomorphism we can define a natural ring structure on $\widehat{K(n)}(r)^*($). Hence we obtain the following lemma.

Lemma 3.1. $\widehat{K(n)}(r)$ are ring spectra.

Let F_{r*} be the natural transformation defined by F_r . By the definition of the multiplicative structure of $\widehat{K(n)}(r)^*$ (), we see that F_{r*} are multiplicative natural transformations. Hence we obtain the following lemma.

Lemma 3.2. $F_r:\widehat{K(n)}(r)\to\widehat{K(n)}(r+1)$ are ring spectrum maps.

Therefore we obtain the following theorem.

Theorem 3.3. There is a sequence of ring spectra and ring spectrum maps:

$$\widehat{K(n)}(0) \stackrel{F_0}{\to} \widehat{K(n)}(1) \stackrel{F_1}{\to} \widehat{K(n)}(2) \stackrel{F_2}{\to} \cdots.$$

The homotopy group of this sequence is the tower of the totally ramified abelian extensions of \mathcal{O}_K :

$$\mathcal{O}_K \subsetneq \mathcal{O}_{L_1} \subsetneq \mathcal{O}_{L_2} \subsetneq \cdots$$

Let $r > s \ge 0$. By a K(n)(r)-isomorphism over K(n)(s), we mean a ring spectrum map $\Phi: K(n)(r) \to K(n)(r)$ which is a homotopy equivalence and satisfies the following commutative diagram:

$$\widehat{K(n)}(r) \stackrel{\Phi}{\to} \widehat{K(n)}(r)$$

$$\widehat{K(n)}(s).$$

Let $Aut(\widehat{K(n)}(r,s))$ denote the set of $\widehat{K(n)}(r)$ -isomorphisms over $\widehat{K(n)}(s)$. Then $Aut(\widehat{K(n)}(r,s))$ has a group structure with respect to the composition.

Theorem 3.4. $Aut(\widehat{K(n)}(r,s)) \cong Gal(L_r/L_s)$.

Proof. This isomorphism follows from the facts that there are multiplicative isomorphisms:

$$\widehat{K(n)}(r)^*(\)\cong \widehat{K(n)}^*(\)\otimes_{\mathscr{O}_K}\mathscr{O}_{L_r}$$

$$\widehat{K(n)}(s)^*(\)\cong \widehat{K(n)}^*(\)\otimes_{\mathscr{O}_K}\mathscr{O}_{L_s}$$

and $F_{r-1} \circ \cdots \circ F_{s*}$ is induced by the inclusion: $\mathcal{O}_{L_s} \subseteq \mathcal{O}_{L_r}$.

Now we consider the ring spectrum maps $BZ/p^r_+ \to \widehat{K(n)}(r)$. Let L be an extension of K. We set $\widehat{K(n)}^0(BZ/p^r)_L = \widehat{K(n)}^0(BZ/p^r) \otimes L$. According to [5], we say that L is a splitting field of the Hopf algebra $\widehat{K(n)}^0(BZ/p^r)$ if L is a splitting field of both K-algebras $\widehat{K(n)}^0(BZ/p^r)_K$ and $\widehat{K(n)}^0(BZ/p^r)_K^*$ where we regard $\widehat{K(n)}^0(BZ/p^r)_K^*$ = Hom $_K(\widehat{K(n)}^0(BZ/p^r)_K, K)$ as K-algebra by means of the coalgebra structure of $\widehat{K(n)}^0(BZ/p^r)$. It was proved by Kordzaya and Nishida [5] that the group of the ring spectrum maps $BZ/p^r_+ \to \widehat{K(n)}^0 \otimes \mathcal{O}_L$ is isomorphic to $(Z/p^r)^n$ if L is a splitting field. From the K-algebra structure of $\widehat{K(n)}^0(BZ/p^r)_K$ we note that every splitting field must contain the quotient field L_r of $\widehat{K(n)}(r)_0$. Let V_r be the set of all K-algebra homomorphisms from $\widehat{K(n)}^0(BZ/p^r)_K$ to the algebraic closure \overline{K} of K. Then V_r is a group isomorphic to $(Z/p^r)^n$. There is an isomorphism as Hopf algebras:

$$\widehat{K(n)}^0(B\mathbf{Z}/p^r)_{\bar{K}} \cong \bar{K}[V_r]^*$$

where $\bar{K}[V_r]^*$ is the dual Hopf algebra of the group ring $\bar{K}[V_r]$.

Lemma 3.5. The quotient field L_r of $\widehat{K(n)}(r)_0$ contains all the p^r -th roots of unity.

Proof. Let Q_p^r be the cyclotomic field of p^r -th roots of unity over Q_p and $E = Q_p^r \cdot K$. We note that E is a finite abelian extension over K. Let $N(\cdot)$ denote a norm group. Then

$$N(L_r/K) = \langle p \rangle \times (1 + p^r \mathcal{O}_K)$$
$$N(\mathcal{Q}_p^r/\mathcal{Q}_p) = \langle p \rangle \times (1 + p^r \mathcal{Z}_p).$$

By local class field theory, there is a commutative diagram of exact sequences:

$$1 \rightarrow N(E/K) \rightarrow K^{\times} \rightarrow Gal(E/K) \rightarrow 1$$

$$\downarrow \qquad \qquad \downarrow N \qquad \downarrow \cong$$

$$1 \rightarrow N(Q_p^r/Q_p) \rightarrow Q_p^{\times} \rightarrow Gal(Q_p^r/Q_p) \rightarrow 1$$

where the middle vertical arrow is the norm map and the right vertical arrow is an isomorphism. So we see that $N(E/K) \supset N(L_r/K)$. Then the lemma follows from the fundamental theorem in local class field theory.

Therefore we obtain the following theorem.

Theorem 3.6. The quotient field L_r of $\widehat{K(n)}(r)_0$ is the unique minimal splitting field of $\widehat{K(n)}^0(BZ/p^r)$. If L is any splitting field, then the ring spectrum map $BZ/p^r_+ \to K(n) \otimes \mathcal{O}_L$ factors through the ring spectrum map $BZ/p^r_+ \to \widehat{K(n)}(r)$.

DEPARTMENT OF MATHEMATICS KYOTO UNIVERSITY

References

- [1] John Frank Adams, Infinite loop spaces, Annals of Mathematics Studies 90, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1978.
- [2] Ethan S. Devinatz, Michael J. Hopkins and Jeffrey H. Smith, Nilpotence and stable homotopy theory, I. Ann. of Math., (2) 128-2 (1988), 207-241.
- [3] Michael J. Hopkins, Global methods in homotopy theory, Homotopy theory (Durham, 1985), 73-96, London Math. Soc. Lecture Note Ser. 117, Cambridge Univ. Press, Cambridge-New York, 1987.
- [4] Kenkichi Iwasawa, Local class field theory, Oxford Science Publications, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1986.
- [5] Kakhaber Kordzaya and Goro Nishida, A duality theorem in Hopf algebras and its application to Morava K-theory of BZ/p', J. Math. Kyoto Univ., 36-4 (1996), 771-778.
- [6] Igor Kriz, Morava K-theory of classifying spaces: some calculations, Topology, 36-6 (1997), 1247-1273.